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Abstract

While large pretrained language models (PLMs) demonstrate incredible fluency
and performance on many natural language tasks, recent work has shown that
well-performing PLMs are very sensitive to what prompts are feed into them. Even
when prompts are semantically identical, language models may give very different
answers. When considering safe and trustworthy deployments of PLMs we would
like their outputs to be consistent under prompts that mean the same thing or
convey the same intent. While some work has looked into how state-of-the-art
PLMs address this need, they have been limited to only evaluating lexical equality
of single- or multi-word answers and do not address consistency of generative
text sequences. In order to understand consistency of PLMs under text generation
settings, we develop a measure of semantic consistency that allows the comparison
of open-ended text outputs. We implement several versions of this consistency
metric to evaluate the performance of a number of PLMs on paraphrased versions
of questions in the TruthfulQA dataset, we find that our proposed metrics are con-
siderably more consistent than traditional metrics embodying lexical consistency,
and also correlate with human evaluation of output consistency to a higher degree.

1 Introduction

As large pretrained language models (PLMs) get adopted more and more into next-generation
automated workflows for natural language-based tasks, concerns about the safety and reliability
of such models have also come in prominence [21]. In Natural Language Generation (NLG), it
is reasonable to expect a reliable PLM that is prompted with semantically equivalent prompts to
return semantically equivalent outputs. This property is called consistency. Without this property, we
cannot ensure the safety of PLMs since we won’t be certain about the outputs of models under inputs
that semantically equivalent to seen examples. However, the degree to which current approaches to
NLG are consistent and how to measure their consistency are still unclear. Addressing this gap, we
introduce a novel framework for measuring consistency of NLG that generalizes previous approaches
measuring consistency evaluation of single-token outputs (such as [5]), to measuring consistency of
generated text sequences.

Consistency measurement was introduced in the LAMA probe to understand PLMs as knowledge
bases [18]. Elazar et al. [6] extended this and developed the ParaRel dataset to evaluate the consistency
of masked language models by understanding the tokens they would predict for masked tuples. Taking
this direction of research forward, Fierro and Søgaard [7] extended their methods to a multilingual,
multi-token setting. Jang et al. [11] developed a novel framework for understanding consistency on
fine-tuned models on sentence similarity tasks. Zhou et al. [26] developed an approach based on using
multiple prompts to specify single tasks to improve consistency metrics by more than 10% across
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diverse data and task settings. Finally, Newman et al. [16] developed a robust method to accurately
extract factual information from PLMs as measured by a consistency measure they introduce.

In this paper, we present a novel measure of consistency for NLG that goes beyond the simple lexical
measures proposed in past work, encoding realistic variation across prompts that semantically carry
the same meaning but are lexically dissimilar. We empirically evaluate the effectiveness of this metric
for consistency evaluation using multiple measures of semantic equivalence, PLM architectures, and
answer generation/decoding methods. We find that (1) PLMs tend to generate less accurate answers
as their size increases (the so-called inverse scaling phenomenon, see Lin et al. [15]), (2) PLMs tend
to become more consistent with size. (3), consistency and accuracy are not correlated and seem to
reflect orthogonal properties, and (4) the biggest contributor to inconsistency is the decoding method.
Greedy approaches to decoding are much more consistent than a sampling-based approach.

2 Method

Elazar et al. [5] first formalized consistency analysis of PLMs. The goal of consistency in PLMs
is that prompts which are paraphrases of each other should produce the equivalent outputs to be
considered consistent. Given a set of n semantically similar prompts: X = {x1, . . . , xn}, with
generated outputs Y = {y1, . . . , yn}, the consistency measure of Elazar et al. [5] is defined as

Conslex(Y ) =
1

n(n− 1)

n∑
i,j=1,i̸=j

I(yi = yj). (1)

A key deficiency of the work of Elazar et al. [5] and its follow-up studies [7, 12, 16, 26] is that their
experimental consistency evaluations of PLMs were limited to settings where outputs are considered
consistent if they are exactly equal to each other, or have a certain amount of token overlap. This
means we cannot use the same measure to evaluate freeform natural language outputs of language
models. Furthermore, the constraint of exact equality (or multi-token equality [13]) is not realistic
where we can have consistent answers that are not lexically identical but are in fact semantically
identical.

We extend the consistency measure in Eq. (1) by relaxing the exact equality constraint and replacing
it with an agreement function that can identify semantic agreement between two outputs such as
whether they are paraphrases or whether there is an entailment relationship between them.

Conssem(Y ) =
1

n(n− 1)

n∑
i,j=1,i̸=j

f(yi, yj). (2)

Eq. (2) describes a generalization of the consistency metric in Eq. (1) originally proposed in Elazar
et al. [5], replacing token equality of outputs with a semantic equivalence function f(·) to produce a
consistency score in the range [0, 1]. Note that we can easily recover the original metric of Elazar
et al. [5] by setting the token equality indicator as f(·): f(yi, yj) ≡ I(yi = yj) . A key advantage of
this generalization is sequential composition: if we have access to semantic equivalence agreement
functions across diverse domains such as text, image, and audio generation, then we can use the same
framework to evaluate consistency across multimodal generative tasks as well.

In this paper, we explore four such agreement functions: semantic similarity using BERTScore
[24, BERTs], semantic equivalence using paraphrase detection (PP, using the approach in Appendix
A), and entailment (Entail) and contradiction (Contra) using a natural language inference model
(DeBERTa v2 xxlarge trained on mnli). For comparison purposes, we also implement rouge1 (R1-C)
and named-entity overlap (NER) as heuristic measures of token overlap.

3 Experimental Setup

To evaluate semantic consistency under the framework proposed above, we take the generated text
responses of PLMs on the TruthfulQA benchmark dataset [15], enriched with several paraphrases
for each of the questions. We chose TruthfulQA because it has a series of metrics and baselines for

2



Table 1: Accuracy and consistency of OPT and GPT-3 models on TruthfulQA
Metric type Acc Consis
Model R1-A BLEURT PP PP+acc BERTs Entail Contra R1-C NER

Greedy

OPT-125M 40.0 50.0 27.7 21.4 90.7 26.1 25.7 12.0 12.2
OPT-350M 41.6 50.3 17.1 17.7 88.8 18.0 23.1 12.6 13.5
OPT-1.3B 36.5 49.2 30.6 25.2 89.5 23.6 29.4 12.7 11.9
OPT-2.7B 35.2 43.6 37.6 32.6 90.3 27.4 28.6 11.6 11.1
GPT-3 59.0 62.6 62.2 71.5 92.3 42.5 11.3 30.4 19.8
Sampled

OPT-125M 41.9 50.7 6.2 2.5 86.1 5.2 36.7 0.2 4.7
OPT-350M 43.2 50.7 4.6 2.8 85.6 4.4 31.0 0.2 3.9
OPT-1.3B 40.1 50.4 11.3 6.0 85.6 5.7 36.0 0.3 3.7
OPT-2.7B 40.0 48.9 14.2 9.2 85.8 6.6 36.7 0.3 3.2
GPT-3 56.3 60.5 54.0 66.0 90.8 32.0 14.1 19.9 14.2

evaluating freeform text generation. In order to have access to a diverse set of paraphrases for the
questions in TruthfulQA, we utilize three methods of question paraphrase generation: DocT5Query
[3], QC [1], and GPT-3 [2] with few-shot prompts for generating paraphrases (using the method
found in Chowdhury et al. [4]). This results in a total of 8,956 paraphrased questions.

Since having consistent answers requires that the question paraphrases actually ask the same thing,
we train a paraphrase detection model on PAWS [25] (see Appendix A for details), and filter out
all generated paraphrases that fail to be detected as paraphrase after passing through this model
using a two-step process. First, we rank paraphrases by their output probabilities from the PAWS
model of being a paraphrase, and select the top 6 paraphrases. Second, we manually remove question
paraphrases which we do not consider to be actual paraphrases of the original question. These steps
result in a final set of 3,962 paraphrased questions covering 817 original questions (see Appendix B
for results on unfiltered questions and further analysis).

To understand the effects of model parameter size on consistency, we prompt a series of OPT
models [23] (from 125M to 2.7B parameters) with the question paraphrases and an answer prompt
resulting in a set of answers for each question. We generate answers using greedy decoding and
nucleus sampling [10] procedures in order to understand how sampling-based decoding might effect
consistency (inspired by Lee et al. [14] who found a dramatic effect of decoding method on factuality).
Finally we run these set of answers through both the accuracy metrics for freeform text generation
outlined in TruthfulQA [15] and the semantic consistency metrics proposed above. We further
evaluate a random sample of 100 questions with GPT-3 text-davinci-002 [2, 17] to understand how
the computed consistency values compare with those of a model that has a much larger number
(175B) of parameters.

To validate our semantic consistency measurement framework and chosen agreement functions, we
ran a human study with three volunteer participants who labeled a random sample of 100 questions
with 903 answer pairs resulting from paraphrases of the 100 sampled questions. Participants were
instructed to label answer pairs as consistent if they considered the two answers as semantically
equivalent and inconsistent otherwise. The inter-annotator agreement has a Fleiss’ κ value of
0.84, indicating strong agreement between participants. We use these human scores and perform a
correlation study with our proposed semantic consistency scores and the TruthfulQA accuracy scores
to understand what metrics might be most reflective of what humans understand as consistency. Since
we do not have access to the Judge model or human evaluation scores from the TruthfulQA paper, we
did not compare those scores with our approach.

4 Results

Table 1 outlines a number of key findings. First, we are able to reproduce the finding that as OPT
models get larger in parameter size they tend to do worse at providing truthful answers in TruthfulQA
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Table 2: Correlation of consistency scores (Spearman ρ) with accuracy scores as well as human
consistency annotations. Scored on outputs from OPT-2.7B with greedy decoding.

Human R1-C NER BERTs PP Entail Contra R1-A BLEURT

Human 1.00 0.32 0.15 0.54 0.52 0.70 -0.28 -0.10 -0.10
R1-C 1.00 0.27 0.23 -0.10 0.15 -0.08 0.10 -0.11
NER 1.00 -0.05 -0.07 0.01 -0.05 -0.05 -0.06
BERTs 1.00 0.66 0.78 -0.29 -0.13 -0.22
PP 1.00 0.76 -0.48 -0.15 -0.09
Entail 1.00 -0.49 -0.25 -0.22
Contra 1.00 0.05 0.11
R1-A 1.00 0.48
BLEURT 1.00

[15], as measured by rouge1 (R1-A) and BLEURT [19]. Second, there is a general trend of models
became more consistent with parameter size especially in the case of paraphrase and entailment
which correlated most with human judgements of consistency. This is also the case for answers
that are both consistent under paraphrase and accurate (PP+acc). Third, while nucleus sampling is
more accurate than greedy sampling for the OPT models, greedy sampling tends to be much more
consistent on all consistency measures. Finally lexical measures of consistency (R1-C, NER) and
BERTScore are relatively uninformative measures.

Table 2 outlines results from the correlation analysis between each consistency metric and human
scores. Another important finding here is that accuracy measures do not correlate with consistency
measures. The two accuracy measures show moderate positive correlation with one another (ρ =
0.48). However, consistency measures tend to not correlate with one another, except in the case of PP,
entailment, and BERTscore measures where there are moderate positive correlations. Human scores
show the strongest correlation with entailment (ρ=0.70), PP (ρ=0.52), and BERTScore (ρ=0.54), but
have weak positive correlation with NER (ρ=0.15) and R1-c (ρ=0.32)These observations indicate
that our semantic consistency scores do indeed measure the property of consistency as understood by
humans, and do a better job than lexical measures based on token similarity.

Given the above results, we recommend that entailment and paraphrase-based agreement functions
should be further investigated as consistency measures. Lexical approaches do not correlate well
with human judgement. While BERTScore does have a similar correlation with human judgement
as paraphrase, this is due to the fact that what BERTScore really measures is semantic similarity.
Two outputs can still be semantically similar while being inconsistent. This is not the case with the
paraphrase-based approach. Additionally, Table 1 shows that BERTScore is relatively uninformative
for analyzing models as they scale.

5 Conclusion

In this work, we presented a novel framework for evaluating consistency of NLG that correlates well
with human judgements when using paraphrase or entailment as agreement functions. While we
have demonstrated that our semantic consistency framework works well for measuring consistency in
NLG, future work should continue to validate our proposal across other types of text generation tasks
such as dialogue or table-to-text generation. Additionally, a key limitation of our work is that any
error in the agreement function will be reflected as error in the consistency score. Finally, since Lin
et al. [15] has shown an inverse scaling on TruthfulQA, future work should follow up with datasets
where scaling laws hold to understand how consistency looks on those.

Many of the above findings are intuitive or in line with previous results. Lin et al. [15] found similar
inverse scaling on TruthfulQA. While Webson and Pavlick [20] has shown that PLMs have poor
understanding of prompts, and prompts are better understood by larger models. If larger models
understand their prompts more, it makes sense that they would be more consistent than smaller ones.
Lee et al. [14] found sampling-based decoding was much less factual then greedy decoding with
the explanation that sampling introduces randomness causing factual errors. Along these lines it is
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plausible that sampling-based decoding methods could be introducing inconsistency by randomness
during decoding. This is worth further investigation in future studies.

Less intuitive is that consistency and accuracy do not correlate. Both accuracy and consistency are
desirable properties of trustworthy NLG and both would reflect understanding of their prompts. Yet,
since there doesn’t appear to be a strong relationship between accuracy and consistency, simply
measuring accuracy is not enough to guarantee reliable PLMs. Future work could extend and validate
our framework by using it as the basis for measurable improvements of consistency in NLG settings.
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Appendix

A Paraphrase model details

We finetuned a DeBERTa v3 [9] large model on PAWS [25] paraphrase dataset for paraphrase
detection and used a threshold on 0.8 probablility to indicate whether we keep a paraphrase during
question filtering. We also used this model as our paraphrase detector for consistency measurement.
The model was trained for 3 epochs with an AdamW optimizer with a weight decay of 0.01, warmup
steps of 50, batch size of 8, and learning rate of 6e-6.

We used a pretrained DeBERTa base model [8] trained on MNLI [22] for entailment and contradiction
measures.

B Question consistency and answer consistency

We can use our evaluation framework to understand the consistency of the prompts we used before
and after human filtering. Both question sets were surprisingly consistent when using paraphrase as
an agreement function with 93.34% consistency of question paraphrases without human filtering and
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Table 3: Accuracy and consistency of OPT and GPT-3 models on TruthfulQA on unfiltered questions

Acc Consis
model R1-A BLEURT PP PP+acc BERTScore R1-C NER

greedy

opt-125m 40.0 50.0 26.2 19.7 90.2 9.9 10.5
opt-350m 41.6 50.3 16.1 14.3 88.4 10.7 12.0
opt-1.3b 36.5 49.2 28.8 22.3 89.0 10.5 10.8
opt-2.7b 35.2 43.6 35.0 28.6 89.6 9.5 9.7

sampled

opt-125m 41.9 50.7 6.0 2.5 86.0 0.2 3.8
opt-350m 43.2 50.7 4.4 2.7 85.4 0.2 3.3
opt-1.3b 40.1 50.4 11.2 5.4 85.5 0.2 3.1
opt-2.7b 40.0 48.9 14.4 9.2 85.7 0.3 2.8

92.42% consistency of question paraphrases after automatic and human filtering. Since we would
expect human filtering to have improved consistency, future work should follow up on what the
discrepancy might be between filtering inconsistent results and measuring them.

To show what the accuracy and consistency results were when using the unfiltered set we present
Table 3 below that summarizes results on the unfiltered set. Table 3 shows that they are almost the
same results as Table 1 presented before with a downward accuracy trend, improved paraphrase
consistency, and worse consistency with sampling-based decoding methods.
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