
Published in Transactions on Machine Learning Research (10/2025)

Solving the Cold Start Problem on One’s Own as an End
User via Preference Transfer

Ryoma Sato rsato@nii.ac.jp
National Institute of Informatics

Reviewed on OpenReview: https: // openreview. net/ forum? id= Sgj0ZdoVWH

Abstract

We propose a new approach that enables end users to directly solve the cold start problem
by themselves. The cold start problem is a common issue in recommender systems, and
many methods have been proposed to address the problem on the service provider’s side.
However, when the service provider does not take action, users are left with poor recommen-
dations and no means to improve their experience. We propose an algorithm, Pretender,
that allows end users to proactively solve the cold start problem on their own. Pretender
does not require any special support from the service provider and can be deployed inde-
pendently by users. We formulate the problem as minimizing the distance between the
source and target distributions and optimize item selection from the target service accord-
ingly. Furthermore, we establish theoretical guarantees for Pretender based on a discrete
quadrature problem. We conduct experiments on real-world datasets to demonstrate the
effectiveness of Pretender.

1 Introduction

Recommender systems have become an essential component of many online services, such as e-commerce
[28, 31], social media [9, 59], and video streaming platforms [3, 15, 52]. These systems analyze user preferences
and recommend items that the user may like. A common problem in recommender systems is the cold start
problem, where the system cannot provide good recommendations for new users due to a lack of historical
data. Many methods have been proposed to address the cold start problem, such as content-based filtering
[24, 34, 49], utilizing side information [27, 37, 60], meta learning [25, 29, 53], and active learning [10, 61].

However, all of these methods are designed to be implemented on the service provider’s side, and require the
service provider to take action. When the service provider does not take action, e.g., due to lack of resources,
lack of incentives, or simple negligence, users are left with poor recommendations and no immediate way to
improve their experience. This can be particularly frustrating for users who are eager to adopt a new service
but struggle to discover relevant items due to the cold start problem.

In this paper, we propose a new problem setting that enables users to address the cold start problem on their
own. We consider a scenario where a user has been using a source service (e.g., Netflix) for a long time and
has a history of preferences for items. The user has just started using a target service (e.g., Hulu) but lacks
any preference history on that platform. The user receives good recommendations from the source service but
poor recommendations from the target service due to the cold start problem. The user wants to transfer the
preferences from the source service to the target service so that the user can enjoy good recommendations
from the target service as well. If the target service offers a built-in functionality to import preferences,
this problem can be easily solved. However, in many cases, such functionality is not provided, leaving the
user with no direct means to improve their recommendations. To address this, we propose an algorithm,
Pretender, that enables users to overcome the cold start problem independently, even when neither the
source nor the target service provides dedicated support for preference transfer.

1

https://openreview.net/forum?id=Sgj0ZdoVWH

Published in Transactions on Machine Learning Research (10/2025)

We formulate the problem as minimizing the distance between the source and target distributions and
optimize the selection of items from the target service accordingly. A key strength of our method is that
it provides strong theoretical guarantees even when the way the target service uses the data is unknown.
We prove this by solving a new quadrature problem that arises in the optimization process, which is of
independent interest. We conduct experiments on real-world datasets to demonstrate the effectiveness of
Pretender. Our experiments show that Pretender can transfer the preferences effectively.

The contributions of this paper are as follows:

• We propose a new problem setting that enables users to independently address the cold start problem
on their own.

• We propose Pretender, an algorithm that allows users to overcome the cold start problem with
theoretical guarantees, even in the absence of support from the service provider.

• We conduct experiments on real-world datasets to validate the effectiveness of Pretender.

Reproducibility: Our code is available at https://github.com/joisino/pretender.

2 Problem Setting

Suppose we are an end user of the source service (e.g., Netflix) and the target service (e.g., Hulu). We have
been using the source service for a long time and have a history of preferences for items (e.g., thumbs-up or
thumbs-down for videos). We have just started using the target service and lack any preference history on
that platform. We receive poor recommendations from the target service due to the cold start problem. Our
goal is to transfer our preferences from the source service to the target service so that we can enjoy good
recommendations from the target service as well. The problem is formally defined as follows:

Problem (Preference Transfer).
Input: Sets of source items IS and target items IT . Features xi of items i ∈ IS ∪ IT . A set DS =
{(i, yi)} ⊂ IS × {0, 1} of user preferences on source items. A positive integer K ∈ Z+ representing
the number of target items to interact with.
Output: A set DT = {(i, yi)} ⊂ IT × {0, 1} with |DT | = K such that clicking items following DT

results in good recommendations from the target service.

A method outputs a set of preferences for the target items, denoted as DT = {(i, yi)}, Following this
output, the end user clicks thumbs up for each item i ∈ {i ∈ IT | (i, 1) ∈ DT } and thumbs down for each
item i ∈ {i ∈ IT | (i, 0) ∈ DT }. A good method should output DT such that the user can enjoy good
recommendations from the target service after this process. Note that the clicking process (and thus the
entire process) may be automated by a Web agent.

This problem presents three main challenges:

• Items are not shared between services. A naive approach might simply “copy” the history
to the target service, but this approach fails because the corresponding items may not exist in the
target service, i.e., IS 6= IT .

• Clicking many items is tedious. The user may not want to interact with many items just for
preference transfer, i.e., K is small. Even when the clicking process is automated, too large K may
take a long time and/or impose a heavy load on the target service.

• The target service’s use of the data is unknown. The target service may process preference
data DT differently from the source service or in an unexpected manner, making it difficult to predict
how the transferred preferences will influence recommendations.

2

https://github.com/joisino/pretender

Published in Transactions on Machine Learning Research (10/2025)

3 Pretender

We propose Pretender (PREference Transfer by END usERs) to solve the preference transfer problem.
We first describe the general framework and then provide variants for specific settings.

3.1 Formulating the Problem as Distance Minimization

The goal of Pretender is to select items from the target service such that its empirical distribution µDT

T

is close to the source distribution µS , which are defined as

µDT

T = 1
K

∑
(i,yi)∈DT

δ(xi,yi), µS = 1
|DS |

∑
(i,yi)∈DS

δ(xi,yi) (1)

where δx denotes the Dirac measure at x. We use the integral probability metric (IPM) [35, 51] to quantify
the discrepancy between the distributions, which is defined for a function class F as

IPMF (µ, ν) = sup
f∈F

∫
f dµ−

∫
f dν. (2)

When F is the class of functions with a reproducing kernel hilbert space (RKHS) norm at most 1, the
IPM is equivalent to the maximum mean discrepancy (MMD) [16], and when F is the class of 1-Lipschitz
functions, the IPM corresponds to the 1-Wasserstein distance [39, 54]. Pretender selects items such that
IPMF (µT , µS) is small, ensuring that the target distribution closely aligns with the source distribution.

This formulation addresses the third challenge. Suppose the target service uses an unknown model fT (·; θ)
and unknown loss function `T (·, ·) to train the model. We only know that the loss `T (fT (x; θ), y) is L-
Lipschitz in (x, y). Then, the model incurs the following loss on the source preferences:

(loss on the source data) = 1
|DS |

∑
(i,yi)∈DS

`T (fT (xi; θ), yi) (3)

=
∫

`T (fT (x; θ), y) dµS(x, y) (4)

≤
∫

`T (fT (x; θ), y) dµDT

T (x, y) + L ·W1(µDT

T , µS) (5)

= (training loss on the target data) + L ·W1(µDT

T , µS) (6)

where W1 denotes the 1-Wasserstein distance. The inequality follows from the definition of IPM (Eq. (2)).
Therefore, if we minimize the Wasserstein distance W1(µT , µS) between the source and target distributions,
and the target service effectively minimizes the training loss on the target data, the model trained on the
target preferences will also generalize well to the source preferences, thereby accurately reflecting the user’s
preferences

The crux of this approach is that its guarantee is agnostic to the model, loss function, and the training
method the target service employs, which are typically not known to the user. Regardless of how the target
service uses the data, the user can ensure that the recommendation model trained on the target preferences
reflects the source preferences as long as the distributions are close.

The use of IPM also addresses the first challenge. IPM exploits the geometry of the data space through the
smoothness of the function class F (e.g., Lipschitz continuity and a small RKHS norm) and can be used
even when the items are not shared between the services. This is in a stark contrast to other discrepancy
measures such as KL divergence and Hellinger distance.

Although we have formulated the problem as distance minimization between distributions, this problem
remains challenging because selection of items is combinatorial. This is in contrast to other minimization
problems, where optimization is performed over weights and/or coordinates of data points, making the
problem continuous and often convex. However, end users cannot “thumbs up 0.2 points” or alter the features
of the items in the service, meaning that we cannot sidestep the combinatorial nature of the problem. We
address this challenge in the following.

3

Published in Transactions on Machine Learning Research (10/2025)

3.2 Optimization

The optimization framework of Pretender is as follows:

1. (Item Preparation) Prepare the set of labeled target items JT = {(i, y) | i ∈ IT , y ∈ {0, 1}}. We
rearrange the items such that they are indexed by 1, 2, . . . , 2m and redefine JT = {(ij , yj) | j ∈ [2m]},
where m = |IT | is the number of items in the target service.

2. (Continuous Optimization) Optimize the weights w ∈
[
0, 1

K

]2m ∩∆2m of the items in the target
service such that the weighted empirical distribution µw

T =
∑2m

j=1 wiδ(xij
,yj) is close to the source

distribution µS , where ∆d denotes the (d− 1)-dimensional probability simplex. This is achieved by
solving the following optimization problem:

min
w∈R2m

D

 2m∑
j=1

wiδ(xij
,yj), µS

 ,

s.t.
2m∑
j=1

wj = 1, 0 ≤ wj ≤
1
K

(j = 1, 2, . . . , 2m).

(7)

3. (Random Selection) Sample items according to the optimized weights. For each j ∈ [2m], sample
Ij ∼ Bernoulli(Kwj) for j ∈ [2m], and define the selected set as D̂T = {(ij , yj) | Ij = 1}.

4. (Postprocessing) If |D̂T | < K, greedily insert additional items, and if |D̂T | > K, greedily remove
items to obtain the final preference set DT satisfying |DT | = K.

Item Preparation. We construct the set of labeled target items as JT = {(ij , yi) | j ∈ [2m]}. Since the
user can choose the label for each item (e.g., thumbs up or thumbs down), we include both possible labels
(i, 0) and (i, 1) in the candidate set, making the total number of items 2m.

Continuous Optimization. We first solve the continuous relaxation of the problem. This problem is
continuous and convex for MMD and the Wasserstein distance. Therefore, we can employ standard methods
such as the Frank-Wolfe algorithm [22] or the projected subgradient descent algorithm [4] to solve the
problem. By standard results in convex optimization, we can obtain ŵ such that

D(µŵ
T , µS) ≤ OPTcontinuous + ε (8)

= min
w∈
[

0, 1
K

]2m
∩∆2m

D (µw
T , µS) + ε (9)

(a)
≤ min

DT ={(i,yi)} : |DT |=K
D

 1
K

∑
(i,yi)∈DT

δ(xi,yi), µS

+ ε (10)

= OPTcombinatorial + ε, (11)

where (a) follows because the weight (1/K, . . . , 1/K) of the empirical measure is in the feasible set. Therefore,
the continuous solution is at least as good as the combinatorial solution. However, we need to carefully round
the solution to obtain the final output to ensure that the rounding process does not degrade the quality of
the solution much. This is the main challenge from a theoretical perspective.

Random Selection. We employ a randomized approach. We first point out that the distribution
Bernoulli(Kwj) is well-defined as we set the optimization domain to w ∈

[
0, 1

K

]2m ∩∆2m and 0 ≤ Kwj ≤ 1
holds. Let w̃ ∈ {0, 1/K}2m be the sample weights after the random selection, i.e., w̃j = 1

K Ij . Then,

E[w̃j] = 1
K

E[Ij] (a)= 1
K

Kwj = wj , (12)

4

Published in Transactions on Machine Learning Research (10/2025)

where (a) follows from Ij ∼ Bernoulli(Kwj). Therefore, the expected weight is the same as the continuous
solution. This implies that D(µw̃

T , µS) distributes around that of the continuous solution D(µŵ
T , µS) ≈

OPTcontinuous. Next, we analyze the number of selected items, which is given by, in expectation,

E

 2m∑
j=1

Ij

 =
2m∑
j=1

Kwj
(a)= K, (13)

where (a) follows from the fact that
∑2m

j=1 wj = 1, i.e., w ∈ ∆2m. In addition,

Var

 2m∑
j=1

Ij

 (a)=
2m∑
j=1

Var[Ij] (b)=
2m∑
j=1

Kwj(1−Kwj)
(c)
≤

2m∑
j=1

Kwj
(d)= K, (14)

where (a) follows from the independence of the Bernoulli random variables, (b) follows from the variance
of the Bernoulli random variables, (c) follows from wj ≥ 0, and (d) follows from

∑2m
j=1 wj = 1. Therefore,

the standard deviation is the order of
√

K, and the number of selected items is concentrated around [K −
O(
√

K), K + O(
√

K)]. This implies that the selection process does not blow up the error too much. We will
elaborate this discussion in the following sections.

Postprocessing. Since the number of selected items may deviate from K, we may need to insert or remove
items to make it exactly K. As the number of over- or under-selected items is on the order of

√
K, the error

introduced by this step is also the order of
√

K
K = K−1/2.

In the following sections, we will elaborate on the method and provide theoretical guarantees for MMD and
the Wasserstein distance.

3.3 Pretender for MMD

We consider the case where we quantify the discrepancy between the distributions with MMD, defined as

MMD(µ, ν) = sup
‖f‖H≤1

∫
f dµ−

∫
f dν, (15)

where H is the RKHS with the kernel k. Equivalently, the MMD can be expressed as

MMD(µ, ν)2 =
∥∥∥∥∫ φ(x) dµ(x)−

∫
φ(x) dν(x)

∥∥∥∥2

H
(16)

= Ex,x′∼µ[k(x, x′)]− 2Ex∼µ,x′∼ν [k(x, x′)] + Ex,x′∼ν [k(x, x′)], (17)

where φ(x) = k(x, ·) is the feature map. Now, consider the empirical distributions

µw =
2m∑
j=1

wjδxj , ν = 1
n

n∑
j=1

δx′
j
, (18)

where xj = (xij , yj) is concatenation of the feature and label. Substituting these into Eq. (17), we obtain

MMD(µw, ν)2 =
2m∑

j,j′=1
wjwj′k(xj , xj′)− 2

2m∑
j=1

n∑
j′=1

wj
1
n

k(xj , x′
j′) + 1

n2

n∑
j,j′=1

k(x′
j , x′

j′) (19)

= w>KT T w − 2
n

1>KST w + 1
n2 1>KSS1 (20)

= w>KT T w − 2
n

1>KST w + const., (21)

5

Published in Transactions on Machine Learning Research (10/2025)

where KT T ∈ R2m×2m, KST ∈ R2m×n, and KSS ∈ Rn×n are the kernel matrices with KT T
jj′ = k(xj , xj′),

KST
jj′ = k(xj , x′

j′), and KSS
jj′ = k(x′

j , x′
j′). These matrices are positive semi-definite, and MMD2 is convex in

w. Thus, the optimization problem to minimize MMD reduces to the following convex quadratic program:

min
w∈R2m

w>KT T w − 2
n

1>KST w,

s.t.
2m∑
j=1

wj = 1, 0 ≤ wj ≤
1
K

(j = 1, 2, . . . , 2m).
(22)

This problem can be solved with the Frank-Wolfe algorithm. We initialize w = 1
2m , which is feasible. We

then iteratively update w by the Frank-Wolfe algorithm with step size 2
t+2 for t = 0, 1, . . . , L − 1. As the

objective function is convex quadratic, we obtain the following guarantee.
Proposition 3.1. When we run the Frank-Wolfe algorithm with the step size 2

t+2 for t = 0, 1, . . . , L− 1, we
obtain ŵ such that

MMD(µŵ
T , µS) ≤ OPTcontinuous + CL−1/2, (23)

for some constant C ∈ R+.

Proof. Since the objective function is quadratic, it is β-smooth. The Frank-Wolfe algorithm with a step size
2

t+2 achieves a convergence rate of O(L−1) [22]. Given that the objective function is the squared MMD, the
error in MMD is on the order of O(L−1/2).

As discussed in Section 3.2, we then round the solution by selecting items with probability Kwj . To analyze
this step, we make the following mild assumption.
Assumption 3.2 (Bounded Kernel). The kernel k is bounded by B in the sense that k(x, x) =
〈φ(x), φ(x)〉 = ‖φ(x)‖2

H ≤ B for all x ∈ X .

This assumption is mild and holds for many kernels such as the Gaussian, Laplacian, and Matérn kernels.
We have the following guarantee for the random selection step.
Proposition 3.3. Let w̃j = Ij

K with Ij ∼ Bernoulli(Kŵj). Then,∥∥∥∥∥∥
2m∑
j=1

w̃jφ(xj)−
2m∑
j=1

ŵjφ(xj)

∥∥∥∥∥∥
H

≤
√

B

δK
(24)

with probability at least 1− δ.

Proof Sketch. We evaluate EI

[∥∥∥∑j w̃jφ(xj)−
∑

j ŵjφ(xj)
∥∥∥2

H

]
. This can be bounded by B

K by a similar

argument to Eq. 14. Then we obtain the desired result by Markov’s inequality. The full proof is provided
in Appendix A.

We then analyze the postprocessing step. We have the following guarantee.
Proposition 3.4. Let w̃′

j = 1
K if the j-th item is in the final output DT and 0 otherwise. We have∥∥∥∥∥∥

2m∑
j=1

w̃′
jφ(xj)−

2m∑
j=1

w̃jφ(xj)

∥∥∥∥∥∥
H

≤
√

B

δK
(25)

with probability at least 1− δ.

Proof Sketch. This also follows from a similar argument to Proposition 3.3. The proof is in Appendix B.

6

Published in Transactions on Machine Learning Research (10/2025)

By combining the above guarantees, we have the following guarantee for the final output.
Theorem 3.5. Under assumption 3.2, when we run the Frank-Wolfe algorithm with the step size 2

t+2 for
t = 0, 1, . . . , L− 1 and select items with the probability Kwj, we obtain DT such that

MMD(µDT

T , µS) ≤ OPTcombinatorial + CL−1/2 + 2
√

B

δK
(26)

with probability at least 1− 2δ.

Proof Sketch. This follows from the triangle inequality and union bound. The proof is in Appendix C.

Corollary 3.6. Under assumption 3.2, for any ε > 0 and K ∈ Z+, there exists L and R such that by
running the Frank-Wolfe algorithm with L iterations and repeating the rounding process R times and choose
the best D∗

T with smallest MMD(µD∗
T

T , µS), we have

MMD(µD∗
T

T , µS) ≤ OPTcombinatorial + 2
√

2B

K
+ ε (27)

= OPTcombinatorial + O(K−1/2) (28)

with high probability.

Proof. We set L = 4C2ε−2 and δ =
(

1√
2+ ε

√
K

4
√

B

)2
, then we have

OPTcombinatorial + CL−1/2 + 2
√

B

δK
≤ OPTcombinatorial + 2

√
2B

K
+ ε (29)

with probability at least 1 − 2δ > 0 because δ < 1
2 . Repeating the rounding process R = Θ((1 − 2δ)−1)

times, we can obtain the final output with the desired guarantee.

Note that the rounding process can be de-randomized by dynamic programming and the conditional proba-
bility method.

We can also bound OPTcombinatorial under the following assumption.
Assumption 3.7 (Bounded Density Ratio). The source items DS and target candidate items JT are
sampeled from distributions P and Q, respectively, and the density ratio r∗ = supx

P (x)
Q(x) is bounded.

The items DS and JT are not neccearily common (i.e., the first challenge), and the distributions are not
necessarily identical. Instead, we assume that the target service has a chance to provide items similar to the
source items with this assumption. Without this, it would be unlikely to find relevant items in the target
service, making it impossible to transfer user preferences with a vanishing error. Under this assumption, we
establish the following guarantee.
Theorem 3.8. Under Assumptions 3.2 and 3.7, there exists C1, C2 ∈ R+ such that when K ≤ C1

|JT |
r∗ ,

MMD(P, µDT) ≤ C2

(
2

√
B

|DS |
+
√

B

K

)
and OPTcombinatorial ≤ C2

(√
B

|DS |
+
√

B

K

)
(30)

with high probability.

Proof Sketch. Under Assumption 3.7, 1
r∗ P ≤ Q and Q can be written as 1

r∗ P +(1− 1
r∗)Q′ for some distribution

P ′. We essentially have |JT |
r∗ samples from P in the target service. We bound the convergence rate of the

empirical measure to the true measure by a standard argument of MMD. The proof is in Appendix D.

By combining the above guarantees, we have the following guarantee for the final output.

7

Published in Transactions on Machine Learning Research (10/2025)

Corollary 3.9. Under the assumptions of Corollary 3.6 and Theorem 3.8, we can obtain DT such that

MMD(µD∗
T

T , µS) ≤ O(|DS |−1/2 + K−1/2) (31)

with high probability.

Therefore, if we prepare a sufficient number of source items, the target service provides a sufficiently rich
set of items, and we click sufficiently many items, we can transfer the preference to the target service with
a vanishing error in the order of O(|DS |−1/2 + K−1/2).

With the same argument as in Section 3.1, we can bound the error on the source items.
Corollary 3.10. If the target service uses an unknown model fT (·; θ) and unknown loss function `T (·, ·) to
train the model, and the RKHS norm of loss `T (fT (x; θ), y) is bounded by R`, then the trained model incurs
the error

EP [`T (fT (x; θ), y)] ≤ 1
|DT |

∑
(x,y)∈DT

`T (fT (x; θ), y) + R` ·MMD(P,DT). (32)

Under the assumptions of Theorem 3.8, we have

EP [`T (fT (x; θ), y)] ≤ 1
|DT |

∑
(x,y)∈DT

`T (fT (x; θ), y) + O(|DS |−1/2 + K−1/2). (33)

This corollary shows that if the target service trains the model sufficiently well so that the training error
1

|DT |
∑

(x,y)∈DT
`T (fT (x; θ), y) is small and if we prepare a sufficient number of source items and click suffi-

ciently many items following Pretender, we can make the right hand side of Eq. 33 arbitrarily small and
we can ensure that the trained model incurs a small error on the source items, meaning that it effectively
captures the users preferences from the source service.

3.4 Pretender for the Wasserstein Distance

We now consider the case where we quantify the discrepancy between the distributions with the 1-Wasserstein
distance. Consider the empirical distributions µw

T and µS defined in Eq. 18. The 1-Wasserstein distance is

W1(µw, ν) = inf
γ∈Π(µw,ν)

∑
j,j′

γjj′‖xj − x′
j′‖ (34)

where

Π(µw, ν) =
{

γ ∈ R2m×n
≥0

∣∣∣∣γ1 = w, γ>1 = 1
n

}
(35)

is the set of coupling matrices. The 1-Wasserstein distance also admits the following dual formulation:

W1(µw, ν) = sup
f∈FLip

2m∑
j=1

wjf(xj)− 1
n

n∑
j=1

f(x′
j), (36)

where FLip is the set of 1-Lipschitz functions. We solve the following convex optimization problem:

min
w∈R2m

W1(µw, ν),

s.t.
2m∑
j=1

wj = 1, 0 ≤ wj ≤
1
K

(j = 1, 2, . . . , 2m).
(37)

8

Published in Transactions on Machine Learning Research (10/2025)

By substituting the primal formulation (Eq. 34) and the definition of Π(µw, ν), we have

min
w∈R2m,γ∈R2m×n

∑
j,j′

γjj′‖xj − x′
j′‖,

s.t. w>1 = 1, γ1 = w, γ>1 = 1
n

0 ≤ wj ≤
1
K

(j = 1, 2, . . . , 2m), γjj′ ≥ 0 (j = 1, 2, . . . , 2m, j′ = 1, 2, . . . , n).

(38)

This problem is a linear program with optimization variables w and γ. We can solve this problem by a
linear program solver in a polynomial time. Let ŵ be the solution of this problem. We then select items
with the probability Kŵj and analyze the rounding process. To analyze this step, we make the following
mild assumption.
Assumption 3.11 (Compact Domain). Each element xj lies is the unit cube [0, 1]d and the cost function
‖x− x′‖ is the Euclidean distance.

If the data are not originally in the unit cube, they can be standardized to satisfy this assumption. To bound
the Wasserstein distance, we need the following lemma, which is shown in Appendix E.
Lemma 3.12. Let FLip be the set of 1-Lipschitz functions with f(1

2) = 0. FLip can be L∞-covered by
F̃ε, i.e., for any f ∈ FLip, there exists f̃ ∈ F̃ε such that ‖f − f̃‖∞ ≤ ε, with |f(x)| ≤

√
d

2 ,∀f ∈ F̃ε and

|F̃ε| ≤ exp
(

log(3)
(

2
√

d
ε

)d
)

.

We first analyze the postprocessing step. We have the following guarantee.
Proposition 3.13. Let w̃′

j = 1
K if the j-th item is in the final output DT and 0 otherwise. For any ε > 0,

sup
f∈F̃ε

2m∑
j=1

f(xj)(w̃′
j − w̃j) ≤

√
d

2K
log 1

δ
+
√

d

3K
log 1

δ
(39)

with probability at least 1− δ.

Proof Sketch. The proof is similar to Proposition 3.4, and we obtain the bound with Bernstein’s inequality.
The full proof is in Appendix F.

We then analyze the random selection step. We first bound each test function.
Lemma 3.14. Let w̃j = Ij

K with Ij ∼ Bernoulli(Kŵj). Then, for any f with |f(x)| ≤
√

d
2 ,

2m∑
j=1

f(xj)(w̃j − ŵj) ≤
√

d

2K
log 1

δ
+
√

d

3K
log 1

δ
(40)

with probability at least 1− δ.

Proof Sketch. We bound the variance of independent random variables f(xj)(w̃j − ŵj) (j = 1, 2, . . . , 2m)
and apply Bernstein’s inequality. The full proof is in Appendix G.

By combining Proposition 3.13, Lemma 3.14, and Lemma 3.12, we have the following guarantee.
Theorem 3.15. For any δ > 0, the 1-Wasserstein distance between the final output DT and the source
distribution is

W1(µDT

T , µS) ≤ OPTcombinatorial + 3
√

d

K
log 1

δ
+
√

d

K
log 1

δ
+ 8
√

dK− 1
d+2 + 11

√
dK− 2

d+2 + 6
√

d log 1
δ

K− 1
d+2 − 1

2

(41)

= OPTcombinatorial + O
(

K− 1
d+2

)
(42)

with probability at least 1− 2δ.

9

Published in Transactions on Machine Learning Research (10/2025)

Proof Sketch. We set ε =
√

d
(

2
d−2
d+2 log

1
d+2 (3)K− 1

d+2 + 1
2

√
1
K log 1

δ

)
in Lemma 3.12. We bound |F̃ε|, set

δ ← δ/|F̃ε| in Proposition 3.14, and apply the union bound. We then apply Proposition 3.13, Lemma
3.14, Lemma 3.12, and the Kantrovich-Rubinstein duality to obtain the desired result. The full proof is in
Appendix H.

We can also bound the error of the trained model on the source items by the same argument as in Theorem
3.8 and Corollary 3.10. The difference is that the sample complexity of the Wasserstein distance is Θ(1

εd) [12]
instead of Θ(1

ε2) of the MMD. This is a fundamental property of the Wasserstein distance. Consequently,
the optimal value OPTcombinatorial and the loss bound scale as Θ(1

εd) in the case of the Wasserstein distance,
compared to Θ(1

ε2) for the MMD. This difference implies that the error bound can be significantly larger
when the data dimension d is high, making the Wasserstein distance less practical for high-dimensional
settings.

4 Discussions

4.1 Discussion on Variants

We have presented the variants for MMD and the Wasserstein distance. Each has its own advantages and
disadvantages. The primary advantage of MMD is its sample complexity. MMD is not affected by the
number of dimensions of the feature space and sidesteps the curse of dimensionality while the Wasserstein
distance suffers from it [12]. The advantage of the Wasserstein distance is its generality. The assumption
that the loss function `T (fT (x; θ), y) is Lipschitz continuous is very mild and holds in many settings, such as
logistic regression, matrix factorization, and neural networks. MMD requires the loss is in the RKHS, which
may not hold in practice.

We also note that our analysis can be extended to other metrics as long as the continuous optimization
problem (Eq. 7) is tractable and the covering number of the test function class F is bounded by the same
argument of Section 3.4. For example, our analysis can be applied to the discrepancy distance [30], yielding
a sharp generalization bound when the model is linear and the loss is the squared loss. Practitioners can
choose metrics that best suits their specific application.

4.2 Optimum Value is Not Monotone

It should be noted that the optimum value of the combinatorial problem is not monotonic in K.
Proposition 4.1. OPTcombinatorial is not monotonic in K.

Proof. We prove the proposition by a counterexample. Let IS = {1}, IT = {1, 2}, x1 = 0, x2 = 1, and
DS = {(1, 1)}. When K = 1, the optimum value is 0 by selecting DT = {(1, 1)}. When K = 2, the optimum
value is non-zero because we need to select items other than (1, 1), and DS 6= DT .

One might intuitively expect that increasing K would lead to a better or at least no worse solution. However,
the above proposition shows that this is not always the case. In many practical situations, the goal is not
to click exactly K items, but rather to minimize the number of interactions while effectively transferring
preferences. To address this issue, we can parallelly run the algorithm with K ′ = 1, 2, . . . , K and select the
best solution with smallest D(µT , µS) among them.

4.3 Limitation: Inconsistent Features

We have assumed that we have access to the features xi of the items i in the problem setting. In practice,
rich feature representations may not always be available, or the target service may utilize a different feature
space than what we expect for training its recommendation model. This issue is particularly relevant when
the target service employs collaborative filtering, a widely used approach in recommender systems. In such
cases, the service may not use explicit features such as text, tags, or visual information, but use collaborative

10

Published in Transactions on Machine Learning Research (10/2025)

features, which are not available to end users. In such a case, our approach and analysis cannot be directly
applied. Nevertheless, we argue that our approach remains valuable even in such scenarios. First, explicit
features often serve as good surrogates for implicit features. For example, movies with similar descriptions
tend to attract similar audiences. Second, recent studies have demonstrated that even end users can estimate
implicit features from recommendation networks [45]. These estimated features can then be fed into our
approach. Extending our analysis to cases where feature spaces are inconsistent is an important direction
for future work.

5 Related Work

5.1 Cold Start Problem

The cold start problem is a fundamental problem in recommender systems. It arises when a new user (or a new
item) enters the system, and the system lacks sufficient information to provide accurate recommendations.
Although many methods have been proposed to address the cold start problem [14, 26, 38, 55], all of them
require the service providers to implement the method. In contrast, our approach is unique in that it can be
applied directly by an end user without requiring any modifications to the service itself. This characteristic
broadens the applicability of our method, allowing it to be used in services that lack built-in functionalities
to address the cold start problem.

5.2 Quadrature

Quadrature is a technique to approximate the integral of a function by summing the function values at a
finite number of points [1, 18, 19, 21, 41]. This is essentially equivalent to finding a discrete measure that
approximates the given measure. Quadrature is widely used in numerical analysis and machine learning. One
of the common applications is coresets [6, 23, 33, 50], which is a small set of training points that approximates
the loss of the model on the entire training set. Our approach can be seen as a quadrature of

∫
`T dµS with

points DT . The main difference is that standard quadrature methods use arbitrary points and/or weights
and sidestep combinatorial problems [2, 5], while our approach uses only the items in the target set, which
naturally lead to the combinatorial optimization problem. For example, quadrature methods based on the
Frank-Wolfe algorithm [2, 8, 58] output sparse weights, but they may choose the same items repeatedly in
general, and the resulting weights are not uniform. Such output cannot be applied to our setting because users
cannot thumbs up the same item multiple times in most services. Some approaches [13, 23] such as Kernel
thinning [13] output a subset of the input points with uniform weights, which is similar to our approach.
However, these methods assume that the candidate points are sampled according to the distribution being
approximated. If this assumption does not hold, as in our case, these methods cannot be directly applied.
Our proposed method can be used even when the input points are arbitrary. Other methods [56, 57] employ
submodular optimization and greedy algorithms, achieving a (1 − 1

e)-approximation ratio. However, the
gap of (1 − 1

e) does not vanish as the number of items increases. By contrast, our approach can achieve
the vanishing error as Corollary 3.10 shows thanks to the continuous optimization approach and the careful
rounding process. To the best of our knowledge, our work is the first to provide a theoretical guarantee for
such a general and combinatorial setting. We believe that this result is of independent interest.

5.3 User-side Realization

User-side realization refers to the concept in which end users implement desired functionalities on their own
without requiring modifications to the service itself. Many users experience dissatisfaction with services.
Even if they want some functionalities and request them to the service provider, the provider may not
implement them due to various reasons such as cost, complexity, and simple negligence. After all, service
providers are not volunteers but businesses. In such cases, the only options users have are not satisfactory,
keep using the service despite their dissatisfaction or leave the service. User-side realization provides a
proactive alternative to this dilemma. This concept has been explored in various fields such as recommender
systems [43, 45, 47], search engines [11, 36, 40, 42, 44], and privacy [46]. The main advantage of the user-side
realization is that it can be used in services that do not have special functionalities to address the problem,

11

Published in Transactions on Machine Learning Research (10/2025)

0 20 40 60 80 100 120
K

0.0

0.2

0.4

0.6

0.8
M

M
D

(a) User 308 (10 thumb ups and 10 thumb downs)

Continuous Solution
Final Output

0 20 40 60 80 100 120
K

0.0

0.2

0.4

0.6

0.8

M
M

D

(b) User 21 (74 thumb ups and 54 thumb downs)

Continuous Solution
Final Output

Figure 1: MMD as a function of the number of selected items K. The optimal value of the combinatorial
optimization problem is intractable but is guaranteed to lie somewhere between the red and blue lines. We
can see that the difference between the proposed method and the optimal value decreases as K increases. As
we discussed in Section 4.2, the optimal value is not monotonic in K, and the sweet spots lie around 32 to
64 in both cases. We can also see that the optimal values get worse more quickly in (a) because the source
data contain fewer items, the relevant items in the target set are exhausted more quickly, and we are forced
to select less relevant items when we increase K.

and it broadens the scope of the applicability of the solution. For a more comprehensive discussion on user-
side realization, we refer the reader to the Ph.D. thesis by [48]. Our approach constitutes a novel application
of user-side realization to the cold start problem in recommender systems.

6 Experiments

6.1 Convergence Analysis

We first confirm that the regret of Pretender converges to zero as the number K of selected items increases.

Experimental Setting. We use the MovieLens 100K dataset [17]. We consider rating ≥ 4 as positive
feedback (i.e., thumbs up) and rating < 4 as negative feedback (i.e., thumbs down). We create two virtual
services S and T . We include each movie in S with probability 0.5. We carry out the same process
independently to create T . As a result, these services share about half of the movies. We use genres (e.g.,
Action, Adventure, Animation) and the release year as the features of the movies. They are encoded as a
90-dimensional multi-hot vector. We concatenate Cy ∈ {0, C} to the feature vector to define the discrete
distribution, where y ∈ {0, 1} indicates thumbs up or thumbs down, and C = 10 is the hyperparameter that
controls the emphasis on the label when we measure the distance between two data points. We focus on
user 308, who is the first user who has 10 thumbs up and 10 thumbs down, and user 21, who is the first user
who has more than 100 ratings. For each user u, we aim to transfer the preference Du ∩ DS by choosing K
items from DT . We use MMD with the Gaussian kernel and bandwidth σ = 1 as the distance measure. We
use L = 1000 iterations of the Frank-Wolfe algorithm and R = 100 trials of the rounding process. We set
K = 1, 2, 4, 8, . . . , 128 to see the convergence behavior.

The goal of the experiment is to confirm that the regret of the proposed algorithm, i.e., the MMD of the
proposed method minus the MMD of the optimal solution, converges to zero as the number of selected items
K increases. However, computing the true optimal solution is intractable due to the combinatorial nature of
the optimization problem. Instead, we use the optimal value of the continuous relaxation as a benchmark,
which serves as a provable lower bound for the optimal value of the combinatorial optimization problem.

Results. Figure 1 shows the regret of Pretender as a function of the number of selected items K. The
optimal value of the combinatorial optimization problem is intractable but is guaranteed to lie somewhere
between the red and blue lines. We observe that the difference between the proposed method and the optimal
value decreases as K increases. As we discussed in Section 4.2, the optimal value is not monotonic in K, and

12

Published in Transactions on Machine Learning Research (10/2025)

Table 1. Performance Comparison. Each value represents the average MMD across all users. Lower is better.
The standard deviation is computed across users. The proposed method is much better than the baseline
methods and is close to the optimal continuous solution.

MovieLens

Random 0.2537 ± 0.075

0.2978 ± 0.074

0.1033 ± 0.040

0.0876 ± 0.049

Greedy

with intersection
MovieLens

no intersection
Last.fm

no intersection
Amazon

no intersection

Pretender

Continuous
(unfeasible)

0.2672 ± 0.085

0.3401 ± 0.086

0.1250 ± 0.045

0.1113 ± 0.053

0.3394 ± 0.059

0.3555 ± 0.098

0.0927 ± 0.026

0.0872 ± 0.026

0.1682 ± 0.023

0.3043 ± 0.069

0.0774 ± 0.010

0.0707 ± 0.011

Our proposed method, Pretender, performs much better than baselines.

Pretender gets close to the (unfeasible) lower bounds.
They provide provable certificates of Pretender's performance.

the sweet spots lie around 32 to 64 in both cases. We can also see that the optimal values get worse more
quickly in (a) because the source preferences contain fewer items, and the relevant items in the target set
are exhausted more quickly. Consequently, when K increases, the algorithm is forced to select less relevant
items in (a).

6.2 Quantitative Evaluation

Datasets. We evaluate our method using datasets from three domains: MovieLens 100k (movies), Last.fm
(music) [7], and Amazon-Home-and-Kitchen (e-commerce) [20, 32]. We use the same setting as the conver-
gence analysis for the MovieLens 100K dataset except that we use all users. For the Last.fm dataset, we
consider musicians with positive weights as thumbs up and we sample the same number of random musi-
cians for thumbs down. We use the tags (e.g., metal, 80’s, chillout) as the features of the artists. As the
number of tags is large, we apply the principal component analysis (PCA) to reduce the dimension to 50 and
standardize the variance. For the Amazon-Home-and-Kitchen dataset, we consider ratings ≥ 4 as thumbs
up and ratings < 4 as thumbs down. We use the bag-of-words representation of the product reviews. We
apply PCA to reduce the dimension to 50 and standardize the variance. We consider two different settings
for defining source and target services. The first setting, with intersection, is identical to the one used in
the convergence analysis. The second setting, no intersection, is that we split the items into source and
target services without any intersection. This setting is more challenging because the methods cannot copy
any source items to the target service. For Last.fm and Amazon-Home-and-Kitchen datasets, we use the
Gaussian kernel with the bandwidth σ = 10 to reflect the scale of the features. We set K = 100 for all
datasets.

Baselines. Since there are no existing methods that solve the cold start problem by an end user, we use two
simple baselines to validate that the proposed method is reasonably effective. The first baseline is random
selection, which randomly selects K items from DT . The second baseline is the greedy selection, which
selects K items in JT that have the smallest distance d(x,DS) = minx′∈DS

‖x−x′‖2 to the source items DS .
Additionally, we report the performance of the optimal solution of the continuous optimization problem.

Results. Table 1 shows MMD values between the source preference and the output of the methods. Lower
is better. Pretender is much better than the baseline methods and is close to the optimal continuous
solution. Note that checking the closeness is useful in practice as well. The continuous solution is obtained
as a byproduct of Pretender. After we obtain the final output, we can verify that the final solution is
indeed a reasonable one just by comparing the two values. We observe that the greedy method is worse
than the random method. We hypothesize that it is because the greedy method chooses items that are too
similar to some source items and the diversity is lost. We also observe that Pretender is robust to the
setting with no intersection. The performance is slightly worse than in the setting with intersection but is
still reasonablly well.

13

Published in Transactions on Machine Learning Research (10/2025)

Table 2: Case Study. The source items the user interacted with and the K = 20 target items selected by
Pretender. Pretender selects the very items that the user interacted with in the source service as shown
in red. The user interacted with movies in 1996 and 1997, and Pretender mostly selects movies in 1996
and 1997. Notable exceptions are Alice in Wonderland (1951) and Fantasia (1940) selected by Pretender,
as shown in blue. We hypothesize that this reflects the fact that the user thumbed down Cats Dont Dance
(1997), which is an animated movie for children. Since Cats Don’t Dance (1997) is not in the target service,
Pretender selects similar movies from the target service and sends a signal that the user does not like this
type of movies.

Source Thumbs Up Source Thumbs Down Pretender Thumbs Up Pretender Thumbs Down
Kolya (1996) Ulee’s Gold (1997) Shall We Dance? (1996) Absolute Power (1997)
The English Patient (1996) Fly Away Home (1996) The English Patient (1996) Breakdown (1997)
G.I. Jane (1997) Mrs. Brown (1997) G.I. Jane (1997) Fly Away Home (1996)
The Edge (1997) Lost Highway (1997) The Edge (1997) Lost Highway (1997)
A Smile Like Yours (1997) The Game (1997) Das Boot (1981) Alice in Wonderland (1951)

Seven Years in Tibet (1997) Addicted to Love (1997) Fantasia (1940)
Cats Don’t Dance (1997) The Pest (1997) The Jackal (1997)
Stag (1997) Seven Years in Tibet (1997)

Paradise Road (1997)
’Til There Was You (1997)
Le Bonheur (1965)
All Over Me (1997)
Rough Magic (1995)

6.3 Case Study

As a case study, we use the MovieLens dataset and focus on user 308, who is the first user who has 10
thumbs up and 10 thumbs down. We investigate the target items selected by Pretender under the same
experimental setup as Section 6.1 and with K = 20. Table 2 shows the source items the user interacted
with and the target items selected by Pretender. Overall, Pretender suceeds in transferring the user’s
preferences. Pretender selects several items that the user previously interacted with in the source service,
as highlighted in red. Note that the virtual services S and T share some items but not all items, and thus
we cannot copy all items. We can also see that the user interacted with movies in 1996 and 1997, and
Pretender mostly selects movies from the same period. This leads to similar preferences between the
source and target services. Notable exceptions are Alice in Wonderland (1951) and Fantasia (1940) selected
by Pretender, as shown in blue. We hypothesis that this reflects the fact that the user thumbed down
Cats Don’t Dance (1997), which is an animated movie for children. Since Cats Don’t Dance (1997) is not
in the target service, Pretender selects similar movies from the target service and sends a signal that the
user does not like this type of movies to the terget service. This case study illustrates that Pretender
effectively reflects the user’s preferences.

7 Conclusion

In this paper, we made the following contributions.

• We proposed a new problem setting, solving the cold start problem on the user’s side (Section 2).

• We proposed Pretender to solve the problem by formulating it as a metric minimization between
distributions (Sections 3.1 – 3.2).

• We formally showed that the regret of Predenter converges to zero as the number of selected
items increases (Sections 3.3 and 3.4).

– We showed that the regret converges at a rate of O(1√
K

) for MMD (Corollary 3.6) and O(K− 1
d+2)

for the Wasserstein distance (Theorem 3.15).
– We also showed that the optimal value also converges to zero as the number of source items

and the number of selected items increases (Corollary 3.10).

14

Published in Transactions on Machine Learning Research (10/2025)

• We empirically validated the effectiveness of Pretender through experiments (Sections 6.1 – 6.3).

– We confirmed that the regret of the proposed algorithm converges to zero with a reasonable
number of selected items (Section 6.1).

– We showed that the proposed method is much better than baseline methods and is close to the
optimal continuous solution with movie, music, and e-commerce datasets (Section 6.2).

– We presented a case study, illustrating that the items selected by Pretender effectively reflect
the user’s preferences (Section 6.3).

We believe that this work introduces a new research direction for addressing the cold start problem from the
users’ perspective. We hope that our work will inspire further research in this area.

Acknowledgements

We thank Yuki Takezawa and Satoshi Hayakawa for helpful discussions.

References
[1] F. R. Bach. On the equivalence between kernel quadrature rules and random feature expansions. J.

Mach. Learn. Res., 18:21:1–21:38, 2017.
[2] F. R. Bach, S. Lacoste-Julien, and G. Obozinski. On the equivalence between herding and conditional

gradient algorithms. In Proceedings of the 29th International Conference on Machine Learning, ICML,
2012.

[3] R. M. Bell and Y. Koren. Lessons from the netflix prize challenge. SIGKDD Explor., 9(2):75–79, 2007.
[4] S. Boyd, L. Xiao, and A. Mutapcic. Subgradient methods. lecture notes of EE392o, Stanford University,

Autumn Quarter, 2004(01), 2003.
[5] F. Briol, C. J. Oates, M. A. Girolami, and M. A. Osborne. Frank-wolfe bayesian quadrature: Proba-

bilistic integration with theoretical guarantees. In Advances in Neural Information Processing Systems
28: Annual Conference on Neural Information Processing Systems 2015, NeurIPS, pages 1162–1170,
2015.

[6] T. Campbell and T. Broderick. Automated scalable bayesian inference via hilbert coresets. J. Mach.
Learn. Res., 20:15:1–15:38, 2019.

[7] I. Cantador, P. Brusilovsky, and T. Kuflik. 2nd workshop on information heterogeneity and fusion
in recommender systems (hetrec 2011). In Proceedings of the 5th ACM Conference on Recommender
Systems, RecSys. ACM, 2011.

[8] Y. Chen, M. Welling, and A. J. Smola. Super-samples from kernel herding. In Proceedings of the
Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, UAI, pages 109–116, 2010.

[9] U. Chitra and C. Musco. Analyzing the impact of filter bubbles on social network polarization. In
Proceedings of the 13th ACM International Conference on Web Search and Data Mining, WSDM, pages
115–123, 2020.

[10] K. Christakopoulou, F. Radlinski, and K. Hofmann. Towards conversational recommender systems.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD, pages 815–824. ACM, 2016.

[11] M. Diligenti, F. Coetzee, S. Lawrence, C. L. Giles, and M. Gori. Focused crawling using context graphs.
In Proceedings of 26th International Conference on Very Large Data Bases, VLDB, pages 527–534, 2000.

[12] R. M. Dudley. The speed of mean glivenko-cantelli convergence. The Annals of Mathematical Statistics,
40(1):40–50, 1969.

[13] R. Dwivedi and L. Mackey. Kernel thinning. J. Mach. Learn. Res., 25:152:1–152:77, 2024.
[14] Z. Gantner, L. Drumond, C. Freudenthaler, S. Rendle, and L. Schmidt-Thieme. Learning attribute-

to-feature mappings for cold-start recommendations. In Proceedings of the 10th IEEE International
Conference on Data Mining, ICDM, pages 176–185, 2010.

15

Published in Transactions on Machine Learning Research (10/2025)

[15] C. A. Gomez-Uribe and N. Hunt. The netflix recommender system: Algorithms, business value, and
innovation. ACM Trans. Manag. Inf. Syst., 6(4):13:1–13:19, 2016.

[16] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. J. Smola. A kernel two-sample test.
J. Mach. Learn. Res., 13:723–773, 2012.

[17] F. M. Harper and J. A. Konstan. The movielens datasets: History and context. ACM Trans. Interact.
Intell. Syst., 5(4):19:1–19:19, 2016.

[18] N. Harvey and S. Samadi. Near-optimal herding. In Proceedings of The 27th Conference on Learning
Theory, COLT, pages 1165–1182, 2014.

[19] S. Hayakawa, H. Oberhauser, and T. J. Lyons. Positively weighted kernel quadrature via subsampling.
In Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS, 2022.

[20] R. He and J. J. McAuley. Ups and downs: Modeling the visual evolution of fashion trends with one-class
collaborative filtering. In Proceedings of the 25th International Conference on World Wide Web, WWW,
pages 507–517. ACM, 2016.

[21] F. Huszar and D. Duvenaud. Optimally-weighted herding is bayesian quadrature. In Proceedings of the
28th Conference on Uncertainty in Artificial Intelligence, UAI, pages 377–386, 2012.

[22] M. Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In Proceedings of the 30th
International Conference on Machine Learning, ICML, volume 28, pages 427–435, 2013.

[23] Z. S. Karnin and E. Liberty. Discrepancy, coresets, and sketches in machine learning. In Proceedings of
the 32nd Conference on Learning Theory, COLT, volume 99, pages 1975–1993, 2019.

[24] X. N. Lam, T. Vu, T. D. Le, and A. D. Duong. Addressing cold-start problem in recommendation
systems. In Proceedings of the 2nd International Conference on Ubiquitous Information Management
and Communication, ICUIMC, pages 208–211, 2008.

[25] H. Lee, J. Im, S. Jang, H. Cho, and S. Chung. Melu: Meta-learned user preference estimator for
cold-start recommendation. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD, pages 1073–1082. ACM, 2019.

[26] B. Lika, K. Kolomvatsos, and S. Hadjiefthymiades. Facing the cold start problem in recommender
systems. Expert Syst. Appl., 41(4):2065–2073, 2014.

[27] J. Lin, K. Sugiyama, M. Kan, and T. Chua. Addressing cold-start in app recommendation: latent
user models constructed from twitter followers. In The 36th International ACM SIGIR conference on
research and development in Information Retrieval, SIGIR, pages 283–292, 2013.

[28] G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-item collaborative filtering.
IEEE Internet Comput., 7(1):76–80, 2003.

[29] Y. Lu, Y. Fang, and C. Shi. Meta-learning on heterogeneous information networks for cold-start recom-
mendation. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, KDD, pages 1563–1573. ACM, 2020.

[30] Y. Mansour, M. Mohri, and A. Rostamizadeh. Domain adaptation: Learning bounds and algorithms.
In Proceedings of the 22nd Conference on Learning Theory, COLT, 2009.

[31] J. J. McAuley and J. Leskovec. Hidden factors and hidden topics: understanding rating dimensions
with review text. In Proceedings of the 7th ACM Conference on Recommender Systems, RecSys, pages
165–172, 2013.

[32] J. J. McAuley, C. Targett, Q. Shi, and A. van den Hengel. Image-based recommendations on styles
and substitutes. In Proceedings of the 38th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR, pages 43–52. ACM, 2015.

[33] B. Mirzasoleiman, J. A. Bilmes, and J. Leskovec. Coresets for data-efficient training of machine learning
models. In Proceedings of the 37th International Conference on Machine Learning, ICML, volume 119,
pages 6950–6960, 2020.

16

Published in Transactions on Machine Learning Research (10/2025)

[34] R. J. Mooney and L. Roy. Content-based book recommending using learning for text categorization. In
Proceedings of the 5th ACM Conference on Digital Libraries, DL, pages 195–204. ACM, 2000.

[35] A. Müller. Integral probability metrics and their generating classes of functions. Advances in applied
probability, 29(2):429–443, 1997.

[36] R. Nakano, J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim, C. Hesse, S. Jain, V. Kosaraju, W. Saunders,
X. Jiang, K. Cobbe, T. Eloundou, G. Krueger, K. Button, M. Knight, B. Chess, and J. Schulman.
Webgpt: Browser-assisted question-answering with human feedback. arXiv, 2021. URL https://
arxiv.org/abs/2112.09332.

[37] S. Park and W. Chu. Pairwise preference regression for cold-start recommendation. In Proceedings of
the 3rd ACM Conference on Recommender Systems, RecSys, pages 21–28. ACM, 2009.

[38] S. Park, D. M. Pennock, O. Madani, N. Good, and D. DeCoste. Naïve filterbots for robust cold-start
recommendations. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD, pages 699–705, 2006.

[39] G. Peyré, M. Cuturi, et al. Computational optimal transport: With applications to data science.
Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

[40] F. Radlinski and S. T. Dumais. Improving personalized web search using result diversification. In
Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR, pages 691–692, 2006.

[41] C. E. Rasmussen and Z. Ghahramani. Bayesian monte carlo. In Advances in Neural Information
Processing Systems 15 [Neural Information Processing Systems, NeurIPS, pages 489–496, 2002.

[42] R. Sato. CLEAR: A fully user-side image search system. In Proceedings of the 31st ACM International
Conference on Information & Knowledge Management, CIKM, pages 4970–4974, 2022.

[43] R. Sato. Private recommender systems: How can users build their own fair recommender systems
without log data? In Proceedings of the 2022 SIAM International Conference on Data Mining, SDM,
pages 549–557. SIAM, 2022.

[44] R. Sato. Retrieving black-box optimal images from external databases. In Proceedings of the 15th ACM
International Conference on Web Search and Data Mining, WSDM, pages 879–887, 2022.

[45] R. Sato. Towards principled user-side recommender systems. In Proceedings of the 31st ACM Interna-
tional Conference on Information & Knowledge Management, CIKM, pages 1757–1766, 2022.

[46] R. Sato. Making translators privacy-aware on the user’s side. Trans. Mach. Learn. Res., 2024, 2024.
[47] R. Sato. Overhead-free user-side recommender systems. arxiv, abs/2411.07589, 2024. URL https:

//arxiv.org/abs/2411.07589.
[48] R. Sato. User-side realization. Doctoral Thesis, 2024. URL https://arxiv.org/abs/2403.15757.
[49] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock. Methods and metrics for cold-start

recommendations. In Proceedings of the 25th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR, pages 253–260, 2002.

[50] O. Sener and S. Savarese. Active learning for convolutional neural networks: A core-set approach. In
Proceedings of the 6th International Conference on Learning Representations, ICLR, 2018.

[51] B. K. Sriperumbudur, A. Gretton, K. Fukumizu, G. R. G. Lanckriet, and B. Schölkopf. A note on
integral probability metrics and φ-divergences. arXiv, abs/0901.2698, 2009. URL http://arxiv.org/
abs/0901.2698.

[52] H. Steck. Calibrated recommendations. In Proceedings of the 12th ACM Conference on Recommender
Systems, RecSys, pages 154–162. ACM, 2018.

[53] M. Vartak, A. Thiagarajan, C. Miranda, J. Bratman, and H. Larochelle. A meta-learning perspective
on cold-start recommendations for items. In Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, NeurIPS, pages 6904–6914, 2017.

[54] C. Villani et al. Optimal transport: old and new, volume 338. Springer, 2009.

17

https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2411.07589
https://arxiv.org/abs/2411.07589
https://arxiv.org/abs/2403.15757
http://arxiv.org/abs/0901.2698
http://arxiv.org/abs/0901.2698

Published in Transactions on Machine Learning Research (10/2025)

[55] Q. Wang, H. Yin, H. Wang, Q. V. H. Nguyen, Z. Huang, and L. Cui. Enhancing collaborative filtering
with generative augmentation. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD, pages 548–556. ACM, 2019.

[56] K. Wei, Y. Liu, K. Kirchhoff, and J. A. Bilmes. Using document summarization techniques for speech
data subset selection. In Proceedings of the 2013 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, NAACL-HLT, pages 721–726,
2013.

[57] K. Wei, R. K. Iyer, and J. A. Bilmes. Submodularity in data subset selection and active learning.
In Proceedings of the 32nd International Conference on Machine Learning, ICML, volume 37, pages
1954–1963, 2015.

[58] M. Welling. Herding dynamical weights to learn. In Proceedings of the 26th Annual International
Conference on Machine Learning, ICML, volume 382, pages 1121–1128, 2009.

[59] J. Weng, E. Lim, J. Jiang, and Q. He. Twitterrank: finding topic-sensitive influential twitterers. In
Proceedings of the 3rd International Conference on Web Search and Web Data Mining, WSDM, pages
261–270, 2010.

[60] W. X. Zhao, S. Li, Y. He, E. Y. Chang, J. Wen, and X. Li. Connecting social media to e-commerce:
Cold-start product recommendation using microblogging information. IEEE Trans. Knowl. Data Eng.,
28(5):1147–1159, 2016.

[61] K. Zhou, S. Yang, and H. Zha. Functional matrix factorizations for cold-start recommendation. In Pro-
ceeding of the 34th International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR, pages 315–324. ACM, 2011.

A Proof of Proposition 3.3

Proposition A.1. Let w̃j = Ij

K with Ij ∼ Bernoulli(Kŵj). Then,∥∥∥∥∥∥
2m∑
j=1

w̃jφ(xj)−
2m∑
j=1

ŵjφ(xj)

∥∥∥∥∥∥
H

≤
√

B

δK
(43)

with probability at least 1− δ.

Proof.

EI


∥∥∥∥∥∥
∑

j

w̃jφ(xj)−
∑

j

ŵjφ(xj)

∥∥∥∥∥∥
2

H

 (44)

=
∑
j,j′

EI [w̃jw̃j′]〈φ(xj), φ(xj′)〉 − 2
∑
j,j′

EI [w̃jŵj′]〈φ(xj), φ(xj′)〉+
∑
j,j′

EI [ŵjŵj′]〈φ(xj), φ(xj′)〉 (45)

(a)=
∑
j,j′

EI

[
Ij

K

Ij′

K

]
〈φ(xj), φ(xj′)〉 − 2

∑
j,j′

EI

[
Ij

K
ŵj′

]
〈φ(xj), φ(xj′)〉+

∑
j,j′

EI [ŵjŵj′]〈φ(xj), φ(xj′)〉 (46)

(b)= 1
K2

∑
j,j′

EI [IjIj′]〈φ(xj), φ(xj′)〉 − 2
∑
j,j′

1
K

EI [Ij]ŵj′〈φ(xj), φ(xj′)〉+
∑
j,j′

ŵjŵj′〈φ(xj), φ(xj′)〉 (47)

(c)= 1
K2

∑
j,j′

EI [IjIj′]〈φ(xj), φ(xj′)〉 − 2
∑
j,j′

ŵjŵj′〈φ(xj), φ(xj′)〉+
∑
j,j′

ŵjŵj′〈φ(xj), φ(xj′)〉 (48)

= 1
K2

∑
j,j′

EI [IjIj′]〈φ(xj), φ(xj′)〉 −
∑
j,j′

ŵjŵj′〈φ(xj), φ(xj′)〉 (49)

18

Published in Transactions on Machine Learning Research (10/2025)

= 1
K2

∑
j

EI [I2
j]〈φ(xj), φ(xj)〉+ 1

K2

∑
j 6=j′

EI [IjIj′]〈φ(xj), φ(xj′)〉 −
∑
j,j′

ŵjŵj′〈φ(xj), φ(xj′)〉 (50)

(d)= 1
K2

∑
j

EI [Ij]〈φ(xj), φ(xj)〉+ 1
K2

∑
j 6=j′

EI [Ij]EI [Ij′]〈φ(xj), φ(xj′)〉 −
∑
j,j′

ŵjŵj′〈φ(xj), φ(xj′)〉 (51)

(e)= 1
K2

∑
j

EI [Ij]〈φ(xj), φ(xj)〉+
∑
j 6=j′

ŵjŵj′〈φ(xj), φ(xj′)〉 −
∑
j,j′

ŵjŵj′〈φ(xj), φ(xj′)〉 (52)

= 1
K2

∑
j

EI [Ij]〈φ(xj), φ(xj)〉 −
∑

j

ŵ2
j 〈φ(xj), φ(xj)〉 (53)

(f)= 1
K

∑
j

ŵj〈φ(xj), φ(xj)〉 −
∑

j

ŵ2
j 〈φ(xj), φ(xj)〉 (54)

= 1
K

∑
j

ŵj‖φ(xj)‖2
H −

∑
j

ŵ2
j‖φ(xj)‖2

H (55)

(g)
≤ 1

K

∑
j

ŵj‖φ(xj)‖2
H (56)

(h)
≤ B

K

∑
j

ŵj (57)

(i)= B

K
, (58)

where (a) follows from the definition of w̃, (b) follows from the fact that 1
K and ŵ are deterministic, (c)

follows from EI [Ij] = Kŵj , (d) follows from the fact that I2
j = Ij and that Ij and Ij′ are independent, (e)

follows from EI [Ij] = Kŵj , (f) follows from EI [Ij] = Kŵj , (g) follows from ŵ2
j‖φ(xj)‖2

H ≥ 0, (h) follows
from Assumption 3.2. i.e., ‖φ(xj)‖2

H ≤ B, and (i) follows from
∑

j ŵj = 1. From Markov’s inequality, we
have

P

∥∥∥∥∥∥
2m∑
j=1

w̃jφ(xj)−
2m∑
j=1

ŵjφ(xj)

∥∥∥∥∥∥
H

≥
√

B

δK

 ≤ δ. (59)

B Proof of Proposition 3.4

Proposition B.1. Let w̃′
j = 1

K if the j-th item is in the final output DT and 0 otherwise. We have∥∥∥∥∥∥
2m∑
j=1

w̃′
jφ(xj)−

2m∑
j=1

w̃jφ(xj)

∥∥∥∥∥∥
H

≤
√

B

δK
(60)

with probability at least 1− δ.

Proof. ∥∥∥∥∥∥
2m∑
j=1

w̃′
jφ(xj)−

2m∑
j=1

w̃jφ(xj)

∥∥∥∥∥∥
H

=

∥∥∥∥∥∥
2m∑
j=1

(
w̃′

j − w̃j

)
φ(xj)

∥∥∥∥∥∥
H

(61)

(a)
≤

2m∑
j=1

∥∥(w̃′
j − w̃j

)
φ(xj)

∥∥
H (62)

19

Published in Transactions on Machine Learning Research (10/2025)

=
2m∑
j=1
|w̃′

j − w̃j |‖φ(xj)‖H (63)

(b)
≤
√

B

2m∑
j=1
|w̃′

j − w̃j | (64)

=
√

B

2m∑
j=1

∣∣∣∣ 1
K

1[j is in the final output]− 1
K

Ij

∣∣∣∣ (65)

=
√

B

K

2m∑
j=1
|1[j is in the final output]− Ij | (66)

(c)=
√

B

K

∣∣∣∣∣∣K −
2m∑
j=1

Ij

∣∣∣∣∣∣ , (67)

where (a) follows from the triangle inequality, (b) follows from Assumption 3.2, and (c) follows from the fact
that the non-zero elements of w̃′ and w̃ differ only when the corresponding items are included or removed in
the postprocessing step, and the items are included or removed until the number of selected items is exactly
K. From Eq. 13, EI

[∑2m
j=1 Ij

]
= K, and from Eq. 14, VarI

[∑2m
j=1 Ij

]
≤ K. By Chebyshev’s inequality to

the right hand side of Eq. 67, we have

P

∥∥∥∥∥∥
2m∑
j=1

w̃′
jφ(xj)−

2m∑
j=1

w̃jφ(xj)

∥∥∥∥∥∥
H

≥
√

B

δK

 ≤ δ. (68)

C Proof of Theorem 3.5

Theorem C.1. Under assumption 3.2, when we run the Frank-Wolfe algorithm with the step size 2
t+2 for

t = 0, 1, . . . , L− 1 and select items with the probability Kwj, we obtain DT such that

MMD(µDT

T , µS) ≤ OPTcombinatorial + CL−1/2 + 2
√

B

δK
(69)

with probability at least 1− 2δ.

Proof.

MMD(µDT

T , µS) (70)

=

∥∥∥∥∥∥
2m∑
j=1

w̃′
jφ(xj)−

∫
φ(x) dµS(x)

∥∥∥∥∥∥
H

(71)

(a)
≤

∥∥∥∥∥∥
2m∑
j=1

w̃′
jφ(xj)−

2m∑
j=1

w̃jφ(xj)

∥∥∥∥∥∥
H

+

∥∥∥∥∥∥
2m∑
j=1

w̃jφ(xj)−
2m∑
j=1

ŵjφ(xj)

∥∥∥∥∥∥
H

+

∥∥∥∥∥∥
2m∑
j=1

ŵjφ(xj)−
∫

φ(x) dµS(x)

∥∥∥∥∥∥
H

(72)

=

∥∥∥∥∥∥
2m∑
j=1

w̃′
jφ(xj)−

2m∑
j=1

w̃jφ(xj)

∥∥∥∥∥∥
H

+

∥∥∥∥∥∥
2m∑
j=1

w̃jφ(xj)−
2m∑
j=1

ŵjφ(xj)

∥∥∥∥∥∥
H

+ MMD(µŵ
T , µS) (73)

(b)
≤

∥∥∥∥∥∥
2m∑
j=1

w̃′
jφ(xj)−

2m∑
j=1

w̃jφ(xj)

∥∥∥∥∥∥
H

+

∥∥∥∥∥∥
2m∑
j=1

w̃jφ(xj)−
2m∑
j=1

ŵjφ(xj)

∥∥∥∥∥∥
H

+ OPTcombinatorial + CL−1/2 (74)

20

Published in Transactions on Machine Learning Research (10/2025)

(c)
≤
√

B

δK
+
√

B

δK
+ OPTcombinatorial + CL−1/2 (75)

= OPTcombinatorial + CL−1/2 + 2
√

B

δK
, (76)

where (a) follows from the triangle inequality, (b) follows from Proposition 3.1, (c) follows from Propositions
3.3 and 3.4 and the union bound with probability at least 1− 2δ.

D Proof of Theorem 3.8

Theorem D.1. Under Assumptions 3.2 and 3.7, there exists C1, C2 ∈ R+ such that when K ≤ C1
|JT |
r∗ ,

MMD(P, µDT) ≤ C2

(
2

√
B

|DS |
+
√

B

K

)
and OPTcombinatorial ≤ C2

(√
B

|DS |
+
√

B

K

)
(77)

with high probability.

Proof. Under Assumption 3.7, 1
r∗ P ≤ Q and Q can be written as 1

r∗ P + (1 − 1
r∗)Q′ for some distribution

Q′. Let Zi = 1 with probability 1
r∗ and Zi = 0 with probability 1 − 1

r∗ , and let sample Xi from P if
Zi = 1 and Q′ if Zi = 0 for i = 1, . . . , |JT |. Xi follows distribution Q. We identity {X1, . . . , X|JT |} with JT .
Let J1 = {Xi | Zi = 1}. E

[
|J1| = |JT |

r∗

]
and |J1| ≥ C1|JT |

r∗ for some constant C1 with high probability by

Markov’s inequality. We assume this holds in the following. Suppose that K ≤ C1
|JT |
r∗ , then K ≤ |J1|. Let

J2 be the first K samples from J1. Elements in J2 are independent and follow the distribution P . As the
empirical distribution converges to the true distribution with rate O(

√
B
K) in MMD [16], we have

MMD(P, J2) ≤ C2

√
B

K
and (78)

MMD(P,DS) ≤ C2

√
B

|DS |
, (79)

for some constant C2 with high probability. By the triangle inequality, we have

MMD(J2,DS) ≤ MMD(P, J2) + MMD(P,DS) (80)

≤ C2

(√
B

|DS |
+
√

B

K

)
. (81)

As J2 ⊆ JT and |J2| = K, J2 is a feasible solution of the combinatorial problem, and the optimal DT ⊆ JT

has no worse MMD than J2, and we have the desired guarantee.

E Proof of Lemma 3.12

Lemma E.1. Let FLip be the set of 1-Lipschitz functions with f(1
2) = 0. FLip can be L∞-covered by F̃ε,

i.e., for any f ∈ FLip, there exists f̃ ∈ F̃ε such that ‖f − f̃‖∞ ≤ ε, with |f(x)| ≤
√

d
2 ,∀f ∈ F̃ε and

|F̃ε| ≤ exp
(

log(3)
(

2
√

d
ε

)d
)

.

Proof. We devide the domain [0, 1]d into d
√

d
ε e

d hypercubes with diameter at most ε. For each hypercube C
and f ∈ FLip, let fC = maxx∈C f(x)+minx∈C f(x)

2 and f̃C be its nearest point in {kε | k ∈ Z}. We then define
f̃(x) = f̃C for x ∈ C. We have |f(x) − f̃(x)| ≤ ε since the diameter of C is at most ε and f is 1-Lipschitz.
We count the number of possible f̃ . For the hypercube Ccenter with 1

2 ∈ Ccenter, f̃Ccenter = 0 since f(1
2) = 0.

21

Published in Transactions on Machine Learning Research (10/2025)

Given the value of f̃C , possible values of an adjacent hypercube C′ are f̃C− ε, f̃C , f̃C + ε. We can reach all the
hypercubes by repeating this process. Therefore, the possible values of f̃ are at most 3s−1, where s = d

√
d

ε e
d

is the number of hypercubes. When
√

d
ε ≥ 1, we have d

√
d

ε e ≤
√

d
ε +1 ≤ 2

√
d

ε , and |F̃ | ≤ exp
(

log(3)
(

2
√

d
ε

)d
)

.

When
√

d
ε < 1, we have |F̃ | = 1, in which case the lemma holds trivially.

F Proof of Proposition 3.13

Proposition F.1. Let w̃′
j = 1

K if the j-th item is in the final output DT and 0 otherwise. For any ε > 0,

sup
f∈F̃ε

2m∑
j=1

f(xj)(w̃′
j − w̃j) ≤

√
d

2K
log 1

δ
+
√

d

3K
log 1

δ
(82)

with probability at least 1− δ.

Proof.

sup
f∈F̃ε

2m∑
j=1

(w̃′
j − w̃j)f(xj) ≤ ‖f‖∞

2m∑
j=1
|w̃′

j − w̃j | (83)

≤
√

d

2

2m∑
j=1
|w̃′

j − w̃j | (84)

≤
√

d

2

2m∑
j=1

∣∣∣∣ 1
K

1[j is in the final output]− 1
K

Ij

∣∣∣∣ (85)

=
√

d

2K

2m∑
j=1
|1[j is in the final output]− Ij | (86)

=
√

d

2K

∣∣∣∣∣∣K −
2m∑
j=1

Ij

∣∣∣∣∣∣ . (87)

Ij are independent Bernoulli random variables with |Ij | ≤ 1, and from Eq. 13, EI

[∑2m
j=1 Ij

]
= K, and from

Eq. 14, VarI

[∑2m
j=1 Ij

]
≤ K. By Bernstein’s inequality, we have

P

∣∣∣∣∣∣K −
2m∑
j=1

Ij

∣∣∣∣∣∣ ≥
√

2K log 1
δ

+ 2
3 log 1

δ

 ≤ δ. (88)

By combining it with Eq. 87, we have the desired guarantee.

G Proof of Proposition 3.14

Lemma G.1. Let w̃j = Ij

K with Ij ∼ Bernoulli(Kŵj). Then, for any f with |f(x)| ≤
√

d
2 ,

2m∑
j=1

f(xj)(w̃j − ŵj) ≤
√

d

2K
log 1

δ
+
√

d

3K
log 1

δ
(89)

with probability at least 1− δ.

22

Published in Transactions on Machine Learning Research (10/2025)

Proof. Since 0 ≤ w̃j , ŵj ≤ 1
K , we have |(w̃j − ŵj)f(xj)| ≤

√
d

2K . Here, (w̃j − ŵj)f(xj) are independent
random variables with mean EI [(w̃j − ŵj)]f(xj) = 0 and variance

VarI [(w̃j − ŵj)f(xj)] = f(xj)2VarI [w̃j] = f(xj)2VarI

[
Ij

K

]
= f(xj)2

K2 VarI [Ij] = f(xj)2Kŵj(1−Kŵj)
K2 .

(90)

The sum of the variances is
2m∑
j=1

f(xj)2Kŵj(1−Kŵj)
K2 = 1

K

2m∑
j=1

f(xj)2ŵj(1−Kŵj) (91)

(a)
≤ d

4K

2m∑
j=1

ŵj(1−Kŵj) (92)

(b)
≤ d

4K

2m∑
j=1

ŵj (93)

(c)= d

4K
, (94)

where (a) follows from f(xj) ≤
√

d
2 , (b) follows from the fact that 1 ≥ Kŵj , and (c) follows from

∑
j ŵj = 1.

By Bernstein’s inequality, we have

P

 2m∑
j=1

(w̃j − ŵj)f(xj) ≥
√

d

2K
log 1

δ
+
√

d

3K
log 1

δ

 ≤ δ. (95)

H Proof of Theorem 3.15

Theorem H.1. For any δ > 0, the 1-Wasserstein distance between the final output DT and the source
distribution is

W1(µDT

T , µS) ≤ OPTcombinatorial + 3
√

d

K
log 1

δ
+
√

d

K
log 1

δ
+ 8
√

dK− 1
d+2 + 11

√
dK− 2

d+2 + 6
√

d log 1
δ

K− 1
d+2 − 1

2

(96)

with probability at least 1− 2δ.

Proof. We use

ε =
√

d

(
2

d−2
d+2 log

1
d+2 (3)K− 1

d+2 + 1
2

√
1
K

log 1
δ

)
(97)

in the following. Then,

4K

d
εd+2 ≥ 4Kd−1d

d+2
2

(
2

d−2
d+2 log

1
d+2 (3)K− 1

d+2

)d+2
(98)

= d
d
2 2d log(3) (99)

and thus (
2
√

d

ε

)d

log(3) ≤ 4K

d
ε2. (100)

23

Published in Transactions on Machine Learning Research (10/2025)

In addition,

4K

d
ε2 ≥ 4K

(
1
2

√
1
K

log 1
δ

)2

(101)

= log 1
δ

. (102)

By combining Eq. 99 and Eq. 102, we have(
2
√

d

ε

)d

log(3) + log 1
δ
≤ 8K

d
ε2. (103)

By Lemma 3.12, |F̃ε| ≤ exp
(

log(3)
(

2
√

d
ε

)d
)

. We have

d

2K
log |F̃ε|

δ
= d

2K
(log |F̃ε|+ log 1

δ
) (104)

≤ d

2K

log(3)
(

2
√

d

ε

)d

+ log 1
δ

 (105)

(a)
≤ d

2K

(
8K

d
ε2
)

(106)

= 4ε2, (107)

where (a) follows from Eq. 103. In addition, we have
√

d

3K
log |F̃ε|

δ
=
√

d

3K
(log |F̃ε|+ log 1

δ
) (108)

≤
√

d

3K

log(3)
(

2
√

d

ε

)d

+ log 1
δ

 (109)

(a)
≤
√

d

3K

(
8K

d
ε2
)

(110)

= 8
3
√

d
ε2, (111)

where (a) follows from Eq. 103. We set δ ← δ/|F̃ | in Proposition 3.14 and apply the union bound, then, we
have

2m∑
j=1

(w̃j − ŵj)f̃(xj) ≤

√
d

2K
log |F̃ |

δ
+
√

d

3K
log |F̃ |

δ
(112)

(a)
≤ 2ε + 8

3
√

d
ε2 (113)

for all f̃ ∈ F̃ with probability at least 1− δ, where (a) follows from Eq. 107 and Eq. 111. In the following,
we assume that Eqs. 39 and 113 hold, which is true with probability at least 1− 2δ. Then, we have

2m∑
j=1

(w̃′
j − ŵj)f̃(xj) =

2m∑
j=1

(w̃′
j − w̃j)f̃(xj) +

2m∑
j=1

(w̃j − ŵj)f̃(xj) (114)

≤
√

d

2K
log 1

δ
+
√

d

3K
log 1

δ
+ 2ε + 8

3
√

d
ε2. (115)

24

Published in Transactions on Machine Learning Research (10/2025)

For any f ∈ FLip, there exists f̃ ∈ F̃ such that ‖f − f̃‖∞ ≤ ε, and we have

2m∑
j=1

(w̃′
j − ŵj)f(xj) (116)

=
2m∑
j=1

(w̃′
j − ŵj)f̃(xj) +

2m∑
j=1

(w̃′
j − ŵj)(f(xj)− f̃(xj)) (117)

(a)
≤

2m∑
j=1

(w̃′
j − ŵj)f̃(xj) + ε

2m∑
j=1
|w̃′

j − ŵj | (118)

(b)
≤

2m∑
j=1

(w̃′
j − ŵj)f̃(xj) + 2ε (119)

≤
√

d

2K
log 1

δ
+
√

d

3K
log 1

δ
+ 2ε + 8

3
√

d
ε2 + 2ε (120)

≤
√

d

2K
log 1

δ
+
√

d

3K
log 1

δ
+ 4ε + 8

3
√

d
ε2 (121)

(c)
≤
√

d

2K
log 1

δ
+
√

d

3K
log 1

δ
+ 4
√

d

(
2

d−2
d+2 log

1
d+2 (3)K− 1

d+2 + 1
2

√
1
K

log 1
δ

)
(122)

+ 8
3
√

d

(
2

d−2
d+2 log

1
d+2 (3)K− 1

d+2 + 1
2

√
1
K

log 1
δ

)2

(123)

=
√

d

2K
log 1

δ
+
√

d

3K
log 1

δ
+ 4
√

d

(
2
(

log 3
24

) 1
d+2

K− 1
d+2 + 1

2

√
1
K

log 1
δ

)
(124)

+ 8
3
√

d

(
2
(

log 3
24

) 1
d+2

K− 1
d+2 + 1

2

√
1
K

log 1
δ

)2

(125)

≤
√

d

2K
log 1

δ
+
√

d

3K
log 1

δ
+ 4
√

d

(
2K− 1

d+2 + 1
2

√
1
K

log 1
δ

)
(126)

+ 8
3
√

d

(
2K− 1

d+2 + 1
2

√
1
K

log 1
δ

)2

(127)

≤ 3
√

d

K
log 1

δ
+
√

d

K
log 1

δ
+ 8
√

dK− 1
d+2 + 11

√
dK− 2

d+2 + 6
√

d log 1
δ

K− 1
d+2 − 1

2 (128)

where (a) follows from ‖f − f̃‖∞ ≤ ε and (b) follows from w̃′, ŵ ∈ ∆2m−1 (c) follows from the definition of
ε, and (d) follows from d ≥ 1. From the Kantorovich-Rubinstein duality, we have

W1(µDT

T , µŵ
T) ≤ 3

√
d

K
log 1

δ
+
√

d

K
log 1

δ
+ 8
√

dK− 1
d+2 + 11

√
dK− 2

d+2 + 6
√

d log 1
δ

K− 1
d+2 − 1

2 . (129)

Note that we restrected test functions to f(1
2) = 0 but this does not affect the bound by adding a bias. As

ŵ is the optimal solution of the linear program, we have W1(µŵ
T , µS) = OPTcontinuous ≤ OPTcombinatorial.

By the triangle inequality, we have the desired guarantee.

25

	Introduction
	Problem Setting
	Pretender
	Formulating the Problem as Distance Minimization
	Optimization
	Pretender for MMD
	Pretender for the Wasserstein Distance

	Discussions
	Discussion on Variants
	Optimum Value is Not Monotone
	Limitation: Inconsistent Features

	Related Work
	Cold Start Problem
	Quadrature
	User-side Realization

	Experiments
	Convergence Analysis
	Quantitative Evaluation
	Case Study

	Conclusion
	Proof of Proposition 3.3
	Proof of Proposition 3.4
	Proof of Theorem 3.5
	Proof of Theorem 3.8
	Proof of Lemma 3.12
	Proof of Proposition 3.13
	Proof of Proposition 3.14
	Proof of Theorem 3.15

