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ABSTRACT

Translation equivariance is one of the key factors for the widespread effective-
ness of convolutional neural networks (CNNs) in computer vision. Building on
this principle, group equivariant architectures have been extended beyond transla-
tions to encompass both color and geometric symmetries, which commonly arise
in vision datasets. However, despite the commuting nature of their respective
group actions, color and geometry have typically been addressed in isolation by
theoretical and approximately equivariant approaches. In this paper, we intro-
duce a joint color and geometric group equivariant convolution layer (JCGEL)
via weight sharing across the commuting group actions. Our approach 1) im-
proves robustness in imbalanced regimes, 2) yields factorized representations that
separate color and geometric group-related factors, and 3) scales effectively to
real-world datasets. To validate these effects, we instantiate the layer within stan-
dard CNNs and evaluate across long-tailed and biased datasets, disentanglement
learning benchmarks, and real-world classification tasks, where our model consis-
tently outperforms baselines. As a drop-in replacement for standard convolutional
layers, JCGEL demonstrates generalization across a variety of vision tasks.

1 INTRODUCTION

Translation equivariance has been one of the primary factors enabling convolutional neural networks
(CNNs) to extract spatial structure (LeCun et al., 1998; Kayhan & Gemert, 2020) and to achieve
generalization across diverse computer vision tasks. To extend this benefit beyond translation, prior
works have sustained interest in enforcing group equivariance, because many real-world variations
are governed by symmetries. Formally, if an encoder ψ is equivariant to a group G, then observing
x constrains ψ(g · x), even when g · x never appears in the data. In CNNs, translation equivariance
implies that features learned for an object at one location transfer to the same object anywhere on
the 2D plane LeCun et al. (1998); Kayhan & Gemert (2020). By the same principle, equivariance
to other groups (rotations, scalings, and color transformations) yields consistent features for previ-
ously unseen variants. Group equivariant models have been shown to improve generalization across
diverse areas include graph (Maron et al., 2018; Xu et al., 2024), robotics (Wu et al., 2023; Wang &
Jörnsten, 2024; Qi et al., 2025), disentanglement learning (Higgins et al., 2018; Yang et al., 2021;
Jung et al., 2024), self-supervised learning (Park et al., 2022; Yu et al., 2025), and equivariant layer
modeling (MacDonald et al., 2021; Lengyel et al., 2023).

In the literature, approaches to propose group equivariant models have been proposed in two
branches: 1) strict equivariant approaches that guarantee exact equivariance (Cohen & Welling,
2016a), and 2) soft approaches that encourage equivariance through less constrained kernel struc-
tures (Romero & Hoogendoorn, 2019) with training objectives (Kim et al., 2024). The first line of
work, strict equivariant works, is theoretically equivariant to a specific group and has focused on
geometric and color symmetries, which are pervasive in vision domains (Cohen & Welling, 2016a;
Lengyel et al., 2023). Within the geometric line, early models target discrete groups (Cohen &
Welling, 2016a) and have been extended to continuous geometric group, such as rotation, scaling,
and Lie groups (Worrall & Welling, 2019; Qiao et al., 2023; Cohen & Welling, 2016b; Weiler et al.,
2017; Sosnovik et al., 2019; MacDonald et al., 2021), with robustness in imbalanced environments.
In parallel, color equivariant networks (Lengyel et al., 2023; Yang et al., 2025) address structured
chromatic transformations and demonstrate strength under color imbalanced environments.
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The second, recent works argue for the necessity of soft equivariant networks because real-world
datasets rarely exhibit perfect symmetries (Wang et al., 2022; van der Ouderaa et al., 2022; Kim
et al., 2024). On the geometric side, soft equivariant approaches relax exact constraints by regulariz-
ing canonical kernels with objectives, demonstrating advantages under asymmetric coverage (Wang
et al., 2022; van der Ouderaa et al., 2022). In parallel, Kim et al. (2024) also validates that color soft
equivariance via objective design, showing improved generalization on small and low-resolution
real-world datasets. Taken together, strict and soft approaches underscore that geometric and color
variations are ubiquitous and that their equivariant models are broadly useful. Nevertheless, to the
best of our knowledge, no prior work offers a single convolutional operator that is jointly equivariant
to commuting geometric (beyond translation, since standard CNNs already handle T (2)) and color
groups under either strict or soft formulations.

To address this issue, we propose a joint color and geometric group equivariant layer (JCGEL).
We first formalize the layer and prove equivariance to the direct product of group G = (Z2 ⋊
Ggeo) × Gcolor, where Z2 encodes planar translations, Ggeo acts on spatial coordinates (e.g., rota-
tions/reflections), and Gcolor acts in color space (e.g., hue shifts). We then introduce a G-equivariant
batch normalization layer, enabling standard CNN architectures (e.g., ResNets (He et al., 2015b)).
Finally, we validate from toy to real-world datasets and diverse vision tasks, showing consistent
performance gains in imbalanced environment, disentanglement learning, and classification.

Our main contributions are as follows:

• 1⃝ Bridging theory and practice. We provide the first successful architectural real-
ization of joint equivariance, solving non-trivial implementation challenges (e.g., channel
interference) to translate the theoretical direct product into a working model.

• Equivariant to both color and geometric groups. We introduce a CNN architecture that
is equivariant to the direct product groupGgeo×Gcolor, instantiated via a color and geometry
equivariant convolutional layer.

• Robustness under imbalance. By sharing parameters across direct product group orbits
(i.e., tying a canonical kernel via group actions), the model improves robustness in long-
tailed and biased regimes.

• Factorized representations. The architecture yields a separable representation of color
and geometry in latent space; we validate improved disentanglement through standard
benchmarks and metrics.

• Consistent gains on real-world datasets. The approach scales to real-world datasets and
delivers consistent performance on classification tasks.

2 RELATED WORKS

2.1 STRICT GROUP EQUIVARIANT CONVOLUTION LAYERS

Strict group equivariant CNNs generate all group-transformed filters from a canonical kernel or
steerable-basis coefficients via the group action, enforcing weight tying and improving data effi-
ciency and generalization. Geometry-focused approaches span discrete planar symmetries (Cohen
& Welling, 2016a), continuous rotations (Worrall et al., 2016; Cohen & Welling, 2016b; Weiler et al.,
2017), scaling (Sosnovik et al., 2019; Worrall & Welling, 2019), the Euclidean group E(2) (Weiler
& Cesa, 2019), and broader Lie groups (MacDonald et al., 2021; Qiao et al., 2023). Beyond geo-
metric group, color group equivariant architectures have been proposed (Lengyel et al., 2023; Yang
et al., 2025). However, to the best of our knowledge, a unified convolutional layer that achieves
simultaneous equivariance to both geometric and color groups remains underexplored; most prior
work enforces equivariance to either geometry or color, but not both jointly in a single layer.

2.2 SOFT GROUP EQUIVARIANT CONVOLUTIONAL LAYERS

Strict group equivariance assumes perfect symmetries in data, which is rarely met in practice. Soft
equivariance approaches, therefore, relax architectural constraints and let the degree of equivari-
ance be learned from data. In particular, statistical methods learn a distribution over group elements
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Table 1: General group convolution definition of group equivariant CNNs. Go, and Gc denote
geometric and color group.

Model Goup Group Convolution Formula (Eq. 5)
Conv (Z2)

∑
y∈Z2, c′ f

ℓ
c′(y)ψ

i
c′(y − x)

Go-CNNs Z2 ⋊Go

∑
y∈Z2, c′, h∈Go

f ℓ
c′(y, h)ψ

i
c′(g

−1h(y − x))

Gc-CNNs Z2 ×Gc

∑
y∈Z2, c′, h∈Gc

f ℓ
c′(y, h)g

−1hψi
c′(y − x)

Ours (Z2 ⋊Go)×Gc

∑
y∈Z2, c′, ho∈Go, hc∈Gc

f ℓ
c′(y, hc, ho)g

−1
c hcψ

i
c′(g

−1
o ho(y − x))

and sample group elements during the group convolution (Romero & Lohit, 2021), and other prob-
abilistic/variational formulations further regularize or control the learned degree of equivariance
via explicit objectives (Veefkind & Cesa, 2024; Kim et al., 2024). In addition, weighted mecha-
nisms on the group fiber can emphasize a subset of symmetries (Romero & Hoogendoorn, 2019).
More broadly, controlled departures from exact equivariance can be achieved through explicit reg-
ularization to accommodate imperfect symmetries. Despite these advances targeting asymmetric,
real-world data, prior soft methods do not provide a single layer that is jointly equivariant to both
color and geometric groups under a unified product-group action.

2.3 NON–LAYER-WISE APPROACHES: EQUIVARIANT INDUCTIVE BIAS VIA OBJECTIVES

Equivariance has also been encouraged by training objectives rather than by architecture, notably in
self-supervised learning (SSL) and disentanglement learning. In SSL, recent methods inject transfor-
mation labels (Devillers & Lefort, 2022; Garrido et al., 2023) or enforce equal latent displacements
for identically transformed pairs (Yu et al., 2025). In disentanglement, objectives are shaped so that
latent coordinates align with subgroup actions, often via paired inputs in VAE frameworks (Jung
et al., 2024; Yang et al., 2021; Keurti et al., 2022). These approaches inject equivariant bias through
objectives and data pairing/composition, rather than by imposing per-layer group structure. Because
our study targets layer-wise, drop-in convolutional operators under matched protocols, we do not
include objective-level methods in head-to-head comparisons.

3 PRELIMINARIES

In this section, we describe our notations, briefly introduce definitions of group action, equivariance,
and group convolution.

Group Action. Let set X , and (G, ◦) be a group, binary operation · : G × X → X , then group
action α : α(g, x) = g · x following properties:

• Identity: 2⃝ α(e, x) = x, where e ∈ G, x ∈ X .

• Compatibility: ∀g1, g2 ∈ G, x ∈ X, α((g1 ◦ g2), x) = α(g1, α(g2, x)).

(Dihedral Group Action) The planar action uses the standard orthogonal representation ρ(s, θ) ∈
O(2) of the dihedral group D4 = {(s, θ)|s ∈ {0, 1}, θ ∈ Z4}, where ρ(s, θ) is a rotation by θ · π

2
followed by a reflection group law:

(s, θ) · (s′, θ′) =
(
s⊕ s′, θ + (−1)sθ′ (mod 4)

)
, (s, θ)−1 =

(
s,−(−1)sθ (mod 4)

)
, (1)

where ⊕ is a modular arithmetic.

Equivariant Map. Given X and Y are G-set, and group action 3⃝ α : G × X → X , and
ρ : G× Y → Y . Then a function f : X → Y is equivariant if

f(α(g, x)) = ρ(g, f(x)). (2)

4⃝ Standard Convolution. In a standard CNN, feature map denoted f ℓ : Z2 → RCℓ

as a
function that maps pixel locations x to a Cℓ-dimensional vector. Then f ℓ is convolved to filter

3
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ψℓ : Z2 → RCℓ

as follows:

f ℓ+1 = [f ℓ ⋆ ψℓ,i](x) =
∑
y∈Z2

Cℓ∑
c=1

f ℓ
c (y)ψ

ℓ,i
c (y − x), (3)

5⃝ where ψℓ,i is a ith kernel of ℓth convolution layer. The standard CNNs is equivariant to the

discrete translation group (Z2,+). 6⃝ The term x−y in the convolution sum represents the discrete
translation (shift) between the filter center x and the input location y. The principle of equivariance
inherent in this standard convolution can be extended to other transformation groups.

7⃝ Lifting Layer. To generalize this concept, the group convolution is extended by replacing the
discrete translation x− y in the standard convolution operation with a general group action g. This
specific layer is called the lifting layer, as it lifts the image features to the group domain:

f ℓ+1 = [f ℓ ⋆ ψℓ,i](g) =
∑
y∈Z2

Cℓ∑
c=1

f ℓc (y)ψ
ℓ,i
c (g−1y). (4)

8⃝ Group Layer. Then output feature map f ℓ is a function onG rather Z2, and is convolved with
filter ψℓ,i

c at ℓth layer, in what is referred to as group layer:

f ℓ+1 = [f ℓ ⋆ ψℓ,i](g) =
∑
h∈G

Cℓ∑
c=1

f ℓc (h)ψ
ℓ,i
c (g−1h). (5)

4 METHOD: JOINT COLOR AND GEOMETRIC GROUP EQUIVARIANT
CONVOLUTION LAYER

In this section, we prove that the proposed layer is group equivariant layer (i.e., satisfies Eq. 2) First,
we formalize the lifting layer (Eq. 4) by specifying the associated group convolution and the group
action invoked in Eq. 2. We then extend these definitions to the group layer (Eq. 5) and show that
the layers preserve group equivariance.

Previous works have introduced color (hue shift) (Lengyel et al., 2023) or geometry (D4) (Cohen
& Welling, 2016a) equivariant layers separately. In contrast, we present a unified framework that
composes these commuting symmetries within a single operator as summarized in Table 1. We
define groupG = (Z2⋊D4)×Hn, Hn ⊂ SO(3), the direct product of a geometric group (Z2⋊D4)
and a color group Hn ⊂ SO(3). Here, Z2 denotes discrete translations on the image grid, D4 the
dihedral rotation–reflection group, and Hn acts in color space; since the spatial and color actions
operate on different domains, they commute.

4.1 LIFTING LAYER

Joint Color and Geometric Group Convolution on Lifting Layer. Given input image f ℓ : Z2→
RCℓ

and filters {ψℓ,i}, the lifting layer output f ℓ+1(x, s, θ, k) is obtained by a joint color and ge-
ometry convolution and indexed by spatial location x, color index k, and orientation (s, θ) ∈ D4 as
follows:

[f ℓ ⋆ ψℓ,i](x, s, θ, k) =
∑
y∈Z2

Cℓ∑
c=1

〈
f ℓ
c (y), Hn(k)ψ

ℓ,i,(s,θ)
c (y − x)

〉
, (6)

where ψi,(s,θ)(ζ) := ψi
(
ρ(s, θ)−1ζ

)
is the spatially transformed filter and ⟨·, ·⟩ denotes the Eu-

clidean inner product. Since Hn(m) is orthogonal (Lengyel et al., 2023), for any a, b ∈ Rd we have
⟨Hn(m)a, b⟩ = ⟨a, Hn(−m)b⟩.

Group Action on Input Image Domain. Then we introduce the operator Lg corresponding to the
group action in Eq. 2. For g = (t, s′, θ′,m) ∈ G (translation t ∈ Z2, dihedral pose (s′, θ′), hue shift
m ∈ Zn), we define the left action Lℓ

g on feature map of the ℓth layer as follows:

[Lℓ
gf

ℓ](x) = [Lℓ
(t,s′,θ′,m)f

0](x) = Hn(m) f ℓ
(
ρ(s′, θ′)−1(x− t)

)
. (7)

4
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4.2 GROUP LAYER

Joint Color and Geometric Group Convolution on Group Layer. Similarly, a group-indexed
feature f ℓ : Z2 × D4 × Zn →RCℓ

is processed by group convolution with kernels {ψℓ,i} defined
on relative (group) indices, where ℓ > 0. Introduced in Eq. 5, we then define the convolution on the
group layer as follows:

[f ℓ ⋆ ψℓ,i](x, s, θ, k) =
∑
y∈Z2

∑
s1∈{0,1}

∑
θ1∈Z4

∑
m1∈Zn

Cℓ∑
c=1

f ℓ
c (y, s1, θ1,m1)

· ψℓ,i
c

(
ρ(s, θ)−1(y − x), (s, θ)−1(s1, θ1), (m1 − k) mod n

)
.

(8)

9⃝ Here, the hue shift Hn(m) difference between Eq. 6 is computed modulo n rather than Hn(k),
which implements the cyclically permute for hue shift.

Group Action on Group-Indexed Features. For group-indexed feature map f ℓ, we define group
action on group layer over g = (t, s′, θ′,m) ∈ G as follows:

[Lℓ
gf

ℓ](x, s, θ, k) = f ℓ
(
ρ(s′, θ′)−1(x− t), (s′, θ′)−1(s, θ), (k −m) mod n

)
. (9)

4.3 EQUIVARIANCE

The lifting and group layers of JCGEL is equivariant to group G = (Z2 ⋊D4)×Hn, because these
layers satisfy Eq. 2 as follows:
[Lℓ

(t,s′,θ′,m)f
ℓ ⋆ ψℓ,i](x, s, θ, k) (10)

=
∑
z,c

〈
f ℓc (z), Hn(k −m)ψℓ,i,(s⊖s′, (−1)s

′
(θ−θ′))

(
z − ρ(s′, θ′)−1(x− t)

)〉
(∵ Eq. 6− 7) (11)

= [f ℓ ⋆ ψi]
(
ρ(s′, θ′)−1(x− t), s⊖ s′, (−1)s

′
(θ − θ′), k −m

)
(∵ Eq. 8) (12)

= [Lℓ
(t,s′,θ′,m) [f

ℓ ⋆ ψℓ,i]](x, s, θ, k) (∵ Eq. 9), (13)
where ⊖ is a modular arithmetic. Further details of proof for the direct product of groups are
provided in Appendix B.1 and B.2.

4.4 IMPLEMENTATION

Tensor Operations for Strict Equivariant. We denote the filter F ℓ instead of ψℓ also feature
Xℓ rather than f ℓ in Eq. 6 to represent the tensor shape. We store base spatial filters F ℓ ∈
RCℓ+1×Cℓ×Nℓ×H×W , where Cl is the number of base channels, N l = |Hn| (or euqal to |Hn|)
the number of color states, and Gl = |Dn| the number of geometric states (quarter-rotations and
flips). In the lifting layer for color equivariance, when ℓ = 0, N ℓ = 1 then we extend kernel with
hue-shfit matrix as introduced in Lengyel et al. (2023), then we get:

F̃ 0
c′,n′,:,1,u,v = Hn(k)F

0
c′,:,1,u,v ∈ RCℓ+1×Nℓ+1×Cℓ×1×H×W . (14)

In the group layer, filter F̃ cyclically permuted copies of F as follows:

F̃ ℓ
c′,n′,c,n,u,v = F ℓ

c′,c,(n−n′)%k,u,v ∈ RCℓ+1×Nℓ+1×Cℓ×Nℓ×H×W . (15)
Then we implement JCGEL in the absolute rotation-and-flip manner for the geometric part rather
than relative indexing of Eq. 8 because both methods are equivalent on the D4 as shown in Cohen
& Welling (2016a). Let Ag′ denote the action of g′ ∈ Dn on spatial kernels F̃ ℓ, [Ag′ F̃ ℓ](u) :=

F̃ ℓ(ρ(g′)−1u) (rotate by θ′ · π
2 and reflect if s′ = 1). Then the group convolution is implemented as

follows:

Xl+1
c′, n′, g′,:,: =

Cl∑
c=1

∑
∆n∈Hn

∑
g∈Dn

(
Ag′ F̃

l
c′, n′, c,∆n,1, :,:

)
⋆ Xl

c,∆n, g, :,:, (16)

where ⋆ denotes 2D convolution. In the lifting layer, ∆n ∈ {0, 1, . . . , |Hn| − 1} by the hue shift
matrix (Eq. 6), and ∆n = n− n′ mod k by the cyclic permutation operation in group layer (Eq. 8).
This realizes Eq. 16 avoids explicit loops over g and g′. For efficiency, we build the absolute kernel
operator Ag′ F̃ l for all g′ ∈ Dn.

5
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Learnable Weight for Soft Equivariance 10⃝ We employ a soft equivariant tensor operation to
improve model generalization on datasets with imperfect symmetries van der Ouderaa et al. (2022);
Romero & Hoogendoorn (2019). While strict equivariance enforces exact symmetry, real-world data
often exhibits variations. Inspired by Romero & Hoogendoorn (2019), which relaxed equivariance
by assigning weights to subgroups, we apply a learnable weighting mechanism to the geometric
symmetry filters as follows:

Xl+1
c′, n′, g′,:,: =

Cl∑
c=1

∑
n∈Hn

∑
g∈Dn

w̃g′

(
Ag′ F̃

l
c′, c,∆n, :,:

)
⋆ Xl

c, n, g, :,: , (17)

where w̃g′ =
softmax(wg′/τ)

max(softmax(wg′/τ))
, wg′ ∈ R|Dn|, and

∑
g′ wg′ = 1.

Group Equivariant Batch Normalization. When stacking JCGEL layers for large models, batch
normalization is often necessary but it does not preserve equivariance. Motivated by Weiler &
Cesa (2019), we normalize the group–indexed feature map Xℓ ∈ RB×C×|Hn|×|Dn|×H×W . Further
details are in the Appendix B.3.

5 EXPERIMENTS

First, we validate whether JCGEL is equivariant to both color (hue shift) and geometric (D4) group
in section 5.1, and robustness on an imbalanced environment in section 5.2. Then we investigate the
effect of group-wise channel for factorized representations through disentanglement learning in sec-
tion 5.3. Lastly, we evaluate our method in a classification task with real-world datasets to validate
the impact in a practical environment in section 5.4. We focus on the impact of the equivariance of
the direct product of groups rather than cutting-edge single-type group equivariant methods.

Common Experimental Setting for Models. We replace standard CNN layers with group equiv-
ariant layers and ours: standard convolution (Conv) (LeCun et al., 1998), color equivariant con-
volution (CEConv) (Lengyel et al., 2023), E(2)-equivariant steerable CNN (E2CNN) Weiler &
Cesa (2019), approximately equivariant networks (AE-Net) (Wang et al., 2022), Hue-4-Sat-3 Yang
et al. (2025), and JCGEL. We set equivariant model parameters of |Ggeo| = |D4| for E2CNN. Also
|Ggeo| ∈ {|D4|, |D2|, |C4|} with respect to imbalance, disentanglement, and classification tasks.
|Hn| = 3 for CEConv and JCGEL, and τ ∈ {1.0, 0.01} with respect to imbalanced tasks and others
for JCGEL. Also, we set |Ggeo| = |C4|, L = 2, andα ∈ {0, 10−6} for AE-Net with relaxed group
convolution.

5.1 ARE LIFTING AND GROUP LAYER OF JCGEL EQUIVARIANT TO GROUP G?

Experimental Setting To validate equivariance to the hue shift and the dihedral group D4, we
generate 4,000 synthetic images. 11⃝ We set the synthetic images’ size to n × n with n ∈
{17, 33, 65, 129} to validate the robustness of image size, because the convolutional layer takes
a diverse size of feature map during training and evaluation. We then evaluate equivariance us-
ing the mean-squared error: Err = MSE([Lgf ⋆ ψ], [Lg[f ⋆ ψ]]), where f is a synthetic image,
g ∈ Ggeo ×Gcolor with ggeo ∈ D4 and gcolor ∈ Hn. For each method, we evaluate both the lifting and
group layers: we feed the synthetic images into the lifting layer, pass its output to the group layer,
and compute the equivariance error as above. Further details are provided in Appendix C.1.

Conv CEConv E2CNN JCGEL (Ours)

Size (𝑛 × 𝑛) Size (𝑛 × 𝑛) Size (𝑛 × 𝑛) Size (𝑛 × 𝑛)

A
v

g
. 
E

rr
o

r 
(l

o
g

 s
ca

le
)

Lifting Layer – Geo. Error. Group Layer – Geo. Error. Group Layer – Col. Error.Lifiting Layer – Col. Error.

Figure 1: 12⃝ Equivariant error evaluation. The x-axis shows the synthetic image side length (H =

W ), and the y-axis reports the equivariance error (lower is better).
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Equivariance Validation As shown in Fig. 1, the lifting and group layers of JCGEL maintain
equivariance to both the hue shift group Hn and the dihedral group D4. In particular, its geometric
equivariance is on par with E2CNN, and its color equivariance remains competitive with CEConv,
with variations on the order of 10−7 being negligible. Fig. 2a further shows that the output feature
maps of JCGEL match at corresponding spatial locations across rotations (e.g., red/green boxes),
whereas those of a standard convolutional anc CEConv layers vary substantially at the same object
positions. Likewise, when applying a hue shift in feature space, the feature maps of two inputs
related by the shift exhibit the expected cyclic correspondence across color-indexed channels, as
shown in Fig. 2b.

Ours (Rotation Equivariant)

Similar Value of 

feature map
0° 90° 180° 270°

Conv (Not Rotation Equivariant)

Different Value 

of feature map
0° 90° 180° 270°0° 90° 180°

270°0° 90° 180° Different Value 

of feature map

CEConv (Not Rotation Equivariant)

(a) Rotation equivariant test. The red and green boxes
mark corresponding spatial locations before and after
a C4 rotation, matching feature-map values at these
locations indicate rotation equivariance.

(b) Under a hue shift action, responses across
color-indexed channels exhibit a cyclic shift, in-
dicating equivariance to the color group.

Figure 2: 13⃝ Color and C4 group equivariant visualization with feature maps. JCGEL layer equiv-
araint to rotation and color simultaneously, whereas other baselines equivariant to a rotation or color.

5.2 COLOR AND ROTATION IMBALANCED ENVIRONMENT

Equivariance ties together all elements within a group orbit (a homogeneous space) of G: observing
a few samples constrains the features of their symmetry-related counterparts g ·x for all g ∈ G.
Consequently, group equivariant models can generalize from limited evidence to unseen color/pose
variants, a capability that is particularly valuable in imbalanced settings with scarce color or geo-
metric coverage (Cohen & Welling, 2016a; Lengyel et al., 2023). Motivated by this, we evaluate
robustness under controlled scarcity by constructing long-tailed and biased splits that deliberately
reduce the availability of hue and rotation information.

Experimental Setting for Imbalanced Environments To validate the robustness of JCGEL in
the absence of color and rotation information, we construct a long-tailed and biased rotated color
MNIST (LeCun et al., 2012) dataset as follows:

• 14⃝ To synthesize the Long-tailed Rotated-Color MNIST. Standard MNIST images are up-
sampled to 64 × 64, embedded into a specific RGB channel c ∈ {0, 1, 2}, and rotated by
discrete angles θ = 12k◦. Crucially, we induce severe class imbalance by drawing the
sample count nk for each (digit, color) pair from a power-law distribution:

nk ∼ ⌈Power(α = 0.3) ·Nmax⌉, (18)

while the test set remains balanced to fairly assess generalization. More details are in
Appendix C.3 and Fig. 6.

• 15⃝ We employ a hierarchical sampling scheme to synthesize the biased dataset (details
in Appendix C.4). Crucially, the temperatures τc and τg govern the inter-class bias by
determining the diversity of preferred color (µc,y) and rotation (µr,y) centers for each class
y. Conditioned on these centers, sample counts are drawn via a multinomial distribution
defined by the joint probability P (c, r | y):

N (y)
c,r c,r

∼ Multinomial (Ny, vec(P (c, r | y))) . (19)
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We evaluate seven-layer encoders and train with the Adam optimizer (Kingma & Ba, 2015) using an
initial learning rate of 10−4 and a cosine-annealed schedule over 1,000 and 50 epochs with respect
to the long-tailed and biased dataset. (warm up each epoch).

Table 2: Rotated Color MNIST (long-tailed, biased). Results averaged over three seeds. Red de-
notes the best score, and blue denotes the second-best. JCGEL∗ denotes the strict group equivariant
network. Strong, moderate, and slight indicate bias level.

Method # param. ↓ Long-Tailed ↑
Biased ↑

τc, τg = 0.5 τc, τg = 5.0 τc, τg = 20.0 16⃝ τc = 20.0, τg = 10-9 τc = 10-9, τg = 20.0

(strong) (moderate) (slight) (rotation biased) (color biased)

Strict Equiv.

Conv. 254.74K 56.45(±0.26) 36.47(±3.52) 34.77(±2.06) 29.67(±0.16) 18.23(±0.38) 21.32(±3.82)
CEConv. 256.80K 56.48(±1.60) 45.50(±1.95) 39.16(±2.89) 29.85(±0.07) 24.35(±2.18) 31.99(±3.85)
E2CNN 250.81K 50.88(±2.05) 41.17(±10.07) 35.82(±6.69) 28.22(±0.20) 18.08(±0.31) 17.96(±0.22)

Hue-4-Sat-3 322.59K 52.17(±1.08) 45.38 (±1.85) 38.40(±1.76) 35.08(±1.50) 19.42(±1.00) 20.46(±1.24)
JCGEL∗ 184.82K 59.26(±0.14) 75.49(±0.49) 74.88(±0.88) 75.14(±1.32) 68.60(±0.93) 68.74(±0.97)

Soft Equiv. AE-Net 223.39K 57.64(±0.74) 42.82(±7.96) 44.13(±5.18) 37.73(±1.32) 22.88(±1.43) 25.38(±9.76)
JCGEL 184.82K 57.87(±0.78) 75.43(±0.86) 75.69(±0.51) 75.49(±0.65) 74.64(±0.64) 74.10(±1.31)

(a) Evaluation cross-entropy loss during training. (b) Accuracy and portion per class.

Figure 3: Visualization of Long-tailed rotated color MNIST Results.

Results under Imbalance Consistent with our objective, JCGEL generalizes from scarce ev-
idence to unseen hue and rotation variants as shown in Table 2. Across all bias levels
(Strong/Moderate/Slight), JCGEL and its strict variant, JCGEL∗ outperform baselines. In the ex-
treme color and rotation bias setting (τc,g = 0.5, with training dominated by red), JCGEL correctly
predicts blue/green instances at test time even though those hues are essentially unobserved during
training. On long-tailed splits, gains concentrate on tail classes, and JCGEL shows the smallest in-
crease in test loss during training, indicating improved generalization to long-tailed classes as shown
in Fig. 3. We also observe a bias-dependent preference: under strong skew, the strict model JCGEL∗

surpasses soft approaches, whereas under slight skew the soft variant outperforms the strict model,
as shown in Table 2. The same result appears for AE-Net (soft) and CEConv (strict). Overall,
these results support that joint color and geometric equivariance is most beneficial in imbalanced
regimes with scarce hue and rotation coverage, lifting tail-class accuracy while maintaining robust
generalization.

5.3 DISENTANGLEMENT LEARNING

Following the group-theoretic view, a representation is disentangled when latent coordinates factor-
ize along subgroup actions, so that each block contains only its associated latent factors of varia-
tion (Higgins et al., 2018). Motivated by this definition, we test whether the group-wise channel
structure of group equivariant models (including ours) promotes such factorization.

Experimental setting of Disentanglement Learning We evaluate disentanglement on 3D
Shapes (Burgess & Kim, 2018) and MPI3D (Eslami et al., 2018). For each method, we replace
the VAE encoder’s four convolutional layers with group-equivariant counterparts (CEConv, E2CNN,
AE-Net, and JCGEL) and train using Adam (learning rate 8×10−4), a batch size of 512, and 500,000
training iterations. We report standard metrics—BetaVAE score (Higgins et al., 2017), FVM (Kim
& Mnih, 2018), MIG (Chen et al., 2018), SAP (Kumar et al., 2018), and DCI (Eastwood & Williams,
2018). Additional architectural and training details are provided in Appendix C.5.
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Table 3: Disentanglement performance on 3D Shapes and MPI3D datasets. Results are reported as
mean± std over three seeds. Bold text indicates scores higher than all baseline models.

Method # param.
3D Shapes

beta-VAE ↑ FVM ↑ MIG ↑ SAP ↑ DCI-Dis. ↑ DCI-Com. ↑

Strict Equiv.

Conv. 1.51M 77.33(±7.57) 71.46(±4.38) 31.79(±6.18) 6.57(±2.48) 46.50(±3.95) 47.53(±4.43)
CEConv. 1.78M 92.67(±3.06) 83.88(±1.44) 44.74(±8.16) 7.22(±2.35) 59.66(±4.44) 61.44(±4.18)
E2CNN 1.60M 89.33(±10.07) 82.13(±6.71) 43.53(±10.02) 9.15(±1.51) 52.44(±8.71) 53.78(±8.78)

Hue-4-Sat-3 2.57M 80.00(±9.17) 79.88(±2.25) 28.59(±6.89) 5.90(±1.51) 45.94(±4.61) 47.66(±4.97)
JCGEL∗ 1.52M 95.33(±6.43) 83.96(±8.49) 44.61(±15.66) 8.90(±2.71) 59.94(±12.07) 64.11(±7.16)

Soft Equiv.
AE-Net 1.62M 79.00(±1.41) 52.38(±2.30) 7.25(±5.08) 2.00(±1.03) 25.49(±7.50) 25.56(±7.49)
JCGEL 1.52M 92.67(±7.02) 87.67(±4.57) 56.72(±3.94) 8.55(±1.90) 66.86(±4.74) 67.82(±4.94)

Method # param.
MPI3D

beta-VAE ↑ FVM ↑ MIG ↑ SAP ↑ DCI-Dis. ↑ DCI-Com. ↑

Strict Equiv.

Conv. 1.51M 48.67(±9.45) 39.50(±4.75) 3.85(±0.51) 2.57(±0.88) 18.98(±1.89) 27.68(±1.08)
CEConv. 1.78M 58.00(±7.21) 39.58(±8.49) 3.79(±1.08) 2.09(±0.78) 18.79(±2.99) 27.27(±1.64)
E2CNN 1.60M 49.00(±18.38) 41.44(±5.21) 3.62(±1.55) 1.37(±0.86) 21.60(±1.18) 27.54±1.91)

Hue-4-Sat-3 2.57M 51.33(±1.15) 42.42(±6.25) 5.05(±1.52P) 3.37(±0.74) 20.77(±0.86) 28.65(±0.90)
JCGEL∗ 1.52M 69.33(±1.15) 46.79(±3.50) 13.80(±2.65) 7.86(±2.00) 31.85(±3.05) 31.51(±1.91)

Soft Equiv.
AE-Net 1.62M 49.00(±18.38) 41.44(±5.21) 3.63(±1.55) 1.37(±0.86) 21.60(±1.18) 27.54(±1.91)
JCGEL 1.52M 60.67(±2.31) 45.75(±3.56) 12.27(±12.05) 6.20(±5.89) 23.27(±4.04) 31.93(±5.56)

Figure 4: DCI matrix visualization: The DCI matrix shows the feature importance rk,j , how
strongly the latent vector zj predicts the ground-truth factor vk, where zj ∈ {1, 2, . . . , 6} and vk ∈
{Floor, Wall, Object, Scale, Shape, Azimuth} with 3D Shapes. The better disentangled represen-
tation appears as a sparse matrix with a few large, isolated cells.

Results of Disentanglement Learning Across both 3D Shapes and MPI3D, our method outper-
forms all baselines in terms of disentanglement scores as shown in Table 3. Notably, 3D Shapes
contains richer color variation, while MPI3D emphasizes geometric variation. Despite these dif-
fering factor profiles, our model yields robust gains on both datasets. In contrast, E2CNN tends
to benefit primarily when geometric variation dominates, and CEConv when color variation domi-
nates, indicating a dependency on dataset composition. As shown in Fig. 4, visualizations further
show that our latent coordinates align sparsely with individual factors, supporting the intended ef-
fect of the group-wise channel design. Finally, although recent work introduces objectives to learn
equivariance, we find that simply replacing encoder layers with our equivariant counterparts already
delivers consistent improvements in disentanglement quality.

5.4 CLASSIFICATION IN REAL-WORLD DATASETS

While many equivariant layers are designed as drop-in replacements for standard convolutions, ev-
idence on large-scale, real-world settings remains: existing evaluations often focus on small or
low-resolution datasets (Kim et al., 2024), and the reported gains can be sensitive to model config-
urations (Lengyel et al., 2023; Yang et al., 2025). To identify which approaches truly scale beyond
controlled benchmarks, we run a comparative classification study on real-world datasets, evaluating
group equivariant models and ours.

Table 4: Classification accuracy on real-world datasets.
original Layer # params. EuroSAT CIFAR100 Pets Flowers Aircraft STL10 Food101 ImageNet
dataset (5.6K) (60K) (8.2K) (9.1K) (13K) (15.6K) (101K) (1.2M)

Strict Equiv.

Conv. 43.59M 97.46(±0.34) 76.20(±0.24) 74.86(±1.28) 52.99(±1.23) 53.02(±0.24) 85.24(±0.33) 81.26(±0.26) 64.77
CEConv. 42.02M 97.75(±0.14) 76.10(±0.14) 68.76(±0.54) 54.01(±1.56) 52.60(±0.81) 84.40(±1.38) 81.45(±0.31) 67.83
E2CNN 36.88M 95.38(±0.32) 77.29(±0.01) 67.41(±0.86) 55.62(±1.36) 50.26(±5.88) 85.30(±0.09) 79.79(±0.26) 64.73

Hue-4-Sat-3 37.26M 97.51(±0.10) 65.39(±3.42) 54.16(±0.61) 52.95(±2.66) 79.23(±0.19) 79.38(±0.21) 64.45
JCGEL∗ 41.03M 97.69(±97.69) 77.33(±0.19) 75.25(±0.61) 54.61(±0.10) 54.61(±0.99) 85.49(±0.35) 82.60(±0.16) 69.52

Soft Equiv. AE-Net 46.28M 97.83(±0.15) 72.99(±0.43) 66.00(±0.36) 48.63(±1.91) 48.67(±1.13) 82.43(±1.20) 82.04(±0.11) 69.54
JCGEL 41.03M 97.70(±0.18) 77.51(±0.45) 76.08(±0.80) 56.73(±1.37) 54.11(±0.92) 85.54(±0.26) 82.62(±0.38) 70.43
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Table 5: 17⃝ Classification accuracy on real-world datasets (augmeneted dataset).

Aug. dataset Layer EuroSAT CIFAR100 Pets Flowers Aircraft STL10 Food101
(5.6K) (60K) (8.2K) (9.1K) (13K) (15.6K) (101K)

Strict Equiv.
Conv. 53.15(±1.18) 26.73(±0.53) 32.33(±0.36) 10.69( ±0.20) 12.93(±1.33) 46.95(±0.83) 21.58(±0.19)

CEConv. 49.87(±2.20) 24.60(±0.41) 32.25(±1.40) 11.88(±0.30) 12.76(±0.53) 46.80(±1.06) 19.57(±0.74)
E2CNN 59.26(±0.39) 24.21(±1.59) 23.56(±0.50) 11.96(±0.71) 13.1(±1.12) 44.90(±1.27) -

Soft Equiv. AE-Net 55.85(±0.92) 24.89(±0.28) 32.57(±0.01) 10.79(±0.02) 11.65(±0.24) 46.51(±1.18) 22.66(±1.36)
JCGEL 66.48(±1.16) 51.35(±0.56) 58.31(±1.23) 22.72(±0.88) 13.56(±1.87) 46.97(±0.72) 23.52(±0.71)

Figure 5: EuroSAT feature-map visualization on original and augmented test images. The aug-
mented set applies a random composite transformation at evaluation time: a continuous hue shift
over the full hue circle and an in-plane rotation with angle θ ∼ U [−π, π).

Experimental Setting of Real-World Classification We report top-1 accuracy on real-world
datasets (Helber et al., 2019; Krizhevsky & Hinton, 2009; Parkhi et al., 2012; Nilsback & Zisserman,
2008; Maji et al., 2013; Coates et al., 2011; Bossard et al., 2014). For each method, we replace the
convolutional layers of a ResNet-18 (He et al., 2015b) with the candidate group equivariant operator
and adjust block widths to keep parameter counts comparable across models. Further architectural
and training details are provided in Appendix C.6.

Results of Accuracy and Robustness to Hue Shift and Rotation Variation Across the seven
real-world datasets, JCGEL delivers consistent accuracy gains over the vanilla convolutional base-
line and other group equivariant layers, with the exception of EuroSAT, as shown in Table 5. By
contrast, alternative group equivariant models (E2CNN, CEConv, and AE-Net) exhibit dataset-
dependent behavior, sometimes improving over standard convolutions but often falling short. Under
composite, continuous hue shifts and in-plane rotations, the augmented dataset yields severely dis-
rupted t-SNE embeddings for Conv, CEConv, and AE-Net—class boundaries blur relative to the
original set as shown in Fig. 5. In contrast, JCGEL shows a distributional shift yet maintains clear
inter-class separation. Taken together, these findings align with our objective: replacing the layer
that enforces joint color and geometry equivariance provides the most reliable inductive bias among
the evaluated methods for real-world classification.

6 CONCLUSION

In this paper, we address the lack of a drop-in convolutional operator that achieves simultaneous
equivariance to commuting geometric (beyond translation) and color transformations, a capability
needed for the computer vision domain. We propose JCGEL, a joint color and geometric group
equivariant convolutional layer that can replace standard convolutions in common backbones. With
only this substitution, we observe improvements on imbalanced environments, disentanglement
learning, and real-world classification. These results suggest that enforcing equivariance to a di-
rect product of groups is better suited to real-world image grids than targeting a single continuous
group and has the potential to address a broader range of tasks.
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A ROLE OF THE LLM

Throughout this study, we employed an LLM at the sentence level to assess grammar, strengthen
within-paragraph cohesion, and ensure that our intended content was clearly conveyed.

B METHOD DETAILS

Notation differences from the main text. In the proofs we work in the Euclidean group E(2) =
R2 ⋊ O(2) and then specialize to the dihedral subgroup Dn. This choice is purely notational:
Dn ≤ E(2), and the parameterization we use (translations and planar rotations/reflections) is the
same in both settings, so establishing equivariance for E(2) yields the Dn case as a direct corollary.

To simplify expressions, we drop layer superscripts and other adornments on feature maps, filters,
and group actions. In the lifting layer we write the image domain feature map and filter as f :

Z2 → RCℓ

and ψ : Z2 → RCℓ

, with input-domain action α. In the group layer we use capital
letters F : G → RCℓ

and Ψ : G → RCℓ

, and denote the induced feature-space action by ρ.
When the domain is clear, we further omit subscripts on convolution/cross-correlation operators for
readability.

B.1 LIFTING LAYER

Setup and notation. Let f : Z2 → RCℓ

be an input feature map with Cℓ channels. Let ψi :

Z2 → RCℓ

be a learnable filter for i ∈ {1, . . . , |Cℓ+1|}. Denote by Hn(k) ∈ Rdc×dc an orthogonal
hue-rotation matrix (Lengyel et al., 2023) for k ∈ Zn. For geometry, write group elements of O(2)
as (s, θ) with s ∈ {0, 1} (flip bit) and θ ∈ R/2πZ (a rotation angle). Let R(θ) ∈ SO(2) be the
counter-clockwise rotation by angle θ, and let F be a fixed reflection (e.g., F = diag(1,−1)). We
use the faithful 2× 2 orthogonal representation

ρ(s, θ) =

{
R(θ), s = 0,

R(θ)F, s = 1.
(20)

The O(2) group law is
(s1, θ1) · (s2, θ2) =

(
s1 ⊕ s2, θ1 + (−1)s1θ2 mod 2π

)
, (21)

where ⊕ is addition modulo 2, and inverses are
(s, θ)−1 =

(
s, −(−1)sθ mod 2π

)
. (22)

We target the direct-product group
G = E(2)×Hn = (Z2 ⋊O(2))×Hn, (23)

where (s, θ) ∈ O(2) acts on translations by ρ(s, θ) t.

Group Action on Inputs. For g = (t, s′, θ′,m) ∈ G (translation t ∈ Z2, flip s′ ∈ {0, 1}, rotation
θ′ ∈ R/2πZ, hue shift m ∈ Zn), define the left action

[Lgf ](x) = [L(t,s′,θ′,m)f ](x) = Hn(m) f
(
ρ(s′, θ′)−1(x− t)

)
. (24)

Since Hn(m) is orthogonal (Lengyel et al., 2023), for any a, b ∈ Rdc we have ⟨Hn(m)a, b⟩ =
⟨a, Hn(−m)b⟩.
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Induced Output Action. Let F (x, s, θ, k) be an output feature. The induced left action on outputs
is

[Lc
(t,s′,θ′,m)F ](x, s, θ, k) := F

(
ρ(s′, θ′)−1(x− t), s⊖ s′, wrap

(
(−1)s

′
(θ− θ′)

)
, k−m

)
, (25)

where ⊖ is subtraction in Z2 (which equals ⊕) and wrap(·) maps angles to [0, 2π) (any fixed 2π-
periodic choice suffices).

Proof: Details ofE(2)×Hn(k) Equivariance on lifting layer. We show [Lgf⋆ψ
i] = Lc

g [f⋆ψ
i]

for all g = (t, s′, θ′,m) ∈ G. By definition and orthogonality of Hn,

[L(t,s′,θ′,m)f ⋆ ψ
i](x, s, θ, k) =

∑
y∈Z2

Cℓ∑
c=1

〈
[Lgfc](y), Hn(k)ψ

i,(r,θ)
c (y − x)

〉
(26)

=
∑
y∈Z2

Cℓ∑
c=1

〈
Hn(m)fc(ρ(s

′, θ′)−1(y − t)), Hn(k)ψ
i,(s,θ)
c (y − x)

〉
(27)

=
∑
y,c

〈
fc(ρ(s

′, θ′)−1(y − t)), Hn(k −m)ψi,(s,θ)
c (y − x)

〉
(28)

=
∑
y,c

〈
fc(ρ(s

′, θ′)−1(y − t)), Hn(k −m)ψi
c

(
ρ(s, θ)−1(y − x)

)〉
(29)

Let z = ρ(s′, θ′)−1(y − t) so y = ρ(s′, θ′) z + t. Then,

[L(t,s′,θ′,m)f ⋆ ψ
i](x, s, θ, k) =

∑
z,c

〈
fc(z), Hn(k −m)ψi

(
ρ(s, θ)−1(ρ(s′, θ′) z + t− x)

)〉
=

∑
z,c

〈
fc(z), Hn(k −m)ψi

(
ρ
(
qrel

)
[ z − ρ(s′, θ′)−1(x− t) ]

)〉
c
,

(30)

where we used the O(2) group property to factor the argument via the relative pose

qrel := (s, θ)−1 · (s′, θ′) =
(
s⊕ s′, −(−1)sθ + (−1)sθ′

)
=

(
s⊕ s′, (−1)s(θ′ − θ)

)
. (31)

Equivalently, we write ψi
(
ρ
(
qrel

)
[·]
)

= ψi,(q−1
rel )(·) so that

[L(t,s′,θ′,m)f ⋆ ψ
i](x, s, θ, k) =

∑
z,c

〈
fc(z), Hn(k −m)ψi,(q−1

rel )
(
z − ρ(s′, θ′)−1(x− t)

)〉
c
.

(32)

Now, unpack q−1
rel using equation 22:

qrel = (s⊕s′, (−1)s(θ′−θ)) ⇒ q−1
rel =

(
s⊕s′, −(−1)s⊕s′ (−1)s(θ′−θ)

)
=

(
s⊕s′, (−1)s

′
(θ−θ′)

)
,

where angles are understood modulo 2π. Hence

[L(t,s′,θ′,m)f ⋆ ψ
i](x, s, θ, k) (33)

=
∑
z,c

〈
fc(z), Hn(k −m)ψi,(s⊖s′, (−1)s

′
(θ−θ′))

(
z − ρ(s′, θ′)−1(x− t)

)〉
(34)

= [f ⋆ ψi]
(
ρ(s′, θ′)−1(x− t), s⊖ s′, wrap((−1)s

′
(θ − θ′)), k −m

)
(∵ Eq. 6) (35)

= [Lc
(t,s′,θ′,m) [f ⋆ ψ

i]](x, s, θ, k) (∵ Eq. 25), (36)

which proves E(2)-equivariance jointly with hue shift.
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B.2 COLOR AND O(2) GROUP LAYER

Group structure. The orthogonal groupO(2) can be expressed as the semidirect product SO(2)⋊
Z2. Each element is written (s, θ) with s ∈ {0, 1} (flip) and θ ∈ S1 = R/2πZ (rotation angle). Its
law and inverse are

(s1, θ1) · (s2, θ2) =
(
s1 ⊕ s2, θ1 + (−1)s1θ2 mod 2π

)
, (37)

(s, θ)−1 =
(
s, −(−1)sθ mod 2π

)
. (38)

The color group Hn = Zn acts via an orthogonal representation Hn(k), k ∈ {0, . . . , n − 1}, with
cyclic composition k1 ⊕ k2 = (k1 + k2) mod n. Hence, the total group is

G = (Z2 ⋊O(2))×Hn.

Feature domains. A group-layer feature map is

F : Z2 × {0, 1} × S1 × Zn −→ RCℓ

.

That is, each feature is indexed by spatial location x ∈ Z2, flip s, rotation θ, and hue index k. A
learnable filter ψi (for output channel i) is defined on relative indices

Ψi : Z2 × {0, 1} × S1 × Zn −→ RCℓ

.

Group correlation. We follow the group correlation (Cohen & Welling, 2016a) as introduced
[F ⋆Ψ](g) =

∑
h∈G f(g)Ψ(g−1h). The group correlation producing the output at (x, s, θ, k) is

[F ⋆Ψi](x, s, θ, k) =
∑
y∈Z2

∑
s1∈{0,1}

∫ 2π

0

∑
m1∈Zn

Cℓ∑
c=1

Fc(y, s1, θ1,m1)

· Ψi
c

(
ρ(s, θ)−1(y − x), (s, θ)−1(s1, θ1), (m1 − k) mod n

) dθ1
2π

.

(39)

Here, the hue difference is computed modulo n, which implements the rolling structure of hue shift.
In practice, the continuous integral

∫ 2π

0
is approximated by a uniform sample sum 1

Q

∑
θ1

with Q
orientations.

Group action on inputs. For g = (t, s′, θ′,m) ∈ G, the left action on inputs is

[LgF ](x, s, θ, k) = F
(
ρ(s′, θ′)−1(x− t), (s′, θ′)−1(s, θ), (k −m) mod n

)
. (40)

That is, the group index is transformed as h 7→ g−1h, consistent with left actions.

Induced output action. For an output feature U(x, s, θ, k) = [F ⋆ Ψ](x, s, θ, k), the induced
action is

[Lc
(t,s′,θ′,m)U ](x, s, θ, k) = U

(
ρ(s′, θ′)−1(x−t), s⊖s′, (−1)s

′
(θ−θ′) mod 2π, (k−m) mod n

)
.

(41)

Proof: Details of E(2)×Hn(k) Equivariance on Group Layer. We show [LgF ⋆Ψ
i] = Lc

g[F ⋆

Ψi] for all g = (t, s′, θ′,m) ∈ G.

[LgF ⋆Ψi](x, r, θ, k) =
∑
y∈Z2

∑
s1∈{0,1}

∫ 2π

0

∑
m1∈Zn

Cℓ∑
c=1

[LgF ](y, s1, θ1,m1)

·Ψi
c(ρ(s, θ)

−1(y − x), (s, θ)−1(s1, θ1),m1 − k)
dθ1
2π

=
∑

y,s1,m1,c

∫
θ1

Fc(ρ(s
′, θ′)−1(y − t), (s′, θ′)−1(s1, θ1),m1 −m)

·Ψi
c(ρ(s, θ)

−1(y − x), (s, θ)−1(s1, θ1),m1 − k)
dθ1
2π

.

(42)
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Let
z = ρ(s′, θ′)−1(y − t), ⇒ y = ρ(s′, θ′)z + t

(s̃1, θ̃1) = (s′, θ′)−1(s1, θ1) ⇒ (s1, θ1) = (s′, θ′)(s̃1, θ̃1)

m̃1 = m1 −m ⇒ m1 = m̃1 +m.

(43)

Then insert all variables in Eq. 43, then

[LgF ⋆Ψi](x, r, θ, k) =
∑

z,s̃1,m̃1,c

∫
θ̃1

Fc(z, s̃1, θ̃1, m̃1)

·Ψi
c

(
ρ(s, θ)−1

(
ρ(s′, θ′)z + t− x)︸ ︷︷ ︸
spatial rel.

, (s, θ)−1
(
(s′, θ′)(s̃1, θ̃1)︸ ︷︷ ︸

orient rel.

)
, m̃1 +m− k︸ ︷︷ ︸

hue rel.

)dθ̃1
2π

(44)

Then let spatial rel, orient rel. and hue rel. as follows:

ρ(s, θ)−1
(
ρ(s′, θ′)z + t− x

)
= ρ(s, θ)−1ρ(s′, θ′)[z − ρ(s′, θ′)−1(x− t)]

= ρ
(
(s, θ)−1(s′, θ′)︸ ︷︷ ︸

:= qout

)
[z − ρ(s′, θ′)−1(x− t)︸ ︷︷ ︸

:= x⋆

]

(s, θ)−1
(
(s′, θ′)(s̃1, θ̃1)

)
=

(
(s, θ)−1(s′, θ′)

)
(s̃1, θ̃1) = qout(s̃1, θ̃1)

m̃1 +m− k = m̃1 − (k −m︸ ︷︷ ︸
:= k⋆

).

(45)

Let

(qout)
−1 =

(
(s, θ)−1(s′, θ′)

)−1

= (s′, θ′)−1(s, θ)

= (s′,−(−1)s
′
θ′)(s, θ)

= (s′ ⊕ s,−(−1)s
′
θ′ + (−1)s

′
θ

= (s′ ⊕ s, (−1)s
′
(θ − θ′))

:= (s⋆, θ⋆)

(46)

Then insert Eq. 45 and 46 in Eq. 44,

[LgF ⋆Ψi](x, s, θ, k) =
∑

z,s̃1,m̃1,c

∫
θ̃1

Fc(z, s̃1, θ̃1, m̃1) ·Ψi
c

(
ρ(qout[z − x⋆], (s⋆, θ⋆)−1(s̃1, θ̃1), m̃1 − k⋆

)dθ̃1
2π

=
∑

z,s̃1,m̃1,c

∫
θ̃1

Fc(z, s̃1, θ̃1, m̃1) ·Ψi
c

(
ρ(s⋆, θ⋆)−1(z − x⋆), (s⋆, θ⋆)−1(s̃1, θ̃1), m̃1 − k⋆

)dθ̃1
2π

= [F ⋆Ψi](x⋆, s⋆, θ⋆, k⋆) (∵ group correlation, Eq. 39)

= [F ⋆Ψi](ρ(s′, θ′)−1(x− t), s⊖ s′, (−1)s
′
(θ − θ′), k −m) (∵ Eq. 45 and 46)

= [Lc
g[F ⋆Ψi]](x, s, θ, k) (∵ definition of induced action, Eq. 41).

(47)

B.3 DETAILS OF GROUP EQUIVARIANT BATCH NORMALIZATION

When stacking JCGEL layers for large models, batch normalization is often necessary. However,
a batch normalization can break equivariance (Weiler & Cesa, 2019). Motivated by Weiler & Cesa
(2019), we normalize the group–indexed feature map by sharing statistics and affine parameters
across the color/geometry channels. Let Xℓ ∈ RB×C×|Hn|×|Dn|×H×W . For each base channel c,

µℓ
c =

1

B |Hn| |Dn|HW

∑
b,k,r,h,w

Xℓ
b,c,k,r,h,w, (σℓ

c)
2 =

1

B |Hn| |Dn|HW

∑
b,k,r,h,w

(
Xℓ

b,c,k,r,h,w − µℓ
c

)2
,

(48)
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and we apply the fiber–shared affine map

X̂ℓ
b,c,k,r,h,w =

Xℓ
b,c,k,r,h,w − µℓ

c√
(σℓ

c)
2 + ε

, Y ℓ
b,c,k,r,h,w = γc X̂

ℓ
b,c,k,r,h,w + βc.

Because the group action permutes only the fiber indices (k, r) while µℓ
c, σ

ℓ
c, γc, βc are shared across

them, this BN commutes with the action and thus preserves equivariance. (In practice, reshape to
(B|Hn||Dn|, C,H,W ), apply BatchNorm2d, and reshape back.)

C DETAILS OF EQUIVARIANT

C.1 DETAILS OF EQUIVARIANCE VALIDATION TASK EXPERIMENTAL SETTING

To validate equivariance to the hue shift and the dihedral group D4, we generate 4,000 syn-
thetic images of size n × n with n ∈ {17, 33, 65, 129}. Because discrete in-plane rotations on a
square grid misalign the rotation center for even n (causing interpolation artifacts), we restrict to
odd side lengths. We compare JCGEL against a standard CNN (LeCun et al., 1998), an E(2)-
equivariant steerable model (E2CNN) (Weiler & Cesa, 2019), and a color-equivariant convolution
(CEConv) (Lengyel et al., 2023). All layers are initialized with He initialization (He et al., 2015a).
For each method, we evaluate both the lifting and group layers by feeding the synthetic images and
computing equivariance error as above.

C.2 DETAILS OF EQUIVARIANT ERROR

We measure two errors, one at the lifting layer and one at the group layer:

Err(L) = MSE
([

L0
gf

0 ⋆ ψ0
]
,
[
L1
g [ f

0 ⋆ ψ0 ]
])
,

Err(G) = MSE
([

L0
gf

0 ⋆ ψ0
]
⋆ ψ1, L2

g

[
[ f0 ⋆ ψ0 ] ⋆ ψ1

])
,

(49)

where Lℓ
g denotes the group action at layer ℓ (ℓ = 0 for image domain, ℓ ≥ 1 for feature spaces),

f0 is the input image, ψ0 and ψ1 are the lifting and group-layer filters, and ⋆ is cross-correlation.
The first line compares “transform-then-lift” versus “lift-then-transform” (lifting equivariance); the
second line compares “transform-then-group-convolve” versus “group-convolve-then-transform”
(group-layer equivariance).

C.3 DETAILS OF LONG-TAILED ROTATED COLOR MNIST DATASET

Common Experimental Setting We evaluate seven-layer encoders, each constructed by stacking
a single convolutional primitive: standard convolution (Conv) (LeCun et al., 1998), color equivariant
convolution (CEConv) (Lengyel et al., 2023), E(2)-equivariant steerable cnn (E2CNN) Weiler &
Cesa (2019), approximately equivariant networks (AE-Net) (Wang et al., 2022), and JCGEL. All
encoders are trained with the Adam optimizer (Kingma & Ba, 2015) using an initial learning rate of
10−4 and a consine-annealed schedule over 1,000 and 50 epochs with respect to the long-tailed and
biased dataset. (warm up each epoch).

Long-tailed Rotated-Color MNIST. We construct a custom dataset from MNIST to stress-test
color/geometry robustness. Each grayscale image x ∈ R28×28 with digit label y ∈ {0, . . . , 9} is
upsampled to 64×64 (bilinear) and embedded into RGB by selecting a color index c ∈ {0, 1, 2} and
writing the upsampled image into the c-th channel while zeroing the others, yielding x′ ∈ R3×64×64.
We then apply a rotation Rθ with θ = 12k◦ for k ∼ U{0, . . . , 29}, producing x′′ = Rθ(x

′).
Crucially, the class label remains the original digit y; color and rotation act as nuisance factors
(10-way classification).

To induce class imbalance in training, we draw the number of samples for each (digit, color) pair
k ∈ {0, . . . , 29} from a power-law:

nk ∼
⌈
Power(α=0.3) ·Nmax

⌉
,

where Nmax is the maximum per-pair budget; counts are then aggregated over color to form digit-
level splits, yielding a long-tailed training set. The test set is balanced with a uniform number of
examples per digit to fairly assess generalization under imbalance.
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To validate robustness of JCGEL within lack of color and rotation information, we compose long-
tailed rotated color MNIST (LeCun et al., 2012) dataset. Each MNIST grayscale image is upsampled
to 64 × 64, converted to RGB by writing the image into a single channel (others zero), and then
rotated in-plane by Rθ with θ ∈ {0◦, 12◦, . . . , 648◦} about the image center (bilinear resampling).
Labels are the original digits y (10 classes), independent of color/rotation. To induce a long-tailed
training set, sample counts follow a power-law over (digit, color) pairs.

Figure 6: Rotated color MNIST long-tailed training dataset.

C.4 DETAILS OF BIASED COLOR–ROTATION MNIST: UNIFIED SPECIFICATION

Overview We construct a biased MNIST variant to probe robustness against spurious correlations
by coupling each digit class with preferred color and rotation. The training distribution uses two
temperature (scale) parameters that control the global (inter-class) bias strength: τc for color and
τg for rotation.1 Within each class, samples are drawn from a local (intra-class) bias with a fixed
sharp temperature τlocal = 0.01 (strong concentration). The test set is constructed uniformly over all
color×rotation combinations, independent of τc, τg .

Wrapped One-Sided Exponential on a Cyclic Domain Let items be indexed by k ∈
{0, 1, . . . , n − 1} on a circle. For a center index µ ∈ {0, . . . , n − 1} and temperature τ > 0,
define λ = 1

τ and

P (k | µ, τ) =
exp

(
− λ ((k − µ) mod n)

)∑n−1
i=0 exp(−λ i)

. (50)

This distribution is peaked at k = µ and decays monotonically along the cyclic order; it is not
symmetric about µ. Smaller τ (larger λ) yields stronger bias (sharper concentration).

Training Set Bias We use Nc = 3 colors with indices c ∈ {0:R, 1:G, 2:B} and Nr discrete
rotations with indices r ∈ {0, . . . , Nr − 1}. The rotation angle is θ(r) = 360◦

Nr
r.

Level 1: Global (Inter-Class) Bias Global categorical distributions are built, centered at 0 (Red
and 0◦):

Pglobal(c | τc) = P (c | µ = 0, τc), Pglobal(r | τg) = P (r | µ = 0, τg),

1In code these appear as color std and rot std; they are not statistical standard deviations but scale
(temperature) parameters.
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using equation 50. For each digit class y ∈ {0, . . . , 9} we sample preferred centers

µc,y ∼ Categorical
(
Pglobal(c | τc)

)
, µg,y ∼ Categorical

(
Pglobal(r | τg)

)
.

Small τc, τg (strong bias) cause many classes to share the same preferred pair (e.g., Red & 0◦); large
values diversify class-wise preferences.

Level 2: Local (Intra-Class) Bias Conditioned on class y and its centers (µc,y, µg,y), we define
class-conditional distributions with a fixed sharp temperature τlocal = 0.01:

P (c | y) = P
(
c | µ = µc,y, τ = τlocal

)
, P (r | y) = P

(
r | µ = µr,y, τ = τlocal

)
.

Assuming conditional independence within a class,

P (c, g | y) = P (c | y)P (g | y).

Given Ny samples for class y, counts {N (y)
c,g } are drawn via

{N (y)
c,g }c,g ∼ Multinomial

(
Ny, vec

(
P (c, g | y)

))
.

Test Set (Uniform) For evaluation, we allocate an equal number of samples to every triple (y, c, r),
yielding a uniform distribution over color×rotation per class. Implementation-wise, the per-class
sample count must be divisible by 3×Nr to achieve exact uniformity (an error is raised otherwise).

(a) Strong: τc = τg = 0.5 (b) Moderate: τc = τg = 5.0 (c) Slight: τc = τg = 20.0

Figure 7: Rotated color MNIST biased training datasets.

C.4.1 18⃝ ADDITIONAL LONG-TAILED TASKS (IMAGENET-LT)
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Table 6: ImageNet-LT
result.

Models Acc. ↑
Conv. 30.93

CEConv. 31.19
E2CNN 31.25
AE-Net 29.22

JCGEL (Ours) 31.65

Hyper-Parameter Setting. We set the batch size to 256, the learning
rate to 10-4 with the Adam optimizer using cosine annealing over 100
epochs. We then employ baselines and the JCGEL model as follow Ta-
ble 8.

Results. As shown in Table 6, our model outperforms the baselines,
suggesting that our model is also effective on real-world datasets.

C.4.2 19⃝ ADDITIONAL DISCUSSION

Analysis of Loss-Accuracy Discrepancy in Figure 3 We address the
observation regarding the discrepancy between the significant drop in
Cross Entropy (CE) loss and the moderate gain in evaluation accuracy shown in Figure 3. The
observed discrepancy stems from the fundamental difference between the two metrics: CE loss
measures the quality of predicted probabilities (calibration), whereas accuracy depends solely on
the top-1 ranking. A significant reduction in CE loss implies that our model assigns a substantially
higher probability to the ground-truth class, even if this improvement is not yet sufficient to flip the
top-1 prediction ranking Rahimi et al. (2020); Karandikar et al. (2021).

Decomposition of Test Loss. To verify this hypothesis, we decomposed the test loss into ”Cor-
rectly Classified” and ”Misclassified” subsets. As shown in Table 7, while the loss on correctly
classified samples is comparable across methods, a striking difference appears in the misclassified
samples.

Table 7: Decomposition of Cross Entropy
Loss on the test set. We report the average
loss separately for correctly classified sam-
ples (”Correct”) and misclassified samples
(”Misclassified”). Lower is better.

Method Loss ↓ Loss ↓
(Correct) (Misclssificed)

Conv. 0.0492 17.9391
E2CNN 0.0582 18.5655
CEConv 0.0319 19.0237
Hue-3-Sat-4 0.0584 15.1587
AE-Net 0.0759 33.3424

JCGEL (Strict) 0.0461 11.4870
JCGEL (Soft) 0.0491 10.0870

Our method, JCGEL (Soft), achieves a loss of
10.087 on misclassified samples, which is signifi-
cantly lower than standard baselines such as Conv
(17.939) and E2CNN (18.566). This indicates that
even when JCGEL fails to predict the correct class
(top-1), it assigns a much higher probability mass to
the true class compared to other methods (i.e., the
predictions are ”closer” to the truth). This improved
probability assignment results in a lower overall loss
despite the similar top-1 accuracy.

Evaluation Loss Dynamics. Regarding the in-
crease in evaluation loss during later epochs, this is
a known phenomenon when training on long-tailed
distributions and evaluating on balanced sets Liu
et al. (2023); Tang et al. (2020). As the model min-
imizes training loss by becoming overconfident on
head classes (overfitting), it incurs a higher penalty on the balanced test set. However, as illus-
trated in Figure 3, JCGEL maintains a consistently lower evaluation loss compared to comparators
throughout the training process, demonstrating superior robustness against overfitting.

C.5 DISENTANGLEMENT LEARNING BENCHMARK DETAILS

Experimental setting We evaluate disentanglement on 3D Shapes (Burgess & Kim, 2018) and
MPI3D (Eslami et al., 2018). For each method, we replace the VAE encoder’s four convolutional
layers with group-equivariant counterparts and train using Adam (learning rate 8 × 10−4), a batch
size of 512, and 500,000 training iterations. We report standard metrics—BetaVAE score (Higgins
et al., 2017), FVM (Kim & Mnih, 2018), MIG (Chen et al., 2018), SAP (Kumar et al., 2018), and
DCI (Eastwood & Williams, 2018).

C.5.1 BENCHMARKS

Setup and notation. Let x be observations generated by ground-truth factors v = (v1, . . . , vK).
An encoder produces latent codes z = (z1, . . . , zJ) (e.g., mean of qϕ(z | x)). Unless stated other-
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wise, latents are standardized per dimension (zero mean, unit variance over the dataset). All metrics
below require access to ground-truth factors (or their labels).

β-VAE score (FVM). For each factor vk, draw a mini-batch in which vk is held fixed while
the other factors vary. Encode the batch, compute the empirical variance vector Var(z) ∈ RJ

across the batch, and (optionally) normalize by dataset-wide latents’ variance. Train a low-capacity
classifier (e.g., linear) to predict the fixed factor index k from either Var(z) or from the index
argminj Var(zj). The score is the classification accuracy on held-out batches. Higher is better
(one dimension is maximally insensitive when its corresponding factor is fixed). Further details are
in Higgins et al. (2017).

FactorVAE score. Identical batching protocol as above (one factor fixed per batch), but no classi-
fier is trained. For each batch, compute j⋆ = argminj Var(zj) and assign a vote that j⋆ corresponds
to factor k. After collecting votes on a training stream, define a majority-vote mapping from code
indices to factor indices and evaluate the accuracy on a test stream. Higher is better (same intuition
as the β-VAE score, classifier-free). Further details are in Kim & Mnih (2018).

MIG (Mutual Information Gap). Estimate mutual information between each code and each fac-
tor, e.g., by discretizing zj and vk: I(zj ; vk). For each factor k, sort {I(zj ; vk)}Jj=1 to get the two
largest values I(1),k ≥ I(2),k.

Fix a ground-truth factor index k ∈ {1, . . . ,K} and consider the mutual informations

sj = I(zj ; vk), j = 1, . . . , J.

Let πk be a permutation that sorts these scores in nonincreasing order:

I(zπk(1); vk) ≥ I(zπk(2); vk) ≥ · · · ≥ I(zπk(J); vk).

We then define
I(1),k := I

(
zπk(1); vk

)
and I(2),k := I

(
zπk(2); vk

)
,

i.e., the largest and second-largest mutual information between any single code dimension and factor
vk. Consequently I(1),k ≥ I(2),k by construction.

Define

MIG =
1

K

K∑
k=1

I(1),k − I(2),k

H(vk)
,

where H(vk) is the (discrete) entropy of factor vk. Higher is better (a single code carries most of
the information about each factor). Further details are in Chen et al. (2018).

SAP (Separated Attribute Predictability). For each factor vk and each code zj , train a simple
predictor from zj to vk (e.g., linear regression withR2 for continuous factors or linear SVM accuracy
for categorical factors), yielding scores sj,k. For each k, take the gap between the top two scores:
∆k = maxj sj,k −maxj ̸=j⋆ sj,k, with j⋆ = argmaxj sj,k. Define SAP = 1

K

∑K
k=1 ∆k. Higher is

better (each factor is best predicted by a unique code). Further details are in Kumar et al. (2018).

DCI (Disentanglement–Completeness–Informativeness). Fit a predictive model from z to v
(e.g., gradient-boosted trees or sparse linear models) and extract nonnegative feature importances
rk,j (importance of code j for predicting factor k). Let r̃·,j be importances for code j normalized
over factors, and r̃k,· be importances for factor k normalized over codes. Define

Disent. = 1− 1
J

∑J
j=1H(r̃·,j), Compl. = 1− 1

K

∑K
k=1H(r̃k,·),

whereH(·) is the normalized entropy. Briefly, DCI-Disesnt. is the score of latent code purity: ”Does
each code dimension zj focus on one ground-truth factor?”, and DCI-Compl. is the score of factor
concentration: Is each factor vk captured mainly by one code dimension?. Informativeness is the
predictive performance (e.g., inverse error) of the same model from z to v. Higher disentanglement
means each code is used for few factors; higher completeness means each factor is concentrated
on few codes; higher informativeness means factors are predictable from z. Further details are
in Eastwood & Williams (2018).

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C.6 CLASSIFICATION EXPERIMENTAL DETAILS

Experimental Setting We report top-1 accuracy on real-world datasets (Helber et al., 2019;
Krizhevsky & Hinton, 2009; Parkhi et al., 2012; Nilsback & Zisserman, 2008; Maji et al., 2013;
Coates et al., 2011; Bossard et al., 2014). For each method, we replace the convolutional layers of a
ResNet-18 with the candidate group equivariant operator and adjust block widths to keep parameter
counts comparable across models. All models are trained with Adam for 200 epochs using a cosine-
annealed learning-rate schedule (updated each epoch), following ImageNet augmentation policy,
and we tune the initial learning rate over {10−3, 10−4}. In addition, demonstrating robustness of
color and geometric variance in the real-world dataset, we randomly augmented the test samples
with composite continuous hue shift and rotation. In addition, to assess robustness to color and ge-
ometric variation on real-world datasets, we apply random composite transformations at evaluation
time: continuous hue shifts over the full hue circle and in-plane rotations uniformly sampled from
[0◦, 360◦).

C.6.1 MODEL CONFIGURATIONS
Table 8: Comparison of different network architectures.

Layer Name Output Size Configuration

(a) Standard ResNet-18

conv1 112× 112 7× 7, 64, stride 2
3× 3 max pool, stride 2

layer1 56× 56
[
1× 1, 128; 3× 3, 128; 1× 1, 512

]
× 2

layer2 28× 28
[
1× 1, 256; 3× 3, 256; 1× 1, 1024

]
× 2

layer3 14× 14
[
1× 1, 256; 3× 3, 256; 1× 1, 1024

]
× 2

layer4 7× 7
[
1× 1, 1024; 3× 3, 1024; 1× 1, 4096

]
× 2

1× 1 global average pool, FC(4096→classes)

(b) CEConv-ResNet-18

conv1 112× 112 CEConv2d (1→R), 7× 7, 64, stride 2; BN5d + ReLU
56× 56 3× 3 max pool, stride 2 (applied after merging C×R)

layer1 56× 56
[
1× 1, 64; 3× 3, 64; 1× 1, 256

]
× 2

layer2 28× 28
[
1× 1, 128; 3× 3, 128; 1× 1, 512

]
× 2 (first block stride 2)

layer3 14× 14
[
1× 1, 256; 3× 3, 256; 1× 1, 1024

]
× 2 (first block stride 2)

layer4 7× 7
[
1× 1, 512; 3× 3, 512; 1× 1, 2048

]
× 2 (first block stride 2)

head 1× 1 global avg pool over (H,W ) on merged C×R channels; FC(2048×R →
classes)

(c) E2-ResNet-18

conv1 112× 112 R2Conv 7× 7, to Reg(G) with mult. 64 , stride 2; IBN + ReLU
56× 56 3× 3 pointwise max pool, stride 2

layer1 56× 56
[
1× 1, 64 ; 3× 3, 64 ; 1× 1, 256

]
× 2

layer2 28× 28
[
1× 1, 128 ; 3× 3, 128 ; 1× 1, 512

]
× 2 (first block stride 2)

layer3 14× 14
[
1× 1, 256 ; 3× 3, 256 ; 1× 1, 1024

]
× 2 (first block stride 2)

layer4 7× 7
[
1× 1, 512 ; ; 3× 3, 512 ; ; 1× 1, 2048

]
× 2 (first block stride 2)

head 1× 1 global avg pool over (H,W ); FC
(
(2048 )× γ → classes

)
(d) JCGEL-ResNet-18 (Ours)

conv1 112× 112 Lifting JCGEConv2d (Nc:1→Nc, Ng:1→Ng), 7× 7, 64, stride 2; CR-BN
+ ReLU

56× 56 Equivariant spatial pool 3× 3, stride 2

layer1 56× 56
[
1× 1, 64; 3× 3, 64; 1× 1, 256

]
× 2

layer2 28× 28
[
1× 1, 128; 3× 3, 128; 1× 1, 512

]
× 2 (first block stride 2)

layer3 14× 14
[
1× 1, 256; 3× 3, 256; 1× 1, 1024

]
× 2 (first block stride 2)

layer4 7× 7
[
1× 1, 512; 3× 3, 512; 1× 1, 2048

]
× 2 (first block stride 2)

head 1× 1 global average pool over (c, geometry, H, W ); FC(2048 → classes)
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C.6.2 DISCUSSION

20⃝ Statistical Significance Analysis. To rigorously assess whether the performance gains of our
method are statistically meaningful rather than marginal, we conducted paired statistical tests (Stu-
dent’s t-test) between JCGEL and the strongest performing baseline (2nd-best) for each classifica-
tion benchmark.

As detailed in Table 9, our method achieves statistically significant improvements (p < 0.05) on six
out of seven datasets, including CIFAR-100 (p = 0.029), Oxford-Pets (p = 0.008), and Food-101
(p = 0.001). While the performance on EuroSAT remains comparable to the baseline (p = 0.979),
the consistent statistical significance observed across the majority of standard benchmarks—as well
as in our imbalanced and disentanglement experiments—confirms that the efficacy of JCGEL is
robust and not attributed to random chance.

Table 9: Statistical significance test results comparing JCGEL with the second-best baseline across
various datasets. The results are reported as Mean (± Std). The p-values indicate the statistical
significance of the improvement, with p < 0.05 highlighted in bold.

Dataset 2nd-Best JCGEL (Ours) p-value
EuroSAT 97.83±0.15 97.70±0.18 0.979
CIFAR-100 77.29±0.01 77.51±0.45 0.029
Pets 74.86±1.28 76.08±0.80 0.008
Flowers 55.62±1.36 56.73±1.37 0.019
Aircraft 53.02±0.24 54.11±0.92 0.003
STL-10 85.30±0.09 85.54±0.26 0.011
Food-101 81.45±0.31 82.62±0.38 0.001

Table 10: Discrete vs. continuous group
equivariant model. JCGEL-G denotes equiv-
ariant to SE(2)×Hn(k) model.

JCGEL JCGEL-C
EuroSAT 97.70(±0.18) 97.52(±0.18)
Aircraft 54.11(±0.92) 52.95(±0.87)
STL10 85.54(±0.26) 85.29(±0.57)

Real-World Generalization via Direct-Product
Discrete (Soft) Equivariance Real-world images
rarely vary along a single axis; color and geometry
typically change together. Although the homoge-
neous space of a discrete group is smaller than that of
a continuous group, our model that composes com-
muting discrete color and geometric actions (e.g.,
(Z2⋊D4)×Hn) consistently improves performance
over E2CNN across diverse vision tasks. Moreover, JCGEL surpasses JCGEL-C, which is equivari-
ant to SE(2)×Hn as shown in Table 10, suggesting that a direct product of discrete groups can be
an effective choice for real-world generalization.

Two practical considerations support this finding. First, in real-world pipelines, continuous transfor-
mations act through data augmentation on the image grid, and this effectively broadens the coverage
achieved by a discrete product group and enables JCGEL to generalize to many unseen poses and
hues. Second, continuous group strict equivariant models assume ideal group actions that may con-
flict with common augmentations (e.g., rotated images leave empty regions that are padded, which
is not a true group action). This mismatch affects strict formulations, and even soft methods that
target continuous groups impose stronger constraints than discrete equivariance, which can hinder
performance under non-ideal image-domain operations. In summary, a direct-product discrete for-
mulation is well aligned with real-world conditions, explaining why JCGEL tends to achieve higher
accuracy and robustness across varied environments.

D 21⃝ LIMITATIONS AND FUTURE WORK

Computational Overhead. The primary limitation of our proposed method lies in its computa-
tional cost compared to baselines. Operating on the high-dimensional product group (Z2⋊Go)×Hn

inevitably expands the feature space, leading to increased computational complexity and memory
usage.
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As summarized in Table 11, relative to the standard convolutional baseline (×1.00), our JCGEL
layer exhibits lower training throughput (≈ ×0.14) and significantly higher peak GPU memory
(VRAM) consumption (≈ ×4.37). This overhead is inherent to the explicit construction of joint
equivariance across color and geometric transformations.

We acknowledge this trade-off between computational efficiency and model robustness. While stan-
dard efficient models offer faster inference, they fail to achieve the superior performance and sta-
bility demonstrated by our method (as shown in Tables 2, 4, and 6). Consequently, reducing the
computational burden of product-group convolutions—potentially through sparse group operations
or approximation techniques—remains a critical direction for our future optimization.

Table 11: Comparison of computational efficiency normalized to the standard CNN baseline
(×1.00). Throughput is measured in images/sec (higher is better), and VRAM usage is measured in
GB (lower is better).

Method Training Speed (↑) Inference Speed (↑) VRAM Usage (↓)

Conv (Baseline) ×1.00 ×1.00 ×1.00
CEConv ×0.84 ×0.72 ×1.37
E2CNN ×0.31 ×0.27 ×1.74
Hue-4-Sat-3 ×0.12 ×0.09 ×2.04

JCGEL (Ours) ×0.14 ×0.09 ×4.37
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