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Abstract
We propose a novel open-domain question-
answering dataset based on the Common
Crawl project. With a previously unseen
number of around 130 million multilingual
question-answer pairs (including about 60 mil-
lion English data-points), we use our large-
scale, natural, diverse and high-quality corpus
to in-domain pre-train popular language mod-
els for the task of question-answering. In our
experiments, we find that our Common Crawl
Question Answering dataset (CCQA) achieves
promising results in zero-shot, low resource
and fine-tuned settings across multiple tasks,
models and benchmarks1.

1 Introduction

Open-domain question-answering (ODQA) has
evolved into a core problem in Natural Lan-
guage Processing (NLP), receiving growing inter-
est from the research community (Raffel et al.,
2020; Roberts et al., 2020). Despite the notori-
ously difficult challenge to correctly answer open-
domain questions on arbitrary topics, recent ad-
vances of pre-trained language models (such as
BERT (Devlin et al., 2019), BART (Lewis et al.,
2020a) and T5 (Raffel et al., 2020)) have stimu-
lated new research into additional, task-dependent
pre-training steps. Specifically, recent publications
show that in-domain pre-training regimes can im-
prove models for several downstream tasks (Gu-
rurangan et al., 2020). For open-domain question-
answering, newly proposed pre-training tasks such
as the Inverse Cloze Task (ICT) (Lee et al., 2019),
Body First Selection (BFS), Wiki Link Predic-
tion (WLP) (Chang et al., 2020) and Question An-
swering Infused Pre-training (QUIP) (Jia et al.,
2021) show consistent improvements over base-
lines. However, most of these approaches still rely

∗Work done at Meta.
1Our dataset generation script and CCQA pre-trained

checkpoints can be found at https://github.com/
facebookresearch/CCQA

on either unlabeled text, or synthetically generated
question-answer (QA) pairs. In this paper, we ex-
plore a second, somewhat orthogonal dimension
to these lines of work, examining if a web-scale
collection of natural QA pairs can support ODQA
through in-domain pre-training.

Per definition, an ODQA system should be able
to answer any question from an arbitrary domain.
We believe that to approach this ability with in-
domain pre-training, a suitable dataset should ad-
dress the following 5 challenges: (1) Size; ODQA
requires knowledge of a wide variety of topics.
The underlying dataset used for in-domain pre-
training hence needs to cover this abundance of
domains, requiring a web-scale dataset. (2) Nat-
uralness; While synthetic corpora can potentially
capture a wide variety of language phenomena,
to understand and generate truly natural language
in all facets, synthetic datasets are not sufficient.
(3) Quality; Given the requirement for a diverse,
large-scale dataset, high data quality in terms of
cleanliness and sensibility becomes a major chal-
lenge. Given that web-scale data sources require
highly automated approaches operating on noisy
data, assuring data quality is non-trivial. (4) Di-
versity; Besides size, another challenge for any
ODQA in-domain pre-training dataset is the gen-
erality of the corpus. The dataset needs to support
answering many diverse questions to allow models
to learn general concepts. (5) Evaluation Fairness;
A web-scale question-answering dataset potentially
overlaps with existing benchmark corpora, leading
to inflated performance measures and impeding the
evaluation fairness (Lewis et al., 2021a).

To overcome these challenges, we propose a
new large-scale dataset for open-domain question-
answering called the Common Crawl Question
Answering (CCQA) dataset. Similar to popular
datasets, such as C4 (Raffel et al., 2020), CC-
Net (Wenzek et al., 2020), CC-100 (Conneau
et al., 2020), HTLM (Aghajanyan et al., 2022b),
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and CM3 (Aghajanyan et al., 2022a) we generate
a large-scale, diverse and high-quality question-
answering dataset from Common Crawl.

More specifically, Common Crawl allows us to
obtain a large number of truly natural question-
answer pairs, asked and answered by real humans
on the web, rather than inferred through com-
putational methods. Using the abundantly avail-
able schema.org question annotation2, we generate
question-answer pairs from explicit annotations, in-
stead of heuristic rules, leading to high-quality data
points.

In a large set of evaluations, we show that in-
domain pre-training on our CCQA dataset achieves
promising results across different settings, mod-
els and benchmarks. Using the rich information
available on the web, we augment our dataset
with additional data attributes beyond just question-
answer pairs, such as votes, multiple (compet-
ing) answers, question summaries and intra-textual
HTML markup, which can be used for a variety of
tasks beyond question-answering in future work.
Furthermore, we evaluate the diversity and evalua-
tion fairness of our dataset by computing topic dis-
tributions and train-test overlaps with benchmark
datasets, providing additional rationale regarding
the quality of our data and experiments. To sum-
marize, our main contributions in this paper are as
follows:

• We generate the first truly large-scale, nat-
ural question-answering dataset, containing
around 130 million unfiltered question-answer
pairs (55M unique pairs), including about
60 million English data points (24M unique
pairs).

• We present key dataset statistics, confirming
the high quality of our question-answer pairs,
the wide range of diverse topics and a low
overlap with existing benchmarks.

• We show the effectiveness of the dataset for
in-domain pre-training by evaluating the per-
formance of the unfiltered English subset on
two question-answering tasks, three different
settings, four models and five diverse bench-
marks.

2https://schema.org/Question

Figure 1: Dataset generation overview from the initial
raw HTML file (top) to general purpose, webpage ag-
gregated question-answer pairs (bottom). M = Addi-
tional question/answer metadata. Red boxes = Non-
question-answer related webpage components.

2 Related Work

This work is inspired by a range of previous ap-
proaches using Common Crawl web-data, such
as the Colossal Clean Crawled Corpus (C4) for
language model pre-training (Raffel et al., 2020),
the word/sentence representation generation cor-
pus CCNet (Wenzek et al., 2020), the CC-100
dataset for translation (Conneau et al., 2020) and
the markup-style language modelling HTLM cor-
pus for zero-shot summarization (Aghajanyan et al.,
2022b). Despite all previously mentioned appli-
cations directly relying on large-scale web data
from Common Crawl, their scope and application
vary significantly. Compared to previously pro-
posed datasets based on Common Crawl, we are
the first to extract well-structured question-answer
pairs with additional meta-data, making our cor-
pus a valuable resource for ODQA research, and
a multitude of related tasks, such as question sum-
marization, answer rating, and answer ranking.

Further web-based datasets outside the Common
Crawl domain are the TriviaQA (Joshi et al., 2017)
and ELI5 corpora (Fan et al., 2019), extracting
small-scale question-answer datasets from Trivia
websites and Reddit threads respectively. The
large-scale GooAQ dataset (Khashabi et al., 2021)
is similarly based on web data, however exploits
the Google auto-complete feature and related an-
swer boxes to generate semi-synthetic question-
answer pairs. As a large-scale, completely syn-
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thetic dataset, the PAQ corpus (Lewis et al., 2021b)
automatically generates a large set of Probably
Asked Questions from Wikipedia articles. In con-
trast to these previously proposed datasets, our
CCQA corpus presents a large-scale, natural and
diverse question-answering resource in the same
order of magnitude as the largest synthetic datasets.

Besides the generation of the CCQA dataset, we
evaluate its potential as an in-domain pre-training
corpus for open-domain question-answering. Our
work is aligned with previous in-domain pre-
training approaches, which have shown to improve
a variety of downstream tasks (Gururangan et al.,
2020). Similar to in-domain pre-training, multiple
domain-dependent pre-training tasks have been pro-
posed for open-domain question-answering. For ex-
ample, Lee et al. (2019) propose the Inverse Cloze
Task (ICT), Chang et al. (2020) introduce Body
First Selection (BFS) and Wiki Link Prediction
(WLP) and Jia et al. (2021) describe a novel Ques-
tion Answering Infused Pre-training (QUIP) task.
Along similar lines, Aghajanyan et al. (2021) pro-
pose pre-finetuning, an alternative to in-domain
pre-training, using around 50 domain-dependent
datasets, showing that their MUPPET approach
generalizes well to many tasks. Khashabi et al.
(2020) introduce a similar concept for question-
answering in their UnifiedQA framework. While
we propose a somewhat orthogonal dimension to
most of these works, they nevertheless present us
with strong intuition regarding the effectiveness of
domain-dependent pre-training.

3 The Common Crawl Question
Answering (CCQA) Dataset

3.1 Dataset Collection
Our Common Crawl Question Answering (CCQA)
dataset contains around 130 million question-
answer pairs (55M unique), extracted from 13 Com-
mon Crawl snapshots between May 2020 and May
20213. A high-level overview of the dataset gen-
eration process is depicted in Figure 1. Starting
from a set of raw HTML webpages, we make use
of the schema.org definition to find relevant tags,
such as the question, answer, author and votes (for
the full set of tags see Figure 2). Using the explicit
schema.org annotation (commonly used for search-
engine optimization), instead of simple heuristics
(e.g. question marks), we optimize the resulting
corpus for high-quality data points. Specifically,

3https://commoncrawl.org/

Figure 2: JSON data structure following the
schema.org annotation. Fasttext language labels
(Joulin et al., 2016, 2017) added for language distinc-
tion.

due to the added efforts for website creators to de-
fine schema.org conforming meta-data, we believe
that annotated question-answer pairs are likely to
be relevant to the general public, mostly exclude
rhetorical and contextual questions, and as a result
constitute high quality QA data, despite the noisy
nature of webpages.

During the dataset processing steps, we remove
all HTML elements that do not contain valid
schema.org markers (red in Figure 1) and subse-
quently clean every question on the webpage to
only conserve markup related to the textual content
of schema.org tags4. We further remove any unre-
lated markup attributes (e.g., CSS and JavaScript
classes), before converting the content into a well-
defined JSON object, shown in Figure 2 and further
described in section 3.2.

Using the 13 consecutive Common Crawl snap-
shots, we generate an initial dataset of 130 million
question-answer pairs, naturally containing two
types of potential duplicates: (1) Same-URL dupli-
cates; where a webpage is updated between any two
Common Crawl snapshots and (2) Content dupli-
cates; where webpages from any Common Crawl
snapshot contain same questions with potentially
similar answers.

Here, we use the original, uncleaned version
of the dataset, presenting a practical performance

4Set of textual tags taken from developer.mozilla.
org/en-US/docs/Web/HTML/Element
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lower-bound, while leaving the exploration of addi-
tional filtering steps for future work5.

Our dataset generation procedure is further out-
lined in Algorithm 1, found in Appendix A. For
qualitative examples of our generated dataset for-
mat, we refer readers to Appendix G.

3.2 Dataset Format

The structured output of the dataset collection
(shown in Figure 2), contains a three-level nested
structure: (1) Every top-level data point represents
a webpage in Common Crawl, encapsulating ques-
tions and answers found on the page, together with
relevant metadata. (2) On the second level, every
question is represented as a tuple containing the
question name (a short summary of the question)
and question text (the main question). Questions
also contain additional metadata as shown in Fig-
ure 2. (3) Every question can contain an arbitrary
number of associated answers and answer attempts,
located on the third and final level of the nested
structure. An answer thereby contains a mandatory
accepted/suggested label, the answer text as well
as optional metadata.

With this nested structure of our CCQA dataset,
we allow users to verify question-answer pairs and
their metadata on the original webpage, utilize addi-
tional parts of the web-document and allow future
research to tackle question-answering related tasks,
such as answer selection, answer rating or answer
ranking.

3.3 Dataset Dimensions

To gain better insights into the massive amount
of data, we present a mix of automatically ob-
tained dataset dimensions, a small-scale human
pilot study, and a set of key dataset distributions.

Regarding the small-scale human pilot study, we
analyze a random subset of 400 individual question-
answer pairs and evaluate their sensibility and an-
swerability. We define question sensibility as to
whether the annotator understands the questions it-
self, while question answerability refers to whether
the question provides enough context for a perfect
question-answering system to correctly answer the
question. Furthermore, QA-sensibility denotes if
the question-answer pair makes sense6. We refer

5We provide de-duplication scripts for same-URL dupli-
cates due to snapshot overlap at https://github.com/
facebookresearch/CCQA.

6We do not check the answer for factual correctness but
merely evaluate if it could be the answer for the given question.

Q-SensH Q-AnsH QA-SensH Markup Q-Summ

96.5% 86% 82.25% 47.5% 11.7%

No A Avg #A∗ Mean Q Mean A Lang Tags

5.9% 1.41 43 57 77.9%

Table 1: Key CCQA dataset dimensions. Q=Question,
A=Answer, QA=Question-answer pair, Sens=
Sensibility, Ans=Answerability, Lang=Language,
Summ=Summarization, Mean=Average number of
words, HHuman pilot study, ∗Excluding questions
without answers.

interested readers to Table 9 in Appendix E for
further explanations on sensibility/answerability.

As shown in Table 1, our CCQA corpus contains
nearly exclusively sensible questions, with the vast
majority of them also answerable and sensible as
a pair. To complement our small-scale human an-
notation, we further explore key dataset dimension,
including the fraction of samples with advanced
markup, questions containing both, question name
and question text (as defined by the schema.org
annotation), the number of questions without gold-
answers, average question and answer length and
the number of webpages with a valid language la-
bel, all indicating that the schema.org annotation
highly correlates with carefully curated webpages.

Besides the key corpus-level statistics, we take
a closer look at important dataset distributions in
Table 2. Specifically, we present the top 5 domains
at the top of Table 2, showing the largest number
of webpages originating from the stackexchange
domain, accounting for about 8% of data points.
Regarding the topical distribution of our dataset,
we use the DMOZ/Curlie taxonomy, automatically
extracting hierarchical topic information7. We ran-
domly sample 1, 000 question webpages and show
the top 5 topics in the second row of Table 2. A
more detailed topic distribution, also considering
second-level assignments, can be found in Table 6
in Appendix B. Regarding the question-word dis-
tribution in our CCQA dataset, we observe that the
majority of 36% of question words are what ques-
tions, followed by how, when, which and where. A
full list of all 8 questions words and their relative
appearance in our corpus can be found in Table 7
in Appendix C. Lastly, expanding on the number
of non-trivial markup tags presented in Table 1, we
explore the frequency of HTML markup tags in
our dataset in the last row in Table 2. For a list

7https://www.curlie.org
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Figure 3: High-level overview of the closed-book
CCQA in-domain pre-training step (yellow) as part
of the training pipeline for BART and T5. Lan-
guage model pre-training shown in green. Task-
dependent fine-tuning presented in red. Evaluation in
blue. (1) Baseline pre-training/fine-tuning pipeline, (2)
In-domain pre-training/fine-tuning pipeline, (3) zero-
shot baseline setting and (4) zero-shot in-domain pre-
training setting.

of the top-25 tags found in our corpus, we point
interested readers to Table 8 in Appendix D.

4 Evaluation

In this section, we showcase the value of our
CCQA dataset with experiments on the closed-
book question-answering (section 4.1) and passage
retrieval for open-book QA (section 4.2) tasks.

4.1 Closed-Book Question-Answering

4.1.1 Task
The closed-book question-answering task chal-
lenges systems to answer questions without to use
of additional information sources, such as knowl-
edge bases or evidence documents. As a result,
models are solely relying on the question text and
the information stored inside the model weights
during training. Here, we evaluate our new CCQA
dataset as an in-domain pre-training corpus for this
highly challenging task by converting the JSON
representation into plain question-answer pairs, re-
moving markup tags and additional metadata.

4.1.2 Models & Training
Using the question-answer pairs from the CCQA
dataset, we in-domain pre-train large language
models for question-answering. We start with
vanilla BART and T5 transformer models, shown

on the left side (green) in Figure 3. We then further
in-domain pre-train the models using a denoising or
sequence-to-sequence (seq2seq) setup (yellow box
in Figure 3). For the denoising task, we follow the
vanilla BART approach (Lewis et al., 2020a), using
a concatenation of Q:‖<question>‖A:‖<answer>
as the model input. For the seq2seq task, we train
the model to predict the gold answer given a ques-
tion as input. With the additional in-domain pre-
training step, a variety of training-flows emerge,
shown as numbered circles in Figure 3:
(1) Using a vanilla pre-trained language model to
fine-tune on the benchmark dataset.
(2) Using the CCQA dataset for in-domain pre-
training and subsequently fine-tune on the bench-
mark dataset.
(3) Using a pre-trained language model to directly
infer answers on the benchmark dataset (zero-shot).
(4) Using the CCQA in-domain pre-trained model
to directly infer answers on the benchmark dataset
in zero-shot fashion.

4.1.3 Datasets
We evaluate the performance of our CCQA corpus
as an in-domain pre-training dataset on 5 common
benchmarks, based on 4 publicly available datasets
in the closed-book setting:

TriviaQA (TQA) is a short-form, factoid-style
question-answering dataset (Joshi et al., 2017). For
the closed-book task, we ignore the available con-
texts and focus exclusively on question-answer
pairs. Since the official test-split of the dataset
is not publicly available, we use the official vali-
dation set as our test split and randomly sample a
validation set from the training data, as commonly
done in previous work (Roberts et al., 2020).

Natural Questions (NQ) (Kwiatkowski et al.,
2019) represents a popular corpus for question-
answering research. Despite most recent work fo-
cusing on the short-form answers (NQ-Short), the
NQ corpus also provides additional long-form an-
swers (NQ-Long) for a large subset of questions.
In this work, we use both, short, factoid answers
and long-form responses.

ELI5, introduced by Fan et al. (2019), consti-
tutes the first large-scale long-form dataset for
open-ended question-answering. We again do not
take available evidence documents into account,
but focus on the question-answer pairs only.

GooAQ (Khashabi et al., 2021) contains semi-
automatically extracted question-answer pairs from
the Google question auto-complete feature.



Metric Top 5 Appearances in CCQA

Domains stackexchange (07.78%) hotels (03.46%) viamichelin (02.51%) ccm (01.86%) vrbo (01.74%)
Topics Regional (38.90%) Society (21.10%) Business (08.30%) Sports (07.00%) Rec (06.20%)
Q-words What (36.20%) How (29.80%) When (09.68%) Which (09.64%) Where (06.04%)
Markup p (28.48%) a (14.89%) br (14.86%) li (10.04%) span (05.77%)

Table 2: CCQA dataset distribution for top 5 domains, topics according to the DMOZ/Curlie annotation, question
words (Q-words, only computed on the English subset) and most common markup tags. % for q-words and markup
tags presents portion of all q-word/markup appearances. ccm=commentcamarche, Rec=Recreational.

4.1.4 Metrics

For datasets with short-form answers, we use the
Exact Match (EM) metric for fine-tuned systems,
in line with previous work by Roberts et al. (2020)
and Lewis et al. (2021b). While the EM metric
works well for systems that are aware of the task-
specific format, it punishes potentially correct an-
swers with additional context, which we believe is
overly harsh in zero-shot settings, where the spe-
cific output format is not known (e.g., training-
flows (3) and (4)). Therefore, we propose using
the Answer-level Recall (AR) metric for our zero-
shot experiments, while limiting the answer length
with the max-length and length-penalty inference
parameters. As such, the AR metric requires the
correct answer to be a continuous sub-sequence of
the predicted tokens, while allowing for additional
context. Since AR operates on token-level, the
prediction of super/sub-words, e.g., fundamental
instead of fun, is considered incorrect.

For long-form question-answer datasets, we
choose the Rouge-L (RL) score as our evaluation
metric, which has shown strong correlation with
Rouge-1 and Rouge-2 scores, and is commonly
used in previous work (Khashabi et al., 2021).

4.1.5 Hyper-Parameters

We use the default parameters of the BART (Lewis
et al., 2020a) and T5 (Raffel et al., 2020) models for
in-domain pre-training and fine-tuning whenever
possible. Regarding the in-domain pre-training on
our CCQA dataset, we limit training to 800k steps
using a batch-size of 1,024. During our fine-tuning
runs, we limit the number of updates to 20k steps
with a batch-size of 256 samples, with exception of
the GooAQ dataset, which we fine-tune for 100k
steps due to it’s large size. We select the best model
during our in-domain pre-training runs based on
the perplexity measure, and pick the top fine-tuned
model according to the final evaluation metric. We
do not perform any hyper-parameter search during

in-domain pre-training and fine-tuning.
For the inference step, our hyper-parameter set-

ting is closely related to commonly used summa-
rization parameters. We use a beam-size of 4, max-
length of 140, and length-penalty of 2.0. For the
fine-tuned short-form task, we choose a max-length
of 30, following Xiong et al. (2021) and a length-
penalty of 1.0. All model evaluations are based on
Huggingface Transformers8 (Wolf et al., 2019).

4.1.6 Results
Our main results for the closed-book question-
answering task are presented in Table 3, show-
ing the zero-shot and fine-tuned performance of
the BART Large (top), T5 Small (center) and T5
Base (bottom) models for each of the 5 evaluation
datasets. Even though we present a wide variety of
benchmark results, from short-form factoid ques-
tions to long-form answers, the CCQA seq2seq pre-
trained model consistently outperforms all other
models on the zero-shot question-answering task.
Even more importantly, the additional in-domain
pre-training step achieves better zero-shot perfor-
mance than fully fine-tuned, randomly initialized
transformer models (as extensively used prior to
2018) in almost all settings. Specifically, our model
outperforms the randomly initialized transformers
on all benchmarks for T5 Small and T5 Base, as
well as on 4 out of 5 datasets using BART Large.

Comparing the fully fine-tuned setting across
models and datasets it becomes clear that, al-
though oftentimes performing comparably, our
CCQA seq2seq pre-trained model underperforms
the vanilla models in most cases. Seq2seq in-
domain pre-training on CCQA only reaches su-
perior performance on the ELI5 dataset for all mod-
els, as well as on the GooAQ dataset for T5 Small.
Showing that seq2seq pre-training on CCQA is
effective in zero-shot scenarios, however only par-
tially improves over baselines in the fine-tuned set-

8Experiments are executed on Nvidia V100 32GB GPUs.



Zero-Shot

Model
TQA NQ-Short NQ-Long ELI5 GooAQ

AR AR R-L R-L R-L

BART Large

Rand. Init. 0.04 0.11 0.10 0.26 0.16
Vanilla †4.91 †1.93 10.39 11.88 14.67
Vanillaa

CCQA †5.14 †2.16 12.18 †15.21 †17.5
CCQA-d 4.80 2.13 10.33 11.91 14.88

T5 Small

Rand. Init. 0.05 0.11 1.13 1.49 0.80
Vanilla †5.06 †1.74 9.16 7.55 †8.92
Vanillab

CCQA †5.13 †1.86 †13.63 †15.28 †15.46

T5 Base

Rand. Init. 0.04 0.11 0.00 0.00 0.00
Vanilla †5.49 †2.02 †14.39 12.27 †14.99
Vanillac

CCQA †7.15 †3.19 †15.08 †15.69 †15.85

Fine-Tuned

TQA NQ-Short NQ-Long ELI5 GooAQ
EM EM R-L R-L R-L

BART Large

0.71 0.75 16.04 14.37 16.21
28.67 23.79 23.47 16.96 35.67

26.50
25.82 22.91 21.25 17.23 32.53
27.84 23.96 24.56 17.27 35.92

T5 Small

0.44 0.54 10.86 13.06 8.71
21.02 21.16 22.09 16.28 24.70

19.00 23.00
17.55 19.50 22.05 16.33 25.35

T5 Base

0.32 0.38 13.58 12.72 7.93
26.25 23.04 25.36 16.58 29.36
23.63 25.94
22.69 22.32 24.73 16.64 29.09

Results from a Lewis et al. (2021a) b Khashabi et al. (2021) c Roberts et al. (2020)

Table 3: Closed-book zero-shot and fine-tuned results. Best performance of fairly computed results per sub-table
bold. †Zero-shot model outperforms fully fine-tuned randomly initialized transformer of same architecture. -d
extension indicates denoising CCQA pre-training task. AR=Answer-level recall, EM=Exact Match, RL=Rouge-L.

ting, we investigate: (1) Additional experiments
using the CCQA dataset for denoising-style pre-
training (-d in Table 3) and (2) Evaluate additional
low-resource scenarios, shown in Figure 4.

For our denoising-style in-domain pre-training
experiment, we keep the available markup infor-
mation, in line with HTLM (Aghajanyan et al.,
2022b). As shown in Table 3, the in-domain CCQA
denoising objective outperforms the vanilla BART
Large model on 4 out of 5 benchmarks in the fine-
tuned setting. We believe that this result, alongside
the zero-shot performance of the seq2seq CCQA
model, clearly shows the usefulness and generality
of our CCQA corpus for closed-book open-domain
question-answering.

Taking a closer look at low-resource scenarios,
we evaluate the vanilla T5 Small model against our
in-domain pre-trained approach using 5 proper sub-
sets of the NQ-Long, GooAQ and ELI5 benchmark
datasets, drawn at random. As presented in Fig-
ure 4, our CCQA model mostly outperforms the
vanilla T5 Small model in low-resource scenarios
with up to 10,000 data points. While the perfor-
mance of our CCQA model is consistently better

on the ELI5 test-set, the vanilla baselines outper-
form our models fastest on the NQ-Long corpus.
Additional low-resource experiments on T5 Base
are shown in Table 6, in Appendix F.

4.2 Passage Retrieval

4.2.1 Task
For the passage retrieval task, an important compo-
nent of most open-book QA systems (e.g., Lewis
et al. (2020b); Izacard and Grave (2021)), models
aim to extract a set of evidence passages from a
large collection of documents through conditional
ranking. To align our corpus with the passage re-
trieval task, we aggregate every question into a
single data point, consisting of the question itself,
alongside all available answers as either positive
or negative contexts. If available, answer votes are
used as a proxy to determine positive and nega-
tive (sometimes called “hard-negative") contexts.
Following the practice in Fan et al. (2019), we as-
sign every answer with at least 2 more upvotes
than downvotes as a positive context and all other
answer as negative. If answer votes are not avail-
able, we use the accepted/suggested label (shown
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Figure 5: High-level overview of the CCQA passage
retrieval in-domain pre-training step (yellow) as part
of the training pipeline for DPR. Language model pre-
training shown in green. Task-dependent fine-tuning
presented in red. Evaluation in blue. (1) Baseline
pre-training/fine-tuning pipeline, (2) In-domain pre-
training/fine-tuning pipeline.

in Figure 2) as an indicator for positive and nega-
tive contexts. In the absence of either criterion, we
use all available answers as positive contexts.

4.2.2 Models & Training
For passage retrieval, we choose the Dense Pas-
sage Retriever (DPR) (Karpukhin et al., 2020),
used in a variety of popular end-to-end open-book
QA models, such as RAG (Lewis et al., 2020b)
and FiD (Izacard and Grave, 2021). As shown
in Figure 5, we start with the vanilla DPR model
based on BERT (Devlin et al., 2019) and in-domain
pre-train using questions and positive/negative pas-
sages from the CCQA dataset (yellow box in Fig-
ure 5), similar to Oğuz et al. (2022). In line with the
training-flows of the closed-book models, we train
DPR using either the vanilla setup (pre-training
→ fine-tuning) or the in-domain pre-training ap-

Model
TQA NQ-Short

Acc@20 Acc@100 Acc@20 Acc@100

DPR 79.4 85.0 78.4 85.4
DPR v2 79.5 85.3 78.3 85.6
CCQA DPR 80.0 85.6 79.1 86.3

Table 4: Fine-tuned Dense Passage Retriever (DPR) ac-
curacy measure on the TQA and NQ-Short datasets.
DPR represents the original DPR model (Karpukhin
et al., 2020), DPR v2 (Oğuz et al., 2022) indicates the
updated codebase. CCQA DPR uses our CCQA pre-
trained DPR model for retrieval fine-tuning.

Bench. (test) TQA NQ-S NQ-L ELI5 GooAQ

Bench. (train) 11.9 4.9 5.2 3.0 26.9
CCQA (train) 0.4 1.9 2.3 0.5 26.9

Table 5: 8-gram question overlap (in %) between train-
ing sets and benchmark test-sets (inspired by Radford
et al. (2019)). Bench (train) refers to the overlap be-
tween the respective training- and test-portion of the
benchmark datasets, CCQA (train) identified overlaps
between our dataset and the test-splits. False positive
rate upper-bound by 1

108 . All inputs are normalized and
lower-cased. NQ-S=NQ-Short, NQ-L=NQ-Long.

proach (pre-training→ in-domain pre-training→
fine-tuning), shown as circles (1) and (2) in Fig-
ure 5, respectively.

4.2.3 Datasets & Metrics
Following the original DPR paper (Karpukhin et al.,
2020), we evaluate the passage retrieval task on the
NQ-Short and TQA datasets presented in section
4.1.3, using the top-20 and top-100 retrieval accu-
racy (Acc@20/Acc@100) measures.

4.2.4 Hyper-Parameters
We use the default DPR hyper-parameters when-
ever possible (Karpukhin et al., 2020). For in-



domain pre-training, we limit training to 800k steps
using a batch-size of 1,536 samples. During fine-
tuning, we restrict the number of updates to 20k
steps with a batch-size of 128. The best checkpoint
is selected based on the Mean Reciprocal Rank
(MRR) measure, following Oğuz et al. (2022). We
do not perform any hyper-parameter search.

4.2.5 Results
For the passage retrieval experiments, we com-
pare our CCQA in-domain pre-trained DPR model
against the vanilla DPR model published in
Karpukhin et al. (2020), as well as the recently
enhanced version (Oğuz et al., 2022). Table 4 con-
tains our empirical results, showing consistent im-
provements of our CCQA DPR model over the
vanilla baselines. More specifically, the in-domain
CCQA pre-training step increases the top-20 and
top-100 accuracy score on the TQA benchmark
dataset by over half a point, while the performance
gap on NQ-Short shows consistent improvement of
over 0.7%.

4.3 Evaluation Fairness: Dataset Overlap

With modern pre-training approaches using increas-
ingly large datasets, accidental overlaps between
pre-training corpora and benchmark datasets be-
come more and more common (Lewis et al., 2021a).
To analyze this threat to the integrity of our dataset
and empirical analysis, we follow Radford et al.
(2019) and evaluate the 8-gram question overlap
of our CCQA training portion with the test-split of
benchmark datasets using bloom filters. Table 5
shows a consistently smaller question overlap be-
tween CCQA and the benchmark test set, compared
to the benchmark training split itself.

5 Conclusion and Future Work

In this work, we presented our new web-scale
CCQA dataset for in-domain model pre-training.
Orthogonal to recent efforts on improving task-
specific pre-training objectives, we show our
dataset generation process, followed by detailed in-
sights into key corpus dimensions of this new, large-
scale, natural, and diverse question-answering
dataset. In a set of empirical evaluations, we con-
firm the initial intuition that the corpus presents
a valuable resource for open-domain question-
answering research. In our zero-shot, low-resource
and fine-tuned experiments for open- and closed-
book QA tasks, we show promising results across

multiple model architectures. With around 130 mil-
lion question-answer pairs (55M unique) as well as
additional meta-data, our CCQA dataset presents a
versatile source of information, which has a large
variety of applications in future work (e.g., ques-
tion summarization, answer rating, answer ranking
and many more).

6 Ethical Considerations

We now discuss the three major ethical considera-
tions impacting this paper:

Hate-speech, Harmful Gender and Racial Bi-
ases: With general web-data potentially contain-
ing hate-speech and harmful gender and racial bi-
ases, we believe that our extracted dataset based
on the schema.org annotations is less impacted by
these issues, with the schema.org annotation repre-
senting a good proxy for high-quality, profession-
ally curated websites. As a result, we believe that
the severity of this issue is significantly reduced.
Furthermore, in our human evaluation, we find no
signs of the above mentioned biases. We leave com-
putational approaches to determine dataset biases
for future work (e.g., the Word Embedding Asso-
ciation Test (Caliskan et al., 2017) and Sentence
Encoder Association Test (May et al., 2019)).

Data Availability: We do not directly provide
the CCQA dataset, but enable third parties to gen-
erate the corpus through our published dataset gen-
eration scripts available at https://github.
com/facebookresearch/CCQA.

Hallucinations and Factual Errors: As shown
in the evaluation section, our model is able to gen-
erate reasonable answers for factoid and long-form
questions. The inferred answers are fluent and
human-like, but may also contain hallucinations
and factual errors, especially for the challenging
closed-book question-answering task. Without a
guarantee of the predicted answers being factually
correct, they can potentially spread misinformation
if not properly corrected.
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A CCQA Dataset Generation Algorithm

Algorithm 1 CCQA Dataset Generation Procedure

for document ∈ CommonCrawl do
if "schema.org/Question" in document then . Webpage contains schema.org annotation

tree← parse_html(document)
questions← find_question_root(tree)
for question_sub_tree in questions do

question_sub_tree← clean_question_subtree(question_sub_tree)
end for
questions← convert_to_json(questions)
save(questions)

else
skip document

end if
end for

procedure FIND_QUESTION_ROOT(node) . Pre-order traversal, return when question found
if node.itemtype == "https://schema.org/Question" then

return node
end if
for child in node.children() do

node← find_question_root(child)
nodes.append(node)

end for
return nodes

end procedure

procedure CLEAN_QUESTION_SUBTREE(node) . Post-order traversal, clean elements bottom-up
for child in node do

child← clean_question_subtree(child)
end for
if "itemtype" | "itemprop" in node.attributes() then

for attribute in node.attributes() do
if not attribute.starts_with("item" | "content" | "date") then

attribute.remove()
end if

end for
else

replace_node_with_children(node)
end if

end procedure



B Detailed Topic Distribution

Topic Top 5 Appearances in CCQA

Top-Level Regional (38.90%) Society (21.14%) Business (8.36%) Sports (7.04%) Rec. (6.20%)

Regional
North America
(61.48%)

Europe
(34.69%)

Asia
(1.28%)

Society
Issues
(76.89%)

Religion
(18.39%)

Philosophy
(2.36%)

Law
(1.41%)

Business
Industrial Goods
(13.41%)

Energy
(9.75%)

Textiles
(9.75%)

Construction
(7.31%)

Business Services
(6.09%)

Sports
Golf
(81.08)

Aquatiques
(10.81%)

Events
(2.70%)

Water Sports
(2.70%)

Lacrosse
(1.35%)

Recreational
Food
(56.92)

Outdoors
(23.07%)

Travel
(12.30%)

Motorcycles
(3.07%)

Pets
(1.53%)

Table 6: Fine-grained CCQA dataset topic distribution of 1000 randomly chosen domains retrieved through the
DMOZ/Curlie annotation at https://curlie.org/. Only showing sub-topics with ≥ 1%.

C Detailed Question Word Distribution

Question-Word What How When Which Where Why Who Whose

Frequency
5.3M
(36.20%)

4.3M
(29.80%)

1.4M
(9.68%)

1.4M
(9.64%)

881k
(6.04%)

717k
(4.92%)

514k
(3.53%)

25k
(0.17%)

Table 7: Question word distribution for all 8 English question words with their number of appearance in the CCQA
corpus and their relative frequency.



D HTML Markup Tag Distribution

Rank HTML Markup Tag Distribution

1-5 p (28.48%) a (14.89%) br (14.87%) li (10.04%) span (5.77%)

6-10 strong (4.93%) code (4.59%) em (2.79) div (2.38%) ul (2.27%)

11-15 pre (1.80%) b (1.70%) blockquote (1.14%) h3 (0.89%) td (0.88%)

16-20 h2 (0.48%) ol (0.42%) tr (0.42%) h1 (0.35%) i (0.24%)

21-25 sup (0.17%) tbody (0.12%) table (0.12%) u (0.12%) sub (0.11%)

Table 8: Distribution of the 25 most common HTML tags in CCQA.

E Sensibility and Answerability Examples

Metric Type Example Explanation

Q-sensibility Pos What languages do you speak?
Q-Sensible, since question
internally makes sense

Neg How blue is the number 7?
Not Q-Sensible, since question
internally makes no sense

Q-answerability Pos
How can I purchase affordable
Flats in Vancouver?

Q-Answerable, since a
single answer exists

Neg What languages do you speak?
Not Q-Answerable, since no single
answer exists, but depends on
the (unavailable) context

QA-sensibility Pos
Which is the busiest month
to travel from London to Delhi?
→ July

QA-Sensible, since question and
answer make sense together

Neg

How can I purchase affordable
Flats in Vancouver?
→ There are many affordable
Flats available.

Not QA-Sensible, since answer
does not answer the question

Table 9: Examples and explanations for Question-sensibility (Q-sensibility), Question-answerability (Q-
answerability) and QA-sensibility. Pos = Positive example, Neg = Negative example.
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Figure 6: Low resource experiments comparing the Rouge-L score of vanilla T5 Small (left) and T5 Base (right)
with our CCQA pre-trained models on NQ-long (top), GooAQ (center) and ELI5 (bottom).



G Qualitative Dataset Examples

{
"Language":"-",
"Fasttext_language":"en",
"URI":"https://www.geograph.ie/faq3.php?q=multiple+account",
"UUID":"a5e97da2-f688-42af-8626-73a38fa8d06f",
"WARC_ID":"CC-MAIN-20201026031408-20201026061408-00221",
"Questions":[

{
"name_markup":"Can I change my name to a <b>pseudonym</b> on

a submission ?",
"Answers":[

{
"text_markup":"You can submit all your

photos under a pseudonym by changing the name on your
Profile<span><a>http://www.geograph.org.uk/profile.php</a></span>(link
top write on most pages). Note that by doing this, the name will be
changed on all photos you have previously submitted from the account.
These may already have been used elsewhere, crediting the name
originally shown. <br> You can change the credit on an individual
image, for instance if you asked someone else to take it for you,
but the name on your profile will still be shown on the photo page
and the photographer name will still link back to your profile. <br>
You can open another account under a pseudonym but this will need
to be done from a different email address and you will have to take
care which account you are signed in with before submitting, making
changes or posting in the forums.",

"status":"acceptedAnswer"
}

]
}

]
}



{
"Language":"en-US",
"Fasttext_language":"en",
"URI":"https://www.catholicfaithstore.com/Store/Products/SKU/b0d/

St-Olgas-Cross-Medal.html",
"UUID":"94def557-e521-493a-babd-b63c5e030e62",
"WARC_ID":"CC-MAIN-20210308174330-20210308204330-00337",
"Questions":[

{
"name_markup":"How do I care for my sterling silver?",
"Answers":[

{
"text_markup":"<p>Sterling Silver Cleaning

Instructions</p><ul><li>NEVER use a sterling silver cleaning
solution on your jewelry. It will take off the protective
coating.</li><li>Take a half cup of warm water and a few drops of
mild dishwashing liquid soap and mix together.</li><li>With a soft
clean cotton cloth&#160;dip the cloth into the soapy water getting
it moist.</li><li>Use the moist cloth to wipe the surface of your
sterling silver jewelry.</li><li>Take the just cleaned jewelry
and run under clear water for a few seconds to&#160;wash away any
soap.</li><li>Allow jewelry to dry before storing</li></ul><p>Other
things to remember: When not wearing your sterling silver jewelry,
keep it in an air-tight container or zip lock bag. Avoid household
clean products getting in contact with the jewelry. And take off your
jewelry when you swim, shower or are washing dishes.</p><p>For a more
detailed explanation see<a>5 Easy-To-Follow Steps for Cleaning Your
Sterling Silver Jewelry</a></p>",

"status":"acceptedAnswer"
}

]
}

]
}



{
"Language":"-",
"Fasttext_language":"en",
"URI":"https://quant.stackexchange.com/questions/39510/

software-for-american-basket-option-pricing-using-longstaff
-schwartz-least-squar",

"UUID":"e059deaf-3d73-4517-88a0-8abb8ad74972",
"WARC_ID":"CC-MAIN-20210305183324-20210305213324-00585",
"Questions":[

{
"author":"Bananach",
"name_markup":"<a>Software for American basket option

pricing using Longstaff-Schwartz/Least Squares Monte Carlo
method</a>",

"text_markup":"<p>Is there free software (preferably
in Python) that computes American basket (high-dimensional!)
option prices in the Black Scholes model using the
Longstaff-Schwartz algorithm (also known as Least Squares Monte
Carlo)?</p>~<p>Optimally, I want to be able to control the number
of basis functions, the number of Monte Carlo samples and the number
of time steps used.</p>",

"date_created":"2018-04-30T09:16:33",
"upvote_count":"1",
"answer_count":"1",
"Answers":[

{
"author":"byouness",
"text_markup":"<p>QuantLib is what

you are looking for. It is free/open source library
written in C++, it is available in Python as well (via
SWIG):<a>https://www.quantlib.org/install/windows-python.shtml
</a></p>~<p>Examples are shipped with QuantLib and among
them some show how to price options.</p><p>To get a feel
for what it’s like, you can check this blog post, explaining
how to price an American option on a single asset using a
binomial tree in Python:~<a>http://gouthamanbalaraman.com/blog/
american-option-pricing-quantlib-python.html</a></p>",

"status":"acceptedAnswer",
"upvote_count":"1",
"comment_count":"1"

}
]

}
]

}



{
"Language":"en",
"Fasttext_language":"en",
"URI":"https://wwwmybizpro.invoicera.com/expense-management.html",
"UUID":"8cfe986c-4f33-4a2a-98f1-32aab3811533",
"WARC_ID":"CC-MAIN-20210512100748-20210512130748-00544",
"Questions":[

{
"name_markup":"Do I need any new IT infrastructure to get

the best use out of this software?",
"Answers":[

{
"text_markup":"NO! Invoicera simply integrates with

your current ERP and CRM. It comes with the simplest self-explanatory
user-interface for you to use. You do not need any extra guidance
with your Invoicera.",

"status":"acceptedAnswer"
}

]
}

]
}


