

000 001 002 003 004 005 JCGEL: JOINT COLOR AND GEOMETRIC GROUP 006 EQUIVARIANT CONVOLUTIONAL LAYER 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

Translation equivariance is one of the key factors for the widespread effectiveness of convolutional neural networks (CNNs) in computer vision. Building on this principle, group equivariant architectures have been extended beyond translations to encompass both color and geometric symmetries, which commonly arise in vision datasets. However, despite the commuting nature of their respective group actions, color and geometry have typically been addressed in isolation by theoretical and approximately equivariant approaches. In this paper, we introduce a *joint color and geometric group equivariant convolution layer (JCGEL)* via weight sharing across the commuting group actions. Our approach 1) improves robustness in imbalanced regimes, 2) yields factorized representations that separate color and geometric group-related factors, and 3) scales effectively to real-world datasets. To validate these effects, we instantiate the layer within standard CNNs and evaluate across long-tailed and biased datasets, disentanglement learning benchmarks, and real-world classification tasks, where our model consistently outperforms baselines. As a drop-in replacement for standard convolutional layers, JCGEL demonstrates generalization across a variety of vision tasks.

1 INTRODUCTION

Translation equivariance has been one of the primary factors enabling convolutional neural networks (CNNs) to extract spatial structure (LeCun et al., 1998; Kayhan & Gemert, 2020) and to achieve generalization across diverse computer vision tasks. To extend this benefit beyond translation, prior works [have sustained](#) interest in enforcing group equivariance, because many real-world variations are governed by symmetries. Formally, if an encoder ψ is equivariant to a group G , then observing x constrains $\psi(g \cdot x)$, even when $g \cdot x$ never appears in the data. In CNNs, translation equivariance implies that features learned for an object at one location transfer to the same object anywhere on the 2D plane LeCun et al. (1998); Kayhan & Gemert (2020). By the same principle, equivariance to other groups (rotations, scalings, and color transformations) yields consistent features for previously unseen variants. Group equivariant models have been shown to improve generalization across diverse areas [include](#) graph (Maron et al., 2018; Xu et al., 2024), robotics (Wu et al., 2023; Wang & Jörnsten, 2024; Qi et al., 2025), disentanglement learning (Higgins et al., 2018; Yang et al., 2021; Jung et al., 2024), self-supervised learning (Park et al., 2022; Yu et al., 2025), and equivariant layer modeling (MacDonald et al., 2021; Lengyel et al., 2023).

In the literature, approaches to propose group equivariant models have been proposed in two branches: 1) strict equivariant approaches that guarantee exact equivariance (Cohen & Welling, 2016a), and 2) soft approaches that encourage equivariance through less constrained kernel structures (Romero & Hoogendoorn, 2019) with training objectives (Kim et al., 2024). The first line of work, strict equivariant works, is theoretically equivariant to a specific group and has focused on geometric and color symmetries, which are pervasive in vision domains (Cohen & Welling, 2016a; Lengyel et al., 2023). Within the geometric line, early models target discrete groups (Cohen & Welling, 2016a) and have been extended to continuous geometric group, such as rotation, scaling, and Lie groups (Worrall & Welling, 2019; Qiao et al., 2023; Cohen & Welling, 2016b; Weiler et al., 2017; Sosnovik et al., 2019; MacDonald et al., 2021), with robustness in imbalanced environments. In parallel, color equivariant networks (Lengyel et al., 2023; Yang et al., 2025) address structured chromatic transformations and demonstrate strength under color imbalanced environments.

The second, recent works argue for the necessity of soft equivariant networks because real-world datasets rarely exhibit perfect symmetries (Wang et al., 2022; van der Ouderaa et al., 2022; Kim et al., 2024). On the geometric side, soft equivariant approaches relax exact constraints by regularizing canonical kernels with objectives, demonstrating advantages under asymmetric coverage (Wang et al., 2022; van der Ouderaa et al., 2022). In parallel, Kim et al. (2024) also validates that color soft equivariance via objective design, showing improved generalization on small and low-resolution real-world datasets. Taken together, strict and soft approaches underscore that geometric and color variations are ubiquitous and that their equivariant models are broadly useful. Nevertheless, to the best of our knowledge, no prior work offers a single convolutional operator that is jointly equivariant to commuting geometric (beyond translation, since standard CNNs already handle $T(2)$) and color groups under either strict or soft formulations.

To address this issue, we propose a joint color and geometric group equivariant layer (JCGEL). We first formalize the layer and prove equivariance to the direct product of group $G = (\mathbb{Z}^2 \times G_{\text{geo}}) \times G_{\text{color}}$, where \mathbb{Z}^2 encodes planar translations, G_{geo} acts on spatial coordinates (e.g., rotations/reflections), and G_{color} acts in color space (e.g., hue shifts). We then introduce a G -equivariant batch normalization layer, enabling standard CNN architectures (e.g., ResNets (He et al., 2015b)). Finally, we validate from toy to real-world datasets and diverse vision tasks, showing consistent performance gains in imbalanced environment, disentanglement learning, and classification.

Our main contributions are as follows:

- ① **Bridging theory and practice.** We provide the first successful architectural realization of joint equivariance, solving non-trivial implementation challenges (e.g., channel interference) to translate the theoretical direct product into a working model.
- **Equivariant to both color and geometric groups.** We introduce a CNN architecture that is equivariant to the direct product group $G_{\text{geo}} \times G_{\text{color}}$, instantiated via a color and geometry equivariant convolutional layer.
- **Robustness under imbalance.** By sharing parameters across direct product group orbits (i.e., tying a canonical kernel via group actions), the model improves robustness in long-tailed and biased regimes.
- **Factorized representations.** The architecture yields a separable representation of color and geometry in latent space; we validate improved disentanglement through standard benchmarks and metrics.
- **Consistent gains on real-world datasets.** The approach scales to real-world datasets and delivers consistent performance on classification tasks.

2 RELATED WORKS

2.1 STRICT GROUP EQUIVARIANT CONVOLUTION LAYERS

Strict group equivariant CNNs generate all group-transformed filters from a canonical kernel or steerable-basis coefficients via the group action, enforcing weight tying and improving data efficiency and generalization. Geometry-focused approaches span discrete planar symmetries (Cohen & Welling, 2016a), continuous rotations (Worrall et al., 2016; Cohen & Welling, 2016b; Weiler et al., 2017), scaling (Sosnovid et al., 2019; Worrall & Welling, 2019), the Euclidean group $E(2)$ (Weiler & Cesa, 2019), and broader Lie groups (MacDonald et al., 2021; Qiao et al., 2023). Beyond geometric group, color group equivariant architectures have been proposed (Lengyel et al., 2023; Yang et al., 2025). However, to the best of our knowledge, a unified convolutional layer that achieves simultaneous equivariance to both geometric and color groups remains underexplored; most prior work enforces equivariance to either geometry or color, but not both jointly in a single layer.

2.2 SOFT GROUP EQUIVARIANT CONVOLUTIONAL LAYERS

Strict group equivariance assumes perfect symmetries in data, which is rarely met in practice. Soft equivariance approaches, therefore, relax architectural constraints and let the degree of equivariance be learned from data. In particular, statistical methods learn a distribution over group elements

108
109
110
Table 1: General group convolution definition of group equivariant CNNs. G_o , and G_c denote
geometric and color group.
111
112
113
114
115

Model	Group	Group Convolution Formula (Eq. 5)
Conv	(\mathbb{Z}^2)	$\sum_{y \in \mathbb{Z}^2, c'} f_{c'}^\ell(y) \psi_{c'}^i(y - x)$
G_o -CNNs	$\mathbb{Z}^2 \rtimes G_o$	$\sum_{y \in \mathbb{Z}^2, c', h \in G_o} f_{c'}^\ell(y, h) \psi_{c'}^i(g^{-1}h(y - x))$
G_c -CNNs	$\mathbb{Z}^2 \times G_c$	$\sum_{y \in \mathbb{Z}^2, c', h \in G_c} f_{c'}^\ell(y, h) g^{-1}h \psi_{c'}^i(y - x)$
Ours	$(\mathbb{Z}^2 \rtimes G_o) \times G_c$	$\sum_{y \in \mathbb{Z}^2, c', h_o \in G_o, h_c \in G_c} f_{c'}^\ell(y, h_c, h_o) g_c^{-1}h_c \psi_{c'}^i(g_o^{-1}h_o(y - x))$

116
117
118 and sample group elements during the group convolution (Romero & Lohit, 2021), and other prob-
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
18

162 $\psi^\ell : \mathbb{Z}^2 \rightarrow \mathbb{R}^{C^\ell}$ as follows:

$$164 \quad f^{\ell+1} = [f^\ell \star \psi^{\ell,i}](x) = \sum_{y \in \mathbb{Z}^2} \sum_{c=1}^{C^\ell} f_c^\ell(y) \psi_c^{\ell,i}(y - x), \quad (3)$$

166 ⑤ where $\psi^{\ell,i}$ is a i^{th} kernel of ℓ^{th} convolution layer. The standard CNNs is equivariant to the
 167 discrete translation group $(\mathbb{Z}^2, +)$. ⑥ The term $x - y$ in the convolution sum represents the discrete
 168 translation (shift) between the filter center x and the input location y . The principle of equivariance
 169 inherent in this standard convolution can be extended to other transformation groups.
 170

171

172 ⑦ **Lifting Layer.** To generalize this concept, the group convolution is extended by replacing the
 173 discrete translation $x - y$ in the standard convolution operation with a general group action g . This
 174 specific layer is called the *lifting layer*, as it lifts the image features to the group domain:
 175

$$176 \quad f^{\ell+1} = [f^\ell \star \psi^{\ell,i}](g) = \sum_{y \in \mathbb{Z}^2} \sum_{c=1}^{C^\ell} f_c^\ell(y) \psi_c^{\ell,i}(g^{-1}y). \quad (4)$$

177 ⑧ **Group Layer.** Then output feature map f^ℓ is a function on G rather \mathbb{Z}^2 , and is convolved with
 178 filter $\psi_c^{\ell,i}$ at ℓ^{th} layer, in what is referred to as *group layer*:

$$179 \quad f^{\ell+1} = [f^\ell \star \psi^{\ell,i}](g) = \sum_{h \in G} \sum_{c=1}^{C^\ell} f_c^\ell(h) \psi_c^{\ell,i}(g^{-1}h). \quad (5)$$

185 4 METHOD: JOINT COLOR AND GEOMETRIC GROUP EQUIVARIANT 186 CONVOLUTION LAYER

188 In this section, we prove that the proposed layer is group equivariant layer (i.e., satisfies Eq. 2) First,
 189 we formalize the lifting layer (Eq. 4) by specifying the associated group convolution and the group
 190 action invoked in Eq. 2. We then extend these definitions to the group layer (Eq. 5) and show that
 191 the layers preserve group equivariance.

192 Previous works have introduced color (hue shift) (Lengyel et al., 2023) or geometry (D_4) (Cohen
 193 & Welling, 2016a) equivariant layers separately. In contrast, we present a unified framework that
 194 composes these commuting symmetries within a single operator as summarized in Table 1. We
 195 define group $G = (\mathbb{Z}^2 \rtimes D_4) \times H_n$, $H_n \subset SO(3)$, the direct product of a geometric group $(\mathbb{Z}^2 \rtimes D_4)$
 196 and a color group $H_n \subset SO(3)$. Here, \mathbb{Z}^2 denotes discrete translations on the image grid, D_4 the
 197 dihedral rotation-reflection group, and H_n acts in color space; since the spatial and color actions
 198 operate on different domains, they commute.

200 4.1 LIFTING LAYER

201 **Joint Color and Geometric Group Convolution on Lifting Layer.** Given input image $f^\ell : \mathbb{Z}^2 \rightarrow$
 202 \mathbb{R}^{C^ℓ} and filters $\{\psi^{\ell,i}\}$, the lifting layer output $f^{\ell+1}(x, s, \theta, k)$ is obtained by a joint color and ge-
 203 ometry convolution and indexed by spatial location x , color index k , and orientation $(s, \theta) \in D_4$ as
 204 follows:

$$205 \quad [f^\ell \star \psi^{\ell,i}](x, s, \theta, k) = \sum_{y \in \mathbb{Z}^2} \sum_{c=1}^{C^\ell} \langle f_c^\ell(y), H_n(k) \psi_c^{\ell,i,(s,\theta)}(y - x) \rangle, \quad (6)$$

206 where $\psi^{i,(s,\theta)}(\zeta) := \psi^i(\rho(s, \theta)^{-1}\zeta)$ is the spatially transformed filter and $\langle \cdot, \cdot \rangle$ denotes the Eu-
 207 clidean inner product. Since $H_n(m)$ is orthogonal (Lengyel et al., 2023), for any $a, b \in \mathbb{R}^d$ we have
 208 $\langle H_n(m)a, b \rangle = \langle a, H_n(-m)b \rangle$.

209 **Group Action on Input Image Domain.** Then we introduce the operator \mathcal{L}_g corresponding to the
 210 group action in Eq. 2. For $g = (t, s', \theta', m) \in G$ (translation $t \in \mathbb{Z}^2$, dihedral pose (s', θ') , hue shift
 211 $m \in \mathbb{Z}_n$), we define the left action \mathcal{L}_g^ℓ on feature map of the ℓ^{th} layer as follows:

$$212 \quad [\mathcal{L}_g^\ell f^\ell](x) = [\mathcal{L}_{(t, s', \theta', m)}^\ell f^0](x) = H_n(m) f^\ell(\rho(s', \theta')^{-1}(x - t)). \quad (7)$$

216 4.2 GROUP LAYER
217

218 **Joint Color and Geometric Group Convolution on Group Layer.** Similarly, a group-indexed
219 feature $f^\ell : \mathbb{Z}^2 \times D_4 \times \mathbb{Z}_n \rightarrow \mathbb{R}^{C^\ell}$ is processed by group convolution with kernels $\{\psi^{\ell,i}\}$ defined
220 on relative (group) indices, where $\ell > 0$. Introduced in Eq. 5, we then define the convolution on the
221 group layer as follows:

$$222 [f^\ell \star \psi^{\ell,i}](x, s, \theta, k) = \sum_{y \in \mathbb{Z}^2} \sum_{s_1 \in \{0,1\}} \sum_{\theta_1 \in \mathbb{Z}_4} \sum_{m_1 \in \mathbb{Z}_n} \sum_{c=1}^{C^\ell} f_c^\ell(y, s_1, \theta_1, m_1) \\ 223 \cdot \psi_c^{\ell,i}(\rho(s, \theta)^{-1}(y - x), (s, \theta)^{-1}(s_1, \theta_1), (m_1 - k) \bmod n). \quad (8)$$

224 ⑨ Here, the hue shift $\mathbb{H}_n(m)$ difference between Eq. 6 is computed modulo n rather than $H_n(k)$,
225 which implements the cyclically permute for hue shift.

226 **Group Action on Group-Indexed Features.** For group-indexed feature map f^ℓ , we define group
227 action on group layer over $g = (t, s', \theta', m) \in G$ as follows:

$$228 [\mathcal{L}_g^\ell f^\ell](x, s, \theta, k) = f^\ell(\rho(s', \theta')^{-1}(x - t), (s', \theta')^{-1}(s, \theta), (k - m) \bmod n). \quad (9)$$

229 4.3 EQUIVARIANCE
230

231 The lifting and group layers of JCGEL is equivariant to group $G = (\mathbb{Z}^2 \rtimes D_4) \times H_n$, because these
232 layers satisfy Eq. 2 as follows:

$$233 [\mathcal{L}_{(t,s',\theta',m)}^\ell f^\ell \star \psi^{\ell,i}](x, s, \theta, k) \quad (10)$$

$$234 = \sum_{z,c} \langle f_c^\ell(z), H_n(k - m) \psi^{\ell,i,(s \ominus s', (-1)^{s'}(\theta - \theta'))}(z - \rho(s', \theta')^{-1}(x - t)) \rangle \quad (\because \text{Eq. 6 - 7}) \quad (11)$$

$$235 = [f^\ell \star \psi^i](\rho(s', \theta')^{-1}(x - t), s \ominus s', (-1)^{s'}(\theta - \theta'), k - m) \quad (\because \text{Eq. 8}) \quad (12)$$

$$236 = [\mathcal{L}_{(t,s',\theta',m)}^\ell [f^\ell \star \psi^{\ell,i}]](x, s, \theta, k) \quad (\because \text{Eq. 9}), \quad (13)$$

237 where \ominus is a modular arithmetic. Further details of proof for the direct product of groups are
238 provided in Appendix B.1 and B.2.

239 4.4 IMPLEMENTATION
240

241 **Tensor Operations for Strict Equivariant.** We denote the filter F^ℓ instead of ψ^ℓ also feature
242 X^ℓ rather than f^ℓ in Eq. 6 to represent the tensor shape. We store base spatial filters $F^\ell \in$
243 $\mathbb{R}^{C^{\ell+1} \times C^\ell \times N^\ell \times H \times W}$, where C^ℓ is the number of base channels, $N^\ell = |H_n|$ (or equal to $|\mathbb{H}_n|$)
244 the number of color states, and $G^\ell = |D_n|$ the number of geometric states (quarter-rotations and
245 flips). In the lifting layer for color equivariance, when $\ell = 0$, $N^\ell = 1$ then we extend kernel with
246 hue-shift matrix as introduced in Lengyel et al. (2023), then we get:

$$247 \tilde{F}_{c',n',:,1,u,v}^0 = H_n(k) F_{c',:,1,u,v}^0 \in \mathbb{R}^{C^{\ell+1} \times N^{\ell+1} \times C^\ell \times 1 \times H \times W}. \quad (14)$$

248 In the group layer, filter \tilde{F} cyclically permuted copies of F as follows:

$$249 \tilde{F}_{c',n',c,n,u,v}^\ell = F_{c',c,(n-n')\%k,u,v}^\ell \in \mathbb{R}^{C^{\ell+1} \times N^{\ell+1} \times C^\ell \times N^\ell \times H \times W}. \quad (15)$$

250 Then we implement JCGEL in the absolute rotation-and-flip manner for the geometric part rather
251 than relative indexing of Eq. 8 because both methods are equivalent on the D_4 as shown in Cohen
252 & Welling (2016a). Let $\mathcal{A}_{g'}$ denote the action of $g' \in D_n$ on spatial kernels \tilde{F}^ℓ , $[\mathcal{A}_{g'} \tilde{F}^\ell](u) :=$
253 $\tilde{F}^\ell(\rho(g')^{-1}u)$ (rotate by $\theta' \cdot \frac{\pi}{2}$ and reflect if $s' = 1$). Then the group convolution is implemented as
254 follows:

$$255 X_{c',n',g',:,}^{l+1} = \sum_{c=1}^{C^\ell} \sum_{\Delta n \in H_n} \sum_{g \in D_n} \left(\mathcal{A}_{g'} \tilde{F}_{c',n',c,\Delta n,1,:}^\ell \right) \star X_{c,\Delta n,g,:,:}^l, \quad (16)$$

256 where \star denotes 2D convolution. In the lifting layer, $\Delta n \in \{0, 1, \dots, |H_n| - 1\}$ by the hue shift
257 matrix (Eq. 6), and $\Delta n = n - n' \bmod k$ by the cyclic permutation operation in group layer (Eq. 8).
258 This realizes Eq. 16 avoids explicit loops over g and g' . For efficiency, we build the absolute kernel
259 operator $\mathcal{A}_{g'} \tilde{F}^\ell$ for all $g' \in D_n$.

270 **Learnable Weight for Soft Equivariance** ⑩ We employ a soft equivariant tensor operation to
 271 improve model generalization on datasets with imperfect symmetries van der Ouderaa et al. (2022);
 272 Romero & Hoogendoorn (2019). While strict equivariance enforces exact symmetry, real-world data
 273 often exhibits variations. Inspired by Romero & Hoogendoorn (2019), which relaxed equivariance
 274 by assigning weights to subgroups, we apply a learnable weighting mechanism to the geometric
 275 symmetry filters as follows:

$$277 \quad X_{c', n', g', :, :}^{l+1} = \sum_{c=1}^{C^l} \sum_{n \in H_n} \sum_{g \in D_n} \tilde{w}_{g'} \left(\mathcal{A}_{g'} \tilde{F}_{c', c, \Delta n, :, :}^l \right) \star X_{c, n, g, :, :}^l, \quad (17)$$

279 where $\tilde{w}_{g'} = \frac{\text{softmax}(w_{g'}/\tau)}{\max(\text{softmax}(w_{g'}/\tau))}$, $w_{g'} \in \mathbb{R}^{|D_n|}$, and $\sum_{g'} w_{g'} = 1$.

281 **Group Equivariant Batch Normalization.** When stacking JCGEL layers for large models, batch
 282 normalization is often necessary but it does not preserve equivariance. Motivated by Weiler &
 283 Cesa (2019), we normalize the group-indexed feature map $X^\ell \in \mathbb{R}^{B \times C \times |H_n| \times |D_n| \times H \times W}$. Further
 284 details are in the Appendix B.3.

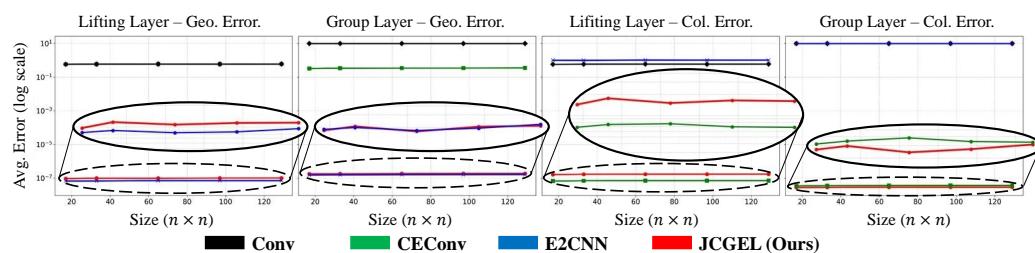
286 5 EXPERIMENTS

289 First, we validate whether JCGEL is equivariant to both color (hue shift) and geometric (D_4) group
 290 in section 5.1, and robustness on an imbalanced environment in section 5.2. Then we investigate the
 291 effect of group-wise channel for factorized representations through disentanglement learning in sec-
 292 tion 5.3. Lastly, we evaluate our method in a classification task with real-world datasets to validate
 293 the impact in a practical environment in section 5.4. We focus on the impact of the equivariance of
 294 the direct product of groups rather than cutting-edge single-type group equivariant methods.

295 **Common Experimental Setting for Models.** We replace standard CNN layers with group equiv-
 296 ariant layers and ours: standard convolution (Conv) (LeCun et al., 1998), color equivariant conv-
 297 olution (CEConv) (Lengyel et al., 2023), $E(2)$ -equivariant steerable CNN (E2CNN) Weiler &
 298 Cesa (2019), approximately equivariant networks (AE-Net) (Wang et al., 2022), **Hue-4-Sat-3** Yang
 299 et al. (2025), and JCGEL. We set equivariant model parameters of $|G_{\text{geo}}| = |D_4|$ for E2CNN. Also
 300 $|G_{\text{geo}}| \in \{|D_4|, |D_2|, |C_4|\}$ with respect to imbalance, disentanglement, and classification tasks.
 301 $|H_n| = 3$ for CEConv and JCGEL, and $\tau \in \{1.0, 0.01\}$ with respect to imbalanced tasks and others
 302 for JCGEL. Also, we set $|G_{\text{geo}}| = |C_4|$, $L = 2$, and $\alpha \in \{0, 10^{-6}\}$ for AE-Net with relaxed group
 303 convolution.

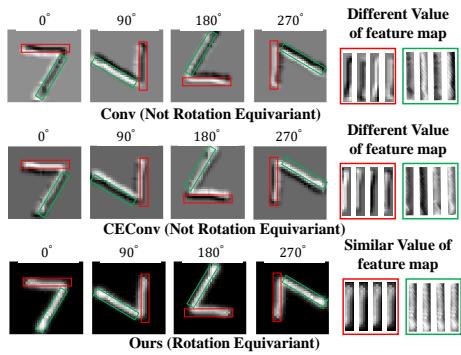
304 5.1 ARE LIFTING AND GROUP LAYER OF JCGEL EQUIVARIANT TO GROUP G ?

306 **Experimental Setting** To validate equivariance to the hue shift and the dihedral group D_4 , we
 307 generate 4,000 synthetic images. ⑪ We set the synthetic images’ size to $n \times n$ with $n \in$
 308 $\{17, 33, 65, 129\}$ to validate the robustness of image size, because the convolutional layer takes
 309 a diverse size of feature map during training and evaluation. We then evaluate equivariance using
 310 the mean-squared error: $Err = MSE([\mathcal{L}_g f \star \psi], [\mathcal{L}_g [f \star \psi]])$, where f is a synthetic image,
 311 $g \in G_{\text{geo}} \times G_{\text{color}}$ with $g_{\text{geo}} \in D_4$ and $g_{\text{color}} \in H_n$. For each method, we evaluate both the lifting and
 312 group layers: we feed the synthetic images into the lifting layer, pass its output to the group layer,
 313 and compute the equivariance error as above. Further details are provided in Appendix C.1.

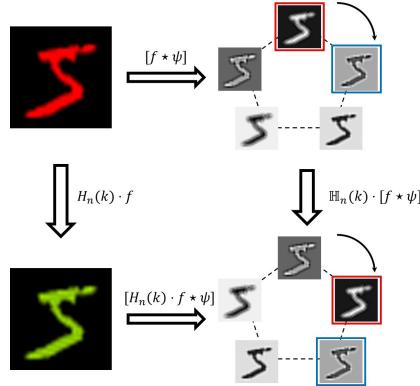


323 Figure 1: ⑫ Equivariant error evaluation. The x-axis shows the synthetic image side length ($H = W$), and the y-axis reports the equivariance error (lower is better).

Equivariance Validation As shown in Fig. 1, the lifting and group layers of JCGEL maintain equivariance to both the hue shift group H_n and the dihedral group D_4 . In particular, its geometric equivariance is on par with E2CNN, and its color equivariance remains competitive with CEConv, with variations on the order of 10^{-7} being negligible. Fig. 2a further shows that the output feature maps of JCGEL match at corresponding spatial locations across rotations (e.g., red/green boxes), whereas those of a standard convolutional and CEConv layers vary substantially at the same object positions. Likewise, when applying a hue shift in feature space, the feature maps of two inputs related by the shift exhibit the expected cyclic correspondence across color-indexed channels, as shown in Fig. 2b.



(a) Rotation equivariant test. The red and green boxes mark corresponding spatial locations before and after a C_4 rotation, matching feature-map values at these locations indicate rotation equivariance.



(b) Under a hue shift action, responses across color-indexed channels exhibit a cyclic shift, indicating equivariance to the color group.

Figure 2: ⑬ Color and C_4 group equivariant visualization with feature maps. JCGEL layer equivariant to rotation and color simultaneously, whereas other baselines equivariant to a rotation or color.

5.2 COLOR AND ROTATION IMBALANCED ENVIRONMENT

Equivariance ties together all elements within a group orbit (a homogeneous space) of G : observing a few samples constrains the features of their symmetry-related counterparts $g \cdot x$ for all $g \in G$. Consequently, group equivariant models can generalize from limited evidence to unseen color/pose variants, a capability that is particularly valuable in imbalanced settings with scarce color or geometric coverage (Cohen & Welling, 2016a; Lengyel et al., 2023). Motivated by this, we evaluate robustness under controlled scarcity by constructing long-tailed and biased splits that deliberately reduce the availability of hue and rotation information.

Experimental Setting for Imbalanced Environments To validate the robustness of JCGEL in the absence of color and rotation information, we construct a long-tailed and biased rotated color MNIST (LeCun et al., 2012) dataset as follows:

- ⑭ To synthesize the Long-tailed Rotated-Color MNIST. Standard MNIST images are up-sampled to 64×64 , embedded into a specific RGB channel $c \in \{0, 1, 2\}$, and rotated by discrete angles $\theta = 12k^\circ$. Crucially, we induce severe class imbalance by drawing the sample count n_k for each (digit, color) pair from a power-law distribution:

$$n_k \sim \lceil \text{Power}(\alpha = 0.3) \cdot N_{\max} \rceil, \quad (18)$$

while the test set remains balanced to fairly assess generalization. More details are in Appendix C.3 and Fig. 6.

- ⑮ We employ a hierarchical sampling scheme to synthesize the biased dataset (details in Appendix C.4). Crucially, the temperatures τ_c and τ_g govern the inter-class bias by determining the diversity of preferred color ($\mu_{c,y}$) and rotation ($\mu_{r,y}$) centers for each class y . Conditioned on these centers, sample counts are drawn via a multinomial distribution defined by the joint probability $P(c, r | y)$:

$$N_{c,r}^{(y)} \sim \text{Multinomial}(N_y, \text{vec}(P(c, r | y))). \quad (19)$$

We evaluate seven-layer encoders and train with the Adam optimizer (Kingma & Ba, 2015) using an initial learning rate of 10^{-4} and a cosine-annealed schedule over 1,000 and 50 epochs with respect to the long-tailed and biased dataset. (warm up each epoch).

Table 2: Rotated Color MNIST (long-tailed, biased). Results averaged over three seeds. Red denotes the best score, and blue denotes the second-best. JCGEL* denotes the strict group equivariant network. Strong, moderate, and slight indicate bias level.

Method	# param. ↓	Long-Tailed ↑	Biased ↑				
			$\tau_c, \tau_g = 0.5$ (strong)	$\tau_c, \tau_g = 5.0$ (moderate)	$\tau_c, \tau_g = 20.0$ (slight)	$\tau_c = 20.0, \tau_g = 10^{-9}$ (rotation biased)	$\tau_c = 10^{-9}, \tau_g = 20.0$ (color biased)
Strict Equiv.	Conv.	254.74K	56.45(± 0.26)	36.47(± 3.52)	34.77(± 2.06)	29.67(± 0.16)	18.23(± 0.38)
	CEConv.	256.80K	56.48(± 1.60)	45.50(± 1.95)	39.16(± 2.89)	29.85(± 0.07)	24.35(± 2.18)
	E2CNN	250.81K	50.88(± 2.05)	41.17(± 10.07)	35.82(± 6.69)	28.22(± 0.20)	18.08(± 0.31)
Hue-4-Sat-3	JCGEL*	322.59K	52.17(± 1.08)	45.38 (± 1.85)	38.40(± 1.76)	35.08(± 1.50)	19.42(± 1.00)
	JCGEL	184.82K	59.26(± 0.14)	75.49(± 0.49)	74.88(± 0.88)	75.14(± 1.32)	68.60(± 0.93)
Soft Equiv.	AE-Net	223.39K	57.64(± 0.74)	42.82(± 7.96)	44.13(± 5.18)	37.73(± 1.32)	22.88(± 1.43)
	JCGEL	184.82K	57.87(± 0.78)	75.43(± 0.86)	75.69(± 0.51)	75.49(± 0.65)	74.64(± 0.64)

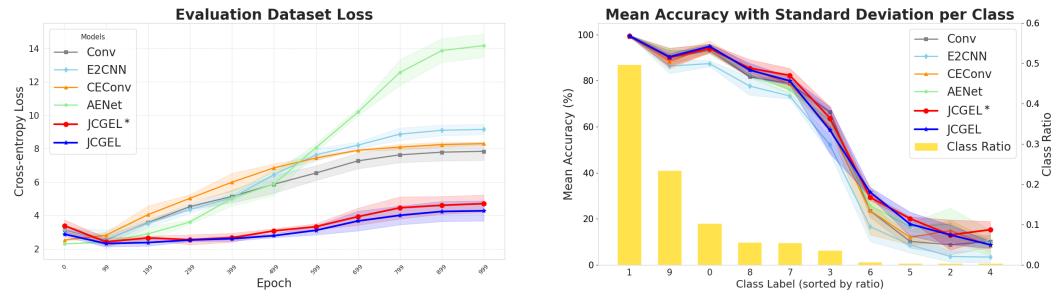


Figure 3: Visualization of Long-tailed rotated color MNIST Results.

Results under Imbalance Consistent with our objective, JCGEL generalizes from scarce evidence to unseen hue and rotation variants as shown in Table 2. Across all bias levels (Strong/Moderate/Slight), JCGEL and its strict variant, JCGEL*, outperform baselines. In the extreme color and rotation bias setting ($\tau_{c,g} = 0.5$, with training dominated by red), JCGEL correctly predicts blue/green instances at test time even though those hues are essentially unobserved during training. On long-tailed splits, gains concentrate on tail classes, and JCGEL shows the smallest increase in test loss during training, indicating improved generalization to long-tailed classes as shown in Fig. 3. We also observe a bias-dependent preference: under strong skew, the strict model JCGEL* surpasses soft approaches, whereas under slight skew the soft variant outperforms the strict model, as shown in Table 2. The same result appears for AE-Net (soft) and CEConv (strict). Overall, these results support that joint color and geometric equivariance is most beneficial in imbalanced regimes with scarce hue and rotation coverage, lifting tail-class accuracy while maintaining robust generalization.

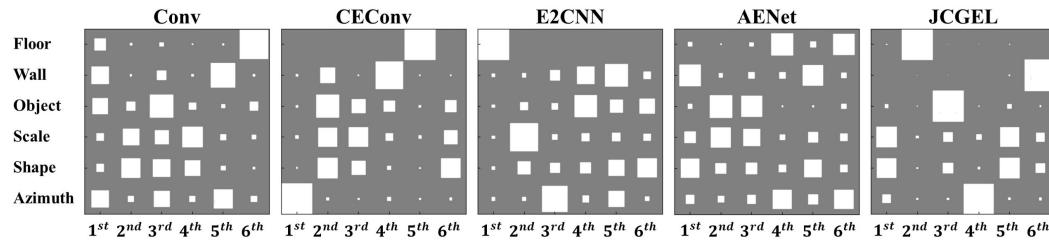
5.3 DISENTANGLEMENT LEARNING

Following the group-theoretic view, a representation is disentangled when latent coordinates factorize along subgroup actions, so that each block contains only its associated latent factors of variation (Higgins et al., 2018). Motivated by this definition, we test whether the group-wise channel structure of group equivariant models (including ours) promotes such factorization.

Experimental setting of Disentanglement Learning We evaluate disentanglement on 3D Shapes (Burgess & Kim, 2018) and MPI3D (Eslami et al., 2018). For each method, we replace the VAE encoder’s four convolutional layers with group-equivariant counterparts (CEConv, E2CNN, AE-Net, and JCGEL) and train using Adam (learning rate 8×10^{-4}), a batch size of 512, and 500,000 training iterations. We report standard metrics—BetaVAE score (Higgins et al., 2017), FVM (Kim & Mnih, 2018), MIG (Chen et al., 2018), SAP (Kumar et al., 2018), and DCI (Eastwood & Williams, 2018). Additional architectural and training details are provided in Appendix C.5.

432 Table 3: Disentanglement performance on 3D Shapes and MPI3D datasets. Results are reported as
 433 mean \pm std over three seeds. Bold text indicates scores higher than all baseline models.

		# param.	3D Shapes						
			beta-VAE \uparrow	FVM \uparrow	MIG \uparrow	SAP \uparrow	DCI-Dis. \uparrow	DCI-Com. \uparrow	
436	437	Conv.	1.51M	77.33(\pm 7.57)	71.46(\pm 4.38)	31.79(\pm 6.18)	6.57(\pm 2.48)	46.50(\pm 3.95)	47.53(\pm 4.43)
		CEConv.	1.78M	92.67 (\pm 3.06)	83.88(\pm 1.44)	44.74(\pm 8.16)	7.22(\pm 2.35)	59.66(\pm 4.44)	61.44(\pm 4.18)
		E2CNN	1.60M	89.33(\pm 10.07)	82.13(\pm 6.71)	43.53(\pm 10.02)	9.15 (\pm 1.51)	52.44(\pm 8.71)	53.78(\pm 8.78)
		Hue-4-Sat-3	2.57M	80.00(\pm 9.17)	79.88(\pm 2.25)	28.59(\pm 6.89)	5.90(\pm 1.51)	45.94(\pm 4.61)	47.66(\pm 4.97)
		JCGEL*	1.52M	95.33 (\pm 6.43)	83.96 (\pm 8.49)	44.61 (\pm 15.66)	8.90 (\pm 2.71)	59.94 (\pm 12.07)	64.11 (\pm 7.16)
		AE-Net	1.62M	79.00(\pm 1.41)	52.38(\pm 2.30)	7.25(\pm 5.08)	2.00(\pm 1.03)	25.49(\pm 7.50)	25.56(\pm 7.49)
441	442	JCGEL	1.52M	92.67 (\pm 7.02)	87.67 (\pm 4.57)	56.72 (\pm 3.94)	8.55(\pm 1.90)	66.86 (\pm 4.74)	67.82 (\pm 4.94)
		MPI3D							
		Method	# param.	beta-VAE \uparrow	FVM \uparrow	MIG \uparrow	SAP \uparrow	DCI-Dis. \uparrow	DCI-Com. \uparrow
		Conv.	1.51M	48.67(\pm 9.45)	39.50(\pm 4.75)	3.85(\pm 0.51)	2.57(\pm 0.88)	18.98(\pm 1.89)	27.68(\pm 1.08)
		CEConv.	1.78M	58.00(\pm 7.21)	39.58(\pm 8.49)	3.79(\pm 1.08)	2.09(\pm 0.78)	18.79(\pm 2.99)	27.27(\pm 1.64)
		E2CNN	1.60M	49.00(\pm 18.38)	41.44(\pm 5.21)	3.62(\pm 1.55)	1.37(\pm 0.86)	21.60(\pm 1.18)	27.54(\pm 1.91)
443	444	Hue-4-Sat-3	2.57M	51.33(\pm 1.15)	42.42(\pm 6.25)	5.05(\pm 1.52P)	3.37(\pm 0.74)	20.77(\pm 0.86)	28.65(\pm 0.90)
		JCGEL*	1.52M	69.33 (\pm 1.15)	46.79 (\pm 3.50)	13.80 (\pm 2.65)	7.86 (\pm 2.00)	31.85 (\pm 3.05)	31.51 (\pm 1.91)
		AE-Net	1.62M	49.00(\pm 18.38)	41.44(\pm 5.21)	3.63(\pm 1.55)	1.37(\pm 0.86)	21.60(\pm 1.18)	27.54(\pm 1.91)
		JCGEL	1.52M	60.67 (\pm 2.31)	45.75 (\pm 3.56)	12.27 (\pm 12.05)	6.20 (\pm 5.89)	23.27 (\pm 4.04)	31.93 (\pm 5.56)



456 Figure 4: DCI matrix visualization: The DCI matrix shows the feature importance $r_{k,j}$, how
 457 strongly the latent vector z_j predicts the ground-truth factor v_k , where $z_j \in \{1, 2, \dots, 6\}$ and $v_k \in$
 458 $\{\text{Floor, Wall, Object, Scale, Shape, Azimuth}\}$ with 3D Shapes. The better disentangled represen-
 459 tation appears as a sparse matrix with a few large, isolated cells.
 460

462 **Results of Disentanglement Learning** Across both 3D Shapes and MPI3D, our method outper-
 463 forms all baselines in terms of disentanglement scores as shown in Table 3. Notably, 3D Shapes
 464 contains richer color variation, while MPI3D emphasizes geometric variation. Despite these dif-
 465 fering factor profiles, our model yields robust gains on both datasets. In contrast, E2CNN tends
 466 to benefit primarily when geometric variation dominates, and CEConv when color variation domi-
 467 nates, indicating a dependency on dataset composition. As shown in Fig. 4, visualizations further
 468 show that our latent coordinates align sparsely with individual factors, supporting the intended ef-
 469 fect of the group-wise channel design. Finally, although recent work introduces objectives to learn
 470 equivariance, we find that simply replacing encoder layers with our equivariant counterparts already
 471 delivers consistent improvements in disentanglement quality.

472 5.4 CLASSIFICATION IN REAL-WORLD DATASETS

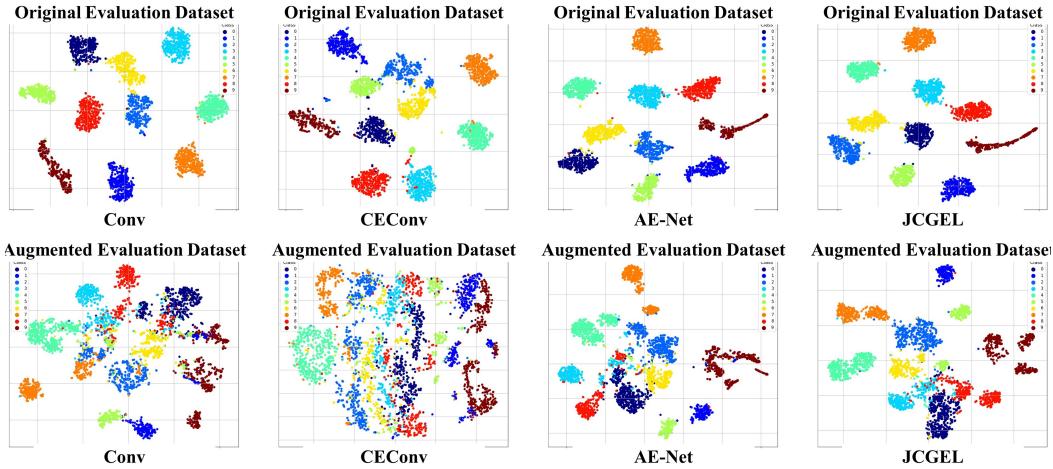
474 While many equivariant layers are designed as drop-in replacements for standard convolutions, ev-
 475 idence on large-scale, real-world settings remains: existing evaluations often focus on small or
 476 low-resolution datasets (Kim et al., 2024), and the reported gains can be sensitive to model config-
 477 urations (Lengyel et al., 2023; Yang et al., 2025). To identify which approaches truly scale beyond
 478 controlled benchmarks, we run a comparative classification study on real-world datasets, evaluating
 479 group equivariant models and ours.

480 Table 4: Classification accuracy on real-world datasets.

482 original dataset	Layer	# params.	EuroSAT (5.6K)	CIFAR100 (60K)	Pets (8.2K)	Flowers (9.1K)	Aircraft (13K)	STL10 (15.6K)	Food101 (101K)	ImageNet (1.2M)
483	Conv.	43.59M	97.46(\pm 0.34)	76.20(\pm 0.24)	74.86(\pm 1.28)	52.99(\pm 1.23)	53.02(\pm 0.24)	85.24(\pm 0.33)	81.26(\pm 0.26)	64.77
	CEConv.	42.02M	97.75(\pm 0.14)	76.10(\pm 0.14)	68.76(\pm 0.54)	54.01(\pm 1.56)	52.60(\pm 0.81)	84.40(\pm 1.38)	81.45(\pm 0.31)	67.83
	E2CNN	36.88M	95.38(\pm 0.32)	77.29(\pm 0.01)	67.41(\pm 0.86)	55.62(\pm 1.36)	50.26(\pm 5.88)	85.30(\pm 0.09)	79.79(\pm 0.26)	64.73
	Hue-4-Sat-3	37.26M	97.51(\pm 0.10)		65.39(\pm 3.42)	54.16(\pm 0.61)	52.95(\pm 2.66)	79.23(\pm 0.19)	79.38(\pm 0.21)	64.45
	JCGEL*	41.03M	97.69(\pm 97.69)	77.33(\pm 0.19)	75.25(\pm 0.61)	54.61(\pm 0.10)	54.61 (\pm 0.99)	85.49(\pm 0.35)	82.60(\pm 0.16)	69.52
	AE-Net	46.28M	97.83 (\pm 0.15)	72.99(\pm 0.43)	66.00(\pm 0.36)	48.63(\pm 1.91)	48.67(\pm 1.13)	82.43(\pm 1.20)	82.04(\pm 0.11)	69.54
484	JCGEL	41.03M	97.70(\pm 0.18)	77.51 (\pm 0.45)	76.08 (\pm 0.80)	56.73 (\pm 1.37)	54.11(\pm 0.92)	85.54 (\pm 0.26)	82.62 (\pm 0.38)	70.43

486 Table 5: (17) Classification accuracy on real-world datasets (augmented dataset).
487

488 Aug. dataset	488 Layer	488 EuroSAT (5.6K)	488 CIFAR100 (60K)	488 Pets (8.2K)	488 Flowers (9.1K)	488 Aircraft (13K)	488 STL10 (15.6K)	488 Food101 (101K)
489 Strict Equiv.	489 Conv.	53.15(± 1.18)	26.73(± 0.53)	32.33(± 0.36)	10.69(± 0.20)	12.93(± 1.33)	46.95(± 0.83)	21.58(± 0.19)
490	490 ECEConv.	49.87(± 2.20)	24.60(± 0.41)	32.25(± 1.40)	11.88(± 0.30)	12.76(± 0.53)	46.80(± 1.06)	19.57(± 0.74)
491	491 E2CNN	59.26(± 0.39)	24.21(± 1.59)	23.56(± 0.50)	11.96(± 0.71)	13.1(± 1.12)	44.90(± 1.27)	-
492	492 Soft Equiv.	AE-Net	55.85(± 0.92)	24.89(± 0.28)	32.57(± 0.01)	10.79(± 0.02)	11.65(± 0.24)	46.51(± 1.18)
		JCGEL	66.48 (± 1.16)	51.35 (± 0.56)	58.31 (± 1.23)	22.72 (± 0.88)	13.56 (± 1.87)	46.97 (± 0.72)
								23.52 (± 0.71)

509 Figure 5: EuroSAT feature-map visualization on original and augmented test images. The augmented
510 set applies a random composite transformation at evaluation time: a continuous hue shift
511 over the full hue circle and an in-plane rotation with angle $\theta \sim \mathcal{U}[-\pi, \pi]$.
512513 **Experimental Setting of Real-World Classification** We report top-1 accuracy on real-world
514 datasets (Helber et al., 2019; Krizhevsky & Hinton, 2009; Parkhi et al., 2012; Nilsback & Zisserman,
515 2008; Maji et al., 2013; Coates et al., 2011; Bossard et al., 2014). For each method, we replace the
516 convolutional layers of a ResNet-18 (He et al., 2015b) with the candidate group equivariant operator
517 and adjust block widths to keep parameter counts comparable across models. Further architectural
518 and training details are provided in Appendix C.6.
519520 **Results of Accuracy and Robustness to Hue Shift and Rotation Variation** Across the seven
521 real-world datasets, JCGEL delivers consistent accuracy gains over the vanilla convolutional base-
522 line and other group equivariant layers, with the exception of EuroSAT, as shown in Table 5. By
523 contrast, alternative group equivariant models (E2CNN, CEConv, and AE-Net) exhibit dataset-
524 dependent behavior, sometimes improving over standard convolutions but often falling short. Under
525 composite, continuous hue shifts and in-plane rotations, the augmented dataset yields severely dis-
526 rupted t-SNE embeddings for Conv, CEConv, and AE-Net—class boundaries blur relative to the
527 original set as shown in Fig. 5. In contrast, JCGEL shows a distributional shift yet maintains clear
528 inter-class separation. Taken together, these findings align with our objective: replacing the layer
529 that enforces joint color and geometry equivariance provides the most reliable inductive bias among
530 the evaluated methods for real-world classification.
531532

6 CONCLUSION

533 In this paper, we address the lack of a drop-in convolutional operator that achieves simultaneous
534 equivariance to commuting geometric (beyond translation) and color transformations, a capability
535 needed for the computer vision domain. We propose JCGEL, a joint color and geometric group
536 equivariant convolutional layer that can replace standard convolutions in common backbones. With
537 only this substitution, we observe improvements on imbalanced environments, disentanglement
538 learning, and real-world classification. These results suggest that enforcing equivariance to a di-
539 rect product of groups is better suited to real-world image grids than targeting a single continuous
540 group and has the potential to address a broader range of tasks.
541

540 REFERENCES
541

542 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101—a large-scale dataset for food
543 recognition. In *Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland,
544 September 6–12, 2014, Proceedings, Part VI* 13, pp. 57–71. Springer, 2014.

545 Chris Burgess and Hyunjik Kim. 3d shapes dataset. <https://github.com/deepmind/3dshapes-dataset/>,
546 2018.

547 Ricky T. Q. Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of dis-
548 entanglement in variational autoencoders. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
549 N. Cesa-Bianchi, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*,
550 volume 31. Curran Associates, Inc., 2018.

551 Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
552 feature learning. In *Proceedings of the fourteenth international conference on artificial intelli-
553 gence and statistics*, pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.

554 Taco Cohen and M. Welling. Group equivariant convolutional networks. In *International Conference
555 on Machine Learning*, 2016a.

556 Taco S. Cohen and Max Welling. Steerable cnns. *CoRR*, abs/1612.08498, 2016b. URL <http://arxiv.org/abs/1612.08498>.

557 Alexandre Devillers and Mathieu Lefort. Equimod: An equivariance module to improve visual
558 instance discrimination. In *International Conference on Learning Representations*, 2022.

559 Cian Eastwood and Christopher K. I. Williams. A framework for the quantitative evaluation of
560 disentangled representations. In *International Conference on Learning Representations*, 2018.

561 S. M. Ali Eslami, Nicolas Heess, Danilo Jimenez Rezende, and Max Jaderberg. Neural scene rep-
562 resentation and rendering. *Science*, 360(6394):1204–1210, 2018.

563 Q. Garrido, Laurent Najman, and Yann LeCun. Self-supervised learning of split invariant equivariant
564 representations. In *International Conference on Machine Learning*, 2023. doi: 10.48550/arXiv.
565 2302.10283.

566 Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
567 human-level performance on imagenet classification. In *IEEE International Conference on Com-
568 puter Vision*, 2015a. doi: 10.1109/ICCV.2015.123.

569 Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
570 In *Computer Vision and Pattern Recognition*, 2015b. doi: 10.1109/cvpr.2016.90.

571 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
572 and deep learning benchmark for land use and land cover classification. *IEEE Journal of Selected
573 Topics in Applied Earth Observations and Remote Sensing*, 12(7):2217–2226, 2019.

574 Irina Higgins, Loïc Matthey, Arka Pal, Christopher P. Burgess, Xavier Glorot, Matthew M.
575 Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts
576 with a constrained variational framework. In *ICLR*, 2017.

577 Irina Higgins, David Amos, David Pfau, Sébastien Racanière, Loïc Matthey, Danilo J. Rezende,
578 and Alexander Lerchner. Towards a definition of disentangled representations. *CoRR*,
579 abs/1812.02230, 2018. URL <http://arxiv.org/abs/1812.02230>.

580 Hee-Jun Jung, Jaehyoung Jeong, and Kangil Kim. CFASL: Composite factor-aligned symme-
581 try learning for disentanglement in variational autoencoder. *Transactions on Machine Learn-
582 ing Research*, 2024. ISSN 2835-8856. URL <https://openreview.net/forum?id=mDGvrH71ju>.

594 Archit Karandikar, Peilin Chen, Anh Tran, Balaji Lakshminarayanan, Ruslan Salakhutdinov, and
 595 Michael Mozer. Soft calibration objectives for neural networks. In Alina Beygelzimer, Yann N.
 596 Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), *Advances in Neural Information
 597 Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021,
 598 NeurIPS 2021, December 6-14, 2021, virtual*, pp. 29768–29779. NeurIPS, 2021.

599 O. Kayhan and J. V. Gemert. On translation invariance in cnns: Convolutional layers can exploit
 600 absolute spatial location. In *Computer Vision and Pattern Recognition*, 2020. doi: 10.1109/
 601 cvpr42600.2020.01428.

602 Hamza Keurti, Hsiao-Ru Pan, M. Besserve, B. Grewe, and B. Scholkopf. Homomorphism au-
 603 toencoder - learning group structured representations from observed transitions. In *International
 604 Conference on Machine Learning*, 2022. doi: 10.48550/arXiv.2207.12067.

605 Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In Jennifer Dy and Andreas Krause
 606 (eds.), *Proceedings of the 35th International Conference on Machine Learning*, volume 80 of
 607 *Proceedings of Machine Learning Research*, pp. 2649–2658. PMLR, 10–15 Jul 2018. URL
 608 <https://proceedings.mlr.press/v80/kim18b.html>.

609 Hyunsu Kim, Yegon Kim, Hongseok Yang, and Juho Lee. Variational partial group convolutions
 610 for input-aware partial equivariance of rotations and color-shifts. In *International Conference on
 611 Machine Learning*, 2024. doi: 10.48550/arXiv.2407.04271.

612 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *International
 613 Conference on Learning Representations*, 2015.

614 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
 615 nical report, University of Toronto, 2009.

616 Abhishek Kumar, Prasanna Sattigeri, and Avinash Balakrishnan. VARIATIONAL INFERENCE OF
 617 DISENTANGLED LATENT CONCEPTS FROM UNLABELED OBSERVATIONS. In *Inter-
 618 national Conference on Learning Representations*, 2018.

619 Yann LeCun, L. Bottou, Yoshua Bengio, and P. Haffner. Gradient-based learning applied to docu-
 620 ment recognition. In *Proceedings of the IEEE*, 1998. doi: 10.1109/5.726791.

621 Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database of handwritten digit
 622 images for machine learning research [best of the web]. *IEEE Signal Processing Magazine*, 29
 623 (6):141–142, 2012.

624 A. Lengyel, Ombretta Straforello, Robert-Jan Bruintjes, Alexander Gielisse, and Jan van Gemert.
 625 Color equivariant convolutional networks. In *Neural Information Processing Systems*, 2023. doi:
 626 10.48550/arXiv.2310.19368.

627 Xuantong Liu, Jianfeng Zhang, Tianyang Hu, He Cao, Lujia Pan, and Yuan Yao. Inducing neural col-
 628 lapse in deep long-tailed learning, 2023. URL <https://arxiv.org/abs/2302.12453>.

629 L. MacDonald, Sameera Ramasinghe, and S. Lucey. Enabling equivariance for arbitrary lie groups.
 630 In *Computer Vision and Pattern Recognition*, 2021. doi: 10.1109/CVPR52688.2022.00801.

631 Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
 632 visual classification of aircraft. In *Proceedings of the British Machine Vision Conference*, pp.
 633 1–12, 2013.

634 Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Y. Lipman. Invariant and equivariant graph
 635 networks. In *International Conference on Learning Representations*, 2018.

636 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
 637 of classes. In *Indian Conference on Computer Vision, Graphics and Image Processing*, Dec 2008.

638 Jung Yeon Park, Ondrej Biza, Linfeng Zhao, Jan-Willem van de Meent, and R. Walters. Learning
 639 symmetric embeddings for equivariant world models. In *International Conference on Machine
 640 Learning*, 2022. doi: 10.48550/arXiv.2204.11371.

648 Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In *2012
649 IEEE conference on computer vision and pattern recognition*, pp. 3498–3505. IEEE, 2012.
650

651 Yu Qi, Yuanchen Ju, Tianming Wei, Chi Chu, Lawson L.S. Wong, and Huazhe Xu. Two by two:
652 Learning multi-task pairwise objects assembly for generalizable robot manipulation. 2025.

653 Weizheng Qiao, Yang Xu, and Hui Li. Scale-rotation-equivariant lie group convolution neural net-
654 works (lie group-cnns). In *arXiv.org*, 2023.

655

656 Amir M. Rahimi, Amirreza Shaban, Ching-An Cheng, Richard I. Hartley, and Byron Boots. Intra
657 order-preserving functions for calibration of multi-class neural networks. In *Advances in Neural
658 Information Processing Systems (NeurIPS)*, volume 33, pp. 13456–13467. NeurIPS, 2020.

659

660 David W. Romero and M. Hoogendoorn. Co-attentive equivariant neural networks: Focusing equiv-
661 ariance on transformations co-occurring in data. In *International Conference on Learning Repre-
662 sentations*, 2019.

663

664 David W. Romero and Suhas Lohit. Learning partial equivariances from data. In *Neural Information
665 Processing Systems*, 2021.

666

667 Ivan Sosnovid, Michal Szmaja, and A. Smeulders. Scale-equivariant steerable networks. In *Inter-
668 national Conference on Learning Representations*, 2019.

669

670 Kaihua Tang, Jianqiang Huang, and Hanwang Zhang. Long-tailed classification by keeping the good
671 and removing the bad momentum causal effect. *ArXiv*, abs/2009.12991, 2020. URL <https://api.semanticscholar.org/CorpusID:221970271>.

672

673 Tycho F. A. van der Ouderaa, David W. Romero, and Mark van der Wilk. Relaxing equivariance
674 constraints with non-stationary continuous filters. In *Neural Information Processing Systems*,
675 2022. doi: 10.48550/arXiv.2204.07178.

676

677 Lars Veerkind and Gabriele Cesa. A probabilistic approach to learning the degree of equivariance
678 in steerable cnns. In *International Conference on Machine Learning*, 2024. doi: 10.48550/arXiv.
679 2406.03946.

680

681 Rui Wang, R. Walters, and Rose Yu. Approximately equivariant networks for imperfectly symmetric
682 dynamics. In *International Conference on Machine Learning*, 2022.

683

684 Ziming Wang and Rebecka Jörnsten. Se(3)-bi-equivariant transformers for point cloud assembly. In
685 *Neural Information Processing Systems*, 2024. doi: 10.48550/arXiv.2407.09167.

686

687 Maurice Weiler and Gabriele Cesa. General e(2)-equivariant steerable cnns. In *Neural Information
688 Processing Systems*, 2019.

689

690 Maurice Weiler, F. Hamprecht, and M. Storath. Learning steerable filters for rotation equivariant
691 cnns. In *2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2017. doi:
692 10.1109/CVPR.2018.00095.

693

694 Daniel E. Worrall and Max Welling. Deep scale-spaces: Equivariance over scale. In *Neural Infor-
695 mation Processing Systems*, 2019.

696

697 Daniel E. Worrall, Stephan J. Garbin, Daniyar Turmukhambetov, and G. Brostow. Harmonic net-
698 works: Deep translation and rotation equivariance. In *Computer Vision and Pattern Recognition*,
699 2016. doi: 10.1109/CVPR.2017.758.

700

701 Ruihai Wu, Chenrui Tie, Yushi Du, Yan Zhao, and Hao Dong. Leveraging se(3) equivariance for
702 learning 3d geometric shape assembly. In *IEEE International Conference on Computer Vision*,
703 2023. doi: 10.1109/ICCV51070.2023.01316.

704

705 Minkai Xu, Jiaqi Han, Aaron Lou, Jean Kossaifi, Arvind Ramanathan, K. Azizzadenesheli,
706 J. Leskovec, Stefano Ermon, and A. Anandkumar. Equivariant graph neural operator for mod-
707 eling 3d dynamics. In *International Conference on Machine Learning*, 2024. doi: 10.48550/
708 arXiv.2401.11037.

702 Tao Yang, Xuanchi Ren, Yuwang Wang, Wenjun Zeng, Nanning Zheng, and Pengju Ren. Groupi-
 703 fyaevae: from group-based definition to vae-based unsupervised representation disentanglement.
 704 *CoRR*, abs/2102.10303, 2021. URL <https://arxiv.org/abs/2102.10303>.

705 Yulong Yang, Felix O’Mahony, and Christine Allen-Blanchette. Learning color equivariant repre-
 706 sentations. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 707 <https://openreview.net/forum?id=IXyfbaGlps>.

709 Jaemyung Yu, Jaehyun Choi, Dong-Jae Lee, H. Hong, and Junmo Kim. Self-supervised transfor-
 710 mation learning for equivariant representations. In *Neural Information Processing Systems*, 2025.
 711 doi: 10.48550/arXiv.2501.08712.

713 A ROLE OF THE LLM

715 Throughout this study, we employed an LLM at the sentence level to assess grammar, strengthen
 716 within-paragraph cohesion, and ensure that our intended content was clearly conveyed.

718 B METHOD DETAILS

720 **Notation differences from the main text.** In the proofs we work in the Euclidean group $E(2) =$
 721 $\mathbb{R}^2 \rtimes O(2)$ and then specialize to the dihedral subgroup D_n . This choice is purely notational:
 722 $D_n \leq E(2)$, and the parameterization we use (translations and planar rotations/reflections) is the
 723 same in both settings, so establishing equivariance for $E(2)$ yields the D_n case as a direct corollary.

725 To simplify expressions, we drop layer superscripts and other adornments on feature maps, filters,
 726 and group actions. In the lifting layer we write the image domain feature map and filter as $f : \mathbb{Z}^2 \rightarrow \mathbb{R}^{C^\ell}$ and $\psi : \mathbb{Z}^2 \rightarrow \mathbb{R}^{C^\ell}$, with input-domain action α . In the group layer we use capital
 727 letters $F : G \rightarrow \mathbb{R}^{C^\ell}$ and $\Psi : G \rightarrow \mathbb{R}^{C^\ell}$, and denote the induced feature-space action by ρ .
 728 When the domain is clear, we further omit subscripts on convolution/cross-correlation operators for
 729 readability.

731 B.1 LIFTING LAYER

733 **Setup and notation.** Let $f : \mathbb{Z}^2 \rightarrow \mathbb{R}^{C^\ell}$ be an input feature map with C^ℓ channels. Let $\psi^i : \mathbb{Z}^2 \rightarrow \mathbb{R}^{C^\ell}$ be a learnable filter for $i \in \{1, \dots, |C^{\ell+1}|\}$. Denote by $H_n(k) \in \mathbb{R}^{d_c \times d_c}$ an orthogonal
 734 hue-rotation matrix (Lengyel et al., 2023) for $k \in \mathbb{Z}_n$. For geometry, write group elements of $O(2)$
 735 as (s, θ) with $s \in \{0, 1\}$ (flip bit) and $\theta \in \mathbb{R}/2\pi\mathbb{Z}$ (a rotation angle). Let $R(\theta) \in SO(2)$ be the
 736 counter-clockwise rotation by angle θ , and let F be a fixed reflection (e.g., $F = \text{diag}(1, -1)$). We
 737 use the faithful 2×2 orthogonal representation

$$739 \quad \rho(s, \theta) = \begin{cases} R(\theta), & s = 0, \\ R(\theta)F, & s = 1. \end{cases} \quad (20)$$

740 The $O(2)$ group law is

$$743 \quad (s_1, \theta_1) \cdot (s_2, \theta_2) = (s_1 \oplus s_2, \theta_1 + (-1)^{s_1} \theta_2 \bmod 2\pi), \quad (21)$$

744 where \oplus is addition modulo 2, and inverses are

$$745 \quad (s, \theta)^{-1} = (s, -(-1)^s \theta \bmod 2\pi). \quad (22)$$

747 We target the direct-product group

$$748 \quad G = E(2) \times H_n = (\mathbb{Z}^2 \rtimes O(2)) \times H_n, \quad (23)$$

749 where $(s, \theta) \in O(2)$ acts on translations by $\rho(s, \theta) t$.

751 **Group Action on Inputs.** For $g = (t, s', \theta', m) \in G$ (translation $t \in \mathbb{Z}^2$, flip $s' \in \{0, 1\}$, rotation
 752 $\theta' \in \mathbb{R}/2\pi\mathbb{Z}$, hue shift $m \in \mathbb{Z}_n$), define the left action

$$753 \quad [\mathcal{L}_g f](x) = [\mathcal{L}_{(t, s', \theta', m)} f](x) = H_n(m) f(\rho(s', \theta')^{-1}(x - t)). \quad (24)$$

755 Since $H_n(m)$ is orthogonal (Lengyel et al., 2023), for any $a, b \in \mathbb{R}^{d_c}$ we have $\langle H_n(m)a, b \rangle = \langle a, H_n(-m)b \rangle$.

756 **Induced Output Action.** Let $F(x, s, \theta, k)$ be an output feature. The induced left action on outputs
 757 is
 758

$$[\mathcal{L}_{(t,s',\theta',m)}^c F](x, s, \theta, k) := F\left(\rho(s', \theta')^{-1}(x - t), s \ominus s', \text{wrap}((-1)^{s'}(\theta - \theta')), k - m\right), \quad (25)$$

761 where \ominus is subtraction in \mathbb{Z}_2 (which equals \oplus) and $\text{wrap}(\cdot)$ maps angles to $[0, 2\pi)$ (any fixed 2π -
 762 periodic choice suffices).

763 **Proof: Details of $E(2) \times H_n(k)$ Equivariance on lifting layer.** We show $[\mathcal{L}_g f \star \psi^i] = \mathcal{L}_g^c [f \star \psi^i]$
 764 for all $g = (t, s', \theta', m) \in G$. By definition and orthogonality of H_n ,

$$\mathcal{L}_{(t,s',\theta',m)}^c [f \star \psi^i](x, s, \theta, k) = \sum_{y \in \mathbb{Z}^2} \sum_{c=1}^{C^\ell} \langle [L_g f_c](y), H_n(k) \psi_c^{i,(r,\theta)}(y - x) \rangle \quad (26)$$

$$= \sum_{y \in \mathbb{Z}^2} \sum_{c=1}^{C^\ell} \langle H_n(m) f_c(\rho(s', \theta')^{-1}(y - t)), H_n(k) \psi_c^{i,(s,\theta)}(y - x) \rangle \quad (27)$$

$$= \sum_{y,c} \langle f_c(\rho(s', \theta')^{-1}(y - t)), H_n(k - m) \psi_c^{i,(s,\theta)}(y - x) \rangle \quad (28)$$

$$= \sum_{y,c} \langle f_c(\rho(s', \theta')^{-1}(y - t)), H_n(k - m) \psi_c^i(\rho(s, \theta)^{-1}(y - x)) \rangle \quad (29)$$

779 Let $z = \rho(s', \theta')^{-1}(y - t)$ so $y = \rho(s', \theta') z + t$. Then,

$$\begin{aligned} \mathcal{L}_{(t,s',\theta',m)}^c [f \star \psi^i](x, s, \theta, k) &= \sum_{z,c} \langle f_c(z), H_n(k - m) \psi^i(\rho(s, \theta)^{-1}(\rho(s', \theta') z + t - x)) \rangle \\ &= \sum_{z,c} \langle f_c(z), H_n(k - m) \psi^i(\rho(q_{\text{rel}}) [z - \rho(s', \theta')^{-1}(x - t)]) \rangle_c, \end{aligned} \quad (30)$$

787 where we used the $O(2)$ group property to factor the argument via the relative pose
 788

$$q_{\text{rel}} := (s, \theta)^{-1} \cdot (s', \theta') = (s \oplus s', -(-1)^s \theta + (-1)^s \theta') = (s \oplus s', (-1)^s(\theta' - \theta)). \quad (31)$$

791 Equivalently, we write $\psi^i(\rho(q_{\text{rel}})[\cdot]) = \psi^{i,(q_{\text{rel}}^{-1})}(\cdot)$ so that
 792

$$[\mathcal{L}_{(t,s',\theta',m)}^c f \star \psi^i](x, s, \theta, k) = \sum_{z,c} \langle f_c(z), H_n(k - m) \psi^{i,(q_{\text{rel}}^{-1})}(z - \rho(s', \theta')^{-1}(x - t)) \rangle_c. \quad (32)$$

797 Now, unpack q_{rel}^{-1} using equation 22:

$$q_{\text{rel}} = (s \oplus s', (-1)^s(\theta' - \theta)) \Rightarrow q_{\text{rel}}^{-1} = (s \oplus s', -(-1)^{s \oplus s'} (-1)^s(\theta' - \theta)) = (s \oplus s', (-1)^{s'}(\theta - \theta')),$$

801 where angles are understood modulo 2π . Hence
 802

$$[\mathcal{L}_{(t,s',\theta',m)}^c f \star \psi^i](x, s, \theta, k) \quad (33)$$

$$= \sum_{z,c} \langle f_c(z), H_n(k - m) \psi^{i,(s \ominus s', -(-1)^{s'}(\theta - \theta'))}(z - \rho(s', \theta')^{-1}(x - t)) \rangle \quad (34)$$

$$= [f \star \psi^i](\rho(s', \theta')^{-1}(x - t), s \ominus s', \text{wrap}((-1)^{s'}(\theta - \theta')), k - m) \quad (\because \text{Eq. 6}) \quad (35)$$

$$= [\mathcal{L}_{(t,s',\theta',m)}^c [f \star \psi^i]](x, s, \theta, k) \quad (\because \text{Eq. 25}), \quad (36)$$

809 which proves $E(2)$ -equivariance jointly with hue shift.

810 B.2 COLOR AND $O(2)$ GROUP LAYER
811812 **Group structure.** The orthogonal group $O(2)$ can be expressed as the semidirect product $SO(2) \rtimes$
813 \mathbb{Z}_2 . Each element is written (s, θ) with $s \in \{0, 1\}$ (flip) and $\theta \in S^1 = \mathbb{R}/2\pi\mathbb{Z}$ (rotation angle). Its
814 law and inverse are

815
$$(s_1, \theta_1) \cdot (s_2, \theta_2) = (s_1 \oplus s_2, \theta_1 + (-1)^{s_1} \theta_2 \bmod 2\pi), \quad (37)$$

816

817
$$(s, \theta)^{-1} = (s, -(-1)^s \theta \bmod 2\pi). \quad (38)$$

818 The color group $H_n = \mathbb{Z}_n$ acts via an orthogonal representation $H_n(k)$, $k \in \{0, \dots, n-1\}$, with
819 cyclic composition $k_1 \oplus k_2 = (k_1 + k_2) \bmod n$. Hence, the total group is

820
$$G = (\mathbb{Z}^2 \rtimes O(2)) \times H_n.$$

821

822 **Feature domains.** A group-layer feature map is

823
$$F : \mathbb{Z}^2 \times \{0, 1\} \times S^1 \times \mathbb{Z}_n \longrightarrow \mathbb{R}^{C^\ell}.$$

824

825 That is, each feature is indexed by spatial location $x \in \mathbb{Z}^2$, flip s , rotation θ , and hue index k . A
826 learnable filter ψ^i (for output channel i) is defined on relative indices

827
$$\Psi^i : \mathbb{Z}^2 \times \{0, 1\} \times S^1 \times \mathbb{Z}_n \longrightarrow \mathbb{R}^{C^\ell}.$$

828

829 **Group correlation.** We follow the group correlation (Cohen & Welling, 2016a) as introduced
830 $[F \star \Psi](g) = \sum_{h \in G} f(g)\Psi(g^{-1}h)$. The group correlation producing the output at (x, s, θ, k) is
831

832
$$[F \star \Psi^i](x, s, \theta, k) = \sum_{y \in \mathbb{Z}^2} \sum_{s_1 \in \{0, 1\}} \int_0^{2\pi} \sum_{m_1 \in \mathbb{Z}_n} \sum_{c=1}^{C^\ell} F_c(y, s_1, \theta_1, m_1) \\ 833 \cdot \Psi_c^i(\rho(s, \theta)^{-1}(y - x), (s, \theta)^{-1}(s_1, \theta_1), (m_1 - k) \bmod n) \frac{d\theta_1}{2\pi}. \quad (39)$$

834

835 Here, the hue difference is computed modulo n , which implements the rolling structure of hue shift.
836 In practice, the continuous integral $\int_0^{2\pi}$ is approximated by a uniform sample sum $\frac{1}{Q} \sum_{\theta_1}$ with Q
837 orientations.
838839 **Group action on inputs.** For $g = (t, s', \theta', m) \in G$, the left action on inputs is
840

841
$$[\mathcal{L}_g F](x, s, \theta, k) = F(\rho(s', \theta')^{-1}(x - t), (s', \theta')^{-1}(s, \theta), (k - m) \bmod n). \quad (40)$$

842

843 That is, the group index is transformed as $h \mapsto g^{-1}h$, consistent with left actions.
844845 **Induced output action.** For an output feature $U(x, s, \theta, k) = [F \star \Psi](x, s, \theta, k)$, the induced
846 action is
847

848
$$[\mathcal{L}_{(t, s', \theta', m)}^c U](x, s, \theta, k) = U(\rho(s', \theta')^{-1}(x - t), s \oplus s', (-1)^{s'}(\theta - \theta') \bmod 2\pi, (k - m) \bmod n). \quad (41)$$

849

850 **Proof: Details of $E(2) \times H_n(k)$ Equivariance on Group Layer.** We show $[\mathcal{L}_g F \star \Psi^i] = \mathcal{L}_g^c [F \star$
851 $\Psi^i]$ for all $g = (t, s', \theta', m) \in G$.
852

853
$$[\mathcal{L}_g F \star \Psi^i](x, r, \theta, k) = \sum_{y \in \mathbb{Z}^2} \sum_{s_1 \in \{0, 1\}} \int_0^{2\pi} \sum_{m_1 \in \mathbb{Z}_n} \sum_{c=1}^{C^\ell} [\mathcal{L}_g F](y, s_1, \theta_1, m_1) \\ 854 \cdot \Psi_c^i(\rho(s, \theta)^{-1}(y - x), (s, \theta)^{-1}(s_1, \theta_1), m_1 - k) \frac{d\theta_1}{2\pi} \\ 855 = \sum_{y, s_1, m_1, c} \int_{\theta_1} F_c(\rho(s', \theta')^{-1}(y - t), (s', \theta')^{-1}(s_1, \theta_1), m_1 - m) \\ 856 \cdot \Psi_c^i(\rho(s, \theta)^{-1}(y - x), (s, \theta)^{-1}(s_1, \theta_1), m_1 - k) \frac{d\theta_1}{2\pi}. \quad (42)$$

857

864 Let

$$\begin{aligned} z &= \rho(s', \theta')^{-1}(y - t), \Rightarrow y = \rho(s', \theta')z + t \\ (\tilde{s}_1, \tilde{\theta}_1) &= (s', \theta')^{-1}(s_1, \theta_1) \Rightarrow (s_1, \theta_1) = (s', \theta')(\tilde{s}_1, \tilde{\theta}_1) \\ \tilde{m}_1 &= m_1 - m \Rightarrow m_1 = \tilde{m}_1 + m. \end{aligned} \quad (43)$$

870 Then insert all variables in Eq. 43, then

$$\begin{aligned} [\mathcal{L}_g F \star \Psi^i](x, r, \theta, k) &= \sum_{z, \tilde{s}_1, \tilde{m}_1, c} \int_{\tilde{\theta}_1} F_c(z, \tilde{s}_1, \tilde{\theta}_1, \tilde{m}_1) \\ &\quad \cdot \Psi_c^i \left(\underbrace{\rho(s, \theta)^{-1}(\rho(s', \theta')z + t - x)}_{\text{spatial rel.}}, \underbrace{(s, \theta)^{-1}((s', \theta')(\tilde{s}_1, \tilde{\theta}_1))}_{\text{orient rel.}}, \underbrace{\tilde{m}_1 + m - k}_{\text{hue rel.}} \right) \frac{d\tilde{\theta}_1}{2\pi} \end{aligned} \quad (44)$$

878 Then let spatial rel, orient rel. and hue rel. as follows:

$$\begin{aligned} \rho(s, \theta)^{-1}(\rho(s', \theta')z + t - x) &= \rho(s, \theta)^{-1}\rho(s', \theta')[z - \rho(s', \theta')^{-1}(x - t)] \\ &= \rho \left(\underbrace{(s, \theta)^{-1}(s', \theta')}_{:= q_{out}} \right) \left[z - \underbrace{\rho(s', \theta')^{-1}(x - t)}_{:= x^*} \right] \\ (s, \theta)^{-1}((s', \theta')(\tilde{s}_1, \tilde{\theta}_1)) &= ((s, \theta)^{-1}(s', \theta'))(\tilde{s}_1, \tilde{\theta}_1) = q_{out}(\tilde{s}_1, \tilde{\theta}_1) \\ \tilde{m}_1 + m - k &= \tilde{m}_1 - \underbrace{(k - m)}_{:= k^*}. \end{aligned} \quad (45)$$

887 Let

$$\begin{aligned} (q_{out})^{-1} &= ((s, \theta)^{-1}(s', \theta'))^{-1} \\ &= (s', \theta')^{-1}(s, \theta) \\ &= (s', -(-1)^{s'} \theta')(s, \theta) \\ &= (s' \oplus s, -(-1)^{s'} \theta' + (-1)^{s'} \theta) \\ &= (s' \oplus s, (-1)^{s'} (\theta - \theta')) \\ &:= (s^*, \theta^*) \end{aligned} \quad (46)$$

897 Then insert Eq. 45 and 46 in Eq. 44,

$$\begin{aligned} [\mathcal{L}_g F \star \Psi^i](x, s, \theta, k) &= \sum_{z, \tilde{s}_1, \tilde{m}_1, c} \int_{\tilde{\theta}_1} F_c(z, \tilde{s}_1, \tilde{\theta}_1, \tilde{m}_1) \cdot \Psi_c^i \left(\rho(q_{out}[z - x^*], (s^*, \theta^*)^{-1}(\tilde{s}_1, \tilde{\theta}_1), \tilde{m}_1 - k^*) \right) \frac{d\tilde{\theta}_1}{2\pi} \\ &= \sum_{z, \tilde{s}_1, \tilde{m}_1, c} \int_{\tilde{\theta}_1} F_c(z, \tilde{s}_1, \tilde{\theta}_1, \tilde{m}_1) \cdot \Psi_c^i \left(\rho(s^*, \theta^*)^{-1}(z - x^*), (s^*, \theta^*)^{-1}(\tilde{s}_1, \tilde{\theta}_1), \tilde{m}_1 - k^* \right) \frac{d\tilde{\theta}_1}{2\pi} \\ &= [F \star \Psi^i](x^*, s^*, \theta^*, k^*) \quad (\because \text{group correlation, Eq. 39}) \\ &= [F \star \Psi^i](\rho(s', \theta')^{-1}(x - t), s \oplus s', (-1)^{s'} (\theta - \theta'), k - m) \quad (\because \text{Eq. 45 and 46}) \\ &= [\mathcal{L}_g^c [F \star \Psi^i]](x, s, \theta, k) \quad (\because \text{definition of induced action, Eq. 41}). \end{aligned} \quad (47)$$

909 B.3 DETAILS OF GROUP EQUIVARIANT BATCH NORMALIZATION

911 When stacking JCGEL layers for large models, batch normalization is often necessary. However,
912 a batch normalization can break equivariance (Weiler & Cesa, 2019). Motivated by Weiler & Cesa
913 (2019), we normalize the group-indexed feature map by sharing statistics and affine parameters
914 across the color/geometry channels. Let $X^\ell \in \mathbb{R}^{B \times C \times |H_n| \times |D_n| \times H \times W}$. For each base channel c ,

$$\mu_c^\ell = \frac{1}{B |H_n| |D_n| H W} \sum_{b, k, r, h, w} X_{b, c, k, r, h, w}^\ell, \quad (\sigma_c^\ell)^2 = \frac{1}{B |H_n| |D_n| H W} \sum_{b, k, r, h, w} (X_{b, c, k, r, h, w}^\ell - \mu_c^\ell)^2, \quad (48)$$

918 and we apply the fiber-shared affine map
 919

$$920 \quad \hat{X}_{b,c,k,r,h,w}^{\ell} = \frac{X_{b,c,k,r,h,w}^{\ell} - \mu_c^{\ell}}{\sqrt{(\sigma_c^{\ell})^2 + \varepsilon}}, \quad Y_{b,c,k,r,h,w}^{\ell} = \gamma_c \hat{X}_{b,c,k,r,h,w}^{\ell} + \beta_c.$$

922 Because the group action permutes only the fiber indices (k, r) while $\mu_c^{\ell}, \sigma_c^{\ell}, \gamma_c, \beta_c$ are shared across
 923 them, this BN commutes with the action and thus preserves equivariance. (In practice, reshape to
 924 $(B|H_n||D_n|, C, H, W)$, apply `BatchNorm2d`, and reshape back.)
 925

926 C DETAILS OF EQUIVARIANT

928 C.1 DETAILS OF EQUIVARIANCE VALIDATION TASK EXPERIMENTAL SETTING

930 To validate equivariance to the hue shift and the dihedral group D_4 , we generate 4,000 synthetic
 931 images of size $n \times n$ with $n \in \{17, 33, 65, 129\}$. Because discrete in-plane rotations on a
 932 square grid misalign the rotation center for even n (causing interpolation artifacts), we restrict to
 933 odd side lengths. We compare JCGEL against a standard CNN (LeCun et al., 1998), an $E(2)$ -
 934 equivariant steerable model (E2CNN) (Weiler & Cesa, 2019), and a color-equivariant convolution
 935 (CEConv) (Lengyel et al., 2023). All layers are initialized with He initialization (He et al., 2015a).
 936 For each method, we evaluate both the lifting and group layers by feeding the synthetic images and
 937 computing equivariance error as above.
 938

939 C.2 DETAILS OF EQUIVARIANT ERROR

940 We measure two errors, one at the lifting layer and one at the group layer:

$$941 \quad \text{Err}^{(L)} = \text{MSE}([\mathcal{L}_g^0 f^0 \star \psi^0], [\mathcal{L}_g^1 [f^0 \star \psi^0]]), \\ 942 \quad \text{Err}^{(G)} = \text{MSE}([\mathcal{L}_g^0 f^0 \star \psi^0] \star \psi^1, \mathcal{L}_g^2 [f^0 \star \psi^0] \star \psi^1]), \quad (49)$$

944 where \mathcal{L}_g^{ℓ} denotes the group action at layer ℓ ($\ell = 0$ for image domain, $\ell \geq 1$ for feature spaces),
 945 f^0 is the input image, ψ^0 and ψ^1 are the lifting and group-layer filters, and \star is cross-correlation.
 946 The first line compares “transform-then-lift” versus “lift-then-transform” (lifting equivariance); the
 947 second line compares “transform-then-group-convolve” versus “group-convolve-then-transform”
 948 (group-layer equivariance).
 949

950 C.3 DETAILS OF LONG-TAILED ROTATED COLOR MNIST DATASET

952 **Common Experimental Setting** We evaluate seven-layer encoders, each constructed by stacking
 953 a single convolutional primitive: standard convolution (Conv) (LeCun et al., 1998), color equivariant
 954 convolution (CEConv) (Lengyel et al., 2023), $E(2)$ -equivariant steerable cnn (E2CNN) Weiler &
 955 Cesa (2019), approximately equivariant networks (AE-Net) (Wang et al., 2022), and JCGEL. All
 956 encoders are trained with the Adam optimizer (Kingma & Ba, 2015) using an initial learning rate of
 957 10^{-4} and a cosine-annealed schedule over 1,000 and 50 epochs with respect to the long-tailed and
 958 biased dataset. (warm up each epoch).

959 **Long-tailed Rotated-Color MNIST.** We construct a custom dataset from MNIST to stress-test
 960 color/geometry robustness. Each grayscale image $x \in \mathbb{R}^{28 \times 28}$ with digit label $y \in \{0, \dots, 9\}$ is
 961 upsampled to 64×64 (bilinear) and embedded into RGB by selecting a color index $c \in \{0, 1, 2\}$ and
 962 writing the upsampled image into the c -th channel while zeroing the others, yielding $x' \in \mathbb{R}^{3 \times 64 \times 64}$.
 963 We then apply a rotation R_{θ} with $\theta = 12k^{\circ}$ for $k \sim \mathcal{U}\{0, \dots, 29\}$, producing $x'' = R_{\theta}(x')$.
 964 Crucially, the class label remains the original digit y ; color and rotation act as nuisance factors
 965 (10-way classification).

966 To induce class imbalance in training, we draw the number of samples for each (digit, color) pair
 967 $k \in \{0, \dots, 29\}$ from a power-law:

$$968 \quad n_k \sim \lceil \text{Power}(\alpha=0.3) \cdot N_{\max} \rceil,$$

970 where N_{\max} is the maximum per-pair budget; counts are then aggregated over color to form digit-
 971 level splits, yielding a long-tailed training set. The test set is balanced with a uniform number of
 972 examples per digit to fairly assess generalization under imbalance.

To validate robustness of JCGEL within lack of color and rotation information, we compose long-tailed rotated color MNIST (LeCun et al., 2012) dataset. Each MNIST grayscale image is upsampled to 64×64 , converted to RGB by writing the image into a single channel (others zero), and then rotated in-plane by R_θ with $\theta \in \{0^\circ, 12^\circ, \dots, 648^\circ\}$ about the image center (bilinear resampling). Labels are the original digits y (10 classes), independent of color/rotation. To induce a long-tailed training set, sample counts follow a power-law over (digit, color) pairs.

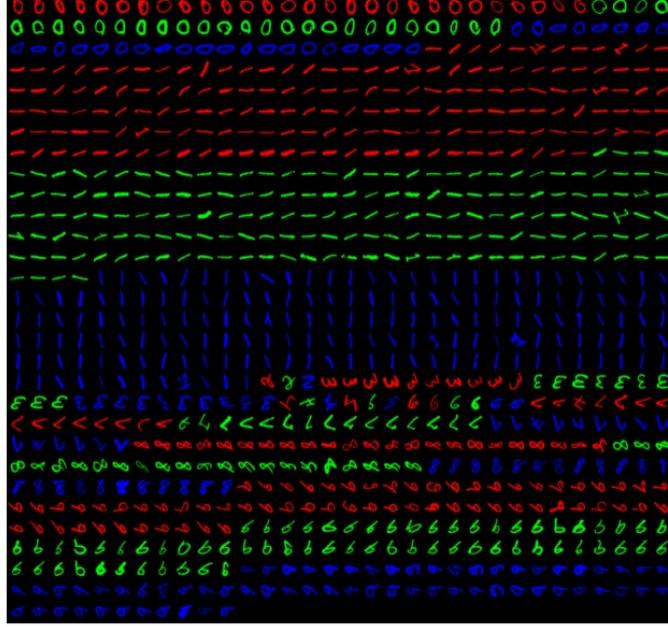


Figure 6: Rotated color MNIST long-tailed training dataset.

C.4 DETAILS OF BIASED COLOR-ROTATION MNIST: UNIFIED SPECIFICATION

Overview We construct a biased MNIST variant to probe robustness against spurious correlations by coupling each digit class with preferred color and rotation. The training distribution uses two temperature (scale) parameters that control the global (inter-class) bias strength: τ_c for color and τ_g for rotation.¹ Within each class, samples are drawn from a local (intra-class) bias with a fixed sharp temperature $\tau_{\text{local}} = 0.01$ (strong concentration). The test set is constructed uniformly over all color×rotation combinations, independent of τ_c, τ_g .

Wrapped One-Sided Exponential on a Cyclic Domain Let items be indexed by $k \in \{0, 1, \dots, n - 1\}$ on a circle. For a center index $\mu \in \{0, \dots, n - 1\}$ and temperature $\tau > 0$, define $\lambda = \frac{1}{\tau}$ and

$$P(k \mid \mu, \tau) = \frac{\exp(-\lambda((k - \mu) \bmod n))}{\sum_{i=0}^{n-1} \exp(-\lambda i)}. \quad (50)$$

This distribution is peaked at $k = \mu$ and decays monotonically along the cyclic order; it is not symmetric about μ . Smaller τ (larger λ) yields stronger bias (sharper concentration).

Training Set Bias We use $N_c = 3$ colors with indices $c \in \{0:R, 1:G, 2:B\}$ and N_r discrete rotations with indices $r \in \{0, \dots, N_r - 1\}$. The rotation angle is $\theta(r) = \frac{360^\circ}{N_r} r$.

Level 1: Global (Inter-Class) Bias Global categorical distributions are built, centered at 0 (Red and 0°):

$$P_{\text{global}}(c \mid \tau_c) = P(c \mid \mu = 0, \tau_c), \quad P_{\text{global}}(r \mid \tau_g) = P(r \mid \mu = 0, \tau_g),$$

¹In code these appear as `color_std` and `rot_std`; they are not statistical standard deviations but scale (temperature) parameters.

1026 using equation 50. For each digit class $y \in \{0, \dots, 9\}$ we sample preferred centers
 1027

$$1028 \quad \mu_{c,y} \sim \text{Categorical}(P_{\text{global}}(c \mid \tau_c)), \quad \mu_{g,y} \sim \text{Categorical}(P_{\text{global}}(r \mid \tau_g)).$$

1029 Small τ_c, τ_g (strong bias) cause many classes to share the same preferred pair (e.g., Red & 0°); large
 1030 values diversify class-wise preferences.
 1031

1032 **Level 2: Local (Intra-Class) Bias** Conditioned on class y and its centers $(\mu_{c,y}, \mu_{g,y})$, we define
 1033 class-conditional distributions with a fixed sharp temperature $\tau_{\text{local}} = 0.01$:
 1034

$$1035 \quad P(c \mid y) = P(c \mid \mu = \mu_{c,y}, \tau = \tau_{\text{local}}), \quad P(r \mid y) = P(r \mid \mu = \mu_{r,y}, \tau = \tau_{\text{local}}).$$

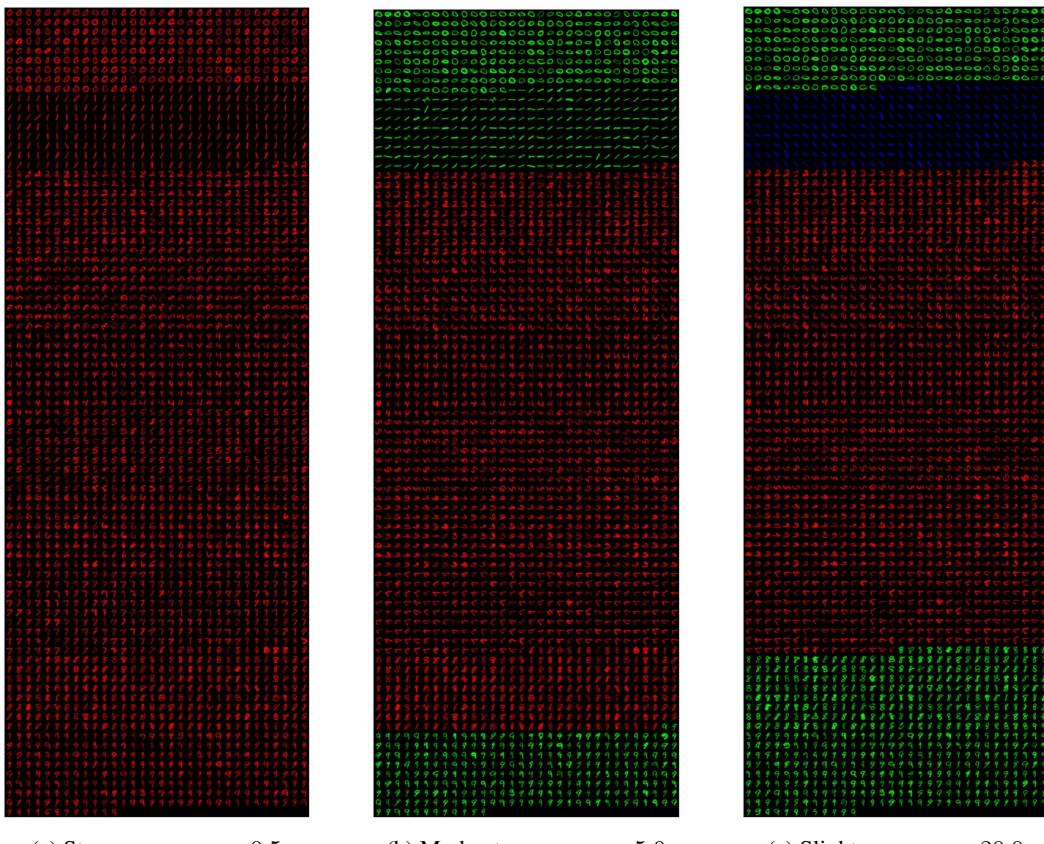
1037 Assuming conditional independence within a class,

$$1038 \quad P(c, g \mid y) = P(c \mid y) P(g \mid y).$$

1040 Given N_y samples for class y , counts $\{N_{c,g}^{(y)}\}$ are drawn via
 1041

$$1042 \quad \{N_{c,g}^{(y)}\}_{c,g} \sim \text{Multinomial}\left(N_y, \text{vec}(P(c, g \mid y))\right).$$

1044 **Test Set (Uniform)** For evaluation, we allocate an equal number of samples to every triple (y, c, r) ,
 1045 yielding a uniform distribution over color \times rotation per class. Implementation-wise, the per-class
 1046 sample count must be divisible by $3 \times N_r$ to achieve exact uniformity (an error is raised otherwise).
 1047



1076 Figure 7: Rotated color MNIST biased training datasets.
 1077

1078 **C.4.1 ⑩ ADDITIONAL LONG-TAILED TASKS (IMAGENET-LT)**

1080
 1081 **Hyper-Parameter Setting.** We set the batch size to 256, the learning
 1082 rate to 10^{-4} with the Adam optimizer using cosine annealing over 100
 1083 epochs. We then employ baselines and the JCGEL model as follow Ta-
 1084 ble 8.

1085 **Results.** As shown in Table 6, our model outperforms the baselines,
 1086 suggesting that our model is also effective on real-world datasets.

1088 C.4.2 ⑯ ADDITIONAL DISCUSSION

1090 **Analysis of Loss-Accuracy Discrepancy in Figure 3** We address the
 1091 observation regarding the discrepancy between the significant drop in
 1092 Cross Entropy (CE) loss and the moderate gain in evaluation accuracy shown in Figure 3. The
 1093 observed discrepancy stems from the fundamental difference between the two metrics: CE loss
 1094 measures the quality of predicted probabilities (calibration), whereas accuracy depends solely on
 1095 the top-1 ranking. A significant reduction in CE loss implies that our model assigns a substantially
 1096 higher probability to the ground-truth class, even if this improvement is not yet sufficient to flip the
 1097 top-1 prediction ranking Rahimi et al. (2020); Karandikar et al. (2021).

1098 **Decomposition of Test Loss.** To verify this hypothesis, we decomposed the test loss into "Cor-
 1099 rectly Classified" and "Misclassified" subsets. As shown in Table 7, while the loss on correctly
 1100 classified samples is comparable across methods, a striking difference appears in the misclassified
 1101 samples.

1102 Our method, JCGEL (Soft), achieves a loss of
 1103 **10.087** on misclassified samples, which is signifi-
 1104 cantly lower than standard baselines such as Conv
 1105 (17.939) and E2CNN (18.566). This indicates that
 1106 even when JCGEL fails to predict the correct class
 1107 (top-1), it assigns a much higher probability mass to
 1108 the true class compared to other methods (i.e., the
 1109 predictions are "closer" to the truth). This improved
 1110 probability assignment results in a lower overall loss
 1111 despite the similar top-1 accuracy.

1112 **Evaluation Loss Dynamics.** Regarding the in-
 1113 crease in evaluation loss during later epochs, this is
 1114 a known phenomenon when training on long-tailed
 1115 distributions and evaluating on balanced sets Liu
 1116 et al. (2023); Tang et al. (2020). As the model min-
 1117 imizes training loss by becoming overconfident on
 1118 head classes (overfitting), it incurs a higher penalty on the balanced test set. However, as illus-
 1119 trated in Figure 3, JCGEL maintains a consistently lower evaluation loss compared to comparators
 1120 throughout the training process, demonstrating superior robustness against overfitting.

1122 C.5 DISENTANGLEMENT LEARNING BENCHMARK DETAILS

1124 **Experimental setting** We evaluate disentanglement on 3D Shapes (Burgess & Kim, 2018) and
 1125 MPI3D (Eslami et al., 2018). For each method, we replace the VAE encoder's four convolutional
 1126 layers with group-equivariant counterparts and train using Adam (learning rate 8×10^{-4}), a batch
 1127 size of 512, and 500,000 training iterations. We report standard metrics—BetaVAE score (Higgins
 1128 et al., 2017), FVM (Kim & Mnih, 2018), MIG (Chen et al., 2018), SAP (Kumar et al., 2018), and
 1129 DCI (Eastwood & Williams, 2018).

1131 C.5.1 BENCHMARKS

1133 **Setup and notation.** Let x be observations generated by ground-truth factors $v = (v_1, \dots, v_K)$.
 An encoder produces latent codes $z = (z_1, \dots, z_J)$ (e.g., mean of $q_\phi(z | x)$). Unless stated other-

Table 6: ImageNet-LT result.

Models	Acc. \uparrow
Conv.	30.93
CEConv.	31.19
E2CNN	31.25
AE-Net	29.22
JCGEL (Ours)	31.65

Table 7: Decomposition of Cross Entropy Loss on the test set. We report the average loss separately for correctly classified samples ("Correct") and misclassified samples ("Misclassified"). Lower is better.

Method	Loss \downarrow (Correct)	Loss \downarrow (Misclassified)
Conv.	0.0492	17.9391
E2CNN	0.0582	18.5655
CEConv	0.0319	19.0237
Hue-3-Sat-4	0.0584	15.1587
AE-Net	0.0759	33.3424
JCGEL (Strict)	0.0461	11.4870
JCGEL (Soft)	0.0491	10.0870

wise, latents are standardized per dimension (zero mean, unit variance over the dataset). All metrics below require access to ground-truth factors (or their labels).

β -VAE score (FVM). For each factor v_k , draw a mini-batch in which v_k is held fixed while the other factors vary. Encode the batch, compute the empirical variance vector $\text{Var}(z) \in \mathbb{R}^J$ across the batch, and (optionally) normalize by dataset-wide latents' variance. Train a low-capacity classifier (e.g., linear) to predict the fixed factor index k from either $\text{Var}(z)$ or from the index $\arg \min_j \text{Var}(z_j)$. The score is the classification accuracy on held-out batches. Higher is better (one dimension is maximally insensitive when its corresponding factor is fixed). Further details are in Higgins et al. (2017).

FactorVAE score. Identical batching protocol as above (one factor fixed per batch), but no classifier is trained. For each batch, compute $j^* = \arg \min_j \text{Var}(z_j)$ and assign a vote that j^* corresponds to factor k . After collecting votes on a training stream, define a majority-vote mapping from code indices to factor indices and evaluate the accuracy on a test stream. Higher is better (same intuition as the β -VAE score, classifier-free). Further details are in Kim & Mnih (2018).

MIG (Mutual Information Gap). Estimate mutual information between each code and each factor, e.g., by discretizing z_j and v_k : $I(z_j; v_k)$. For each factor k , sort $\{I(z_j; v_k)\}_{j=1}^J$ to get the two largest values $I_{(1),k} \geq I_{(2),k}$.

Fix a ground-truth factor index $k \in \{1, \dots, K\}$ and consider the mutual informations

$$s_j = I(z_j; v_k), \quad j = 1, \dots, J.$$

Let π_k be a permutation that sorts these scores in nonincreasing order:

$$I(z_{\pi_k(1)}; v_k) \geq I(z_{\pi_k(2)}; v_k) \geq \dots \geq I(z_{\pi_k(J)}; v_k).$$

We then define

$$I_{(1),k} := I(z_{\pi_k(1)}; v_k) \quad \text{and} \quad I_{(2),k} := I(z_{\pi_k(2)}; v_k),$$

i.e., the largest and second-largest mutual information between any single code dimension and factor v_k . Consequently $I_{(1),k} \geq I_{(2),k}$ by construction.

Define

$$\text{MIG} = \frac{1}{K} \sum_{k=1}^K \frac{I_{(1),k} - I_{(2),k}}{H(v_k)},$$

where $H(v_k)$ is the (discrete) entropy of factor v_k . Higher is better (a single code carries most of the information about each factor). Further details are in Chen et al. (2018).

SAP (Separated Attribute Predictability). For each factor v_k and each code z_j , train a simple predictor from z_j to v_k (e.g., linear regression with R^2 for continuous factors or linear SVM accuracy for categorical factors), yielding scores $s_{j,k}$. For each k , take the gap between the top two scores: $\Delta_k = \max_j s_{j,k} - \max_{j \neq j^*} s_{j,k}$, with $j^* = \arg \max_j s_{j,k}$. Define $\text{SAP} = \frac{1}{K} \sum_{k=1}^K \Delta_k$. Higher is better (each factor is best predicted by a unique code). Further details are in Kumar et al. (2018).

DCI (Disentanglement–Completeness–Informativeness). Fit a predictive model from z to v (e.g., gradient-boosted trees or sparse linear models) and extract nonnegative feature importances $r_{k,j}$ (importance of code j for predicting factor k). Let $\tilde{r}_{\cdot,j}$ be importances for code j normalized over factors, and $\tilde{r}_{k,\cdot}$ be importances for factor k normalized over codes. Define

$$\text{Disent.} = 1 - \frac{1}{J} \sum_{j=1}^J H(\tilde{r}_{\cdot,j}), \quad \text{Compl.} = 1 - \frac{1}{K} \sum_{k=1}^K H(\tilde{r}_{k,\cdot}),$$

where $H(\cdot)$ is the normalized entropy. Briefly, DCI-Disent. is the score of latent code purity: "Does each code dimension z_j focus on one ground-truth factor?", and DCI-Compl. is the score of factor concentration: Is each factor v_k captured mainly by one code dimension?. *Informativeness* is the predictive performance (e.g., inverse error) of the same model from z to v . Higher disentanglement means each code is used for few factors; higher completeness means each factor is concentrated on few codes; higher informativeness means factors are predictable from z . Further details are in Eastwood & Williams (2018).

1188
1189

C.6 CLASSIFICATION EXPERIMENTAL DETAILS

1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201

Experimental Setting We report top-1 accuracy on real-world datasets (Helber et al., 2019; Krizhevsky & Hinton, 2009; Parkhi et al., 2012; Nilsback & Zisserman, 2008; Maji et al., 2013; Coates et al., 2011; Bossard et al., 2014). For each method, we replace the convolutional layers of a ResNet-18 with the candidate group equivariant operator and adjust block widths to keep parameter counts comparable across models. All models are trained with Adam for 200 epochs using a cosine-annealed learning-rate schedule (updated each epoch), following ImageNet augmentation policy, and we tune the initial learning rate over $\{10^{-3}, 10^{-4}\}$. In addition, demonstrating robustness of color and geometric variance in the real-world dataset, we randomly augmented the test samples with composite continuous hue shift and rotation. In addition, to assess robustness to color and geometric variation on real-world datasets, we apply random composite transformations at evaluation time: continuous hue shifts over the full hue circle and in-plane rotations uniformly sampled from $[0^\circ, 360^\circ]$.

1202
1203
1204

C.6.1 MODEL CONFIGURATIONS

Table 8: Comparison of different network architectures.

1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Layer Name	Output Size	Configuration
(a) Standard ResNet-18		
conv1	112 × 112	$7 \times 7, 64$, stride 2 3×3 max pool, stride 2
layer1	56 × 56	$[1 \times 1, 128; 3 \times 3, 128; 1 \times 1, 512] \times 2$
layer2	28 × 28	$[1 \times 1, 256; 3 \times 3, 256; 1 \times 1, 1024] \times 2$
layer3	14 × 14	$[1 \times 1, 256; 3 \times 3, 256; 1 \times 1, 1024] \times 2$
layer4	7 × 7	$[1 \times 1, 1024; 3 \times 3, 1024; 1 \times 1, 4096] \times 2$
	1 × 1	global average pool, FC(4096 → classes)
(b) CEConv-ResNet-18		
conv1	112 × 112	CEConv2d ($1 \rightarrow R$), $7 \times 7, 64$, stride 2; BN5d + ReLU
	56 × 56	3×3 max pool, stride 2 (applied after merging $C \times R$)
layer1	56 × 56	$[1 \times 1, 64; 3 \times 3, 64; 1 \times 1, 256] \times 2$
layer2	28 × 28	$[1 \times 1, 128; 3 \times 3, 128; 1 \times 1, 512] \times 2$ (first block stride 2)
layer3	14 × 14	$[1 \times 1, 256; 3 \times 3, 256; 1 \times 1, 1024] \times 2$ (first block stride 2)
layer4	7 × 7	$[1 \times 1, 512; 3 \times 3, 512; 1 \times 1, 2048] \times 2$ (first block stride 2)
head	1 × 1	global avg pool over (H, W) on merged $C \times R$ channels; FC($2048 \times R \rightarrow$ classes)
(c) E2-ResNet-18		
conv1	112 × 112	R2Conv 7×7 , to Reg(G) with mult. 64, stride 2; IBN + ReLU
	56 × 56	3×3 pointwise max pool, stride 2
layer1	56 × 56	$[1 \times 1, 64; 3 \times 3, 64; 1 \times 1, 256] \times 2$
layer2	28 × 28	$[1 \times 1, 128; 3 \times 3, 128; 1 \times 1, 512] \times 2$ (first block stride 2)
layer3	14 × 14	$[1 \times 1, 256; 3 \times 3, 256; 1 \times 1, 1024] \times 2$ (first block stride 2)
layer4	7 × 7	$[1 \times 1, 512; 3 \times 3, 512; 1 \times 1, 2048] \times 2$ (first block stride 2)
head	1 × 1	global avg pool over (H, W) ; FC($(2048) \times \gamma \rightarrow$ classes)
(d) JCGEL-ResNet-18 (Ours)		
conv1	112 × 112	Lifting JCGEConv2d ($N_c:1 \rightarrow N_c, N_g:1 \rightarrow N_g$), $7 \times 7, 64$, stride 2; CR-BN + ReLU
	56 × 56	Equivariant spatial pool 3×3 , stride 2
layer1	56 × 56	$[1 \times 1, 64; 3 \times 3, 64; 1 \times 1, 256] \times 2$
layer2	28 × 28	$[1 \times 1, 128; 3 \times 3, 128; 1 \times 1, 512] \times 2$ (first block stride 2)
layer3	14 × 14	$[1 \times 1, 256; 3 \times 3, 256; 1 \times 1, 1024] \times 2$ (first block stride 2)
layer4	7 × 7	$[1 \times 1, 512; 3 \times 3, 512; 1 \times 1, 2048] \times 2$ (first block stride 2)
head	1 × 1	global average pool over $(c, \text{geometry}, H, W)$; FC($2048 \rightarrow$ classes)

1242
1243

C.6.2 DISCUSSION

1244
1245
1246
1247

⑯ **Statistical Significance Analysis.** To rigorously assess whether the performance gains of our method are statistically meaningful rather than marginal, we conducted paired statistical tests (Student’s t -test) between JCGEL and the strongest performing baseline (2nd-best) for each classification benchmark.

1248
1249
1250
1251
1252
1253

As detailed in Table 9, our method achieves statistically significant improvements ($p < 0.05$) on six out of seven datasets, including CIFAR-100 ($p = 0.029$), Oxford-Pets ($p = 0.008$), and Food-101 ($p = 0.001$). While the performance on EuroSAT remains comparable to the baseline ($p = 0.979$), the consistent statistical significance observed across the majority of standard benchmarks—as well as in our imbalanced and disentanglement experiments—confirms that the efficacy of JCGEL is robust and not attributed to random chance.

1254
1255
1256
1257

Table 9: Statistical significance test results comparing JCGEL with the second-best baseline across various datasets. The results are reported as Mean (\pm Std). The p -values indicate the statistical significance of the improvement, with $p < 0.05$ highlighted in bold.

1258
1259
1260
1261
1262
1263
1264
1265
1266
1267

Dataset	2nd-Best	JCGEL (Ours)	p -value
EuroSAT	97.83 \pm 0.15	97.70 \pm 0.18	0.979
CIFAR-100	77.29 \pm 0.01	77.51 \pm 0.45	0.029
Pets	74.86 \pm 1.28	76.08 \pm 0.80	0.008
Flowers	55.62 \pm 1.36	56.73 \pm 1.37	0.019
Aircraft	53.02 \pm 0.24	54.11 \pm 0.92	0.003
STL-10	85.30 \pm 0.09	85.54 \pm 0.26	0.011
Food-101	81.45 \pm 0.31	82.62 \pm 0.38	0.001

1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278**Real-World Generalization via Direct-Product**

Discrete (Soft) Equivariance Real-world images rarely vary along a single axis; color and geometry typically change together. Although the homogeneous space of a discrete group is smaller than that of a continuous group, our model that composes commuting discrete color and geometric actions (e.g., $(\mathbb{Z}^2 \rtimes D_4) \times H_n$) consistently improves performance over E2CNN across diverse vision tasks. Moreover, JCGEL surpasses JCGEL-C, which is equivariant to $SE(2) \times H_n$ as shown in Table 10, suggesting that a direct product of discrete groups can be an effective choice for real-world generalization.

1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289

Two practical considerations support this finding. First, in real-world pipelines, continuous transformations act through data augmentation on the image grid, and this effectively broadens the coverage achieved by a discrete product group and enables JCGEL to generalize to many unseen poses and hues. Second, continuous group strict equivariant models assume ideal group actions that may conflict with common augmentations (e.g., rotated images leave empty regions that are padded, which is not a true group action). This mismatch affects strict formulations, and even soft methods that target continuous groups impose stronger constraints than discrete equivariance, which can hinder performance under non-ideal image-domain operations. In summary, a direct-product discrete formulation is well aligned with real-world conditions, explaining why JCGEL tends to achieve higher accuracy and robustness across varied environments.

1290
1291
1292D ⑯ **LIMITATIONS AND FUTURE WORK**1293
1294
1295

Computational Overhead. The primary limitation of our proposed method lies in its computational cost compared to baselines. Operating on the high-dimensional product group $(\mathbb{Z}^2 \rtimes G_o) \times H_n$ inevitably expands the feature space, leading to increased computational complexity and memory usage.

Table 10: Discrete vs. continuous group equivariant model. JCGEL-G denotes equivariant to $SE(2) \times H_n(k)$ model.

	JCGEL	JCGEL-C
EuroSAT	97.70 (\pm 0.18)	97.52(\pm 0.18)
Aircraft	54.11 (\pm 0.92)	52.95(\pm 0.87)
STL10	85.54 (\pm 0.26)	85.29(\pm 0.57)

1296 As summarized in Table 11, relative to the standard convolutional baseline ($\times 1.00$), our JCGEL
 1297 layer exhibits lower training throughput ($\approx \times 0.14$) and significantly higher peak GPU memory
 1298 (VRAM) consumption ($\approx \times 4.37$). This overhead is inherent to the explicit construction of joint
 1299 equivariance across color and geometric transformations.

1300 We acknowledge this trade-off between computational efficiency and model robustness. While stan-
 1301 dard efficient models offer faster inference, they fail to achieve the superior performance and sta-
 1302 bility demonstrated by our method (as shown in Tables 2, 4, and 6). Consequently, reducing the
 1303 computational burden of product-group convolutions—potentially through sparse group operations
 1304 or approximation techniques—remains a critical direction for our future optimization.

1305
 1306 Table 11: Comparison of computational efficiency normalized to the standard CNN baseline
 1307 ($\times 1.00$). Throughput is measured in images/sec (higher is better), and VRAM usage is measured in
 1308 GB (lower is better).

Method	Training Speed (\uparrow)	Inference Speed (\uparrow)	VRAM Usage (\downarrow)
Conv (Baseline)	$\times 1.00$	$\times 1.00$	$\times 1.00$
CEConv	$\times 0.84$	$\times 0.72$	$\times 1.37$
E2CNN	$\times 0.31$	$\times 0.27$	$\times 1.74$
Hue-4-Sat-3	$\times 0.12$	$\times 0.09$	$\times 2.04$
JCGEL (Ours)	$\times 0.14$	$\times 0.09$	$\times 4.37$

1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349