# JCGEL: JOINT COLOR AND GEOMETRIC GROUP EQUIVARIANT CONVOLUTIONAL LAYER

# **Anonymous authors**

Paper under double-blind review

#### **ABSTRACT**

Translation equivariance is one of the key factors for the widespread effectiveness of convolutional neural networks (CNNs) in computer vision. Building on this principle, group equivariant architectures have been extended beyond translations to encompass both color and geometric symmetries, which commonly arise in vision datasets. However, despite the commuting nature of their respective group actions, color and geometry have typically been addressed in isolation by theoretical and approximately equivariant approaches. In this paper, we introduce a joint color and geometric group equivariant convolution layer (JCGEL) via weight sharing across the commuting group actions. Our approach 1) improves robustness in imbalanced regimes, 2) yields factorized representations that separate color and geometric group-related factors, and 3) scales effectively to real-world datasets. To validate these effects, we instantiate the layer within standard CNNs and evaluate across long-tailed and biased datasets, disentanglement learning benchmarks, and real-world classification tasks, where our model consistently outperforms baselines. As a drop-in replacement for standard convolutional layers, JCGEL demonstrates generalization across a variety of vision tasks.

# 1 Introduction

Translation equivariance has been one of the primary factors enabling convolutional neural networks (CNNs) to extract spatial structure (LeCun et al., 1998; Kayhan & Gemert, 2020) and to achieve generalization across diverse computer vision tasks. To extend this benefit beyond translation, prior works have been sustained interest in enforcing group equivariance, because many real-world variations are governed by symmetries. Formally, if an encoder  $\psi$  is equivariant to a group G, then observing x constrains  $\psi(g \cdot x)$ , even when  $g \cdot x$  never appears in the data. In CNNs, translation equivariance implies that features learned for an object at one location transfer to the same object anywhere on the 2D plane LeCun et al. (1998); Kayhan & Gemert (2020). By the same principle, equivariance to other groups (rotations, scalings, and color transformations) yields consistent features for previously unseen variants. Group equivariant models have been shown to improve generalization across diverse areas including graph (Maron et al., 2018; Xu et al., 2024), robotics (Wu et al., 2023; Wang & Jörnsten, 2024; Qi et al., 2025), disentanglement learning (Higgins et al., 2018; Yang et al., 2021; Jung et al., 2024), self-supervised learning (Park et al., 2022; Yu et al., 2025), and equivariant layer modeling (MacDonald et al., 2021; Lengyel et al., 2023).

In the literature, approaches to propose group equivariant models have been proposed in two branches: 1) strict equivariant approaches that guarantee exact equivariance (Cohen & Welling, 2016a), and 2) soft approaches that encourage equivariance through less constrained kernel structures (Romero & Hoogendoorn, 2019) with training objectives (Kim et al., 2024). The first line of work, strict equivariant works, is theoretically equivariant to a specific group and has focused on geometric and color symmetries, which are pervasive in vision domains (Cohen & Welling, 2016a; Lengyel et al., 2023). Within the geometric line, early models target discrete groups (Cohen & Welling, 2016a) and have been extended to continuous geometric group, such as rotation, scaling, and Lie groups (Worrall & Welling, 2019; Qiao et al., 2023; Cohen & Welling, 2016b; Weiler et al., 2017; Sosnovik et al., 2019; MacDonald et al., 2021), with robustness in imbalanced environments. In parallel, color equivariant networks (Lengyel et al., 2023; Yang et al., 2024) address structured chromatic transformations and demonstrate strength under color imbalanced environments.

The second, recent works argue for the necessity of soft equivariant networks because real-world datasets rarely exhibit perfect symmetries (Wang et al., 2022; van der Ouderaa et al., 2022; Kim et al., 2024). On the geometric side, soft equivariant approaches relax exact constraints by regularizing canonical kernels with objectives, demonstrating advantages under asymmetric coverage (Wang et al., 2022; van der Ouderaa et al., 2022). In parallel, Kim et al. (2024) also validates that color soft equivariance via objective design, showing improved generalization on small and low-resolution real-world datasets. Taken together, strict and soft approaches underscore that geometric and color variations are ubiquitous and that their equivariant models are broadly useful. Nevertheless, to the best of our knowledge, no prior work offers a single convolutional operator that is jointly equivariant to commuting geometric (beyond translation, since standard CNNs already handle T(2)) and color groups under either strict or soft formulations.

To address this issue, we propose a joint color and geometric group equivariant layer (JCGEL). We first formalize the layer and prove equivariance to the direct product of group  $G=(\mathbb{Z}^2\rtimes G_{\rm geo})\times G_{\rm color}$ , where  $\mathbb{Z}^2$  encodes planar translations,  $G_{\rm geo}$  acts on spatial coordinates (e.g., rotations/reflections), and  $G_{\rm color}$  acts in color space (e.g., hue shifts). We then introduce a G-equivariant batch normalization layer, enabling standard CNN architectures (e.g., ResNets (He et al., 2015b)). Finally, we validate from toy to real-world datasets and diverse vision tasks, showing consistent performance gains in imbalanced environment, disentanglement learning, and classification.

Our main contributions are as follows:

- Equivariant to both color and geometric groups. We introduce a CNN architecture that is equivariant to the direct product group  $G_{\text{geo}} \times G_{\text{color}}$ , instantiated via a color and geometry equivariant convolutional layer.
- **Robustness under imbalance.** By sharing parameters across direct product group orbits (i.e., tying a canonical kernel via group actions), the model improves robustness in long-tailed and biased regimes.
- Factorized representations. The architecture yields a separable representation of color and geometry in latent space; we validate improved disentanglement through standard benchmarks and metrics.
- Consistent gains on real-world datasets. The approach scales to real-world datasets and delivers consistent performance on classification tasks.

#### 2 RELATED WORKS

#### 2.1 STRICT GROUP EQUIVARIANT CONVOLUTION LAYERS

Strict group equivariant CNNs generate all group-transformed filters from a canonical kernel or steerable-basis coefficients via the group action, enforcing weight tying and improving data efficiency and generalization. Geometry-focused approaches span discrete planar symmetries (Cohen & Welling, 2016a), continuous rotations (Worrall et al., 2016; Cohen & Welling, 2016b; Weiler et al., 2017), scaling (Sosnovik et al., 2019; Worrall & Welling, 2019), the Euclidean group E(2) (Weiler & Cesa, 2019), and broader Lie groups (MacDonald et al., 2021; Qiao et al., 2023). Beyond geometric group, color group equivariant architectures have been proposed (Lengyel et al., 2023; Yang et al., 2024). However, to the best of our knowledge, a unified convolutional layer that achieves simultaneous equivariance to both geometric and color groups remains underexplored; most prior work enforces equivariance to either geometry or color, but not both jointly in a single layer.

#### 2.2 SOFT GROUP EQUIVARIANT CONVOLUTIONAL LAYERS

Strict group equivariance assumes perfect symmetries in data, which is rarely met in practice. Soft equivariance approaches, therefore, relax architectural constraints and let the degree of equivariance be learned from data. In particular, statistical methods learn a distribution over group elements and sample group elements during the group convolution (Romero & Lohit, 2021), and other probabilistic/variational formulations further regularize or control the learned degree of equivariance via explicit objectives (Veefkind & Cesa, 2024; Kim et al., 2024). In addition, weighted mechanisms on the group fiber can emphasize a subset of symmetries (Romero & Hoogendoorn, 2019).

More broadly, controlled departures from exact equivariance can be achieved through explicit regularization to accommodate imperfect symmetries. Despite these advances targeting asymmetric, real-world data, prior soft methods do not provide a single layer that is jointly equivariant to both color and geometric groups under a unified product-group action.

# 2.3 NON-LAYER-WISE APPROACHES: EQUIVARIANT INDUCTIVE BIAS VIA OBJECTIVES

Equivariance has also been encouraged by training objectives rather than by architecture, notably in self-supervised learning (SSL) and disentanglement learning. In SSL, recent methods inject transformation labels (Devillers & Lefort, 2022; Garrido et al., 2023) or enforce equal latent displacements for identically transformed pairs (Yu et al., 2025). In disentanglement, objectives are shaped so that latent coordinates align with subgroup actions, often via paired inputs in VAE frameworks (Jung et al., 2024; Yang et al., 2021; Keurti et al., 2022). These approaches inject equivariant bias through objectives and data pairing/composition, rather than by imposing per-layer group structure. Because our study targets layer-wise, drop-in convolutional operators under matched protocols, we do not include objective-level methods in head-to-head comparisons.

# 3 PRELIMINARIES

In this section, we describe our notations, briefly introduce definitions of group action, equivariance, and group convolution.

**Group action** Let set X, and  $(G, \circ)$  be a group, binary operation  $\cdot : G \times X \to X$ , then group action  $\alpha : \alpha(g, x) = g \cdot x$  following properties:

- Identity:  $e \cdot x = x$ , where  $e \in G$ ,  $x \in X$ .
- Compatibility:  $\forall g_1, g_2 \in G, \ x \in X, \ \alpha((g_1 \circ g_2), x) = \alpha(g_1, \alpha(g_2, x)).$

(Dihedral Group Action) The planar action uses the standard orthogonal representation  $\rho(s,\theta) \in O(2)$  of the dihedral group  $D_4 = \{(s,\theta)|s \in \{0,1\}, \theta \in \mathbb{Z}_4\}$ , where  $\rho(s,\theta)$  is a rotation by  $\theta \cdot \frac{\pi}{2}$  followed by a reflection group law:

$$(s,\theta)\cdot(s',\theta')=\big(s\oplus s',\theta+(-1)^s\theta'\pmod 4\big),\ (s,\theta)^{-1}=\big(s,-(-1)^s\theta\pmod 4\big),$$

where  $\oplus$  is a modular arithmetic.

**Equivariant map** Given X and Y are G-set, and group action  $\rho: G \times Y \to Y$ . Then a function  $f: X \to Y$  is equivariant if

$$f(\alpha(g,x)) = \rho(g,f(x)). \tag{2}$$

**Group Convolution** In a standard CNN, feature map denoted  $f^\ell: \mathbb{Z}^2 \to \mathbb{R}^{C^\ell}$  as a function that maps pixel locations x to a  $C^\ell$ -dimensional vector. Then  $f^\ell$  is convolved to filter  $\psi^\ell: \mathbb{Z}^2 \to \mathbb{R}^{C^\ell}$  as follows:

$$f^{\ell+1} = [f^{\ell} \star \psi^{\ell,i}](x) = \sum_{y \in \mathbb{Z}^2} \sum_{c=1}^{C^{\ell}} f_c^{\ell}(y) \psi_c^i(y - x).$$
 (3)

The standard CNNs is equivariant to the discrete translation group ( $\mathbb{Z}^2$ , +), and forming the group through integer summation. In the same manner, the group convolution is extended by replacing the translation x by a group action g, and this layer is called the *lifting layer* to lift the image to the group:

$$f^{\ell+1} = [f^{\ell} \star \psi^{\ell,i}](g) = \sum_{y \in \mathbb{Z}^2} \sum_{c=1}^{C^{\ell}} f_c^{\ell}(y) \psi_c^{\ell,i}(g^{-1}y). \tag{4}$$

Then output feature map  $f^{\ell}$  is a function on G rather  $\mathbb{Z}^2$ , and is convolved with filter  $\psi_c^{\ell,i}$  at  $\ell^{th}$  layer, in what is refferred to as *group layer*:

$$f^{\ell+1} = [f^{\ell} \star \psi^{\ell,i}](g) = \sum_{h \in G} \sum_{c=1}^{C^{\ell}} f_c^{\ell}(h) \psi_c^{\ell,i}(g^{-1}h).$$
 (5)

| Model             | Goup                                    | Group Convolution Formula (Eq. 5)                                                                                                    |
|-------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Conv              | $(\mathbb{Z}^2)$                        | $\sum_{y \in \mathbb{Z}^2, c'} f_{c'}^{\ell}(y) \psi_{c'}^{i}(y - x)$                                                                |
| $G_{\rm o}$ -CNNs | $\mathbb{Z}^2 \rtimes G_o$              | $\sum_{y \in \mathbb{Z}^2, c', h \in G_o} f_{c'}^{\ell}(y, h) \psi_{c'}^{i}(g^{-1}h(y - x))$                                         |
| $G_{\rm c}$ -CNNs | $\mathbb{Z}^2 \times G_c$               | $\sum_{y \in \mathbb{Z}^2} \int_{c'}^{c'} \int_{h \in G_{-}}^{c} f_{c'}^{\ell}(y,h) g^{-1} h \psi_{c'}^{i}(y-x)$                     |
| Ours              | $(\mathbb{Z}^2 \rtimes G_o) \times G_c$ | $\sum_{y \in \mathbb{Z}^2, c', h_o \in G_o, h_c \in G_c} f_{c'}^{\ell}(y, h_c, h_o) g_c^{-1} h_c \psi_{c'}^{i}(g_o^{-1} h_o(y - x))$ |

Table 1: General group convolution definition of group equivariant CNNs.  $G_o$ , and  $G_c$  denote geometric and color group.

# 4 METHOD: JOINT COLOR AND GEOMETRIC GROUP EQUIVARIANT CONVOLUTION LAYER

In this section, we prove that the proposed layer is group equivariant layer (i.e., satisfies Eq. 2) First, we formalize the lifting layer (Eq. 4) by specifying the associated group convolution and the group action invoked in Eq. 2. We then extend these definitions to the group layer (Eq. 5) and show that the layers preserve group equivariance.

Previous works have introduced color (hue shift) (Lengyel et al., 2023) or geometry  $(D_4)$  (Cohen & Welling, 2016a) equivariant layers separately. In contrast, we present a unified framework that composes these commuting symmetries within a single operator as summarized in Table 1. We define group  $G = (\mathbb{Z}^2 \rtimes D_4) \rtimes H_n$ ,  $H_n \subset SO(3)$ , the direct product of a geometric group  $(\mathbb{Z}^2 \rtimes D_4)$  and a color group  $H_n \subset SO(3)$ . Here,  $\mathbb{Z}^2$  denotes discrete translations on the image grid,  $D_4$  the dihedral rotation–reflection group, and  $H_n$  acts in color space; since the spatial and color actions operate on different domains, they commute.

# 4.1 LIFTING LAYER

**Joint Color and Geometric Group Convolution on Lifting Layer** Given input image  $f^{\ell}: \mathbb{Z}^2 \to \mathbb{R}^{C^{\ell}}$  and filters  $\{\psi^{\ell,i}\}$ , the lifting layer output  $f^{\ell+1}(x,s,\theta,k)$  is obtained by a joint color and geometry convolution and indexed by spatial location x, color index k, and orientation  $(s,\theta) \in D_4$  as follows:

$$[f^{\ell} \star \psi^{\ell,i}](x,s,\theta,k) = \sum_{y \in \mathbb{Z}^2} \sum_{c=1}^{C^{\ell}} \left\langle f_c^{\ell}(y), H_n(k) \psi_c^{\ell,i,(s,\theta)}(y-x) \right\rangle, \tag{6}$$

where  $\psi^{i,(s,\theta)}(\zeta) := \psi^i(\rho(s,\theta)^{-1}\zeta)$  is the spatially transformed filter and  $\langle \cdot, \cdot \rangle$  denotes the Euclidean inner product. Since  $H_n(m)$  is orthogonal (Lengyel et al., 2023), for any  $a,b \in \mathbb{R}^d$  we have  $\langle H_n(m)a,b\rangle = \langle a,H_n(-m)b\rangle$ .

**Group Action on Input Image Domain.** Then we introduce the operator  $\mathcal{L}_g$  corresponding to the group action in Eq. 2. For  $g=(t,s',\theta',m)\in G$  (translation  $t\in\mathbb{Z}^2$ , dihedral pose  $(s',\theta')$ , hue shift  $m\in\mathbb{Z}_n$ ), we define the left action  $\mathcal{L}_g^\ell$  on feature map of the  $\ell^{th}$  layer as follows:

$$[\mathcal{L}_g^{\ell} f^{\ell}](x) = [\mathcal{L}_{(t,s',\theta',m)}^{\ell} f^0](x) = H_n(m) f^{\ell} (\rho(s',\theta')^{-1} (x-t)). \tag{7}$$

#### 4.2 GROUP LAYER

Joint Color and Geometric Group Convolution on Group Layer Similarly, a group-indexed feature  $f^{\ell}: \mathbb{Z}^2 \times D_4 \times \mathbb{Z}_n \to \mathbb{R}^{C^{\ell}}$  is processed by group convolution with kernels  $\{\psi^{\ell,i}\}$  defined on relative (group) indices, where  $\ell > 0$ . Introduced in Eq. 5, we then define the convolution on the group layer as follows:

$$[f^{\ell} \star \psi^{\ell,i}](x,s,\theta,k) = \sum_{y \in \mathbb{Z}^2} \sum_{s_1 \in \{0,1\}} \sum_{\theta_1 \in \mathbb{Z}_4} \sum_{m_1 \in \mathbb{Z}_n} \sum_{c=1}^{C^{\ell}} f_c^{\ell}(y,s_1,\theta_1,m_1)$$

$$\cdot \psi_c^{\ell,i} \Big( \rho(s,\theta)^{-1} (y-x), \ (s,\theta)^{-1} (s_1,\theta_1), \ (m_1-k) \bmod n \Big).$$
(8)

Here, the hue shift difference between Eq. 6 is computed modulo n rather than  $H_n(k)$ , which implements the cyclically permute for hue shift.

**Group Action on Group-Indexed Features.** For group-indexed feature map  $f^{\ell}$ , we define group action on group layer over  $g = (t, s', \theta', m) \in G$  as follows:

$$[\mathcal{L}_g^{\ell} f^{\ell}](x, s, \theta, k) = f^{\ell} (\rho(s', \theta')^{-1} (x - t), (s', \theta')^{-1} (s, \theta), (k - m) \bmod n).$$
(9)

#### 4.3 EQUIVARIANCE

Then, composed of the above lifting and group layers of JCGEL is equivariant to group  $G = (\mathbb{Z}^2 \times D_4) \times H_n$ , because these layers satisfy Eq. 2 as follows:

$$[\mathcal{L}^{\ell}_{(t,s',\theta',m)}f^{\ell} \star \psi^{\ell,i}](x,s,\theta,k) \tag{10}$$

$$= \sum_{z,c} \left\langle f_c^{\ell}(z), H_n(k-m) \psi^{\ell,i,(s \ominus s',(-1)^{s'}(\theta-\theta'))} \left( z - \rho(s',\theta')^{-1}(x-t) \right) \right\rangle (\because \text{ Eq. } 6-7) \quad (11)$$

$$= [f^{\ell} \star \psi^{i}] (\rho(s', \theta')^{-1}(x - t), \ s \ominus s', \ (-1)^{s'}(\theta - \theta'), \ k - m) \ (\because \text{Eq. 8})$$
(12)

$$= \left[ \mathcal{L}^{\ell}_{(t,s',\theta',m)} \left[ f^{\ell} \star \psi^{\ell,i} \right] \right] (x,s,\theta,k) \ (\because \text{Eq. 9}), \tag{13}$$

where  $\ominus$  is a modular arithmetic. Further details of proof for the direct product of groups are provided in Appendix B.1 and B.2.

#### 4.4 IMPLEMENTATION

**Tensor operations.** We denote the filter  $F^\ell$  instead of  $\psi^\ell$  also feature  $X^\ell$  rather than  $f^\ell$  in Eq. 6 to represent the tensor shape. We store base spatial filters  $F^\ell \in \mathbb{R}^{C^{\ell+1} \times C^\ell \times N^\ell \times H \times W}$ , where  $C^l$  is the number of base channels,  $N^l = |H_n|$  the number of color states, and  $G^l = |D_n|$  the number of geometric states (quarter-rotations and flips). In the lifting layer for color equivariance, when  $\ell = 0$ ,  $N^\ell = 1$  then we extend kernel with hue-shfit matrix as introduced in Lengyel et al. (2023), then we get:

$$\tilde{F}^{0}_{c',n',:,1,u,v} = H_{n}(k)F^{0}_{c',:,1,u,v} \in \mathbb{R}^{C^{\ell+1} \times N^{\ell+1} \times C^{\ell} \times 1 \times H \times W}.$$
(14)

In the group layer, filter  $\tilde{F}$  cyclically permuted copies of F as follows:

$$\tilde{F}_{c',n',c,n,u,v}^{\ell} = F_{c',c,(n-n')\%k,u,v}^{\ell} \in \mathbb{R}^{C^{\ell+1} \times N^{\ell+1} \times C^{\ell} \times N^{\ell} \times H \times W}.$$
(15)

Then we implement JCGEL in the absolute rotation-and-flip manner for the geometric part rather than relative indexing of Eq. 8 because both methods are equivalent on the  $D_4$  as shown in Cohen & Welling (2016a). Let  $\mathcal{A}_{g'}$  denote the action of  $g' \in D_n$  on spatial kernels  $\tilde{F}^\ell$ ,  $[\mathcal{A}_{g'}\tilde{F}^\ell](u) := \tilde{F}^\ell(\rho(g')^{-1}u)$  (rotate by  $\theta' \cdot \frac{\pi}{2}$  and reflect if s'=1). Then the group convolution is implemented as follows:

$$X_{c',n',g',:::}^{l+1} = \sum_{c=1}^{C^l} \sum_{\Delta n \in H_n} \sum_{g \in D_n} \left( A_{g'} \tilde{F}_{c',n',c,\Delta n,1,:::}^l \right) \star X_{c,\Delta n,g,:::}^l,$$
(16)

where  $\star$  denotes 2D convolution. In the lifting layer,  $\Delta n \in \{0,1,\ldots,|H_n|-1\}$  by the hue shift matrix (Eq. 6), and  $\Delta n = n - n' \mod k$  by the cyclic permutation operation in group layer (Eq. 8). This realizes Eq. 16 avoids explicit loops over g and g'. For efficiency, we build the absolute kernel operator  $\mathcal{A}_{g'}\tilde{F}^l$  for all  $g' \in D_n$ .

**Learnable Weight for Soft Equivariance** As Romero & Hoogendoorn (2019) weights to a subgroup that breaks strict equivariance (Romero et al., 2020), we weight to geometric symmetries filter to cover real-world datasets as follows:

$$X_{c',n',g',:,:}^{l+1} = \sum_{c=1}^{C^l} \sum_{n \in H_n} \sum_{g \in D_n} \tilde{w}_{g'} \left( \mathcal{A}_{g'} \tilde{F}_{c',c,\Delta n,:,:}^{l} \right) \star X_{c,n,g,:,:}^{l},$$
(17)

where  $\tilde{w}_{g'} = \frac{\operatorname{softmax}(w_{g'}/\tau)}{\operatorname{max}(\operatorname{softmax}(w_{g'}/\tau))}, \ w_{g'} \in \mathbb{R}^{|D_n|}, \ \text{and} \ \sum_{g'} w_{g'} = 1.$ 

**Group Equivariant Batch Normalization.** When stacking JCGEL layers for large models, batch normalization is often necessary but it does not preserve equivariance. Motivated by Weiler & Cesa (2019), we normalize the group–indexed feature map  $X^{\ell} \in \mathbb{R}^{B \times C \times |H_n| \times |D_n| \times H \times W}$ . Further details are in the Appendix B.3.

# 5 EXPERIMENTS

First, we validate whether JCGEL is equivariant to both color (hue shift) and geometric  $(D_4)$  group in section 5.1, and robustness on an imbalanced environment in section 5.2. Then we investigate the effect of group-wise channel for factorized representations through disentanglement learning in section 5.3. Lastly, we evaluate our method in a classification task with real-world datasets to validate the impact in a practical environment in section 5.4. We focus on the impact of the equivariance of the direct product of groups rather than cutting-edge single-type group equivariant methods.

Common Experimental Setting for Models. We replace standard CNN layers with group equivariant layers and ours: standard convolution (Conv) (LeCun et al., 1998), color equivariant convolution (CEConv) (Lengyel et al., 2023), E(2)-equivariant steerable CNN (E2CNN) Weiler & Cesa (2019), approximately equivariant networks (AE-Net) (Wang et al., 2022), and JCGEL. We set equivariant model parameters of  $|G_{\rm geo}| = |D_4|$  for E2CNN. Also  $|G_{\rm geo}| \in \{|D_4|, |D_2|, |C_4|\}$  with respect to imbalance, disentanglement, and classification tasks.  $|H_n| = 3$  for CEConv and JCGEL, and  $\tau \in \{1.0, 0.01\}$  with respect to imbalanced tasks and others for JCGEL. Also, we set  $|G_{\rm geo}| = |C_4|, L = 2$ , and  $\alpha \in \{0, 10^{-6}\}$  for AE-Net with relaxed group convolution.

# 5.1 ARE LIFTING AND GROUP LAYER OF JCGEL EQUIVARIANT TO GROUP G?

**Experimental Setting** To validate equivariance to the hue shift and the dihedral group  $D_4$ , we generate 4,000 synthetic images of size  $n \times n$  with  $n \in \{17, 33, 65, 129\}$ . We then evaluate equivariance using the mean-squared error:  $Err = MSE([\mathcal{L}_g f \star \psi], [\mathcal{L}_g [f \star \psi]])$ , where f is a synthetic image,  $g \in G_{\text{geo}} \times G_{\text{color}}$  with  $g_{\text{geo}} \in D_4$  and  $g_{\text{color}} \in H_n$ . For each method, we evaluate both the lifting and group layers: we feed the synthetic images into the lifting layer, pass its output to the group layer, and compute the equivariance error as above. Further details are provided in Appendix C.1.

Equivariance Validation As shown in Fig. 1, the lifting and group layers of JCGEL maintain equivariance to both the hue shift group  $H_n$  and the dihedral group  $D_4$ . In particular, its geometric equivariance is on par with E2CNN, and its color equivariance remains competitive with CEConv, with variations on the order of  $10^{-7}$  being negligible. Fig. 2a further shows that the output feature maps of JCGEL match at corresponding spatial locations across rotations (e.g., red/green boxes), whereas those of a standard convolutional layer vary substantially at the same object positions. Likewise, when applying a hue shift in feature space, the feature maps of two inputs related by the shift exhibit the expected cyclic correspondence across color-indexed channels, as shown in Fig. 2b.

# 5.2 COLOR AND ROTATION IMBALANCED ENVIRONMENT

Equivariance ties together all elements within a group orbit (a homogeneous space) of G: observing a few samples constrains the features of their symmetry-related counterparts  $g \cdot x$  for all  $g \in G$ . Consequently, group equivariant models can generalize from limited evidence to unseen color/pose variants, a capability that is particularly valuable in imbalanced settings with scarce color or geometric coverage (Cohen & Welling, 2016a; Lengyel et al., 2023). Motivated by this, we evaluate robustness under controlled scarcity by constructing long-tailed and biased splits that deliberately reduce the availability of hue and rotation information.

**Experimental Setting for Imbalanced Environments** To validate the robustness of JCGEL in the absence of color and rotation information, we compose a long-tailed and biased rotated color



Figure 1: Equivariant error evaluation. The x-axis shows the synthetic image side length (H = W), and the y-axis reports the equivariance error (lower is better).



Ours (Rotation Equivariant)

(a) Rotation equivariant test. The red and green boxes mark corresponding spatial locations before and after a  $C_4$  rotation, matching feature-map values at these locatoins indicate rotation equivariance.



(b) Under a hue shift action, responses across color-indexed channels exhibit a cyclic shift, indicating equivariance to the color group.

Figure 2: Color and  $C_4$  group equivariant visualization with feature maps.

Table 2: Rotated Color MNIST (long-tailed, biased). Results averaged over three seeds. Red denotes the best score, and blue denotes the second-best. JCGEL\* denotes the strict group equivariant network. Strong, moderate, and slight indicate bias level.

|               | Method  | # param. ↓ Long-Tailed 1 |                      | Biased ↑                                 |                                   |                                          |  |  |
|---------------|---------|--------------------------|----------------------|------------------------------------------|-----------------------------------|------------------------------------------|--|--|
|               |         | <i>n</i> 1 ··· · · •     |                      | $\tau_c, \tau_g = 0.5~(\mathrm{strong})$ | $\tau_c, \tau_g = 5.0$ (moderate) | $\tau_c, \tau_g = 20.0 \text{ (slight)}$ |  |  |
| Strict Equiv. | Conv.   | 254.74K                  | 56.45(±0.26)         | 36.47(±3.52)                             | 34.77(±2.06)                      | 29.67(±0.16)                             |  |  |
|               | CEConv. | 256.80K                  | $56.48(\pm 1.60)$    | $45.50(\pm 1.95)$                        | $39.16(\pm 2.89)$                 | $29.85(\pm0.07)$                         |  |  |
|               | E2CNN   | 250.81K                  | $50.88(\pm 2.05)$    | $41.17(\pm 10.07)$                       | $35.82(\pm 6.69)$                 | $28.22(\pm 0.20)$                        |  |  |
|               | JCGEL*  | 184.82K                  | <b>59.26</b> (±0.14) | <b>75.49</b> (±0.49)                     | 74.88( $\pm 0.88$ )               | <b>75.14</b> (±1.32)                     |  |  |
| Soft Equiv    | AE-Net  | 223.39K                  | 57.64(±0.74)         | 42.82(±7.96)                             | 44.13(±5.18)                      | 37.73(±1.32)                             |  |  |
|               | JCGEL   | 184.82K                  | $57.87(\pm 0.78)$    | $75.43(\pm0.86)$                         | <b>75.69</b> ( $\pm 0.51$ )       | $75.49(\pm 0.65)$                        |  |  |

MNIST (LeCun et al., 2012) dataset. Labels are the original digits y (10 classes), independent of color/rotation. Further details are provided in the Appendix C.3-C.4, and Fig. 6-7 for the long-tailed dataset and biased datasets. We evaluate seven-layer encoders and train with the Adam optimizer (Kingma & Ba, 2015) using an initial learning rate of  $10^{-4}$  and a cosine-annealed schedule over 1,000 and 50 epochs with respect to the long-tailed and biased dataset. (warm up each epoch).

**Results under Imbalance** Consistent with our objective, the JCGEL generalizes from scarce evidence to unseen hue and rotation variants as shown in Table 2. Across all bias levels (Strong/Moderate/Slight), JCGEL and its strict variant JCGEL\* outperform baselines. In the extreme color-and rotation-bias setting ( $\tau = 0.5$ , training dominated by red), JCGEL correctly predicts blue/green instances at test time even though those hues are essentially unobserved during training. On long-tailed splits, gains concentrate on tail classes, and JCGEL shows the smallest increase in test loss during training, indicating improved generalization to long-tailed classes as shown in Fig. 3. We also observe a bias-dependent preference: under strong skew, the strict model JCGEL\* surpasses soft approaches, whereas under slight skew the soft variant exceeds strict performance as shown in Table 2. The same result appears for AE-Net (soft) and CEConv (strict). Overall, these results sup-



(a) Evaluation cross-entropy loss during training.



(b) Accuracy and portion per class.

Figure 3: Visualization of Long-tailed rotated color MNIST Results.

Table 3: Disentanglement performance on 3D Shapes and MPI3D datasets. Results are reported as mean  $\pm$  std over three seeds. Bold text indicates scores higher than all baseline models (higher is better).

|               |         |                 | 3D Shapes                   |                      |                       |                     |                      |                   |  |
|---------------|---------|-----------------|-----------------------------|----------------------|-----------------------|---------------------|----------------------|-------------------|--|
|               | Method  | # param.        | beta-VAE                    | FVM                  | MIG                   | SAP                 | DCI-Dis.             | DCI-Com.          |  |
| Strict Equiv. | Conv.   | 1.51M           | 77.33(±7.57)                | 71.46(±4.38)         | 31.79(±6.18)          | 6.57(±2.48)         | 46.50(±3.95)         | 47.53(±4.43)      |  |
|               | CEConv. | 1.78M           | 92.67(±3.06)                | 83.88(±1.44)         | $44.74(\pm 8.16)$     | $7.22(\pm 2.35)$    | 59.66(±4.44)         | $61.44(\pm 4.18)$ |  |
|               | E2CNN   | 1.60M           | $89.33(\pm 10.07)$          | $82.13(\pm 6.71)$    | $43.53(\pm 10.02)$    | $9.15(\pm 1.51)$    | $52.44(\pm 8.71)$    | $53.78(\pm 8.78)$ |  |
| Soft Equiv.   | AE-Net  | 1.62M           | $79.00(\pm 1.41)$           | 52.38(±2.30)         | $7.25(\pm 5.08)$      | $2.00(\pm 1.03)$    | 25.49(±7.50)         | 25.56(±7.49)      |  |
|               | JCGEL   | 1.52M           | 92.67(±7.02)                | <b>87.67</b> (±4.57) | $56.72(\pm 3.94)$     | $8.55(\pm 1.90)$    | <b>66.86</b> (±4.74) | 67.82(±4.94)      |  |
|               |         |                 |                             |                      |                       |                     |                      |                   |  |
|               | Mathad  | Method # param. | MPI3D                       |                      |                       |                     |                      |                   |  |
|               | Method  |                 | beta-VAE                    | FVM                  | MIG                   | SAP                 | DCI-Dis.             | DCI-Com.          |  |
| Strict Equiv. | Conv.   | 1.51M           | 48.67(±9.45)                | 39.50(±4.75)         | 3.85(±0.51)           | 2.57(±0.88)         | 18.98(±1.89)         | 27.68(±1.08)      |  |
|               | CEConv. | 1.78M           | $58.00(\pm 7.21)$           | $39.58(\pm 8.49)$    | $3.79(\pm 1.08)$      | $2.09(\pm0.78)$     | $18.79(\pm 2.99)$    | $27.27(\pm 1.64)$ |  |
|               | E2CNN   | 1.60M           | 49.00(±18.38)               | 41.44(±5.21)         | $3.62(\pm 1.55)$      | $1.37(\pm 0.86)$    | 21.60(±1.18)         | $27.54\pm1.91)$   |  |
| Soft Equiv.   | AE-Net  | 1.62M           | 49.00(±18.38)               | 41.44(±5.21)         | 3.63(±1.55)           | $1.37(\pm0.86)$     | 21.60(±1.18)         | 27.54(±1.91)      |  |
|               | JCGEL   | 1.52M           | <b>60.67</b> ( $\pm 2.31$ ) | <b>45.75</b> (±3.56) | <b>12.27</b> (±12.05) | <b>6.20</b> (±5.89) | <b>23.27</b> (±4.04) | $31.93(\pm 5.56)$ |  |

port that joint color and geometry equivariance is most beneficial in imbalanced regimes with scarce hue and rotation coverage, lifting tail-class accuracy while maintaining robust generalization.

# 5.3 DISENTANGLEMENT LEARNING

Following the group-theoretic view, a representation is disentangled when latent coordinates factorize along subgroup actions, so that each block contains only its associated latent factors of variation (Higgins et al., 2018). Motivated by this definition, we test whether the group-wise channel structure of group equivariant models (including ours) promotes such factorization.

**Experimental setting of Disentanglement Learning** We evaluate disentanglement on 3D Shapes (Burgess & Kim, 2018) and MPI3D (Eslami et al., 2018). For each method, we replace the VAE encoder's four convolutional layers with group-equivariant counterparts (CEConv, E2CNN, AE-Net, and JCGEL) and train using Adam (learning rate  $8 \times 10^{-4}$ ), a batch size of 512, and 500,000 training iterations. We report standard metrics—BetaVAE score (Higgins et al., 2017), FVM (Kim & Mnih, 2018), MIG (Chen et al., 2018), SAP (Kumar et al., 2018), and DCI (Eastwood & Williams, 2018). Additional architectural and training details are provided in Appendix C.5.

Results of Disentanglement Learning Across both 3D Shapes and MPI3D, our method outperforms all baselines in terms of disentanglement scores as shown in Table 3. Notably, 3D Shapes contains richer color variation, while MPI3D emphasizes geometric variation. Despite these differing factor profiles, our model yields robust gains on both datasets. In contrast, E2CNN tends to benefit primarily when geometric variation dominates, and CEConv when color variation dominates, indicating a dependency on dataset composition. As shown in Fig. 4, visualizations further show that our latent coordinates align sparsely with individual factors, supporting the intended effect of the group-wise channel design. Finally, although recent work introduces objectives to learn equivariance, we find that simply replacing encoder layers with our equivariant counterparts already delivers consistent improvements in disentanglement quality.

#### 5.4 CLASSIFICATION IN REAL-WORLD DATASETS

While many equivariant layers are designed as drop-in replacements for standard convolutions, evidence on large-scale, real-world settings remains: existing evaluations often focus on small or



Figure 4: DCI matrix visualization: The DCI matrix shows the feature importance  $r_{k,j}$ , how strongly the latent vector  $z_j$  predicts the ground-truth factor  $v_k$ , where  $z_j \in \{1, 2, ..., 6\}$  and  $v_k \in \{\text{Floor}, \text{Wall}, \text{Object}, \text{Scale}, \text{Shape}, \text{Azimuth}\}$  with 3D Shapes. The better disentangled representation appears as a sparse matrix with a few large, isolated cells.

Table 4: Classification accuracy on real-world datasets.

| original dataset | Layer       | # params.  | EuroSAT              | CIFAR100             | Pets              | Flowers              | Aircraft             | STL10             | Food101          |
|------------------|-------------|------------|----------------------|----------------------|-------------------|----------------------|----------------------|-------------------|------------------|
| original dataset | •           |            | (5.6K)               | (60K)                | (8.2K)            | (9.1K)               | (13K)                | (15.6K)           | (101K)           |
|                  | Conv.       | 43.59M     | $97.46(\pm0.34)$     | $76.20(\pm0.24)$     | $74.86(\pm 1.28)$ | 52.99(±1.23)         | $53.02(\pm0.24)$     | 85.24(±0.33)      | 81.26(±0.26)     |
| Strict Equiv.    | CEConv.     | 42.02M     | $97.75(\pm0.14)$     | $76.10(\pm0.14)$     | $68.76(\pm0.54)$  | $54.01(\pm 1.56)$    | $52.60(\pm0.81)$     | $84.40(\pm 1.38)$ | $81.45(\pm0.31)$ |
| •                | E2CNN       | 36.88M     | $95.38(\pm0.32)$     | $77.29(\pm0.01)$     | $67.41(\pm0.86)$  | 55.62(±1.36)         | $50.26(\pm 5.88)$    | 85.30(±0.09)      | $79.79(\pm0.26)$ |
| Soft Equiv.      | AE-Net      | 46.28M     | <b>97.83</b> (±0.15) | $72.99(\pm0.43)$     | $66.00(\pm0.36)$  | $48.63(\pm 1.91)$    | $48.67(\pm 1.13)$    | 82.43(±1.20)      | 82.04(±0.11)     |
| Soft Equiv.      | JCGEL       | 41.03M     | $97.70(\pm0.18)$     | <b>77.51</b> (±0.45) | $76.08(\pm 0.80)$ | <b>56.73</b> (±1.37) | <b>54.11</b> (±0.92) | 85.54(±0.26)      | $82.62(\pm0.38)$ |
| Original         | l Evaluatio | n Dataset  | Original Ex          | valuation Datase     | t Original        | Evaluation Da        | taset Orio           | ginal Evaluation  | n Dataset        |
|                  |             |            | ****                 |                      |                   | ***                  |                      |                   |                  |
|                  | Conv        |            |                      | EEConv               |                   | AE-Net               |                      | JCGEL             |                  |
| Augmente         | ed Evaluati | on Dataset | Augmented l          | Evaluation Datas     | et Augmente       | ed Evaluation D      | ataset Augn          | ented Evaluati    | on Datase        |
|                  |             |            |                      |                      |                   |                      | **                   |                   | <b>*</b> _       |
|                  | Conv        |            |                      | EConv                |                   | AE-Net               |                      | JCGEL             |                  |

Figure 5: EuroSAT feature-map visualization on original and augmented test images. The augmented set applies a random composite transformation at evaluation time: a continuous hue shift over the full hue circle and an in-plane rotation with angle  $\theta \sim \mathcal{U}[-\pi,\pi)$ .

low-resolution datasets (Kim et al., 2024), and the reported gains can be sensitive to model configurations (Lengyel et al., 2023; Yang et al., 2024). To identify which approaches truly scale beyond controlled benchmarks, we run a comparative classification study on real-world datasets, evaluating group equivariant models and ours.

**Experimental Setting of Real-World Classification** We report top-1 accuracy on real-world datasets (Helber et al., 2019; Krizhevsky & Hinton, 2009; Parkhi et al., 2012; Nilsback & Zisserman, 2008; Maji et al., 2013; Coates et al., 2011; Bossard et al., 2014). For each method, we replace the convolutional layers of a ResNet-18 (He et al., 2015b) with the candidate group equivariant operator and adjust block widths to keep parameter counts comparable across models. Further architectural and training details are provided in Appendix C.6.

Results of Accuracy and Robustness to Hue Shift and Rotation Variation Across the seven real-world datasets, JCGEL delivers consistent accuracy gains over the vanilla convolutional baseline and other group equivariant layers, with the exception of EuroSAT, as shown in Table 4. By contrast, alternative group equivariant models (E2CNN, CEConv, and AE-Net) exhibit dataset-dependent behavior, sometimes improving over standard convolutions but often falling short. Under composite, continuous hue shifts and in-plane rotations, the augmented dataset yields severely disrupted t-SNE embeddings for Conv, CEConv, and AE-Net—class boundaries blur relative to the original set as shown in Fig. 5. In contrast, JCGEL shows a distributional shift yet maintains clear inter-class separation. Taken together, these findings align with our objective: replacing the layer that enforces joint color and geometry equivariance provides the most reliable inductive bias among the evaluated methods for real-world classification.

# 6 Conclusion

In this paper, we address the lack of a drop-in convolutional operator that achieves simultaneous equivariance to commuting geometric (beyond translation) and color transformations, a capability needed for the computer vision domain. We propose JCGEL, a joint color and geometric group equivariant convolutional layer that can replace standard convolutions in common backbones. With only this substitution, we observe improvements on imbalanced environments, disentanglement learning, and real-world classification. These results suggest that enforcing equivariance to a direct product of groups is better suited to real-world image grids than targeting a single continuous group and has the potential to address a broader range of tasks.

# REFERENCES

- Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–a large-scale dataset for food recognition. In *Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part VI 13*, pp. 57–71. Springer, 2014.
- Chris Burgess and Hyunjik Kim. 3d shapes dataset. https://github.com/deepmind/3dshapes-dataset/, 2018.
- Ricky T. Q. Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of disentanglement in variational autoencoders. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc., 2018.
  - Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised feature learning. In *Proceedings of the fourteenth international conference on artificial intelligence and statistics*, pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.
  - Taco Cohen and M. Welling. Group equivariant convolutional networks. In *International Conference on Machine Learning*, 2016a.
  - Taco S. Cohen and Max Welling. Steerable cnns. *CoRR*, abs/1612.08498, 2016b. URL http://arxiv.org/abs/1612.08498.
  - Alexandre Devillers and Mathieu Lefort. Equimod: An equivariance module to improve visual instance discrimination. In *International Conference on Learning Representations*, 2022.
  - Cian Eastwood and Christopher K. I. Williams. A framework for the quantitative evaluation of disentangled representations. In *International Conference on Learning Representations*, 2018.
  - S. M. Ali Eslami, Nicolas Heess, Danilo Jimenez Rezende, and Max Jaderberg. Neural scene representation and rendering. *Science*, 360(6394):1204–1210, 2018.
  - Q. Garrido, Laurent Najman, and Yann LeCun. Self-supervised learning of split invariant equivariant representations. In *International Conference on Machine Learning*, 2023. doi: 10.48550/arXiv. 2302.10283.
  - Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In *IEEE International Conference on Computer Vision*, 2015a. doi: 10.1109/ICCV.2015.123.
  - Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Computer Vision and Pattern Recognition*, 2015b. doi: 10.1109/cvpr.2016.90.
  - Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 12(7):2217–2226, 2019.
  - Irina Higgins, Loïc Matthey, Arka Pal, Christopher P. Burgess, Xavier Glorot, Matthew M. Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained variational framework. In *ICLR*, 2017.
  - Irina Higgins, David Amos, David Pfau, Sébastien Racanière, Loïc Matthey, Danilo J. Rezende, and Alexander Lerchner. Towards a definition of disentangled representations. *CoRR*, abs/1812.02230, 2018. URL http://arxiv.org/abs/1812.02230.
  - Hee-Jun Jung, Jaehyoung Jeong, and Kangil Kim. CFASL: Composite factor-aligned symmetry learning for disentanglement in variational autoencoder. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=mDGvrH7lju.
    - O. Kayhan and J. V. Gemert. On translation invariance in cnns: Convolutional layers can exploit absolute spatial location. In *Computer Vision and Pattern Recognition*, 2020. doi: 10.1109/cvpr42600.2020.01428.

- Hamza Keurti, Hsiao-Ru Pan, M. Besserve, B. Grewe, and B. Scholkopf. Homomorphism autoencoder learning group structured representations from observed transitions. In *International Conference on Machine Learning*, 2022. doi: 10.48550/arXiv.2207.12067.
  - Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In Jennifer Dy and Andreas Krause (eds.), *Proceedings of the 35th International Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*, pp. 2649–2658. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/kim18b.html.
  - Hyunsu Kim, Yegon Kim, Hongseok Yang, and Juho Lee. Variational partial group convolutions for input-aware partial equivariance of rotations and color-shifts. In *International Conference on Machine Learning*, 2024. doi: 10.48550/arXiv.2407.04271.
  - Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *International Conference on Learning Representations*, 2015.
  - Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical report, University of Toronto, 2009.
  - Abhishek Kumar, Prasanna Sattigeri, and Avinash Balakrishnan. VARIATIONAL INFERENCE OF DISENTANGLED LATENT CONCEPTS FROM UNLABELED OBSERVATIONS. In *International Conference on Learning Representations*, 2018.
  - Yann LeCun, L. Bottou, Yoshua Bengio, and P. Haffner. Gradient-based learning applied to document recognition. In *Proceedings of the IEEE*, 1998. doi: 10.1109/5.726791.
  - Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database of handwritten digit images for machine learning research [best of the web]. *IEEE Signal Processing Magazine*, 29 (6):141–142, 2012.
  - A. Lengyel, Ombretta Strafforello, Robert-Jan Bruintjes, Alexander Gielisse, and Jan van Gemert. Color equivariant convolutional networks. In *Neural Information Processing Systems*, 2023. doi: 10.48550/arXiv.2310.19368.
  - L. MacDonald, Sameera Ramasinghe, and S. Lucey. Enabling equivariance for arbitrary lie groups. In *Computer Vision and Pattern Recognition*, 2021. doi: 10.1109/CVPR52688.2022.00801.
  - Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained visual classification of aircraft. In *Proceedings of the British Machine Vision Conference*, pp. 1–12, 2013.
  - Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Y. Lipman. Invariant and equivariant graph networks. In *International Conference on Learning Representations*, 2018.
  - Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of classes. In *Indian Conference on Computer Vision, Graphics and Image Processing*, Dec 2008.
  - Jung Yeon Park, Ondrej Biza, Linfeng Zhao, Jan-Willem van de Meent, and R. Walters. Learning symmetric embeddings for equivariant world models. In *International Conference on Machine Learning*, 2022. doi: 10.48550/arXiv.2204.11371.
  - Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012 *IEEE conference on computer vision and pattern recognition*, pp. 3498–3505. IEEE, 2012.
  - Yu Qi, Yuanchen Ju, Tianming Wei, Chi Chu, Lawson L.S. Wong, and Huazhe Xu. Two by two: Learning multi-task pairwise objects assembly for generalizable robot manipulation. 2025.
  - Weizheng Qiao, Yang Xu, and Hui Li. Scale-rotation-equivariant lie group convolution neural networks (lie group-cnns). In *arXiv.org*, 2023.
  - David W. Romero and M. Hoogendoorn. Co-attentive equivariant neural networks: Focusing equivariance on transformations co-occurring in data. In *International Conference on Learning Representations*, 2019.

- David W. Romero and Suhas Lohit. Learning partial equivariances from data. In *Neural Information Processing Systems*, 2021.
  - David W. Romero, E. Bekkers, J. Tomczak, and M. Hoogendoorn. Attentive group equivariant convolutional networks. In *International Conference on Machine Learning*, 2020.
  - Ivan Sosnovik, Michal Szmaja, and A. Smeulders. Scale-equivariant steerable networks. In *International Conference on Learning Representations*, 2019.
  - Tycho F. A. van der Ouderaa, David W. Romero, and Mark van der Wilk. Relaxing equivariance constraints with non-stationary continuous filters. In *Neural Information Processing Systems*, 2022. doi: 10.48550/arXiv.2204.07178.
  - Lars Veefkind and Gabriele Cesa. A probabilistic approach to learning the degree of equivariance in steerable cnns. In *International Conference on Machine Learning*, 2024. doi: 10.48550/arXiv. 2406.03946.
  - Rui Wang, R. Walters, and Rose Yu. Approximately equivariant networks for imperfectly symmetric dynamics. In *International Conference on Machine Learning*, 2022.
  - Ziming Wang and Rebecka Jörnsten. Se(3)-bi-equivariant transformers for point cloud assembly. In *Neural Information Processing Systems*, 2024. doi: 10.48550/arXiv.2407.09167.
  - Maurice Weiler and Gabriele Cesa. General e(2)-equivariant steerable cnns. In *Neural Information Processing Systems*, 2019.
  - Maurice Weiler, F. Hamprecht, and M. Storath. Learning steerable filters for rotation equivariant cnns. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2017. doi: 10.1109/CVPR.2018.00095.
  - Daniel E. Worrall and Max Welling. Deep scale-spaces: Equivariance over scale. In *Neural Information Processing Systems*, 2019.
  - Daniel E. Worrall, Stephan J. Garbin, Daniyar Turmukhambetov, and G. Brostow. Harmonic networks: Deep translation and rotation equivariance. In *Computer Vision and Pattern Recognition*, 2016. doi: 10.1109/CVPR.2017.758.
  - Ruihai Wu, Chenrui Tie, Yushi Du, Yan Zhao, and Hao Dong. Leveraging se(3) equivariance for learning 3d geometric shape assembly. In *IEEE International Conference on Computer Vision*, 2023. doi: 10.1109/ICCV51070.2023.01316.
  - Minkai Xu, Jiaqi Han, Aaron Lou, Jean Kossaifi, Arvind Ramanathan, K. Azizzadenesheli, J. Leskovec, Stefano Ermon, and A. Anandkumar. Equivariant graph neural operator for modeling 3d dynamics. In *International Conference on Machine Learning*, 2024. doi: 10.48550/arXiv.2401.11037.
  - Tao Yang, Xuanchi Ren, Yuwang Wang, Wenjun Zeng, Nanning Zheng, and Pengju Ren. Groupifyvae: from group-based definition to vae-based unsupervised representation disentanglement. *CoRR*, abs/2102.10303, 2021. URL https://arxiv.org/abs/2102.10303.
  - Yulong Yang, Felix O'Mahony, and Christine Allen-Blanchette. Learning color equivariant representations. 2024.
  - Jaemyung Yu, Jaehyun Choi, Dong-Jae Lee, H. Hong, and Junmo Kim. Self-supervised transformation learning for equivariant representations. In *Neural Information Processing Systems*, 2025. doi: 10.48550/arXiv.2501.08712.

# A ROLL OF THE LLM

Throughout this study, we employed an LLM at the sentence level to assess grammar, strengthen within-paragraph cohesion, and ensure that our intended content was clearly conveyed.

# B METHOD DETAILS

Notation differences from the main text. In the proofs we work in the Euclidean group  $E(2) = \mathbb{R}^2 \rtimes \mathrm{O}(2)$  and then specialize to the dihedral subgroup  $D_n$ . This choice is purely notational:  $D_n \leq E(2)$ , and the parameterization we use (translations and planar rotations/reflections) is the same in both settings, so establishing equivariance for E(2) yields the  $D_n$  case as a direct corollary.

To simplify expressions, we drop layer superscripts and other adornments on feature maps, filters, and group actions. In the lifting layer we write the image domain feature map and filter as  $f: \mathbb{Z}^2 \to \mathbb{R}^{C^\ell}$  and  $\psi: \mathbb{Z}^2 \to \mathbb{R}^{C^\ell}$ , with input-domain action  $\alpha$ . In the group layer we use capital letters  $F: G \to \mathbb{R}^{C^\ell}$  and  $\Psi: G \to \mathbb{R}^{C^\ell}$ , and denote the induced feature-space action by  $\rho$ . When the domain is clear, we further omit subscripts on convolution/cross-correlation operators for readability.

# B.1 LIFTING LAYER

**Setup and notation.** Let  $f: \mathbb{Z}^2 \to \mathbb{R}^{C^\ell}$  be an input feature map with  $C^\ell$  channels. Let  $\psi^i: \mathbb{Z}^2 \to \mathbb{R}^{C^\ell}$  be a learnable filter for  $i \in \{1, \dots, |C^{\ell+1}|\}$ . Denote by  $H_n(k) \in \mathbb{R}^{d_c \times d_c}$  an orthogonal hue-rotation matrix (Lengyel et al., 2023) for  $k \in \mathbb{Z}_n$ . For geometry, write group elements of O(2) as  $(s,\theta)$  with  $s \in \{0,1\}$  (flip bit) and  $\theta \in \mathbb{R}/2\pi\mathbb{Z}$  (a rotation angle). Let  $R(\theta) \in SO(2)$  be the counter-clockwise rotation by angle  $\theta$ , and let F be a fixed reflection (e.g.,  $F = \operatorname{diag}(1,-1)$ ). We use the faithful  $2 \times 2$  orthogonal representation

$$\rho(s,\theta) = \begin{cases} R(\theta), & s = 0, \\ R(\theta) F, & s = 1. \end{cases}$$
(18)

The O(2) group law is

$$(s_1, \theta_1) \cdot (s_2, \theta_2) = (s_1 \oplus s_2, \ \theta_1 + (-1)^{s_1} \theta_2 \ \text{mod } 2\pi), \tag{19}$$

where  $\oplus$  is addition modulo 2, and inverses are

$$(s,\theta)^{-1} = (s, -(-1)^s \theta \mod 2\pi).$$
 (20)

We target the direct-product group

$$G = E(2) \times H_n = (\mathbb{Z}^2 \times O(2)) \times H_n, \tag{21}$$

where  $(s, \theta) \in O(2)$  acts on translations by  $\rho(s, \theta) t$ .

**Group Action on Inputs.** For  $g=(t,s',\theta',m)\in G$  (translation  $t\in\mathbb{Z}^2$ , flip  $s'\in\{0,1\}$ , rotation  $\theta'\in\mathbb{R}/2\pi\mathbb{Z}$ , hue shift  $m\in\mathbb{Z}_n$ ), define the left action

$$[\mathcal{L}_q f](x) = [\mathcal{L}_{(t,s',\theta',m)} f](x) = H_n(m) f(\rho(s',\theta')^{-1}(x-t)). \tag{22}$$

Since  $H_n(m)$  is orthogonal (Lengyel et al., 2023), for any  $a, b \in \mathbb{R}^{d_c}$  we have  $\langle H_n(m)a, b \rangle = \langle a, H_n(-m)b \rangle$ .

**Induced Output Action.** Let  $F(x,s,\theta,k)$  be an output feature. The induced left action on outputs is

$$[\mathcal{L}^{c}_{(t,s',\theta',m)}F](x,s,\theta,k) := F\Big(\rho(s',\theta')^{-1}(x-t), \ s \ominus s', \ \text{wrap}\Big((-1)^{s'}(\theta-\theta')\Big), \ k-m\Big), \ (23)$$

where  $\ominus$  is subtraction in  $\mathbb{Z}_2$  (which equals  $\oplus$ ) and wrap(·) maps angles to  $[0, 2\pi)$  (any fixed  $2\pi$ -periodic choice suffices).

**Proof: Details of**  $E(2) \times H_n(k)$  **Equivariance on lifting layer.** We show  $[\mathcal{L}_g f \star \psi^i] = \mathcal{L}_g^c [f \star \psi^i]$  for all  $g = (t, s', \theta', m) \in G$ . By definition and orthogonality of  $H_n$ ,

$$[\mathcal{L}_{(t,s',\theta',m)}f \star \psi^{i}](x,s,\theta,k) = \sum_{y \in \mathbb{Z}^{2}} \sum_{c=1}^{C^{\ell}} \left\langle [L_{g}f_{c}](y), H_{n}(k)\psi_{c}^{i,(r,\theta)}(y-x) \right\rangle$$

$$= \sum_{y \in \mathbb{Z}^{2}} \sum_{c=1}^{C^{\ell}} \left\langle H_{n}(m)f_{c}(\rho(s',\theta')^{-1}(y-t)), H_{n}(k)\psi_{c}^{i,(s,\theta)}(y-x) \right\rangle$$
(25)

$$= \sum_{y,c} \left\langle f_c(\rho(s',\theta')^{-1}(y-t)), H_n(k-m) \psi_c^{i,(s,\theta)}(y-x) \right\rangle$$
(26)  
$$= \sum_{y,c} \left\langle f_c(\rho(s',\theta')^{-1}(y-t)), H_n(k-m) \psi_c^{i}(\rho(s,\theta)^{-1}(y-x)) \right\rangle$$
(27)

Let  $z = \rho(s', \theta')^{-1}(y - t)$  so  $y = \rho(s', \theta')z + t$ . Then,

$$[\mathcal{L}_{(t,s',\theta',m)}f \star \psi^{i}](x,s,\theta,k) = \sum_{z,c} \left\langle f_{c}(z), H_{n}(k-m) \psi^{i} \left( \rho(s,\theta)^{-1} (\rho(s',\theta') z + t - x) \right) \right\rangle$$

$$= \sum_{z,c} \left\langle f_{c}(z), H_{n}(k-m) \psi^{i} \left( \rho(q_{\text{rel}}) \left[ z - \rho(s',\theta')^{-1} (x-t) \right] \right) \right\rangle_{c},$$
(28)

where we used the O(2) group property to factor the argument via the relative pose

$$q_{\rm rel} := (s, \theta)^{-1} \cdot (s', \theta') = (s \oplus s', -(-1)^s \theta + (-1)^s \theta') = (s \oplus s', (-1)^s (\theta' - \theta)). \tag{29}$$

Equivalently, we write  $\psi^i\!\!\left(\rho\!\!\left(q_{\rm rel}\right)\!\!\left[\cdot\right]\right) = \psi^{i,(q_{\rm rel}^{-1})}(\cdot)$  so that

$$\left[\mathcal{L}_{(t,s',\theta',m)}f \star \psi^{i}\right](x,s,\theta,k) = \sum_{z,c} \left\langle f_{c}(z), H_{n}(k-m) \psi^{i,(q_{\text{rel}}^{-1})} (z - \rho(s',\theta')^{-1}(x-t)) \right\rangle_{c}.$$
(30)

Now, unpack  $q_{\rm rel}^{-1}$  using equation 20:

$$q_{\rm rel} = (s \oplus s', \ (-1)^s (\theta' - \theta)) \quad \Rightarrow \quad q_{\rm rel}^{-1} = \left( s \oplus s', \ -(-1)^{s \oplus s'} \ (-1)^s (\theta' - \theta) \right) = \left( s \oplus s', \ (-1)^{s'} (\theta - \theta') \right),$$

where angles are understood modulo  $2\pi$ . Hence

$$[\mathcal{L}_{(t,s',\theta',m)}f \star \psi^i](x,s,\theta,k) \tag{31}$$

$$= \sum_{z,c} \left\langle f_c(z), H_n(k-m) \psi^{i,(s \ominus s', (-1)^{s'}(\theta-\theta'))} \left( z - \rho(s', \theta')^{-1}(x-t) \right) \right\rangle$$
 (32)

$$=[f\star\psi^i]\big(\rho(s',\theta')^{-1}(x-t),\;s\ominus s',\;\mathrm{wrap}((-1)^{s'}(\theta-\theta')),\;k-m\big)\;(\because \mathsf{Eq.}\;6) \eqno(33)$$

$$= \left[ \mathcal{L}^{c}_{(t,s',\theta',m)} \left[ f \star \psi^{i} \right] \right] (x,s,\theta,k) \ (\because \text{Eq. 23}), \tag{34}$$

which proves E(2)-equivariance jointly with hue shift.

### B.2 COLOR AND O(2) GROUP LAYER

**Group structure.** The orthogonal group O(2) can be expressed as the semidirect product  $SO(2) \times \mathbb{Z}_2$ . Each element is written  $(s, \theta)$  with  $s \in \{0, 1\}$  (flip) and  $\theta \in S^1 = \mathbb{R}/2\pi\mathbb{Z}$  (rotation angle). Its law and inverse are

$$(s_1, \theta_1) \cdot (s_2, \theta_2) = (s_1 \oplus s_2, \ \theta_1 + (-1)^{s_1} \theta_2 \bmod 2\pi),$$
 (35)

$$(s,\theta)^{-1} = (s, -(-1)^s \theta \mod 2\pi).$$
 (36)

The color group  $H_n = \mathbb{Z}_n$  acts via an orthogonal representation  $H_n(k)$ ,  $k \in \{0, \dots, n-1\}$ , with cyclic composition  $k_1 \oplus k_2 = (k_1 + k_2) \mod n$ . Hence, the total group is

$$G = (\mathbb{Z}^2 \times O(2)) \times H_n.$$

Feature domains. A group-layer feature map is

$$F: \mathbb{Z}^2 \times \{0,1\} \times S^1 \times \mathbb{Z}_n \longrightarrow \mathbb{R}^{C^\ell}.$$

That is, each feature is indexed by spatial location  $x \in \mathbb{Z}^2$ , flip s, rotation  $\theta$ , and hue index k. A learnable filter  $\psi^i$  (for output channel i) is defined on relative indices

$$\Psi^i: \mathbb{Z}^2 \times \{0,1\} \times S^1 \times \mathbb{Z}_n \longrightarrow \mathbb{R}^{C^\ell}.$$

**Group correlation.** We follow the goup correlation (Cohen & Welling, 2016a) as introduced  $[F \star \Psi](g) = \sum_{h \in G} f(g) \Psi(g^{-1}h)$ . The group correlation producing the output at  $(x, s, \theta, k)$  is

$$[F \star \Psi^{i}](x, s, \theta, k) = \sum_{y \in \mathbb{Z}^{2}} \sum_{s_{1} \in \{0, 1\}} \int_{0}^{2\pi} \sum_{m_{1} \in \mathbb{Z}_{n}} \sum_{c=1}^{C^{\ell}} F_{c}(y, s_{1}, \theta_{1}, m_{1})$$

$$\cdot \Psi^{i}_{c} \Big( \rho(s, \theta)^{-1} (y - x), \ (s, \theta)^{-1} (s_{1}, \theta_{1}), \ (m_{1} - k) \bmod n \Big) \frac{d\theta_{1}}{2\pi}.$$

$$(37)$$

Here, the hue difference is computed modulo n, which implements the rolling structure of hue shift. In practice, the continuous integral  $\int_0^{2\pi}$  is approximated by a uniform sample sum  $\frac{1}{Q} \sum_{\theta_1}$  with Q orientations.

**Group action on inputs.** For  $g = (t, s', \theta', m) \in G$ , the left action on inputs is

$$[\mathcal{L}_g F](x, s, \theta, k) = F(\rho(s', \theta')^{-1}(x - t), (s', \theta')^{-1}(s, \theta), (k - m) \bmod n).$$
(38)

That is, the group index is transformed as  $h \mapsto g^{-1}h$ , consistent with left actions.

**Induced output action.** For an output feature  $U(x,s,\theta,k)=[F\star\Psi](x,s,\theta,k)$ , the induced action is

$$[\mathcal{L}^{c}_{(t,s',\theta',m)}U](x,s,\theta,k) = U(\rho(s',\theta')^{-1}(x-t), s \ominus s', (-1)^{s'}(\theta-\theta') \bmod 2\pi, (k-m) \bmod n).$$
(39)

**Proof: Details of**  $E(2) \times H_n(k)$  **Equivariance on Group Layer.** We show  $[\mathcal{L}_g F \star \Psi^i] = \mathcal{L}_g^c [F \star \Psi^i]$  for all  $g = (t, s', \theta', m) \in G$ .

$$[\mathcal{L}_{g}F \star \Psi^{i}](x, r, \theta, k) = \sum_{y \in \mathbb{Z}^{2}} \sum_{s_{1} \in \{0, 1\}} \int_{0}^{2\pi} \sum_{m_{1} \in \mathbb{Z}_{n}} \sum_{c=1}^{C^{\ell}} [\mathcal{L}_{g}F](y, s_{1}, \theta_{1}, m_{1})$$

$$\cdot \Psi_{c}^{i}(\rho(s, \theta)^{-1}(y - x), (s, \theta)^{-1}(s_{1}, \theta_{1}), m_{1} - k) \frac{d\theta_{1}}{2\pi}$$

$$= \sum_{y, s_{1}, m_{1}, c} \int_{\theta_{1}} F_{c}(\rho(s', \theta')^{-1}(y - t), (s', \theta')^{-1}(s_{1}, \theta_{1}), m_{1} - m)$$

$$\cdot \Psi_{c}^{i}(\rho(s, \theta)^{-1}(y - x), (s, \theta)^{-1}(s_{1}, \theta_{1}), m_{1} - k) \frac{d\theta_{1}}{2\pi}.$$

$$(40)$$

Let

$$z = \rho(s', \theta')^{-1}(y - t), \Rightarrow y = \rho(s', \theta')z + t$$

$$(\tilde{s}_1, \tilde{\theta}_1) = (s', \theta')^{-1}(s_1, \theta_1) \Rightarrow (s_1, \theta_1) = (s', \theta')(\tilde{s}_1, \tilde{\theta}_1)$$

$$\tilde{m}_1 = m_1 - m \Rightarrow m_1 = \tilde{m}_1 + m.$$
(41)

Then insert all variables in Eq. 41, then

$$[\mathcal{L}_g F \star \Psi^i](x, r, \theta, k) = \sum_{z, \tilde{s}_1, \tilde{m}_1, c} \int_{\tilde{\theta}_1} F_c(z, \tilde{s}_1, \tilde{\theta}_1, \tilde{m}_1) \\ \cdot \Psi^i_c \Big( \underbrace{\rho(s, \theta)^{-1} \Big( \rho(s', \theta') z + t - x \Big)}_{\text{spatial rel.}}, \underbrace{\underbrace{(s, \theta)^{-1} \Big( (s', \theta') (\tilde{s}_1, \tilde{\theta}_1) \Big)}_{\text{orient rel.}}, \underbrace{\tilde{m}_1 + m - k}_{\text{hue rel.}} \Big) \frac{d\tilde{\theta}_1}{2\pi}$$

Then let spatial rel, orient rel. and hue rel. as follows:

$$\rho(s,\theta)^{-1}(\rho(s',\theta')z + t - x) = \rho(s,\theta)^{-1}\rho(s',\theta')[z - \rho(s',\theta')^{-1}(x - t)]$$

$$= \rho(\underbrace{(s,\theta)^{-1}(s',\theta')}_{:=q_{out}})[z - \underbrace{\rho(s',\theta')^{-1}(x - t)}_{:=x^{*}}]$$

$$(s,\theta)^{-1}((s',\theta')(\tilde{s}_{1},\tilde{\theta}_{1})) = ((s,\theta)^{-1}(s',\theta'))(\tilde{s}_{1},\tilde{\theta}_{1}) = q_{out}(\tilde{s}_{1},\tilde{\theta}_{1})$$

$$\tilde{m}_{1} + m - k = \tilde{m}_{1} - \underbrace{(k - m)}_{:-k^{*}}.$$
(43)

Let

$$(q_{out})^{-1} = ((s,\theta)^{-1}(s',\theta'))^{-1}$$

$$= (s',\theta')^{-1}(s,\theta)$$

$$= (s',-(-1)^{s'}\theta')(s,\theta)$$

$$= (s'\oplus s,-(-1)^{s'}\theta'+(-1)^{s'}\theta$$

$$= (s'\oplus s,(-1)^{s'}(\theta-\theta'))$$

$$:= (s^{\star},\theta^{\star})$$
(44)

Then insert Eq. 43 and 44 in Eq. 42,

$$[\mathcal{L}_{g}F \star \Psi^{i}](x,s,\theta,k) = \sum_{z,\tilde{s}_{1},\tilde{m}_{1},c} \int_{\tilde{\theta}_{1}} F_{c}(z,\tilde{s}_{1},\tilde{\theta}_{1},\tilde{m}_{1}) \cdot \Psi^{i}_{c} \left(\rho(q_{out}[z-x^{\star}],(s^{\star},\theta^{\star})^{-1}(\tilde{s}_{1},\tilde{\theta}_{1}),\tilde{m}_{1}-k^{\star}\right) \frac{d\theta_{1}}{2\pi}$$

$$= \sum_{z,\tilde{s}_{1},\tilde{m}_{1},c} \int_{\tilde{\theta}_{1}} F_{c}(z,\tilde{s}_{1},\tilde{\theta}_{1},\tilde{m}_{1}) \cdot \Psi^{i}_{c} \left(\rho(s^{\star},\theta^{\star})^{-1}(z-x^{\star}),(s^{\star},\theta^{\star})^{-1}(\tilde{s}_{1},\tilde{\theta}_{1}),\tilde{m}_{1}-k^{\star}\right) \frac{d\tilde{\theta}_{1}}{2\pi}$$

$$= [F \star \Psi^{i}](x^{\star},s^{\star},\theta^{\star},k^{\star}) \; (\because \text{ group correlation, Eq. 37})$$

$$= [F \star \Psi^{i}](\rho(s',\theta')^{-1}(x-t),s \ominus s',(-1)^{s'}(\theta-\theta'),k-m) \; (\because \text{ Eq. 43 and 44})$$

$$= [\mathcal{L}^{c}_{g}[F \star \Psi^{i}]](x,s,\theta,k) \; (\because \text{ definition of induced action, Eq. 39}).$$

$$(45)$$

#### B.3 DETAILS OF GROUP EQUIVARIANT BATCH NORMALIZATION

When stacking JCGEL layers for large models, batch normalization is often necessary. However, a batch normalization can break equivariance (Weiler & Cesa, 2019). Motivated by Weiler & Cesa (2019), we normalize the group–indexed feature map by sharing statistics and affine parameters across the color/geometry channels. Let  $X^{\ell} \in \mathbb{R}^{B \times C \times |H_n| \times |D_n| \times H \times W}$ . For each base channel c,

$$\mu_{c}^{\ell} = \frac{1}{B|H_{n}||D_{n}|HW} \sum_{b,k,r,h,w} X_{b,c,k,r,h,w}^{\ell}, \quad (\sigma_{c}^{\ell})^{2} = \frac{1}{B|H_{n}||D_{n}|HW} \sum_{b,k,r,h,w} (X_{b,c,k,r,h,w}^{\ell} - \mu_{c}^{\ell})^{2},$$

$$(46)$$

and we apply the fiber-shared affine map

$$\widehat{X}_{b,c,k,r,h,w}^{\ell} = \frac{X_{b,c,k,r,h,w}^{\ell} - \mu_c^{\ell}}{\sqrt{(\sigma_c^{\ell})^2 + \varepsilon}}, \qquad Y_{b,c,k,r,h,w}^{\ell} = \gamma_c \, \widehat{X}_{b,c,k,r,h,w}^{\ell} + \beta_c.$$

Because the group action permutes only the fiber indices (k,r) while  $\mu_c^\ell, \sigma_c^\ell, \gamma_c, \beta_c$  are shared across them, this BN commutes with the action and thus preserves equivariance. (In practice, reshape to  $(B|H_n||D_n|, C, H, W)$ , apply BatchNorm2d, and reshape back.)

# C DETAILS OF EQUIVARIANT

# C.1 Details of Equivariance Validation Task Experimental Setting

To validate equivariance to the hue shift and the dihedral group  $D_4$ , we generate 4,000 synthetic images of size  $n \times n$  with  $n \in \{17, 33, 65, 129\}$ . Because discrete in-plane rotations on a

square grid misalign the rotation center for even n (causing interpolation artifacts), we restrict to odd side lengths. We compare JCGEL against a standard CNN (LeCun et al., 1998), an E(2)-equivariant steerable model (E2CNN) (Weiler & Cesa, 2019), and a color-equivariant convolution (CEConv) (Lengyel et al., 2023). All layers are initialized with He initialization (He et al., 2015a). For each method, we evaluate both the lifting and group layers by feeding the synthetic images and computing equivariance error as above.

# C.2 DETAILS OF EQUIVARIANT ERROR

We measure two errors, one at the lifting layer and one at the group layer:

$$\operatorname{Err}^{(L)} = \operatorname{MSE}(\left[\mathcal{L}_{g}^{0} f^{0} \star \psi^{0}\right], \left[\mathcal{L}_{g}^{1} \left[f^{0} \star \psi^{0}\right]\right]),$$

$$\operatorname{Err}^{(G)} = \operatorname{MSE}(\left[\mathcal{L}_{g}^{0} f^{0} \star \psi^{0}\right] \star \psi^{1}, \mathcal{L}_{g}^{2} \left[\left[f^{0} \star \psi^{0}\right] \star \psi^{1}\right]),$$
(47)

where  $\mathcal{L}_g^\ell$  denotes the group action at layer  $\ell$  ( $\ell=0$  for image domain,  $\ell\geq 1$  for feature spaces),  $f^0$  is the input image,  $\psi^0$  and  $\psi^1$  are the lifting and group-layer filters, and  $\star$  is cross-correlation. The first line compares "transform-then-lift" versus "lift-then-transform" (lifting equivariance); the second line compares "transform-then-group-convolve" versus "group-convolve-then-transform" (group-layer equivariance).

#### C.3 DETAILS OF LONG-TAILED ROTATED COLOR MNIST DATASET

Common Experimental Setting We evaluate seven-layer encoders, each constructed by stacking a single convolutional primitive: standard convolution (Conv) (LeCun et al., 1998), color equivariant convolution (CEConv) (Lengyel et al., 2023), E(2)-equivariant steerable cnn (E2CNN) Weiler & Cesa (2019), approximately equivariant networks (AE-Net) (Wang et al., 2022), and JCGEL. All encoders are trained with the Adam optimizer (Kingma & Ba, 2015) using an initial learning rate of  $10^{-4}$  and a consine-annealed schedule over 1,000 and 50 epochs with respect to the long-tailed and biased dataset. (warm up each epoch).

**Long-tailed Rotated-Color MNIST.** We construct a custom dataset from MNIST to stress-test color/geometry robustness. Each grayscale image  $x \in \mathbb{R}^{28 \times 28}$  with digit label  $y \in \{0, \dots, 9\}$  is upsampled to  $64 \times 64$  (bilinear) and embedded into RGB by selecting a color index  $c \in \{0, 1, 2\}$  and writing the upsampled image into the c-th channel while zeroing the others, yielding  $x' \in \mathbb{R}^{3 \times 64 \times 64}$ . We then apply a rotation  $R_{\theta}$  with  $\theta = 12k^{\circ}$  for  $k \sim \mathcal{U}\{0, \dots, 29\}$ , producing  $x'' = R_{\theta}(x')$ . Crucially, the class label remains the original digit y; color and rotation act as nuisance factors (10-way classification).

To induce class imbalance in training, we draw the number of samples for each (digit, color) pair  $k \in \{0, \dots, 29\}$  from a power-law:

$$n_k \sim \left[ \text{Power}(\alpha = 0.3) \cdot N_{\text{max}} \right],$$

where  $N_{\rm max}$  is the maximum per-pair budget; counts are then aggregated over color to form digitlevel splits, yielding a long-tailed training set. The test set is balanced with a uniform number of examples per digit to fairly assess generalization under imbalance.

To validate robustness of JCGEL within lack of color and rotation information, we compose long-tailed rotated color MNIST (LeCun et al., 2012) dataset. Each MNIST grayscale image is upsampled to  $64 \times 64$ , converted to RGB by writing the image into a single channel (others zero), and then rotated in-plane by  $R_{\theta}$  with  $\theta \in \{0^{\circ}, 12^{\circ}, \ldots, 648^{\circ}\}$  about the image center (bilinear resampling). Labels are the original digits y (10 classes), independent of color/rotation. To induce a long-tailed training set, sample counts follow a power-law over (digit, color) pairs.

#### C.4 Details of Biased Color-Rotation MNIST: Unified Specification

**Overview** We construct a biased MNIST variant to probe robustness against spurious correlations by coupling each digit class with preferred color and rotation. The training distribution uses two temperature (scale) parameters that control the global (inter-class) bias strength:  $\tau_c$  for color and



Figure 6: Rotated color MNIST long-tailed training dataset.

 $\tau_r$  for rotation.<sup>1</sup> Within each class, samples are drawn from a local (intra-class) bias with a fixed sharp temperature  $\tau_{\rm local} = 0.01$  (strong concentration). The test set is constructed uniformly over all color×rotation combinations, independent of  $\tau_c$ ,  $\tau_r$ .

Wrapped One-Sided Exponential on a Cyclic Domain Let items be indexed by  $k \in \{0,1,\ldots,n-1\}$  on a circle. For a center index  $\mu \in \{0,\ldots,n-1\}$  and temperature  $\tau>0$ , define  $\lambda=\frac{1}{\tau}$  and

$$P(k \mid \mu, \tau) = \frac{\exp(-\lambda ((k - \mu) \bmod n))}{\sum_{i=0}^{n-1} \exp(-\lambda i)}.$$
 (48)

This distribution is peaked at  $k=\mu$  and decays monotonically along the cyclic order; it is not symmetric about  $\mu$ . Smaller  $\tau$  (larger  $\lambda$ ) yields stronger bias (sharper concentration).

**Training Set Bias** We use  $N_c = 3$  colors with indices  $c \in \{0:R, 1:G, 2:B\}$  and  $N_r$  discrete rotations with indices  $r \in \{0, \dots, N_r - 1\}$ . The rotation angle is  $\theta(r) = \frac{360^{\circ}}{N_r} r$ .

**Level 1: Global (Inter-Class) Bias** Global categorical distributions are built, centered at (Red and  $0^{\circ}$ ):

$$P_{\text{global}}(c \mid \tau_c) = P(c \mid \mu = 0, \tau_c), \quad P_{\text{global}}(r \mid \tau_r) = P(r \mid \mu = 0, \tau_r),$$

using equation 48. For each digit class  $y \in \{0, \dots, 9\}$  we sample preferred centers

$$\mu_{c,y} \sim \text{Categorical}(P_{\text{global}}(c \mid \tau_c)), \qquad \mu_{r,y} \sim \text{Categorical}(P_{\text{global}}(r \mid \tau_r)).$$

Small  $\tau_c$ ,  $\tau_r$  (strong bias) cause many classes to share the same preferred pair (e.g., Red &  $0^{\circ}$ ); large values diversify class-wise preferences.

**Level 2: Local (Intra-Class) Bias** Conditioned on class y and its centers  $(\mu_{c,y}, \mu_{r,y})$ , we define class-conditional distributions with a fixed sharp temperature  $\tau_{\text{local}} = 0.01$ :

$$P(c \mid y) = P(c \mid \mu = \mu_{c,y}, \tau = \tau_{\text{local}}), \quad P(r \mid y) = P(r \mid \mu = \mu_{r,y}, \tau = \tau_{\text{local}}).$$

Assuming conditional independence within a class,

$$P(c,r \mid y) = P(c \mid y) P(r \mid y).$$

Given  $N_y$  samples for class y, counts  $\{N_{c,r}^{(y)}\}$  are drawn via

$$\{N_{c,r}^{(y)}\}_{c,r} \sim \text{Multinomial}(N_y, \text{vec}(P(c,r \mid y))).$$

**Test Set (Uniform)** For evaluation, we allocate an equal number of samples to every triple (y, c, r), yielding a uniform distribution over color×rotation per class. Implementation-wise, the per-class sample count must be divisible by  $3 \times N_r$  to achieve exact uniformity (an error is raised otherwise).

<sup>&</sup>lt;sup>1</sup>In code these appear as color\_std and rot\_std; they are not statistical standard deviations but scale (temperature) parameters.



Figure 7: Rotated color MNIST biased training datasets.

#### C.5 DISENTANGLEMENT LEARNING BENCHMARK DETAILS

**Experimental setting** We evaluate disentanglement on 3D Shapes (Burgess & Kim, 2018) and MPI3D (Eslami et al., 2018). For each method, we replace the VAE encoder's four convolutional layers with group-equivariant counterparts and train using Adam (learning rate  $8 \times 10^{-4}$ ), a batch size of 512, and 500,000 training iterations. We report standard metrics—BetaVAE score (Higgins et al., 2017), FVM (Kim & Mnih, 2018), MIG (Chen et al., 2018), SAP (Kumar et al., 2018), and DCI (Eastwood & Williams, 2018).

#### C.5.1 BENCHMARKS

**Setup and notation.** Let x be observations generated by ground-truth factors  $v=(v_1,\ldots,v_K)$ . An encoder produces latent codes  $z=(z_1,\ldots,z_J)$  (e.g., mean of  $q_\phi(z\mid x)$ ). Unless stated otherwise, latents are standardized per dimension (zero mean, unit variance over the dataset). All metrics below require access to ground-truth factors (or their labels).

 $\beta$ -VAE score (FVM). For each factor  $v_k$ , draw a mini-batch in which  $v_k$  is held fixed while the other factors vary. Encode the batch, compute the empirical variance vector  $\mathrm{Var}(z) \in \mathbb{R}^J$  across the batch, and (optionally) normalize by dataset-wide latents' variance. Train a low-capacity classifier (e.g., linear) to predict the fixed factor index k from either  $\mathrm{Var}(z)$  or from the index  $\mathrm{arg\,min}_j\,\mathrm{Var}(z_j)$ . The score is the classification accuracy on held-out batches. Higher is better (one dimension is maximally insensitive when its corresponding factor is fixed). Further details are in Higgins et al. (2017).

**FactorVAE score.** Identical batching protocol as above (one factor fixed per batch), but no classifier is trained. For each batch, compute  $j^* = \arg\min_i \operatorname{Var}(z_i)$  and assign a vote that  $j^*$  corresponds

to factor k. After collecting votes on a training stream, define a majority-vote mapping from code indices to factor indices and evaluate the accuracy on a test stream. Higher is better (same intuition as the  $\beta$ -VAE score, classifier-free). Further details are in Kim & Mnih (2018).

MIG (Mutual Information Gap). Estimate mutual information between each code and each factor, e.g., by discretizing  $z_j$  and  $v_k$ :  $I(z_j; v_k)$ . For each factor k, sort  $\{I(z_j; v_k)\}_{j=1}^J$  to get the two largest values  $I_{(1),k} \geq I_{(2),k}$ .

Fix a ground-truth factor index  $k \in \{1, \dots, K\}$  and consider the mutual informations

$$s_i = I(z_i; v_k), \qquad j = 1, \dots, J.$$

Let  $\pi_k$  be a permutation that sorts these scores in nonincreasing order:

$$I(z_{\pi_k(1)}; v_k) \ge I(z_{\pi_k(2)}; v_k) \ge \cdots \ge I(z_{\pi_k(J)}; v_k).$$

We then define

$$I_{(1),k} := I(z_{\pi_k(1)}; v_k)$$
 and  $I_{(2),k} := I(z_{\pi_k(2)}; v_k)$ 

 $I_{(1),k}:=I(z_{\pi_k(1)};v_k)$  and  $I_{(2),k}:=I(z_{\pi_k(2)};v_k)$ , i.e., the largest and second-largest mutual information between any single code dimension and factor  $v_k$ . Consequently  $I_{(1),k} \ge I_{(2),k}$  by construction.

Define

1026

1027

1028

1029 1030

1031

1032 1033

1034

1035

1036

1037 1038

1039 1040 1041

1042

1043

1044 1045 1046

1047 1048 1049

1050

1051

1056

1057

1058

1059

1061

1062

1063

1064

1066 1067

1068 1069

1070

1071

1072

1074

1075

1077

1078

1079

$$MIG = \frac{1}{K} \sum_{k=1}^{K} \frac{I_{(1),k} - I_{(2),k}}{H(v_k)},$$

where  $H(v_k)$  is the (discrete) entropy of factor  $v_k$ . Higher is better (a single code carries most of the information about each factor). Further details are in Chen et al. (2018).

**SAP** (Separated Attribute Predictability). For each factor  $v_k$  and each code  $z_j$ , train a simple predictor from  $z_i$  to  $v_k$  (e.g., linear regression with  $R^2$  for continuous factors or linear SVM accuracy for categorical factors), yielding scores  $s_{i,k}$ . For each k, take the gap between the top two scores:  $\Delta_k = \max_j s_{j,k} - \max_{j \neq j^\star} s_{j,k}$ , with  $j^\star = \arg\max_j s_{j,k}$ . Define SAP  $= \frac{1}{K} \sum_{k=1}^K \Delta_k$ . Higher is better (each factor is best predicted by a unique code). Further details are in Kumar et al. (2018).

**DCI** (Disentanglement-Completeness-Informativeness). Fit a predictive model from z to v(e.g., gradient-boosted trees or sparse linear models) and extract nonnegative feature importances  $r_{k,j}$  (importance of code j for predicting factor k). Let  $\tilde{r}_{\cdot,j}$  be importances for code j normalized over factors, and  $\tilde{r}_k$ , be importances for factor k normalized over codes. Define

Disent. = 
$$1 - \frac{1}{J} \sum_{j=1}^{J} H(\tilde{r}_{\cdot,j})$$
, Compl. =  $1 - \frac{1}{K} \sum_{k=1}^{K} H(\tilde{r}_{k,\cdot})$ ,

where  $H(\cdot)$  is the normalized entropy. Briefly, DCI-Disesnt. is the score of latent code purity: "Does each code dimension  $z_i$  focus on one ground-truth factor?", and DCI-Compl. is the score of factor concentration: Is each factor  $v_k$  captured mainly by one code dimension?. Informativeness is the predictive performance (e.g., inverse error) of the same model from z to v. Higher disentanglement means each code is used for few factors; higher completeness means each factor is concentrated on few codes; higher informativeness means factors are predictable from z. Further details are in Eastwood & Williams (2018).

#### C.6 CLASSIFICATION EXPERIMENTAL DETAILS

**Experimental Setting** We report top-1 accuracy on real-world datasets (Helber et al., 2019; Krizhevsky & Hinton, 2009; Parkhi et al., 2012; Nilsback & Zisserman, 2008; Maji et al., 2013; Coates et al., 2011; Bossard et al., 2014). For each method, we replace the convolutional layers of a ResNet-18 with the candidate group equivariant operator and adjust block widths to keep parameter counts comparable across models. All models are trained with Adam for 200 epochs using a cosineannealed learning-rate schedule (updated each epoch), following ImageNet augmentation policy, and we tune the initial learning rate over  $\{10^{-3}, 10^{-4}\}$ . In addition, demonstrating robustness of color and geometric variance in the real-world dataset, we randomly augmented the test samples with composite continuous hue shift and rotation. In addition, to assess robustness to color and geometric variation on real-world datasets, we apply random composite transformations at evaluation time: continuous hue shifts over the full hue circle and in-plane rotations uniformly sampled from  $[0^{\circ}, 360^{\circ}).$ 

# C.6.1 MODEL CONFIGURATIONS

Table 5: Comparison of different network architectures.

| Layer Name                           | Output Size                                                        | Configuration                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) Standard                         | d ResNet-18                                                        |                                                                                                                                                                                                                                                                                                                                                                                       |
| conv1                                | $112 \times 112$                                                   | $7 \times 7$ , 64, stride 2 $3 \times 3$ max pool, stride 2                                                                                                                                                                                                                                                                                                                           |
| layer1<br>layer2<br>layer3<br>layer4 | $56 \times 56$ $28 \times 28$ $14 \times 14$ $7 \times 7$          |                                                                                                                                                                                                                                                                                                                                                                                       |
| <del>-</del>                         | 1 × 1                                                              | global average pool, FC(4096→classes)                                                                                                                                                                                                                                                                                                                                                 |
| (b) CEConv                           | -ResNet-18                                                         |                                                                                                                                                                                                                                                                                                                                                                                       |
| conv1                                | $\begin{array}{c} 112 \times 112 \\ 56 \times 56 \end{array}$      | CEConv2d $(1 \rightarrow R)$ , $7 \times 7$ , 64, stride 2; BN5d + ReLU $3 \times 3$ max pool, stride 2 (applied after merging $C \times R$ )                                                                                                                                                                                                                                         |
| layer1<br>layer2<br>layer3<br>layer4 | $56 \times 56$ $28 \times 28$ $14 \times 14$ $7 \times 7$          |                                                                                                                                                                                                                                                                                                                                                                                       |
| head                                 | $1 \times 1$                                                       | global avg pool over $(H,W)$ on merged $C\times R$ channels; FC(2048 $\timesR\to {\rm classes})$                                                                                                                                                                                                                                                                                      |
| (c) E2-ResN                          | et-18                                                              |                                                                                                                                                                                                                                                                                                                                                                                       |
| conv1                                | $\begin{array}{c} 112 \times 112 \\ 56 \times 56 \end{array}$      | R2Conv $7 \times 7$ , to Reg $(G)$ with mult. $64$ , stride 2; IBN + ReLU $3 \times 3$ pointwise max pool, stride 2                                                                                                                                                                                                                                                                   |
| layer1<br>layer2<br>layer3<br>layer4 | $56 \times 56$<br>$28 \times 28$<br>$14 \times 14$<br>$7 \times 7$ |                                                                                                                                                                                                                                                                                                                                                                                       |
| head                                 | 1 × 1                                                              | global avg pool over $(H, W)$ ; $FC((2048) \times \gamma \rightarrow classes)$                                                                                                                                                                                                                                                                                                        |
| (d) JCGEL-                           | ResNet-18 (Ou                                                      | rs)                                                                                                                                                                                                                                                                                                                                                                                   |
| conv1                                | $112 \times 112$                                                   | <b>Lifting</b> JCGEConv2d $(N_c:1 \rightarrow N_c,\ N_g:1 \rightarrow N_g),\ 7 \times 7,\ 64,\ \text{stride 2; CR-BN}+\text{ReLU}$                                                                                                                                                                                                                                                    |
|                                      | $56 \times 56$                                                     | Equivariant spatial pool $3 \times 3$ , stride 2                                                                                                                                                                                                                                                                                                                                      |
| layer1<br>layer2<br>layer3<br>layer4 | $56 \times 56$<br>$28 \times 28$<br>$14 \times 14$<br>$7 \times 7$ | $ \begin{bmatrix} 1\times 1,\ 64;\ 3\times 3,\ 64;\ 1\times 1,\ 256\ ]\times 2 \\ 1\times 1,\ 128;\ 3\times 3,\ 128;\ 1\times 1,\ 512\ ]\times 2  \text{(first block stride 2)} \\ 1\times 1,\ 256;\ 3\times 3,\ 256;\ 1\times 1,\ 1024\ ]\times 2  \text{(first block stride 2)} \\ 1\times 1,\ 512;\ 3\times 3,\ 512;\ 1\times 1,\ 2048\ ]\times 2  \text{(first block stride 2)} $ |
| head                                 | $1 \times 1$                                                       | global average pool over $(c, \text{ geometry}, H, W); FC(2048 \rightarrow \text{classes})$                                                                                                                                                                                                                                                                                           |
|                                      |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                       |

# C.6.2 DISCUSSION

Real-World Generalization via Direct-Product Discrete (Soft) Equivariance Real-world images rarely vary along a single axis; color and geometry typically change together. Although the homogeneous space of a discrete group is smaller than that of a continuous group, our model that composes commuting discrete color and geometric actions (e.g.,  $(\mathbb{Z}^2 \rtimes D_4) \rtimes H_n$ ) consistently improves performance

Table 6: Discrete vs. continuous group equivariant model. JCGEL-G denotes equivariant to  $SE(2) \times H_n(k)$  model.

|          | JCGEL                       | JCGEL-C           |
|----------|-----------------------------|-------------------|
| EuroSAT  | <b>97.70</b> (±0.18)        | $97.52(\pm0.18)$  |
| Aircraft | <b>54.11</b> ( $\pm 0.92$ ) | $52.95(\pm0.87)$  |
| STL10    | <b>85.54</b> ( $\pm 0.26$ ) | $85.29(\pm 0.57)$ |

over E2CNN across diverse vision tasks. Moreover, JCGEL surpasses JCGEL-C, which is equivariant to  $SE(2) \times H_n$  as shown in Table 6, suggesting that a direct product of discrete groups can be an effective choice for real-world generalization.

Two practical considerations support this finding. First, in real-world pipelines, continuous transformations act through data augmentation on the image grid, and this effectively broadens the coverage achieved by a discrete product group and enables JCGEL to generalize to many unseen poses and hues. Second, continuous group strict equivariant models assume ideal group actions that may conflict with common augmentations (e.g., rotated images leave empty regions that are padded, which is not a true group action). This mismatch affects strict formulations, and even soft methods that target continuous groups impose stronger constraints than discrete equivariance, which can hinder performance under non-ideal image-domain operations. In summary, a direct-product discrete formulation is well aligned with real-world conditions, explaining why JCGEL tends to achieve higher accuracy and robustness across varied environments.