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Abstract

Humans can perform unseen tasks by recalling relevant skills that are acquired
previously and then generalizing them to the target tasks, even if there is no
supervision at all. In this paper, we aim to improve such cross-task generalization
ability of massive multi-task language models such as T0 (Sanh et al., 2021) in
an unsupervised setting. We propose a retrieval-augmentation method named
ReCross that takes a few unlabelled examples as queries to retrieve a small
subset of upstream data and uses them to update the multi-task model for better
generalization. Our empirical results show that the proposed ReCross consistently
outperforms non-retrieval baselines by a significant margin. 1

1 Introduction

Cross-task generalization is the ability of a multi-task model to work on a new task that is unseen
during its training stage (Ye et al., 2021; Mishra et al., 2021). It is important, yet challenging, to teach
machines this ability that we humans naturally have. Recent studies show tremendous promise in
cross-task generalization ability in natural language processing (NLP) via training massive multi-task
language models (Ye et al., 2021; Sanh et al., 2021; Wei et al., 2021). The general recipe of such
multitask training is to fine-tune a text-to-text language model (LMs) such as T5 (Raffel et al., 2020)
on a multitask mixture of diverse NLP datasets that are converted to seq2seq formats. We use the
term upstream learning to refer to this multi-task training stage. In the generalization stage, we are
given a target task that is unseen during upstream learning, and we want the upstream model can also
work well on this task via reusing the skills acquired previously.

Particularly, in the CrossFit framework (Ye et al., 2021), cross-task generalization requires a small
number of labeled instances of the target task for fine-tuning. It is because the templates of CrossFit
use the task names as the hard prefixes. For example, an instance of a sentiment analysis task can be
“amazon_review: best cast iron skillet you will ever buy.” → “positive.” Therefore, it is necessary to
fine-tune the upstream model with a few examples that have the target task names as prefixes (i.e.,
few-shot learning), but this largely limits the application scenarios of these multi-task NLP models in
practice. In this paper, we instead focus on unsupervised cross-task generalization, where we do not
have any labeled data of an unseen task (i.e., zero-shot learning). We formulate this setting in Sec. 2.

To this end, FLAN (Wei et al., 2021) and T0 (Sanh et al., 2021) use natural language (NL) instructions
as prompts to format the data. For example, the T0 models (Sanh et al., 2021) use data with
PromptSource (Bach et al., 2022) templates, where the same example of the sentiment analysis
task becomes “Is this review positive or negative? Review: Best cast iron skillet you will ever
buy.” → “positive”. Using NL templates to create data mixture is promising for unsupervised
generalization, and both methods indeed show decent zero-shot generalization ability. Why can such
models generalize to unseen tasks without supervision? We believe it is because these NL instructions

1Our code, models, and appendix will be publicly available at https://inklab.usc.edu/ReCross/.
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Figure 1: The unsupervised cross-task generalization problem. In the upstream training stage,
we train a massive multi-task NLP model,M, with a diverse collection of upstream tasks (e.g., Ti
and Tj). In the generalization stage, given an unseen task Ui with a few unlabeled examples Qi, we
want to update the upstream model such that it can generalize to the target task.

are semantically meaningful, and thus learning with them implicitly helps upstream models recall
acquired skills that are relevant to the target task.

Inspired by this idea, we propose to further improve the cross-task generalization ability of T0-like
models via retrieval augmentation. In Section 3, we present a retrieval-augmentation framework,
ReCross, for unsupervised cross-task generalization. Specifically, we pre-compute a dense index
by encoding all upstream data as vectors. Given a set of unlabeled examples, we first use them to
retrieve an initial list of upstream data by using encoded queries to efficiently search over the dense
index. Then, we apply the reranking module for carefully analyzing the utility of each candidate
example. To get such a reranker, we learn a cross-encoder model with distant supervision mined
by our proposed algorithm. Finally, we take top-ranking retrieved data to fine-tune the upstream
model for a few steps and use this updated model for inference on the target task. Our intuition is that
cross-task generalization can benefit if the upstream model re-learns a small subset of upstream data
that share skills that are required by the target task.

To more efficiently evaluate generalization methods without losing the generality, we train a variant
of T0-like models, named BART0, which has comparable performance with T0-3B yet is 8x smaller.
Our extensive experiments show that the proposed ReCross outperforms the baseline methods by a
large margin. For example, ReCross improves the non-retrieval methods by 4 points (in exact-match)
on the overall performance of 10 target tasks and similarly on BigBench tasks. We also analyze the
distribution of the retrieved data to better understand the behavior of retrieval-augmentation methods
and find that ReCross has a very different distribution compared to semantic retrieval baselines.

2 Problem Formulation

We here formulate the problem of unsupervised cross-task generalization of a massive multi-task
language model and point out its challenges. Figure 1 illustrates the problem of unsupervised
cross-task generalization using the notations introduced in the following sub-sections.

Massive Multi-Task Language Models. We assume there are N different upstream tasks,
dubbed as {T1, . . . , TN}. We use D to denote the collection of all labeled data (i.e., the upstream
data) for these upstream tasks, which are used for training a massive multi-task modelM. The
datasets of these upstream tasks are all converted to a shared text-to-text format using natural-language
instruction templates such as PromptSource (Bach et al., 2022) to reformat data of different NLP
tasks. This pipeline has become a common approach, adopted by several recent massive multi-task
models for NLP, such as T0 (Sanh et al., 2021), FLAN (Wei et al., 2021), and CrossFit (Ye et al.,
2021), which are good at cross-task generalization towards unseen tasks using limited data.

Unsupervised Cross-Task Generalization. Let us consider a collection of M unseen tasks that
are not included in the above upstream tasks, and we denote them with {U1, . . . ,UM}. For each
unseen task Ui, we have only a small number of unlabeled examples, and our objective is to use these
unlabeled data to improve the general performance of upstream modelM for the task Ui. Specifically,
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we consider two sets of examples for the task Ui: 1) a small unlabeled query set Qi and 2) a large
labeled test set Ei, where |Qi| � |Ei|. An unsupervised cross-task generalization method f thus
needs to enhanceM (by only using the inputs from Qi) so that the updated modelMi can perform
better on Ei. To get a comprehensive assessment, we evaluate the overall performance of multiple
unseen tasks. Please find more evaluation details in Section 4.1.

Challenges. Unlike the formulation of few-shot learning for cross-task generalization presented in
the CrossFit framework (Ye et al., 2021), this zero-shot setup is more challenging due to the lack
of human-annotated supervision on the query set. To enhance these upstream multi-task LMs for a
new task Ui, one may want to use the query examples Qi to re-weight the upstream data D and then
re-train a new model dedicated for the target task Ui. However, such re-training methods are hardly
feasible in practice because they require too much time and computation, especially when we have
many target tasks (i.e., M is a large number) to generalize to. We discuss more in Sec. 5.

3 ReCross: Retrieval Augmentation for Cross-Task Generalization

We introduce a simple and general retrieval-augmentation framework for unsupervised cross-task
generalization, named ReCross. It consists of two components: a dense retriever and a re-ranking
module. Figure 2 illustrates the overview of the proposed framework.

3.1 Overview

Recall that our goal is to improve the upstream modelM for an unseen task U by using its unlabelled
query examples Q. Our motivation is thus to retrieve a subset of upstream data R ⊂ D and use R
to fine-tuneM for learning a dedicated modelM′ that can do better on the task U . The retrieved
examples R should be highly related to the query examples Q that reveal the skills required by the
task U . We believe re-learning these examples R can help us better generalizeM to the unseen task
U , even though they have already been used for upstream training. To efficiently retrieve such data,
we present a two-stage retrieval-augmentation framework, namely ReCross.

In the first stage, we build a dense index of all upstream examples, where each upstream example
in D is encoded as a dense vector. We then build query vectors by encoding query examples Q for
quickly retrieving the most relevant examples via maximum inner product search (MIPS) over the
dense index of upstream data. In the second stage, we re-rank these initial retrieved examples with a
more computationally expensive module that can further improve the quality of the final retrieved
data. We refer the version without the reranking stage as ReCross†.

3.2 Dense Retriever

Efficient indexing and searching. Because the size of the upstream data D can be extremely large,
we must ensure that the retrieval step is efficient. Therefore, we pre-compute a dense index by
encoding each example (x, y) ∈ D as a d-dimensional vector x ∈ Rd, so that we can build the matrix
D ∈ R|D|×d as the index of all upstream examples. Given a query set Q, we then encode each query
example to get a set of query vectors for retrieval augmentation on the fly. Finally, we use these
vectors to search for the closest upstream examples over the index D via MIPS. The MIPS operation
produces a set of retrieved data that can be used as the initially retrieved data which can be further
re-ranked. We use FAISS (Johnson et al., 2019) to build and query these dense indices efficiently.

Example encoding. The example encoder is a key piece of the above dense-retrieval pipeline. We
use the encoder to embed both upstream examples in D and the query examples in Q. As we seek to
use MIPS to enable efficient retrieval, a simple and effective strategy is to use the same encoder for
both D and Q such that a simple L2 distance metric can work effectively. We propose to re-use the
upstream modelM for encoding the examples. Without loss of generality, let us assumeM to be a
text-to-text Transformer that has multiple layers for both encoder and decoder, such as BART (Lewis
et al., 2020a) and T5 (Raffel et al., 2020). We encode an example by first collecting the hidden
representation of each token at the last encoder layer, and then performing a mean-pooling operation
to get a single dense vector to represent this example.

3



Encoders

Decoders

Make a title for news: 
British mathemat ...

𝐷
upstream data

Dense 
Index

hidden dim

distant sup.

query cand.

Reranker

𝑄𝑖
pair-wise score

#
e
x
a
m
p
l
e
s
 

Dense 
Index

MIPS
R
e
r
a
n
k
e
r

Encoders

ℳ
𝑅′

𝑅

topK

Figure 2: We propose the ReCross, a retrieval-augmentation method for unsupervised cross-
task generalization. We reuse the encoder layers of the upstream model (green) to build a dense
index, which consists of vectors of the upstream examples D. We also propose an algorithm to
generate distant supervision for training a reranker, which takes a pair of examples as input and
outputs a score. During the evaluation, we encode query examples Qi for querying the index and get
initial ranking results R′ and then pair them with the query examples again for reranking. Finally, we
take the top-K results (i.e., R) for generalizing the upstream modelM to the unseen task Ui.

Retrieval aggregation. Note that our target size of retrieved data is |R| and we have |Q| query
examples. To retrieve |R| examples, we search for the top-K examples for each query example,
where K = d |R||Q|e, and then take the |R| of them when K|Q| > |R|. Our results have shown that this
method is more effective than other strategies, such as combining the distance scores generated for
each query example. Note that by retrieving the top-K examples, we may repeat examples that are
close to multiple query vectors. This effect is desirable because it allows us to naturally focus more
on the especially relevant upstream examples in re-learning.

3.3 Reranking Module

The above dense retrieval module allows us to efficiently retrieve a subset of possibly-relevant
examples from the upstream data D. This efficiency is with the cost of not permitting expensive
processing of all possible query/candidate pairs, the number of which would be |Q| ∗ |D| and thus
too huge to compute in practice. To further improve the retrieval process, we present a re-ranking
module based on a cross-encoder, which is designed to score a query-and-candidate pair of examples.
This enables us to leverage both efficient retrieval from the extensive upstream data and more
computationally expensive scoring to produce the final retrieved results. We leave the details of
creating the supervision for training such a reranker in Sec. 3.4. This is also shown in Figure 2.

Encoding query-candidate pairs. The cross-encoder architecture has been widely used in
sentence-pair classification tasks such as natural language inference and paraphrase detection. We
here want to use a cross-encoder to encode the concatenation of a query example and a candidate
example. Specifically, we fine-tune a RoBERTa-base (Liu et al., 2019) model to classify whether an
example pair is a positive or negative match. The confidence of classifying such an example-pair to
be positive can thus be used as the score of the candidate upstream example for this query example.
On top of this, we can then develop a reranking module for further improving retrieval performance.

Scoring paired data. To rerank the initially retrieved data from the dense retriever, we apply the
cross-encoder over all pairs of query examples Q and candidate retrieved examples R, thus producing
the scores of all |Q| ∗ |R| query-candidate pairs. For each candidate example, we use the average
of all scores involving it as its new score. Finally, we take the top-K examples based on this new
ranking of candidate examples in R′ as the final retrieved data R. Note that we refer to the ratio
between R′ and R to be the upsampling ratio µ.
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3.4 Creating Distant Supervision for Reranking

How do we train such a reranking module? We need some training data. Note that at this stage we
know nothing about the unseen tasks, and only have access to the upstream data D. To learn such a
reranker fromD, we propose creating a distant supervision dataset based on the dense retriever, which
is shown in Alg. 1. We define a data point of such distant supervision as a tuple Z = (Zq, Zp, Zn):
1) Zq is a set of query examples of a particular task Tq; 2) Zp is the set of positive examples from
other tasks; 3) Zn is the set of negative examples from other tasks.

Algorithm 1: Distant Supervision Creation
Input:M; D; Tq
Output: Z = (Zq, Zp, Zn)

DTq ←− {x ∈ D|x is an example of Tq}
Zq ←− Sample(DTq ); Hq ←− Sample(DTq )
RZ ←− DenseRetrieve(Zq, D)
/* Delete retrieved examples from the same task as queries. */
RZ ←− RZ . discard(DTq )
foreach round do

RZ . shuffle()
/* Split retrieved examples into n groups */
{G1, ..., Gn}←− RZ . split()
foreach Gi in {G1, ..., Gn} do
M′ ←−M. copy()
M′. fine_tune(Gi)
`←−M′. calc_loss(Hq)
foreach x ∈ Gi do

scores[x]. append(`) /* Score each
example in the group w/ the loss. */

/* Use mean group score as score for single examples */
foreach x ∈ RZ do

score[x]←− mean(scores[x])

/* Sort RZ by score in increasing order. */
RZ . sort(key: score, order: increasing)
Zp ←− First W items of RZ

Zn ←− Last W items of RZ

We expect that Zp is more suitable than Zn as
the retrieved data if Zq would be a query set. To
this end, we first randomly sample an upstream
task Tq and use a small subset of its training
data as the Zq. Here, we also sample a larger
held-out set Hq examples of task Tq to facilitate

Then, we apply the dense retriever using Zq as
the query examples and get the initially retrieved
data RZ . This RZ is thus the candidate pool
where we create Zp and Zn. That is, Zp ⊂ RZ

and Zn ⊂ RZ . We discard examples that are
from the Tq, so that the generated tuples are
closer to the scenarios where we use the reranker
on the query sets of unseen tasks.

Our criteria to select Zp and Zn from RZ is
motivated by the hypothesis that a more suitable
set of retrieved examples should improve the
performanceM on Ti after fine-tuning with it.
Therefore, we iteratively sample a small subset
from RZ , then fine-tuneM with it, and finally
use the fine-tuned model to evaluate on Z ′q . The
performance of such a temporarily fine-tuned
model can be seen as a score telling us how well
this subset can generalize to the unseen task Tq .
Through multiple rounds of such sample-train-
test procedures, we can thus score each example

in RZ by taking the average of all test results where it is involved. With such a new ranking of
examples in RZ , we take the best W examples as Zp and the worst W as Zn.

With such distant supervision, we then can create pair of query-positive instances and query-negative
instances via pairing Zq with Zp and Zn respectively. Now we can fine-tune a RoBERTa-base model
by concatenating each pair and learning a binary-classification objective. The output logits of this
trained model will be used for the reranking procedure as shown in Sec. 3.3.

3.5 Fine-Tuning with Retrieved Data

When we have the final retrieved data Ri for a certain query set Qi, we can now enhance the upstream
modelM for the unseen task Ui. To this end, we use a smaller learning rate to continually fine-tune
M on the Ri for a small number of steps. We find that the learning rate has to be very small so that
this step can be seen as a natural continuation of the finished upstream training and avoid over-fitting
on the retrieved data. We acknowledge that there could be more effective methods to reuse the query
examples Q as guidance for fine-tuning, and we leave this as future work.

4 Evaluation

In this section, we first introduce the experimental setups, including the task distribution, upstream
learning details, and the configurations of the main experiments. Then, we present the main experi-
mental results and finally reveal several findings with our analysis.
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4.1 Evaluating Cross-Task Generalization

We follow Sanh et al. (2021) to use the templates from PromptSource (Bach et al., 2022) for converting
data of different types of NLP tasks to text-to-text formats. In total, we have 36 upstream tasks and
10 target unseen tasks for our main experiments. The upstream tasks are the same as the ones that the
T0 models used for upstream learning. We follow the evaluation protocol proposed by Sanh et al.
(2021) and select the target tasks that are significantly different from the upstream tasks. Besides, we
also include 5 additional tasks from the BIG-bench project (BIG-bench collaboration, 2021), which
are even more out-of-distribution and thus helpful for further analyzing the generalization ability.

Metric. When we apply the natural-language templates for the test examples, we only keep the
templates that can be evaluated with an exact match (e.g., classification, question answering, etc.) so
that it is possible to use an exact match for evaluating all tasks. To allow smoother grading, our metric
also counts the cases when outputs and truths are sub-strings of each other, which we call SoftEM.

4.2 BART0: Upstream Learning with a Smaller LM

The T0(++) models are all very huge, and the smallest version, T0-3B (3 billion parameters), is
still too large to be effectively fine-tuned on popular affordable GPUs. To improve the efficiency
and keep the generality of our study on the retrieval augmentation methods, we propose to train a
more parameter-efficient alternative. Therefore, we fine-tune a BART-large (Lewis et al., 2020a) (0.4
billion parameters) following the recipe of training T0. Specifically, we sample 50k examples at most
from each upstream task to build a large upstream dataset consisting of 1.7 million examples (i.e.,
|D| = 1.7m), and then we fine-tune a BART-large with 22k steps with this upstream dataset. Finally,
we use the fine-tuned checkpoint as our upstream modelM and call it BART0. Surprisingly, we
find that BART0 and T0-3B have comparable zero-shot performance, even though T0-3B is about 8x
larger than BART0. More implementation details about this are shown in the appendix.

4.3 Setup and Configurations

In our main experiments, we use |Qi| = 16 query examples for each unseen task Ui and retrieve |Ri| =
512 examples for augmenting the BART0 to achieve better zero-shot performance on the target tasks.
In the fine-tuning stage, we use a learning rate of 1e-6 and a batch size of 4 to continually fine-tune
all layers of BART0 for 2 epochs. As for re-ranking, we set the upsampling ratio µ = 2, meaning
that we will first retrieve 1024 examples for reranking and use the top 512 as the final retrieved data.
Note that we also show the performance with other configurations in Table 3.

We average the scores of all target tasks to show the general zero-shot performance. For each task Ui,
we use five different query sets, {Q(1)

i , . . . , Q
(5)
i }, to conduct five individual rounds of retrieval, thus

resulting in five average scores for all tasks. To get a comprehensive assessment, we report the mean,
std, median, min, and max of these five overall scores in the lower part of Table 1.

4.4 Experimental Results
BART0 vs T0-3B. As we mentioned before, we find that BART0 is comparable with the much
larger T0-3B in terms of their zero-shot performance on our unseen tasks (41.33 vs 40.38). As
we use BART0 as our base model for testing different retrieval-augmentation methods, its overall
performance 40.38 is what we want retrieval-augmentation methods to beat. Note that when using
BART0 and T0-3B for non-retrieval zero-shot inference, they do not use any information from the
query sets, so their mean, median, min, and max are always the same.

Random Retrieval. The Random column shows the results when we randomly sample Ri from
the upstream data D without using any information from Qi. From the all@mean and all@median,
we can see that such random retrieval does not produce better overall performance, which is expected.
However, in a few target tasks, such a random-retrieval baseline can indeed outperform the base model,
e.g., anli-r3 (30.50→35.34), cb (39.64→47.07), and winogrande (51.10→52.68). This suggests that
it is promising to study better retrieval methods to get consistent improvement in overall performance.
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Target Task T0-3B BART0 Random SBERT ReCross† ReCross ∆

anli_r3 26.00 30.50 35.34±1.52 32.64±2.53 36.70±0.53 35.76±0.90 5.26
h-swag 34.40 39.40 33.84±5.59 30.92±7.82 44.36±3.07 47.28±2.95 7.88

cb 53.93 39.64 47.07±1.25 48.00±3.28 44.50±4.20 44.79±3.36 5.15
wic 45.70 46.70 41.04±2.18 46.78±2.22 49.90±0.50 50.58±0.24 3.88
wsc 50.00 57.88 52.50±2.29 52.69±6.13 59.27±1.96 61.46±1.47 3.58

winogrande 47.60 51.10 52.68±0.83 52.18±3.20 54.60±1.35 55.46±0.88 4.36
arc-chan. 41.30 35.70 33.28±1.50 37.90±1.22 37.78±0.73 38.44±0.99 2.74

obqa 38.50 34.40 28.72±2.46 33.28±1.24 36.98±1.55 39.58±2.80 5.18
piqa 45.30 36.10 37.00±2.71 38.54±2.17 41.34±1.75 41.42±1.02 5.32

squadv2 30.60 32.40 29.86±5.46 29.46±0.84 30.26±1.54 30.58±1.61 -1.82

All@mean 41.33 40.38 39.13±2.06 40.24±1.61 43.57±0.68 44.53±0.42 4.15
@median 41.33 40.38 39.93 40.91 43.43 44.31 3.93

@min 41.33 40.38 35.66 38.28 42.65 44.16 3.77
@max 41.33 40.38 40.59 41.76 44.51 45.07 4.69

Table 1: The main experimental results (%) for unsupervised cross-task generalization. Each
result in the upper section is the average (and the std) performance of using 5 different query sets
for a task. The lower section of this table reports the mean, max, min, and median of the overall
performance (i.e., the average performance on all tasks) of these five rounds.

SBERT and ReCross†. We here use SentenceBERT (Reimers and Gurevych, 2019) (SBERT)2 as
a strong baseline method to create a dense index of the upstream data, compared with our proposed
indexing method (ReCross†) — using the encoder of the upstream model (i.e., BART0) to produce
embeddings of upstream data. We can see that (ReCross†) always outperforms the other methods.
Even its minimum performance in the five rounds (42.65) is better than the maximum of the SBERT
(41.76). Besides, the standard deviation also becomes much smaller (1.61→ 0.68), which means that
improvement by the ReCross† is more consistent under different query sets.

The SBERT indexing relies mainly on the semantic similarities between a query example and the
upstream data. Instead, our proposed ReCross† uses the hidden representations inside the upstream
modelM for representing examples. We believe using such an indexing method can better help us
find examples that share similar reasoning skills acquired by the upstream model.

ReCross = ReCross† + Reranking. The full version of our ReCross with reranking can indeed
further improve the performance very much on multiple dimensions. Both all@mean and median
are improved by 1 point from the ReCross†, and the std is also reduced from 0.68 to 0.42. The last
column (∆) in Table 1 shows its improvement compared to the base model BART0, and we can see
that ReCross consistently outperforms non-retrieval methods (e.g., BART0) by a significant gap.

Task T0-3B BART0 ReCross

hindu_knowledge 24.75 23.48 24.87±0.27
known_unknowns 47.83 43.48 47.17±1.65
logic_grid_puzzle 23.60 20.70 17.12±6.29

strategyqa 47.70 48.30 49.76±0.80
movie_dialog 0.00 4.40 37.22±13.26

All@Mean 28.78 28.07 35.23±2.85

Table 2: Results on a subset of BigBench tasks.

To explore the potential benefits of retrieval-
augmentation methods such as our ReCross,
we also conduct the same experiments on five
tasks selected from the BIG-Bench project. The
results are shown in Table 2, where we can
see that ReCross still outperforms the non-
retrieval methods. An interesting case is the
movie_dialog task, where the prompt in the tem-
plate requires a model to output “same” or “dif-
ferent.” However, both T0-3B and BART0 fail
to follow the prompt instruction, and can only output “yes/no.” Only via retrieval-augmentation, we
can see the performance improvement on this task.

4.5 Analysis & More Findings.

2We use the all-distilroberta-v1 checkpoint for its great performance and relatively smaller size.
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Figure 3: The mapping between unseen tasks (as rows) and upstream tasks (as columns). The
darker upstream tasks take more percentage in retrieved data. For example, in ReCross’s retrieved
results towards the task of WIC, the examples from QQP are the most, which take about 30%.

Setup\All@ Mean std. Min Max Median

Main Exp. 44.53 0.42 44.16 45.07 44.31

|Q|=1 43.20 0.83 42.58 44.58 42.88
|Q|=8 43.67 0.90 42.09 44.32 43.90
|Q|=32 42.52 1.17 40.52 43.40 42.96

|R|=256 40.80 0.83 39.45 41.68 40.96
|R|=1024 44.02 1.43 42.26 45.35 44.59

µ=3 43.92 0.58 43.08 44.57 43.89
µ=4 43.91 0.99 42.76 45.10 44.26

Table 3: The ablation study of ReCross.

More configurations. We have used a partic-
ular configuration in our main experiments that
are in Table 1, which is |Q|=16, |R|=512, and
|u|=2. In Table 3, we explore more configura-
tions as ablation studies. The “Main Exp.” row
refers to the results shown in Table 1, and the
configurations of other rows are only changed
with one factor at a time. Even using a single
query example, ReCross is better than BART0.
However, when increasing the query size to 32,
we find that the performance starts to decrease,
meaning that there could be an optimal query size for a certain |R|=512. We find that increasing
|R| is generally beneficial, while the all@mean decreases when |R| is changed from 512 to 1024,
although the max and the median slightly increased. Finally, we see that increasing µ increases the
std. and does not improve the overall performance.

Retrieved data distribution. Figure 3 presents the difference between the four methods in terms
of their retrieved data. We draw the distribution of the retrieved data among different upstream tasks
for each unseen task individually. From the heatmap, we can see that ReCross tends to have more
dominant retrieved tasks (i.e., darker cells), while SBERT’s results are more sparse. They both can
identify that squad is most similar to the three adversarial_qa tasks. Their behaviors are very
different too. Taking the unseen task winogrande (wngrnd) as an example, we can see that the
SBERT retrieves from multiple upstream tasks such as paws-x and cosmosQA , but the ReCross
mainly retrieves from social-iqa, wiki-qa, and cos-e. The experimental results in Table 1
show that ReCross produces a better performance than SBERT (i.e., 55.46 vs 52.18), while it is not
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clear how we can predict such task correlation in advance. This suggests that we should explore more
about the utility of instances and tasks in future work.

5 Related Work

Multi-task training of NLP models. Text-to-text Transformer language models such as T5 and
BART enable us to train a multi-task NLP model with a more straightforward recipe: mixing the data
of multiple tasks into a unified seq2seq format, and then fine-tuning text-to-text LMs for implicit
multi-task learning. UnifiedQA (Khashabi et al., 2020) is among the first works in this direction. It
combines the data of many different question answering (QA) tasks with a unified data format and
fine-tunes T5 for learning a powerful QA model. Although this method shows great generalization
performance within the general QA tasks, it can hardly generalize to other NLP tasks.

To further explore the limit of such a multi-task training recipe, Ye et al. (2021) proposed CrossFit, a
framework that trains a massive multi-task NLP model on a repository of 160 distinct tasks. Similarly,
FLAN (Wei et al., 2021) and T0 (Sanh et al., 2021) follow the same recipe for training, while they both
propose to use prompts to format the data. These prompts, or instructions, are a set of templates that
explain the goal of a task in natural language. In this paper, we use our BART0 for all experiments,
which shows comparable performance with T0-3B, yet with a much smaller size.

Cross-task generalization. A significant goal of developing these massive NLP models is to
achieve better cross-task generalization ability – i.e., the ability to rapidly generalize to an unseen task.
Although the CrossFit models show decent generalization ability on unseen tasks, they have to assume
there are a few labeled examples (i.e., few-shot learning). Using natural-language instructions as
prompts, both FLAN and T0 show that it is promising to perform zero-shot cross-task generalization.
In this work, we also focus on such an unsupervised setting, where we only require a few unlabelled
examples. Besides, Mishra et al. (2021) show that the instructions used in crowd-sourcing can be
helpful in cross-task generalization too.

Retrieval augmentation. We aim to tackle the unsupervised cross-task generalization problem by
retrieving useful examples from the upstream data and re-learning them. Our pipeline is inspired
by open-ended QA methods such as DPR (Karpukhin et al., 2020), DrFact (Lin et al., 2021), and
RAG (Lewis et al., 2020b). Retrieval augmentation also shows great performance in pre-training
LMs (Guu et al., 2020). Unlike these works, we do not aim to retrieve useful information from a
knowledge corpus (e.g., Wikipedia). Instead, we want to retrieve examples (i.e., input-output pairs)
from the upstream data that are of multiple NLP tasks. Also, prior retrieval augmentation methods
aim to use the retrieved info to address a particular instance (e.g., an open-domain question), but
our ReCross method is designed to improve the generalization for a new task (e.g., coreference
resolution). In particular, both our reranking module and the one in DrFact are cross-encoders and
they both enhance the final results very much. However, unlike these QA challenges, our setting does
not have any truth “answers” for a given query, so we develop a dedicated method to collect distant
supervision via iteratively sampling and testing (see Alg. 1 in Sec. 3.3).

6 Conclusion & Future Directions

We demonstrate that retrieval augmentation can largely improve the cross-task generalization ability
to multitask LMs in unsupervised settings. Our proposed method, ReCross, is a straightforward
yet effective retrieval method that combines both efficient dense retrieval and effective pair-wise
reranking. Our empirical results show that it significantly outperforms both non-retrieval methods
and other baseline methods. We perform ablation studies showing the impact of changing query sizes,
retrieval sizes, upsampling ratios, etc. We also find the distribution of retrieved data for analyzing the
behavior differences between ReCross and others. We believe that our paper will spur further research
on retrieval-augmentation methods for cross-task generalization. Interesting future directions include:
1) improve the re-learning stage by including more information from query examples, 2) extend the
distant supervision mining process as a self-training procedure, 3) rigorously analyze the correlation
between upstream data and target tasks, etc.
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