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Abstract

We introduce and study the problem of dueling optimization with a monotone adversary, which
is a generalization of (noiseless) dueling convex optimization. The goal is to design an online
algorithm to find a minimizer x⋆ for a function f : X → R, where X ⊆ Rd. In each round, the
algorithm submits a pair of guesses, i.e., x(1) and x(2), and the adversary responds with any point
in the space that is at least as good as both guesses. The cost of each query is the suboptimality of
the worse of the two guesses; i.e., max

(
f(x(1)), f(x(2))

)
− f(x⋆). The goal is to minimize the

number of iterations required to find an ε-optimal point and to minimize the total cost (regret) of the
guesses over many rounds. Our main result is an efficient randomized algorithm for several natural
choices of the function f and set X that incurs cost O(d) and iteration complexity O(d log(1/ε)2).
Moreover, our dependence on d is asymptotically optimal, as we show examples in which any
randomized algorithm for this problem must incur Ω(d) cost and iteration complexity.

1. Introduction

A growing body of literature studies learning with preference-based feedback [BV06; SJ11], with
tremendous empirical success in recommendation systems, search engine optimization, information
retrieval, and robotics. More recently, preference-based feedback has received a lot of attention
as a mechanism to train large language models [OWJ+22]. Moreover, in recommender systems
[BOHG13], a natural approach is to learn from users’ preferences relations on a set of recommended
items and update the system’s belief for better future recommendations [JRTZ16] (e.g., given these
items, which one do you prefer the most?).

Such preference-based feedback is not readily addressed by classical formulations for online deci-
sion making, such as bandits and reinforcement learning. In particular, algorithms for these prob-
lems rely on ordinal feedback per item (e.g., on a scale of 1 to 10, how much did the user like a
particular item?). To address this, a long line of work studies the dueling bandit framework for
online decision making under pairwise/preference-based feedback. There exist efficient algorithms
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with provable guarantees for the standard multi-armed bandit setup [YBKJ12; AKJ14; KHKN15],
contextual bandits [DHSSZ15; SK22], as well as dueling convex optimization [JNR12; SKM21;
SKM22], to name a few. The dueling bandit framework is especially applicable in settings where
real-valued feedback is scarce or impossible to obtain, but preference-based feedback is readily
available.

However, a key limitation of the dueling bandit framework is that the feedback that the learner
receives is essentially “in-list”. That is, the users are restricted to selecting items exclusively from
the list of recommended items. This feedback model fails to capture the real-world scenarios where
the users might select an out-of-list item they prefer. To illustrate, music streaming services like
Spotify create personalized playlists for users. Concretely, each song can be encoded as a feature
vector x ∈ Rd, and the goal is to recommend the songs with the highest utility for a hidden, well-
structured utility function of x. However, the users can also search for and play the songs they have
a stronger preference (i.e., higher utility) than all recommendations.

This out-of-list feedback model falls into a monotone adversarial framework (see the chapter by
Feige [Fei21]). In such models, an adversary is only allowed to make “helpful” changes. For exam-
ple, in a graph clustering problem, the adversary is only allowed to add edges within communities
and delete edges that cross communities (see, e.g., the chapter by Moitra [Moi21]). In our setting,
the adversary is only allowed to respond with an item that is at least as good as any recommended
item. A clear adaptation of the dueling bandit framework to this new feedback type is not evident.

1.1. Problem statement

As our main conceptual contribution, we introduce a theoretical formulation for this setting that
we call dueling optimization with a monotone adversary. As we will see, our formulation supports
“out-of-list” feedback.

Problem 1 (Dueling optimization with a monotone adversary). Let X ⊆ Rd be a decision space,
and let f : X → R be a cost function with an unknown global minimum x⋆. A learner interacts
with an adversary over rounds t = 1, 2, . . . , where each round is of the following form.

1. The learner proposes two points x(1)
t ,x

(2)
t ∈ X .

2. The adversary responds with a point rt that satisfies f(rt) ≤ min
{
f
(
x
(1)
t

)
, f
(
x
(2)
t

)}
.

The goal is to design algorithms that:

1. for some prespecified ε > 0, minimize the number of iterations to find a point x for which
f(x)− f(x⋆) ≤ ε;

2. minimize the total cost
∑∞

t=1

(
max

{
f
(
x
(1)
t

)
, f
(
x
(2)
t

)}
− f(x⋆)

)
.

Note that in Problem 1, we are interested in both the iteration complexity and the total cost. The first
objective is a standard metric for measuring the performance of an iterative optimization algorithm.
The second objective is motivated by online settings in which a practitioner may wish to minimize
the total regret (cost) of its recommendations over an indefinitely long interaction with a user. In
fact, the algorithms we propose in this paper simultaneously achieve both small iteration complexity
(for any choice of ε) as well as total cost — see our technical overview in Section A for more details.
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Problem 1 is a natural extension of (noiseless) dueling optimization [JNR12; SKM21; SKM22] to
handle “out-of-list” responses, as in the Spotify recommendation example. The vanilla (noiseless)
dueling optimization setup corresponds to the requirement that the user’s response satisfies rt ∈
{x(1)

t ,x
(2)
t }. We allow the user to be potentially adversarial by allowing it to respond with any

improvement to the learner’s suggestions (in the sequel, we exclusively refer to the user as the
adversary).

Even though the monotone adversary is only improving upon the learner’s suggestions, existing
algorithms for dueling optimization cannot be freely extended to handle the monotone feedback. At
a high level, the difficulty arises from the fact that existing algorithms carefully select the queries
x
(1)
t ,x

(2)
t so that learning whether f(x

(1)
t ) > f(x

(2)
t ) reveals information about the underlying

f . However, a monotone adversary can return a point rt that reveals no information about the
relationship between x

(1)
t and x

(2)
t .

To illustrate this point, consider a natural coordinate-wise binary search algorithm for the dueling
optimization problem when f(x) = ∥x− x⋆∥22 for some x⋆ ∈ Bd2 := {x : ∥x∥2 ≤ 1}. For coor-
dinates i = 1, · · · , d, query points of the form x

(1)
t = c1 · ei, x(2)

t = c2 · ei and progressively refine
the values c1, c2 ∈ R to search for the value of x⋆[i] (i.e., the i-th entry of x⋆). It is easy to show
that this approach has a query complexity of O (d log (1/ε)) in the vanilla dueling optimization set-
ting. However, a monotone adversary can return orthogonal responses of the form rt = Cej (where
j ̸= i and C is a constant) that do not allow the learner to search along the intended coordinate i.
Furthermore, Jamieson, Nowak, and Recht [JNR12] and Saha, Koren, and Mansour [SKM21] give
more sophisticated algorithms for the dueling optimization problem that inherently depend upon the
“in-list” feedback, which clearly cannot apply to our setting. We therefore need novel insights to
solve Problem 1.

1.2. Our results

We study Problem 1 for various natural classes of functions f and provide tight upper and lower
bounds on the number of queries required to find an ε-optimal point.

Upper bound for linear functions. First, we study dueling optimization with a monotone adver-
sary when the function f is linear. This is a natural class to consider. In particular, an algorithm that
solves Problem 1 can be adapted to achieve constant regret for (noiseless) linear contextual bandits
[CLRS11], where the reward function is r(x) := ⟨x,x⋆⟩. Note that the key difference in the setup
is that the learner does not get to observe the actual linear costs but instead only an improvement to
the actions (points) that the learner selects.

Theorem 1. Let X = Sd2, let x⋆ be such that ∥x⋆∥2 = 1, and let f : X → R be f(x) = −⟨x,x⋆⟩.
Fix any ε > 0. There exists an algorithm that, in the setting of Problem 1, with probability at least
1− exp (−O(d)):

• outputs a point x satisfying ⟨x⋆ − x,x⋆⟩ ≤ ε within O(d log (1/ε)2) iterations;

• incurs total cost O(d).

Each pair of guesses at time t can be computed in O(d) time.

We prove Theorem 1 in Section D.2, and the cost is near-optimal with respect to d.
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Gollapudi, Guruganesh, Kollias, Manurangsi, Leme, and Schneider [GGKMLS21] study a closely
related setup that they call local contextual recommendation. Their result (see their Theorem 6.4)
can be interpreted as showing that if the action setX is a discrete set (namely a packing over the unit
sphere), there exists a 2Ω(d) lower bound on the iteration complexity to find a point with constant
suboptimality. In contrast, our Theorem 1 shows a much smaller upper bound when the domain is
the entire unit sphere.

Upper bound for smooth and PŁ functions. Next, we study whether we can show guarantees
for a large class of functions. We show a positive result for functions that are both β-smooth and
α-Polyak-Łojasiewicz (abbreviated as PŁ). These assumptions are standard in optimization.

Definition 1 (β-smooth function [Bub15, Lemma 3.4]). We say f is β-smooth if it satisfies (1.1).

For all x,y ∈ Rd : |f(x)− f(y)− ⟨∇f(y),x− y⟩| ≤ β

2
· ∥x− y∥22 (1.1)

Definition 2 (α-PŁ function). We say f is α-PŁ if it satisfies (1.2).

For all x ∈ Rd and minimizers x⋆ : f(x)− f(x⋆) ≤ 1

2α
∥∇f(x)∥22 (1.2)

Our main result for this setting is Theorem 2.

Theorem 2. Let X = Rd, and suppose f is β-smooth (Definition 1) and α-PŁ (Definition 2). Fix
any ε > 0, as well as a known point x1 and a value B satisfying B ≥ f(x1)− f(x⋆). There exists
an algorithm that, in the setting of Problem 1, with probability at least 1− exp (−O(d)):

• outputs a point x satisfying f(x)− f(x⋆) ≤ ε within O
(
β/α · d · log (B/ε)2

)
iterations;

• incurs total cost O (β/α ·B · d).

Each pair of guesses at time t can be computed in O(d) time.

We prove Theorem 2 in Section D.3.

As an application, we show a positive result when the loss function is the Euclidean distance, and
the decision space X = Bd2 is a unit ball:

Theorem 3. LetX = Bd2 , let x⋆ be such that ∥x⋆∥2 ≤ 1, and let f : X → R be f(x) = ∥x− x⋆∥2.
Fix any ε > 0. There exists an algorithm that, in the setting of Problem 1, with probability at least
1− exp (−O(d)):

• outputs a point x satisfying ∥x− x⋆∥2 ≤ ε within O
(
d · log (B/ε)2

)
iterations;

• incurs total cost O (d).

Each pair of guesses at time t can be computed in O(d) time.

We prove Theorem 3 in Section D.4.

Note that unlike in Theorem 2, Theorem 3 applies to the setting where the algorithm must guess
points belonging to a given constraint setX . Hence, in the proof of Theorem 3, we have to be careful
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to ensure that the convergence argument still holds when we apply the algorithm for Theorem 2
along with a projection step. It is not clear that this argument holds by default for all f satisfying
the conditions requested by Theorem 2. Furthermore, as will become evident, we really only require
that X be any convex body (though we state the result with X = Bd2 to emphasize the consistency
with our following lower bounds).

Lower bounds. We also prove that the dependence on d in our results is tight. In particular, when
f is either a linear function or the distance to the target (as in Theorem 3), then Ω(d) queries are
necessary to identify x⋆. This will translate to a Ω(d) cost over an infinite number of rounds. In
fact, our lower bound is valid when the adversary must return one of the two queried points, as in
vanilla dueling optimization framework.

Our lower bound also covers a more general setting than that stated in Problem 1. Thus far, we have
only discussed the setting where the algorithm can query only two points and is told the better of
the two. In many practical instances, the algorithm can query m points and learn the point with the
best objective value (we call this m-ary dueling optimization). Then, one may ask why we study
only the m = 2 in this paper. In our construction, we prove that unless m is polynomial in d, we
cannot decrease the total cost substantially below Ω(d). Thus, the most interesting case for constant
m is when m = 2, and in this case, our result is optimal in d.

See Theorem 4 for a formal statement of our lower bound.

Theorem 4 (Lower bound, ℓ2 distance). Let X = Bd2 . For any randomized algorithm for m-ary
dueling optimization, there exists a choice of minimizer x⋆ ∈ Bd2 and function f(x) := ∥x− x⋆∥2
such that the algorithm must:

• perform Ω (d/logm) iterations in expectation to find a point x for which f(x)− f(x⋆) ≤ ε.

• incur cost Ω (d/logm) in expectation.

Here, ε > 0 is an absolute numerical constant.

We prove Theorem 4 in Section E. Using the same construction, we can also demonstrate that
Theorem 1 is tight when X is the unit sphere.

Corollary 5 (Lower bound, linear f ). Let X = Sd2. For any randomized algorithm for m-ary
dueling optimization there exists a choice of minimizer x⋆ ∈ Sd2 and function f(x) := −⟨x,x⋆⟩
such that the same conclusions as in Theorem 4 hold.
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Appendix A. Technical overview

At a high level, our algorithms maintain a guess xt for the optimal solution x⋆. They will update
this guess over many interactions with the adversary.

A general recipe. We first describe the primitives that our methods depend on. Our first technical
innovation is the notion of progress distributions. Loosely speaking, these are distributions from
which a learner is likely to sample a new guess xt+1 that decreases its suboptimality. See Definition
3.

Definition 3 (Progress Distribution). Let f : X → R for X ⊆ Rd. For x ∈ X and 1 ≤ p < 2, we
say a distribution D(x) over vectors in Rd is a (p, γ, ρ)-progress distribution for x if we have the
below.

Pr
x+∼D(x)

[
f(x)− f(x+)

(f(x)− f(x⋆))p
≥ ρ

d

]
≥ γ.

So, if for every xt the learner had sample access to some progress distribution D(xt), the learner
can significantly improve its solution (e.g. when p = 1, roughly ∼ d/ρ steps are sufficient for the
learner to decrease its suboptimality by a constant factor). It is therefore natural that repeating such a
sample-then-guess approach ad infinitum will yield an approximately optimal solution. In Theorem
8, we prove this whenever there exist families of progress distributions for every range of possible
suboptimalities. Thus, assuming the learner can maintain a (possibly quite pessimistic) estimate of
its suboptimality over all the rounds, we obtain a template for proving the iteration complexities of
Theorems 1, 2, and 3. Note that ρ can be an arbitrarily small positive constant; even if there is a
slim chance of decreasing the suboptimality, this is still sufficient because the monotone adversary
ensures that the algorithm can never make negative progress.

Specifying progress distributions. We now discuss how we instantiate the above template for
the β-smooth (Definition 1) and α-PŁ (Definition 2) case (Theorem 2). We focus on Theorem
2 for the sake of brevity; the proofs of Theorems 1 and 3 require some additional care but at a
high level follow a similar structure. At step t, the algorithm maintains a guess xt for the target
x⋆. It chooses some step size εt and a random vector gt from εt · Unif(Sd−1

2 ), where Sd−1
2 :={

x ∈ Rd : ∥x∥2 = 1
}

. We then query xt and xt−gt. The key observation is that with a constant
probability, the angle between gt and the gradient∇f(x) is small. We will use this to show that the
distribution xt − εt · Unif(Sd−1

2 ) is a (1, C1, C2)-progress distribution (Definition 3) for constants
C1, C2. Intuitively, this means that xt − gt almost behaves like a step of gradient descent. To turn
this observation into an algorithm, we need two main insights.

Step size schedule. The principal difficulty of this approach is to choose the step size εt. It is
not immediately obvious how to do so since the algorithm does not observe any actual gradients
or function values. Hence, if our step sizes are too large, the algorithm may overshoot the optimal
solution x⋆ and therefore not actually improve the quality of its current solution xt. On the other
hand, if our step sizes are too small, the algorithm may not make enough progress in each step,
which undesirably increases both the iteration complexity and the total cost.

To address this, we carefully construct a step size schedule that relies on a pessimistic upper bound
on the suboptimality of the algorithm’s current solution. With this schedule, we show that in every

9



DUELING OPTIMIZATION WITH A MONOTONE ADVERSARY

step, one of two things happens – either the step size εt is small enough such that there is the
possibility of the algorithm decreasing the cost, or it is too large. For the first case, we use β-
smoothness (Definition 1) to prove that there is a constant probability that the algorithm finds a
descent direction, which decreases the cost of its current solution substantially. For the second case,
we use the α-PŁ condition (Definition 2) to prove that the cost the algorithm incurs in such steps
is low. After enough steps, we can show that either the second case always holds (i.e. that the
suboptimality is already desirably small) or the maximum cost that the algorithm can pay per round
is small. We then decrease the step size εt by a constant factor, update the suboptimality estimate
accordingly, and infinitely recurse.

Bounding the failure probability over infinite rounds. It now remains to show that the proba-
bility that the algorithm fails to make enough progress over infinitely many rounds is small. This
is where the distinction between the two goals of Problem 1 becomes apparent. Specifically, even
if we have a subroutine that, with high probability, outputs an ε-approximate solution, this does
not immediately convert to an algorithm that can achieve bounded cost over an infinite number of
rounds – note that the failure probabilities may accumulate in a divergent manner. Hence, we will
require a more careful probabilistic analysis.

To overcome this challenge, we design the algorithm to run in phases i = 1, 2, . . . . In phase i, we
use a step size εt proportional to 2−i/2 and run phase i for ∼ id steps. Using the fact that the family
of distributions we are using for sampling next steps are (1, C1, C2)-progress distributions, it will
be enough to prove that ∼ d · β/α steps yield enough improving steps to decrease the suboptimality
by a constant factor. We can therefore apply a Chernoff bound to conclude that the probability that
the algorithm fails to make enough progress in phase i is at most exp (−id · β/α). Finally, we apply
a union bound that the total probability of failure by exp (−d · β/α) ≤ exp (−d).

To bound the total cost over all phases i ∈ N≥1, we note that the sum of the suboptimalities in each
round is of the form d

∑
i≥1 i2

−i = O(d). The guarantee on the iteration complexity follows by
noting that to achieve a suboptimality of 2−i, the algorithm runs d

∑
j≤i i = O

(
i2 · d

)
iterations.

Appendix B. Related works

Dueling convex optimization. As already mentioned, our formulation in Problem 1 is an exten-
sion of dueling convex optimization in the noiseless setting [JNR12; SKM21; SKM22]. Jamieson,
Nowak, and Recht [JNR12] employ a coordinate-descent algorithm to show for α-smooth and β-
strongly convex f , Õ(dβ/α log (1/ε)) queries suffice to learn an ε-optimal point. As mentioned
earlier, it is not clear how to adapt their algorithm to handle monotone feedback. In addition, the
papers [SKM21; SKM22] show results for more general classes of f and in the presence of noise
(where the adversary can return invalid response with nonzero probability); see Section C for a
discussion on extending our results to noisy settings. However, their algorithms explicitly rely on

sign feedback f(x
(1)
t )

?
> f(x

(2)
t ) to construct gradient estimators, which are not possible in the

monotone adversary setting.

Monotone adversaries. Our setting is an example of learning with a monotone adversary, where
an adversary can choose to improve the feedback or information the algorithm gets. A common
characteristic is that the improved information may paradoxically break or harm the performance
of a given algorithm that works with non-improved information. Monotone adversaries are often

10
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studied in the semi-random model literature [BS95; Fei21; Moi21] for statistical estimation prob-
lems [CG18; Moi21; KLLST22] as well as learning problems, i.e., linear classification with Massart
noise [MN06; DGT19].

Preference-based feedback. Our formulation in this paper falls within the growing body of lit-
erature that tackles learning with preference-based feedback, where the algorithm does not learn
how good its options were in an absolute sense, just which one(s) were better than others. Other
natural problems with preference-based feedback are contextual search [LS18; LLV18; LLS20],
contextual recommendation (also called contextual inverse optimization) [BFL21; GGKMLS21],
and 1-bit matrix completion [DPVW14].

Appendix C. Future work

We now discuss two interesting directions our work leaves open.

Dueling optimization with a monotone adversary under noise models. The most pressing next
step is to determine noise models under which we can either obtain algorithmic results or hardness
for solving Problem 1. There are several natural noise models that one could study. As a first step,
one can consider the most analogous extension of the noise model studied by Jamieson, Nowak,
and Recht [JNR12] and Saha, Koren, and Mansour [SKM21]. In the simplest form, they study a
noise model where with probability 1/2 + ν for some parameter 0 < ν ≤ 1/2, the adversary returns
argmini∈{1,2}f(x

(i)
t ), and with probability 1/2 − ν, the adversary returns argmaxi∈{1,2}f(x

(i)
t ).

Note that this is a straightforward noise model to handle if the adversary must return one of x(1)
t or

x
(2)
t . The algorithm simply queries the same pair of points roughly ν−2 times, which by Hoeffding’s

inequality is enough to determine the index i that corresponded to the better of the two guesses.
Additionally, this strategy can be implemented even without knowledge of the noise parameter ν;
see Section 6 of [SKM21] for more details.

The natural extension of this noise model to our monotone feedback setting is as follows. With
probability 1/2+ν, the adversary returns a response rt that satisfies f(rt) ≤ min{f(x(1)

t ), f(x
(2)
t )}.

On the other hand, with probability 1/2 − ν, the adversary returns an arbitrary point in X . It is
immediate that there is no analogue of the “majority vote” strategy in this setting. We therefore
believe that entirely new algorithmic ideas will be needed to address this noise model. On the
other hand, it would be very interesting to show an impossibility result for this noise model. An
impossibility result would imply that the monotone feedback makes the problem provably harder
than the vanilla dueling optimization setting.

Another noise model of interest is one where the adversary’s valid monotone feedback is perturbed
by a random variable△ where E [△] = 0 and Cov [△] ⪯ σ2Id. To our knowledge, this noise model
has not been considered in past works dealing with optimization with preference-based feedback,
even in the vanilla dueling setting (particularly the works of Jamieson, Nowak, and Recht [JNR12]
and Saha, Koren, and Mansour [SKM21]).

Dueling optimization for other function classes. An orthogonal thread would be to identify
other function classes and feasible regions X for which we can build algorithms for Problem 1. For
instance, Saha, Koren, and Mansour [SKM21] obtain results for functions that are just β-smooth
(and not necessarily α-PŁ or α-strongly convex). Our Theorem 2 uses the α-PŁ condition to prove

11
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that steps that do not make much progress also do not incur much cost. Hence, to remove the α-PŁ
assumption, one would need to either avoid this line of reasoning or find another way to argue that
the costs in low-progress rounds are not too high.

Appendix D. Proofs of upper bound results

In this section, we prove Theorem 8 (in which we construct and analyze a meta-algorithm for Prob-
lem 1 when the algorithm can sample next steps from progress distributions (Definition 3)). We then
show how to use this framework to prove Theorem 1 (results for f(x) = ⟨−x,x⋆⟩), Theorem 2 (re-
sults for f(x) being β-smooth and α-PŁ), and Theorem 3 (results for f(x) = ∥x− x⋆∥2), in that
order. It will be helpful to recall the overview from Section A throughout this section.

We prove Theorem 8 in Section D.1, Theorem 1 in Section D.2, Theorem 2 in Section D.3, and
Theorem 3 in Section D.4.

Before we jump into the main proofs, we will need a couple straightforward numerical inequalities.

Lemma 6. For r ∈ (0, 1) and 1 ≤ p < 2, we have
∑

i≥0 i · r(1−p/2)i ≤ rp/2+1

(r−rp/2)2
.

Proof of Lemma 6. Recall that ∑
i≥0

r(1−p/2)i =
1

1− r1−p/2
.

Taking the derivative of both sides with respect to r yields∑
i≥0

(1− p/2) i · r(1−p/2)i−1 =
(2− p)rp/2

2(r − rp/2)2
.

We multiply both sides by r and divide both sides by 1− p/2; we conclude that∑
i≥0

i · r(1−p/2)i =
rp/2+1

(r − rp/2)2

which recovers the statement of Lemma 6.

Lemma 7 (Inner product with a random vector). Let g ∼ Unif(Sd−1
2 ) and let y ∈ Sd−1

2 be fixed.
Then

Pr
g

[
⟨g,y⟩ ≥ 1

2
√
d

]
≥ 1

8
.

Proof. By rotational invariance, without loss of generality, we can let y = e1. We apply Lemma
2.2 (a) due to Dasgupta and Gupta [DG03] with β = 1/4 to conclude that

Pr
g

[
g2
1 ≤

1

4d

]
≤ exp

(
1

2

(
1− 1

4
+ ln

(
1

4

)))
<

3

4

which means that Pr
g

[
|⟨g,y⟩| ≥ 1

2
√
d

]
≥ 1

4 . The result of Lemma 7 follows by symmetry.

12
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D.1. A general algorithm for Problem 1 with progress distributions

The goal of this subsection is to develop the general tools we need to prove our main results.

The key primitive of our analysis is a general algorithm (Algorithm 1) that solves Problem 1 when
we are given certain convenient distributions from which we sample new guesses. We call these
progress distributions; recall Definition 3.

Let us describe Algorithm 1. In each step, Algorithm 1 maintains a current guess xt and chooses
a slight perturbation of that guess x+

t ∼ D(xt), where D(xt) is a (p, γ, ρ)-progress distribution
(Definition 3). Algorithm 1 then submits the pair of guesses

{
xt,x

+
t

}
. To analyze Algorithm 1, the

main observation is that with probability ≥ γ, the point x+
t substantially improves over the cost of

xt – this follows directly from Definition 3. We exploit this intuition to give our most general result
(Theorem 8) and to prove the correctness of Algorithm 1.

Theorem 8. Let f : X → R. Let B and x1 ∈ X be such that f(x1) − f(x⋆) ≤ B. For C > 0,
constant r ∈ (0, 0.99), and for all i ∈ N≥1, suppose there exists intervals of the form C ·

[
ri+1, ri

]
such that their union covers the interval [0, B].

If there exists a (p, γ, ρ)-progress distribution Di(x) whenever f(x) − f(x⋆) ∈ C ·
[
ri+1, ri

]
for

all i ≥ 1 and where p, γ, ρ do not depend on x and i, then there is an algorithm (Algorithm 1) for
Problem 1 that, with probability at least 1− exp

(
−O

(
d

ρBp−1

))
, incurs total cost

O

 B log (1/r)

Bp−1γρmin
{
rp(p−1/2−p),

(
r − rp/2

)2} · d
 .

Additionally, Algorithm 1 finds a point x satisfying f(x)− f(x⋆) ≤ ε in

O

(
1

Bp−1γρ
· d · log

(
B

ε

)2
)

iterations with at least the aforementioned probability.

Algorithm 1 General recipe algorithm for dueling convex optimization
1: Input: Interaction with a monotone adversaryM as defined in Problem 1; initial point x1 and

bound B satisfying f(x1) − f(x⋆) ≤ B; values C and r for which there exist corresponding
intervals and (p, γ, ρ)-progress distribution families Di (see the statement of Theorem 8).

2: Initialize x1 = 0, t = 1.
3: for i = 1, . . . do
4: for T (i) := 2i/(γmin(1,ρ)) · (Cri+1)−(p−1) · log (1/r) · d iterations do
5: Sample x+

t from Di(xt).
6: Submit guesses

{
xt,x

+
t

}
and receive response rt.

7: Let xt+1 = rt.
8: Update t← t+ 1.
9: end for

10: end for

13
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The proof of Theorem 8 has two main parts. In the first part, we will prove that for each value of i
(call the set of timesteps belonging to a particular value of i “phase i”), the number of steps T (i) is
sufficient to ensure that the cost of the algorithm’s solution decays gracefully with sufficiently large
probability. In the second part, we will prove that the total cost the algorithm pays over all phases
i ≥ 1 is ∼ B · d/γρ as promised. Theorem 8 will easily follow by combining these facts.

We start with stating and proving Lemma 9.

Lemma 9. Let i ≥ 1 and let T (i) be defined below (or see Line 4 of Algorithm 1).

T (i) :=
2i

γmin(1, ρ) · (Cri+1)p−1
· log (1/r) · d.

Let ti be the first iteration of phase i. If f(xti) − f(x⋆) ≤ Cri, then, with probability ≥ 1 −

r
dB−(p−1)

4ρ
·i, we have f(xti+T (i)+1)− f(x⋆) ≤ Cri+1.

Proof of Lemma 9. Assume that we have f(xti)− f(x⋆) ∈ C ·
[
ri+1, ri

]
(otherwise, we are done

immediately).

Define the indicator random variable Yt as follows.

Yt := 1

{
f(xt)− f(x+

t )

(f(xt)− f(x⋆))p
≥ ρ

d

}
.

Consider the distribution of guesses Di (let us omit the argument xt for the sake of brevity). Since
Di is a (p, γ, ρ)-progress distribution, we have

Pr
x+∼Di

[
f(xt)− f(x+

t )

f(xt)− f(x⋆)
≥ ρ

d
·
(
Cri+1

)p−1
]
≥ Pr

x+∼Di

[Yt = 1] ≥ γ.

Call every step t for which Yt = 1 a “successful step.” Let us give a high-probability count on the
number of successful steps. Recall that a form of the Chernoff bound states that, for δ ∈ [0, 1] and
independent indicator random variables Yj ,

Pr

ti+T (i)∑
j=ti

Yj ≤ (1− δ)E

ti+T (i)∑
j=ti

Yj

 ≤ exp

−δ2 · E
[∑ti+T (i)

j=ti
Yj

]
2

 .

Applying the Chernoff bound with δ = 1/2 yields

Pr

ti+T (i)∑
j=ti

Yj ≤
T (i)γ

2

 ≤ exp

− i · d
ρ(Cri+1)p−1 · log (1/r)

4

 ≤ r
dB−(p−1)

4ρ
·i

where we use Cri+1 ≤ Cr2 ≤ B.

It remains to show that after at least T (i)γ/2 successful steps, we have f(xti+T (i)+1) − f(x⋆) ≤
Cri+1. Recall that we assume that f(xti)−f(x⋆) ≥ Cri+1 and note that for every successful step,
we have

f(xt)− f(x+
t )

f(xt)− f(x⋆)
≥ ρ

d
·
(
Cri+1

)p−1

14
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which implies

f(x+
t )− f(x⋆)

f(xt)− f(x⋆)
≤ 1− ρ

d
·
(
Cri+1

)p−1
.

We multiply over all steps in phase i, giving

f(xti+T (i)+1)− f(x⋆)

f(xti)− f(x⋆)
=

ti+T (i)∏
t=ti

f(xt+1)− f(x⋆)

f(xt)− f(x⋆)
≤
(
1− ρ

d
·
(
Cri+1

)p−1
)T (i)γ/2

≤
(
1− 2i

γ
· log (

1/r)

T (i)

)T (i)γ/2

≤ exp

(
2i

γ
· log (

1/r)

T (i)
· T (i)γ

2

)
= ri ≤ r.

Finally, recall that f(xti) − f(x⋆) ≤ Cri. Combining this with the above gives f(xti+T (i)+1) −
f(x⋆) ≤ Cri+1, concluding the proof of Lemma 9.

Next, we have Lemma 10, which controls the total cost that Algorithm 1 incurs assuming that the
cost is sufficiently low in each phase.

Lemma 10. For a timestep t, let i(t) be the phase that t belongs to.

If for all t we have f(xt)− f(x⋆) ≤ Cri(t), then Algorithm 1 incurs total cost

O

 B log (1/r)

Cp−1γρmin
{
rp(p−1/2−p),

(
r − rp/2

)2} · d
 .

Proof of Lemma 10. Recall throughout this proof that r ≤ 0.99 and p is a constant such that p < 2.

Observe that in phase i, the algorithm incurs cost at most

T (i) · Cri =
2i

γ
· dCri

ρ (Cri+1)p−1 · log (1/r) =
2i

γ
· d log (

1/r)

ρCp−2
· ri−(i+1)(p−1).

We will find a threshold ip for which for all i ≥ ip, the above cost is exponentially decaying.
This will allow us to control the sum of the costs over infinitely many rounds. We choose ip =
2 · ⌈((p−1)/(2−p))⌉. Notice that for all i ≥ ip, the exponent on r can be bounded as

i− (i+ 1)(p− 1) = i(2− p)− (p− 1) ≥
(
1− p

2

)
i.

Note that this also implies that (ip + 1)(p− 1) ≤ p/2 · ip = p ⌈(p−1)/(2−p)⌉.

To total the cost, we consider two cases. First, suppose 1 ≤ i ≤ ip − 1. Observe that in each of
these phases, we pay cost at most B, so we have

ip−1∑
i=1

B · T (i) ≤ B
(
Tip · ip

)
= 2B

(
2 · p− 1

2− p

)2

· log (
1/r)

γ
· d

ρCp−1r(ip+1)(p−1)

≤ 2B

(
2 · p− 1

2− p

)2

· log (
1/r)

γ
· d

ρCp−1rp(p−1/2−p)
. (D.1)
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Next, we sum over all phases i ≥ ip. We obtain a cost that is at most

∑
i≥ip

2i

γ
· d log (

1/r)

ρCp−2
· ri−(i+1)(p−1) ≤ 2d log (1/r)

γρ · Cp−2

∑
i≥ip

i · r(1−p/2)i ≤ 2d log (1/r)

γρ · Cp−2
· rp/2+1

(r − rp/2)2

(D.2)

where the last inequality follows from Lemma 6. Combining (D.1) and (D.2) yields

2B

(
2 · p− 1

2− p

)2

· log (
1/r)

γ
· d

ρCp−1rp(p−1/2−p)
+

2d log (1/r)

γρ · Cp−2
· rp/2+1

(r − rp/2)2

≤ 2B

(
2 · p− 1

2− p

)2

· log (
1/r)

γ
· d

ρCp−1rp(p−1/2−p)
+

2d log (1/r)

γρ · Cp−1
· B

(r − rp/2)2

= O

 B log (1/r)

Cp−1γρmin
{
rp(p−1/2−p),

(
r − rp/2

)2} · d


This concludes the proof of Lemma 10.

We are now ready to prove Theorem 8.

Proof of Theorem 8. It is sufficient to prove that with probability ≥ 1 − exp
(
−O

(
d

ρBp−1

))
, at

the end of phase i, we have f(xt) − f(x⋆) ≤ Cri+1. Recall the conclusion of Lemma 9 and that
f(x1)−f(x⋆) ≤ B ≤ Cr; by a union bound, we have for all phases i that f(xt)−f(x⋆) ≤ Cri+1

with probability

1−
∑
i≥1

r
dB−(p−1)

4ρ
·i ≥ 1− exp

(
−O

(
d

ρBp−1

))
where we use 0 < r < 0.99. The first part of Theorem 8 now follows directly from applying
Lemma 10. The rest of the statement of Theorem 8 follows by noting that∑

j≤i

T (j) =
2C−(p−1) log (1/r)

γmin(1, ρ)
· d ·

∑
j≤i

j
(
r−(j+1)(p−1)

)
≲

2C−(p−1)

γmin(1, ρ)
· d · i2.

where we again use r < 0.99. We set ε = Cri and conclude.

D.2. Proof of Theorem 1

The goal of this subsection is to prove Theorem 1.

Our plan will be to use the general guarantee of Theorem 8. Thus, the main task is to prove that
there is an appropriate interval cover and corresponding sequence Di(x) of progress distributions
for all x belonging to phase i that satisfy the conditions of Theorem 8.

We prove this fact in Lemma 11. We remark that we made no effort to optimize the numerical
constants; we choose the constants that appear in the Lemma statement to simplify calculations, as
these will not impact our asymptotic results.
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Lemma 11. Let f : Rd → R be the negative inner product function defined on Sd−1
2 with respect to

some unknown target x⋆. Then for any x for which f(x)−f(x⋆) ∈
[
10−(i+1), 10−i

]
and for which

⟨x⋆,x⟩ > 0, there is a (1.5, 10−1, 10−4)-progress distribution (Definition 3) that can be computed
in time O(d).

Proof of Lemma 11. We explain the construction of the distribution D(x).

Impose the following coordinates on Rd. Let the first coordinate x1 be the direction of x, and the
remaining d−1 coordinates be an arbitrary coordinate system for the perpendicular directions. Then,
x has coordinates (1, 0 . . .). Next, let z := 10−(i+1) and s := z

10
√
d−1

. Let s be a point randomly
drawn from a d − 1 dimensional sphere of radius s whose coordinates are denoted s1 . . . sd−1.
Then, the distribution D (x) is the distribution of (

√
1− s2, s1 . . . sd−1). It is easy to verify that

these points lie on Sd−1
2 .

This distribution can be computed in time O(d). We will now show that it is a (1.5, 10−1, 10−4)
progress distribution.

Let z0 := f(x) − f(x⋆); recall that z0 ∈ [0, 1] and z ≤ z0 ≤ 10z. We write the target vector
x⋆ = (1 − z0)x +

√
1− (1− z0)2y = (1 − z0)x +

√
2z0 − z20y where y is a unit vector and

⟨y,x⟩ = 0. Note that this expression holds because ⟨x⋆,x⟩ = 1− z0.

Let x+ be a random point chosen from D(x). Let y1 . . . yd−1 be the coordinates of y in the d − 1
dimensional coordinate plane perpendicular to x defined above. We compute

⟨x⋆,x+⟩ =
(
1− z0,

√
2z0 − z20y1 . . .

√
2z0 − z20yd−1

)
·
(√

1− s2, s1 . . . sd−1

)
(D.3)

= (1− z0)
√

1− s2 +

(√
2z0 − z20y1 . . .

√
2z0 − z20yd−1

)
· (s1 . . . sd−1). (D.4)

By Lemma 7, we have (note that we weaken the constants from Lemma 7 for numerical convenience
later in the proof)

Pr
s

[(√
2z0 − z20y1 . . .

√
2z0 − z20yd−1

)
· (s1 . . . sd−1) ≥

0.1√
d− 1

·
√

2z0 − z20 · s
]
≥ 0.1.

Because 2z0 − z20 ≥ z0 ≥ z, we have

0.1√
d− 1

·
√

2z0 − z20 · s ≥
s
√
z

10
√
d− 1

.

In turn, this shows

Pr
s

[(√
2z0 − z20y1 . . .

√
2z0 − z20yd−1

)
· (s1 . . . sd−1) ≥

s
√
z

10
√
d− 1

]
≥ 0.1.

Combining this with Equation D.3, we obtain

Pr
x+∼Dx

[
⟨x⋆,x+⟩ ≥ (1− z0)

√
1− s2 +

s
√
z

10
√
d− 1

]
≥ 0.1. (D.5)
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Now, we will find a lower bound for (1− z0)
√
1− s2 + s

√
z

10
√
d−1

. We have

(1− z0)
√
1− s2 +

s
√
z

10
√
d− 1

≥ (1− z0)(1− s2) +
s
√
z

10
√
d− 1

= (1− z0)(−s2) +
s
√
z

10
√
d− 1

+ (1− z0)

≥ (1− z)(−s2) + s
√
z

10
√
d− 1

+ (1− z0).

Now, using that s = z
10

√
d−1

, we get

(1− z)(−s2) + s
√
z

10
√
d− 1

+ (1− z0) = (1− 10s
√
d− 1)(−s2) + s3/2√

10(d− 1)1/4
+ (1− z0)

= −s2 + 10s3
√
d− 1 +

s3/2√
10(d− 1)1/4

+ (1− z0)

≥

(
10s3
√
d− 1 +

s3/2

8(d− 1)1/4
− s2

)

+
s3/2

6(d− 1)1/4
+ (1− z0)

where the last line follows from 1/
√
10 > 1/8 + 1/6. Finally, applying weighted AM-GM lets us see

10s3
√
d− 1 +

s3/2

8(d− 1)1/4
≥ 3

22/3

(
10s3
√
d− 1

)1/3( s3/2

8(d− 1)1/4

)2/3

=
3 · 101/3

22/322
s2 > s2

where we use a weight of 1/3 on the first term and a weight of 2/3 on the second term. We now write

(1− z0)
√

1− s2 +
s
√
z

10
√
d− 1

≥ s3/2

6(d− 1)1/4
+ (1− z0).

Substituting s once again and recalling that ⟨x⋆,x⟩ = (1− z0) and z ≥ z0
10 = ⟨x⋆,x⋆−x⟩

10 , we get

(1− z0)
√

1− s2 +
s
√
z

10
√
d− 1

≥ z3/2

6 · 103/2 · d
+ ⟨x⋆,x⟩ > 10−4⟨x⋆,x⋆ − x⟩3/2

d
+ ⟨x⋆,x⟩.

Combining this with (D.5), we now have

Pr
x+∼D(x)

[
⟨x⋆,x+⟩ ≥ 10−4⟨x⋆,x⋆ − x⟩3/2

d
+ ⟨x⋆,x⟩

]
≥ 0.1

which means that

Pr
x+∼D(x)

[
⟨x⋆,x+ − x⟩ ≥ 10−4⟨x⋆,x⋆ − x⟩3/2

d

]
≥ 0.1.

This exactly aligns with the definition of a (1.5, 10−1, 10−4) progress distribution, completing the
proof of Lemma 11.

18



DUELING OPTIMIZATION WITH A MONOTONE ADVERSARY

We will now conclude Theorem 1 using Theorem 8.

Proof of Theorem 1. To apply Theorem 8, we need to present C, r, and a sequence of parameteri-
zations Di that satisfy the premises.

Set r = 0.1 and C = 10. By Lemma 11, we can find progress distributions for each interval
[Cri, Cri−1] of suboptimality of the current function value, since we can find such progress distri-
butions as long as the suboptimality of the function is at most 1.

Note that the algorithm can begin with a point x where f(x) − f(x⋆) < 1 by first querying two
opposite points on a sphere; one can easily see that at least one of the two points queried satisfies
f(x)− f(x⋆) < 1.

We therefore conclude the proof of Theorem 1.

D.3. Proof of Theorem 2

The goal of this subsection is to prove Theorem 2.

As before, we use the general guarantee of Theorem 8 via proving that there is an appropriate
interval cover and corresponding sequence Di(x) of progress distributions for all x for which
f(x)− f(x⋆) ∈

[
Cri+1, Cri

]
.

We prove this fact in Lemma 12.

Lemma 12. Fix i ∈ N≥1. Let εi =
√

2Bα/β2 · 1/√d · 2−i/2−1. If f is β-smooth and α-PŁ, and if
we have f(x)− f(x⋆) ∈ B ·

[
2−i, 2−i+1

]
, then the distribution Di(x) = x+ εi · Unif(Sd−1

2 ) is a
(1, γ, ρ)-progress distribution for (γ, ρ) = (1/8, α/8β).

Proof of Lemma 12. Let g := x− x+.

It is sufficient to consider the case where we have ∥g∥2 ≤
1
2β ·

∥∇f(x)∥2√
d

. To see this, suppose this is
not the case. We apply the PŁ inequality and write

f(x)− f(x⋆) ≤ 1

2α
∥∇f(x)∥22 ≤ d · 2β

2

α
∥g∥22 = d · 2β

2

α

(√
2Bα

β2d
· 1

2i/2+1

)2

=
B

2i

which implies that the suboptimality f(x)−f(x⋆) does not belong to the range we are considering.

Next, we use Lemma 7 to write the below.

Pr
g

[〈
∇f(x)
∥∇f(x)∥2

,
g

∥g∥2

〉
≥ 1

2
√
d

]
≥ 1

8
.

By Definition 1, we have for a β-smooth function and for any x,y ∈ Rd that

|f(x)− f(y)− ⟨∇f(y),x− y⟩| ≤ β

2
· ∥x− y∥22 ,

from which it easily follows that

|f(x− g)− f(x) + ⟨∇f(x), g⟩| ≤ β

2
· ∥g∥22 .
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The above rearranges to

f(x)− f(x− g) ≥ ⟨∇f(x), g⟩ − β

2
· ∥g∥22

= ∥∇f(x)∥2 · ∥g∥2 ·
(〈

∇f(x)
∥∇f(x)∥2

,
g

∥g∥2

〉
−

β/2 · ∥g∥2
∥∇f(x)∥2

)
≥ β

2
· ∥g∥22 with probability > 1/8

We therefore conclude that with probability > γ := 1/8,

f(x)− f(x− g) ≥ β

2
· ∥g∥22 =

β

2
·

(√
2Bα

β2d
· 1

2i/2+1

)2

=
α

β
· B
d
· 1

2i+2
.

This means that

f(x)− f(x− g)

f(x)− f(x⋆)
≥

α/β · B/d · 1/2i+2

B/2i−1
=

α

β
· 1
8d

which means we can take ρ = α/8β. This concludes the proof of Lemma 12.

The proof of Theorem 2 follows very easily from Lemma 12.

Proof of Theorem 2. Our plan is to apply Theorem 8. To do so, we need to present C, r, and a
sequence of Di that satisfy the premise of Theorem 8. We will use the settings of these objects
guaranteed by Lemma 12.

Let C = 2B and r = 1/2. It is clear that the intervals given by Lemma 12 cover [0, B], and so
for every i ≥ 1, there exists a corresponding (1, 1/8, α/8β)-progress distribution family Di. We now
apply Lemma 12 along with Theorem 8 to conclude the proof of Theorem 2.

D.4. Proof of Theorem 3

In this subsection, we prove Theorem 3.

Again, we present an appropriate interval cover and corresponding sequence of progress distribu-
tions Di(x) that satisfy the conditions of Theorem 8. See Lemma 13.

Lemma 13. Fix i ∈ N≥1. Let ε = 1/
√
d · 2−i/2. If f : Bd2 → R is f(x) = ∥x− x⋆∥2 for x⋆ ∈ Bd2

and if ∥x− x⋆∥2 ≤
√
2 ·
[
2−(i+1)/2, 2−i/2

]
, then there exists a distribution D(x) that can be

efficiently sampled from and is a (1, γ, ρ)-progress distribution for (γ, ρ) = (1/8, 1/8).

Proof of Lemma 13. Let x+ have distribution

x− g

max {1, ∥x− g∥2}
, where g ∼ εt · Unif(Sd−1

2 ). (D.6)

Note that this distribution can be described as, “add a uniformly random direction of length εt to x
and project the result back onto X = Bd2 .”
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It is easy to see that ∥x+∥2 ≤ 1, so the iterates of Algorithm 1 will always remain inside Bd2 . We
now prove that D as described above in fact is a (1, γ, ρ)-progress distribution for the promised
parameters.

First, use the fact that ∥x− x⋆∥22 is 2-smooth and 2-PŁ along with Lemma 12 to conclude that

Pr
g

[
∥x− x⋆∥22 − ∥x− g − x⋆∥22

∥x− x⋆∥22
≥ 2ρ

d

]
≥ γ.

Condition on this event. A basic property of the Euclidean projection onto a convex set implies that∥∥x+ − x⋆
∥∥2
2
≤ ∥(x− g)− x⋆∥22

which yields

Pr
g

[
∥x− x⋆∥22 − ∥x+ − x⋆∥22

∥x− x⋆∥22
≥ 2ρ

d

]
≥ γ.

Finally, observe that the above event implies(
∥x+ − x⋆∥2
∥x− x⋆∥2

)2

≤

(√
1− 2ρ

d

)2

≤
(
1− ρ

d

)2
.

Taking the square root of both sides and rearranging concludes the proof of Lemma 13.

We remark that the above proof goes through if X is an arbitrary convex set; we simply replace
(D.6) with ΠX (x− g), where ΠX (z) is the Euclidean projection of z onto X .

Now, the proof of Theorem 3 will follow in a very similar manner to that of Theorem 2.

Proof of Theorem 3. To apply Theorem 8, we need to present C, r, and a sequence of distribution
parameterizations Di that satisfy the premises.

Let x1 = 0. It is clear that ∥x⋆∥2 ≤ 1 = B, which means that the intervals of the form√
2 ·
[
2−(i+1)/2, 2−i/2

]
for i ≥ 1 cover the interval [0, 1]. Hence, for every i ≥ 1, there exists

a corresponding (1, 1/8, 1/8)-progress distribution. Theorem 3 follows immediately.

Appendix E. Proofs of lower bound results

In this section, we will prove Theorem 4 and Corollary 5. We first state the following well-known
fact (see, e.g., [Ver18]) that there exist 2Ω(d) points inside the unit ℓ2 ball which are sufficiently far
apart from one another.

Fact 14. There exists a subset S ⊂ Bd2 such that |S| = 2Ω(d), and for all x,y ∈ S such that x ̸= y,
we have ∥x− y∥2 ≥ 0.1.

We are now ready to prove Theorem 4.
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Proof of Theorem 4. We actually prove the lower bound even when the adversary must return the
item in the list with smallest function value (breaking ties consistently, e.g., according to lexico-
graphic order). Since the adversary is only weaker in this case, this implies the lower bound for the
monotone adversary.

By Yao’s Lemma [Yao77], it suffices to give a distribution over instances such that every determin-
istic algorithm satisfies the conclusions of the theorem. Hence, choose S from Fact 14 and let x⋆

be sampled uniformly from S.

Fix any deterministic algorithm. The deterministic algorithm branches into at most m states every
round, depending on the response the adversary gives. Therefore after r := ⌊logm |S|⌋ − 1 rounds,
the algorithm has at most mr < 1

2 |S| distinct states. Each of these states Q can be represented as a

tuple of the form
{
(x

(1)
t , · · · ,x(m)

t , it)
}
t∈[r]

, where the x(i)
t ∈ X and the it ∈ [m], which represents

a set of the algorithm’s guesses as well as the closest-point responses for the first r rounds.

Cost lower bound. Let us denote cr(x
⋆, Q) to be the total cost incurred for the state Q if the

target is x⋆ ∈ S. We claim that all but at most one x⋆ ∈ S have cr(x
⋆, Q) > 0.05r. Suppose there

were two points x⋆ and x⋆′ which had cr(x
⋆, Q) < 0.05r. Then cr(x

⋆, Q) + cr(x
⋆′, Q) < 0.1r,

so there exists some round t ∈ [r] for which

max
{∥∥∥x(1)

t − x⋆
∥∥∥ , · · · ,∥∥∥x(m)

t − x⋆
∥∥∥}+max

{∥∥∥x(1)
t − x⋆′

∥∥∥ , · · · ,∥∥∥x(m)
t − x⋆′

∥∥∥} < 0.1.

However, this cannot hold by triangle inequality since x⋆ and x⋆′ are well-separated.

For any target x⋆, the cost paid in the first r steps is at least cr(x⋆, Q(x⋆)), where Q(x⋆) is the
state of the algorithm after r rounds when the target is x⋆. In particular, it is of the form cr(x

⋆, Q)
for some Q. Since there are only 1

2 |S| possible algorithm states, at most 1
2 |S| values of x⋆ can have

total cost less than 0.05r. Therefore, the average cost over instances uniformly drawn from S must
be at least

1

|S|

(
|S| − 1

2
|S|
)
· 0.05r ≥ 0.025

(
logS

logm
− 2

)
= Ω(d/logm).

Iteration lower bound. We will use the cost lower bound to prove the iteration lower bound.
Recall that we proved that for any algorithm, there existed an instance x⋆ for which the algorithm
incurs Ω(d/logm) cost over the first r rounds.

Now suppose we had an algorithm A which achieved an expected iteration complexity of finding
an ε-optimal point of C · d/logm for any x⋆ ∈ S, where ε, C > 0 are sufficiently small numerical
constants. We can convert this into a low-cost algorithm A′ for the first r rounds that (1) runs A to
find an ε-optimal point x; then (2) until round r repeatedly suggests x(1)

t = · · · = x
(m)
t = x. The

expected cost of algorithm A′ for the first r rounds is at most

2 · Cd

logm
+ ε · r ≤ (2C + ε)

d

logm
.

For sufficiently small ε and C, we have a contradiction with the previous cost lower bound; thus
we can conclude that any algorithm must perform Ω (d/logm) iterations in expectation to find an
ε-optimal point x.

This concludes the proof of Theorem 4.
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Proof of Corollary 5. The argument for linear f is a reprise of the lower bound for ℓ2 distance.
Observe that Fact 14 implies that the points in S also satisfy ⟨x,y⟩ ≤ 0.995 for any x ̸= y.

Therefore, we again use Yao’s Lemma and consider deterministic algorithms that branch into m
states in every round. Letting cr(x

⋆, Q) denote the total cost incurred for state Q if the target is x⋆,
we again have the claim that all but at most one x⋆ ∈ S have cr(x

⋆, Q) > C · r for some constant
C > 0, from which it follows that at most 1

2 |S| values of x⋆ can have total cost less than C · r. We
conclude that the average cost over instances drawn uniformly from S must be Ω (d/logm).

The argument for the iteration lower bound also proceeds similarly, so we omit the details.

This concludes the proof of Corollary 5.
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