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Abstract

Transforming a causal system from a given initial state to a desired target state
is an important task permeating multiple fields including control theory, biology,
and materials science. In causal models, such transformations can be achieved
by performing a set of interventions. In this paper, we consider the problem of
identifying a shift intervention that matches the desired mean of a system through
active learning. We define the Markov equivalence class that is identifiable from
shift interventions and propose two active learning strategies that are guaranteed to
exactly match a desired mean. We then derive a worst-case lower bound for the
number of interventions required and show that these strategies are optimal for
certain classes of graphs. In particular, we show that our strategies may require
exponentially fewer interventions than the previously considered approaches, which
optimize for structure learning in the underlying causal graph. In line with our
theoretical results, we also demonstrate experimentally that our proposed active
learning strategies require fewer interventions compared to several baselines.

1 Introduction

Consider an experimental biologist attempting to turn cells from one type into another, e.g., from
fibroblasts to neurons (Vierbuchen et al., 2010), by altering gene expression. This is known as
cellular reprogramming and has shown great promise in recent years for regenerative medicine
(Rackham et al., 2016). A common approach is to model gene expression of a cell, which is
governed by an underlying gene regulatory network, using a structural causal model (Friedman
et al., 2000; Badsha et al., 2019). Through a set of interventions, such as gene knockouts or over-
expression of transcription factors (Dominguez et al., 2016), a biologist can infer the structure of the
underlying regulatory network. After inferring enough about this structure, a biologist can identify
the intervention needed to successfully reprogram a cell. More generally, transforming a causal
system from an initial state to a desired state through interventions is an important task pervading
multiple applications. Other examples include closed-loop control (Touchette and Lloyd, 2004) and
pathway design of microstructures (Wodo et al., 2015).

With little prior knowledge of the underlying causal model, this task is intrinsically difficult. Previous
works have addressed the problem of intervention design to achieve full identifiability of the causal
model (Hauser and Bühlmann, 2014; Greenewald et al., 2019; Squires et al., 2020a). However,
since interventional experiments tend to be expensive in practice, one wishes to minimize the
number of trials and learn just enough information about the causal model to be able to identify the
intervention that will transform it into the desired state. Furthermore, in many realistic cases, the set
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of interventions which can be performed is constrained. For instance, in CRISPR experiments, only a
limited number of genes can be knocked out to keep the cell alive; or in robotics, a robot can only
manipulate a certain number of arms at once.

Contributions. We take the first step towards the task of causal matching (formalized in Section 2),
where an experimenter can perform a series of interventions in order to identify a matching inter-
vention which transforms the system to a desired state. In particular, we consider the case where
the goal is to match the mean of a distribution. We focus on a subclass of interventions called shift
interventions, which can for example be used to model gene over-expression experiments (Triantafil-
lou et al., 2017). These interventions directly increase or decrease the values of their perturbation
targets, with their effect being propagated to variables which are downstream (in the underlying
causal graph) of these targets. We show that there always exists a unique shift intervention (which
may have multiple perturbation targets) that exactly transforms the mean of the variables into the
desired mean (Lemma 1). We call this shift intervention the matching intervention.

To find the matching intervention, in Section 3 we characterize the Markov equivalence class of a
causal graph induced by shift interventions, i.e., the edges in the causal graph that are identifiable
from shift interventions; in particular, we show that the resulting Markov equivalence classes can be
more refined than previous notions of interventional Markov equivalence classes. We then propose
two active learning strategies in Section 4 based on this characterization, which are guaranteed to
identify the matching intervention. These active strategies proceed in an adaptive manner, where each
intervention is chosen based on all the information gathered so far.

In Section 5, we derive a worst-case lower bound on the number of interventions required to identify
the matching intervention and show that the proposed strategies are optimal up to a logarithmic
factor. Notably, the proposed strategies may use exponentially fewer interventions than previous
active strategies for structure learning. Finally, in Section 6, we demonstrate also empirically that our
proposed strategies outperform previous methods as well as other baselines in various settings.

1.1 Related Works

Experimental Design. Previous work on experimental design in causality has considered two closely
related goals: learning the most structural information about the underlying DAG given a fixed
budget of interventions (Ghassami et al., 2018), and fully identifying the underlying DAG while
minimizing the total number or cost (Shanmugam et al., 2015; Kocaoglu et al., 2017) of interventions.
These works can also be classified according to whether they consider a passive setting, i.e., the
interventions are picked at a single point in time (Hyttinen et al., 2013; Shanmugam et al., 2015;
Kocaoglu et al., 2017), or an active setting, i.e., interventions are decided based on the results of
previous interventions (He and Geng, 2008; Agrawal et al., 2019; Greenewald et al., 2019; Squires
et al., 2020a). The setting addressed in the current work is closest to the active, full-identification
setting. The primary difference is that in order to match a desired mean, one does not require full
identification; in fact, as we show in this work, we may require significantly less interventions.

Causal Bandits. Another related setting is the bandit problem in sequential decision making, where
an agent aims to maximize the cumulative reward by selecting an arm at each time step. Previous
works considered the setting where there are causal relations between regrets and arms (Lattimore
et al., 2016; Lee and Bareinboim, 2018; Yabe et al., 2018). Using a known causal structure, these
works were able to improve the dependence on the total number of arms compared to previous regret
lower-bounds (Bubeck and Cesa-Bianchi, 2012; Lattimore et al., 2016). These results were further
extended to the case when the causal structure is unknown a priori (de Kroon et al., 2020). In all
these works the variables are discrete, with arms given by do-interventions (i.e., setting variables to a
given value), so that there are only a finite number of arms. In our work, we are concerned with the
continuous setting and shift interventions, which corresponds to an infinite (continuous) set of arms.

Correlation-based Approaches. There are also various correlation-based approaches for this task
that do not make use of any causal information. For example, previous works have proposed score-
based (Cahan et al., 2014), entropy-based (D’Alessio et al., 2015) and distance-based approaches
(Rackham et al., 2016) for cellular reprogramming. However, as shown in bandit settings (Lattimore
et al., 2016), when the system follows a causal structure, this structure can be exploited to learn the
optimal intervention more efficiently. Therefore, we here focus on developing a causal approach.
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Figure 1: Completely identifying a DAG can require exponentially more interventions than identifying
the matching intervention. Consider a graph constructed by joining r size-4 cliques, where the
matching intervention has the source node as the only perturbation target, as pictured in (a) with
r = 2 and the source node in purple; (b) shows the minimum size set intervention (in purple) that
completely identifies the DAG, which grows as O(r) (Squires et al., 2020a). In Theorem 2, we show
that the matching intervention can be identified in O(log r) single-node interventions.

2 Problem Setup

We now formally introduce the causal matching problem of identifying an intervention to match
the desired state in a causal system under a given metric. Following Koller and Friedman (2009), a
causal structural model is given by a directed acyclic graph (DAG) G with nodes [p] = {1, . . . , p},
and a set of random variables X = {X1, ..., Xp} whose joint distribution P factorizes according to
G. Denote by paG(i) = {j 2 [p] | j ! i} the parents of node i in G. An intervention I ⇢ [p] with
multiple perturbation targets i 2 I either removes all incoming edges to Xi (hard intervention) or
modifies the conditional probability P(Xi|XpaG(i)) (soft intervention) for all i 2 I . This results in
an interventional distribution PI . Given a desired joint distribution Q over X , the goal of causal
matching is to find an optimal matching intervention I such that PI best matches Q under some
metric. In this paper, we address a special case of the causal matching problem, which we call causal
mean matching, where the distance metric between PI and Q depends only on their expectations.

We focus on causal mean matching for a class of soft interventions, called shift interventions
(Rothenhäusler et al., 2015). Formally, a shift intervention with perturbation targets I ⇢ [p] and
shift values {ai}i2I modifies the conditional distribution as PI(Xi = x+ ai|XpaG(i)) = P(Xi =
x|XpaG(i)). Here, the shift values {ai}i2I are assumed to be deterministic. We aim to find I ⇢ [p] and
{ai}i2I 2 R|I| such that the mean of PI is closest to that of Q, i.e., minimizes d(EPI (X),EQ(X))
for some metric d. In fact, as we show in the following lemma, there always exists a unique shift
intervention, which we call the matching intervention, that achieves exact mean matching.1

Lemma 1. For any causal structural model and desired mean EQ(X), there exists a unique shift
intervention I

⇤ such that EPI⇤ (X) = EQ(X).

We assume throughout that the underlying causal DAG G is unknown. But we assume causal
sufficiency (Spirtes et al., 2000), which excludes the existence of latent confounders, as well as access
to enough observational data to determine the joint distribution P and thus the Markov equivalence
class of G (Andersson et al., 1997). It is well-known that with enough interventions, the causal DAG
G becomes fully identifiable (Yang et al., 2018). Thus one strategy for causal mean matching is to
first use interventions to fully identify the structure of G, and then solve for the matching intervention
given full knowledge of the graph. However, in general this strategy requires more interventions than
needed. In fact, the number of interventions required by such a strategy can be exponentially larger
than the number of interventions required by a strategy that directly attempts to identify the matching
intervention, as illustrated in Figure 1 and proven in Theorem 2.

In this work, we consider active intervention designs, where a series of interventions are chosen
adaptively to learn the matching intervention. This means that the information obtained after
performing each intervention is taken into account for future choices of interventions. We here
focus on the noiseless setting, where for each intervention enough data is obtained to decide the
effect of each intervention. Direct implications for the noisy setting are discussed in Appendix G. To
incorporate realistic cases in which the system cannot withstand an intervention with too many target

1To lighten notation, we use I to denote both the perturbation targets and the shift values of this intervention.
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variables, as is the case in CRISPR experiments, where knocking out too many genes at once often
kills the cell, we consider the setting where there is a sparsity constraint S on the maximum number
of perturbation targets in each intervention, i.e., we only allow I where |I|  S.

3 Identifiability

In this section, we characterize and provide a graphical representation of the shift interventional
Markov equivalence class (shift-I-MEC), i.e., the equivalence class of DAGs that is identifiable by
shift interventions I . We also introduce mean interventional faithfulness, an assumption that guaran-
tees identifiability of the underlying DAG up to its shift-I-MEC. Proofs are given in Appendix C.

3.1 Shift-interventional Markov Equivalence Class

For any DAG G with nodes [p], a distribution f is Markov with respect to G if it factorizes according
to f(X) =

Q
i2[p] f(Xi|XpaG(i)). Two DAGs are Markov equivalent or in the same Markov

equivalence class (MEC) if any positive distribution f which is Markov with respect to (w.r.t.) one
DAG is also Markov w.r.t. the other DAG. With observational data, a DAG is only identifiable up
to its MEC (Andersson et al., 1997). However, the identifiability improves to a smaller class of
DAGs with interventions. For a set of interventions I (not necessarily shift interventions), the pair
(f, {f I}I2I) is I-Markov w.r.t. G if f is Markov w.r.t. G and f

I factorizes according to

f
I(X) =

Y

i/2I

f(Xi|XpaG(i))
Y

i2I

f
I(Xi|XpaG(i)), 8I 2 I.

Similarly, the interventional Markov equivalence class (I-MEC) of a DAG can be defined, and Yang
et al. (2018) provided a structural characterization of the I-MEC for general interventions I (not
necessarily shift interventions).

Following, we show that if I consists of shift interventions, then the I-MEC becomes smaller, i.e.,
identifiability of the causal DAG is improved. The proof utilizes Lemma 2 on the relationship between
conditional probabilities. For this, denote by anG(i) the ancestors of node i, i.e., all nodes j for which
there is a directed path from j to i in G. For a subset of nodes I , we say that i 2 I is a source w.r.t. I
if anG(i) \ I = ?. A subset I 0 ⇢ I is a source w.r.t. I if every node in I

0 is a source w.r.t. I .
Lemma 2. For any distribution f that factorizes according to G, the interventional distribution f

I

for a shift intervention I ⇢ [p] with shift values {ai}i2I satisfies

EfI (Xi) = Ef (Xi) + ai,

for any source i 2 I . Furthermore, if i 2 I is not a source w.r.t. I , then there exists a positive
distribution f such that EfI (Xi) 6= Ef (Xi) + ai.

Hence, we can define the shift-I-Markov property and shift-interventional Markov equivalence class
(shift-I-MEC) as follows.
Definition 1. For a set of shift interventions I, the pair (f, {f I}I2I) is shift-I-Markov w.r.t. G if
(f, {f I}I2I) is I-Markov w.r.t. G and

EfI (Xi) = Ef (Xi) + ai, 8 i 2 I 2 I s.t. anG(i) \ I = ?.

Two DAGs are in the same shift-I-MEC if any positive distribution that is shift-I-Markov w.r.t. one
DAG is shift-I-Markov also w.r.t. the other DAG.

The following graphical characterizations are known: Two DAGs are in the same MEC if and only
if they share the same skeleton (adjacencies) and v-structures (induced subgraphs i! j  k), see
Verma and Pearl (1991). For general interventions I, two DAGs are in the same I-MEC, if they are
in the same MEC and they have the same directed edges {i! j|i 2 I, j /2 I, I 2 I, i� j}, where
i � j means that either i ! j or j ! i (Hauser and Bühlmann, 2012; Yang et al., 2018). In the
following theorem, we provide a graphical criterion for two DAGs to be in the same shift-I-MEC.
Theorem 1. Let I be a set of shift interventions. Then two DAGs G1 and G2 belong to the same
shift-I-MEC if and only if they have the same skeleton, v-structures, directed edges {i! j|i 2 I, j /2
I, I 2 I, i� j}, as well as source nodes of I for every I 2 I.

4
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Figure 2: Three types of essential graphs. (a). DAG G; (b). EG of G; (c). I-EG of G where I
contains one intervention with perturbation targets X1, X2 (purple); (d). shift-I-EG of G, which can
identify an additional edge compared to I-EG (red).

In other words, two DAGs are in the same shift-I-MEC if and only if they are in the same I-MEC and
they have the same source perturbation targets. Figure 2 shows an example; in particular, to represent
an MEC, we use the essential graph (EG), which has the same skeleton as any DAG in this class and
directed edges i ! j if i ! j for every DAG in this class. The essential graphs corresponding to
the MEC, I-MEC and shift-I-MEC of a DAG G are referred to as EG, I-EG and shift-I-EG of G,
respectively. They can be obtained from the aforementioned graphical criteria (along with a set of
logical rules known as the Meek rules (Meek, 1995); see details in Appendix A). Figure 2 shows an
example of EG, I-EG and shift-I-EG of a four-node DAG.

3.2 Mean Interventional Faithfulness

For the causal mean matching problem, the underlying G can be identified from shift interventions I
up to its shift-I-MEC. However, we may not need to identify the entire DAG to find the matching
intervention I

⇤. Lemma 1 implies that if i is neither in nor downstream of I⇤, then the mean of Xi

already matches the desired state, i.e., EP(Xi) = EQ(Xi); this suggest that these variables may be
negligible when learning I

⇤. Unfortunately, the reverse is not true; one may design “degenerate"
settings where a variable is in (or downstream of) I⇤, but its marginal mean is also unchanged:

Example 1. Let X3 = X1 + 2X2, with EP(X1) = 1 and EP(X2) = 1, so that EP(X3) = 3.
Suppose I

⇤ is a shift intervention with perturbation targets {X1, X2, X3}, with a1 = 1, a2 = �1,
and a3 = 1. Then EPI (X3) = 3, i.e., the marginal mean of X3 is unchanged under the intervention.

Such degenerate cases arise when the shift on a node Xj (deemed 0 if not shifted) exactly cancels out
the contributions of shifts on its ancestors. Formally, the following assumption rules out these cases.

Assumption 1 (Mean Interventional Faithfulness). If i 2 [p] satisfies EP(Xi) = EQ(Xi), then i is
neither a nor downstream of any perturbation target, i.e., i /2 I

⇤
, anG(i) \ I

⇤ = ?.

This is a particularly weak form of faithfulness, which is implied by interventional faithfulness
assumptions in prior work (Yang et al., 2018; Squires et al., 2020b; Jaber et al., 2020).

Let T be the collection of nodes i 2 [p] for which EP(Xi) 6= EQ(Xi). The following lemma shows
that under the mean interventional faithfulness assumption we can focus on the subgraph GT induced
by T , since I

⇤ ⇢ T and interventions on XT do not affect X[p]\T .

Lemma 3. If Assumption 1 holds, then any edge i� j with j 2 T and i /2 T has orientation j  i.
Conversely, if Assumption 1 does not hold, then there exists some i� j, j 2 T , i 62 T such that j ! i.

4 Algorithms

Having shown that shift interventions allow the identification of source perturbation targets and that
the mean interventional faithfulness assumption allows reducing the problem to an induced subgraph,
we now propose two algorithms to learn the matching intervention. The algorithms actively pick
a shift intervention It at time t based on the current shift-interventional essential graph (shift-It-
EG). Without loss of generality and for ease of discussion, we assume that the mean interventional
faithfulness assumption holds and we therefore only need to consider GT . In Appendix D, we show
that the faithfulness violations can be identified and thus Assumption 1 is not necessary for identifying
the matching intervention, but additional interventions may be required.
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(a) (b) (c)

Figure 3: Learning I
⇤ when the structure is known. Undimmed parts represent the current subgraph

with source nodes (in purple). I⇤ = {1, 2, 4, 5} is solved in three steps. Shift values are omitted. (a).

GT and UT ; (b). GT1 and UT1 ; (c). GT2 and UT2 .

Warm-up: Upstream Search. Consider solving for the matching intervention I
⇤ when the structure

of GT is known, i.e., the current shift-It-EG is fully directed. Let UT = {i|i 2 T, anGT (i)\T = ?}
be the non-empty set of source nodes in T . We make the following key observation.
Observation 1. UT ⇢ I

⇤, and the shift values are ai = EQ(Xi)� EP(Xi) for each i 2 UT .

This follows since shifting other variables in T cannot change the mean of nodes in UT . Further,
the shifted means of variables in UT match the desired mean (Lemma 2). Given the resulting
intervention UT , we obtain a new distribution PUT . Assuming mean interventional faithfulness on
this distribution, we may now remove those variables whose means in PUT already match Q. We
then repeat this process on the new set of unmatched source nodes, T1, to compute the corresponding
shift intervention UT1 . Repeating until we have matched the desired mean for all variables yields I⇤.
We illustrate this procedure in Figure 3.

The idea of upstream search extends to shift-It-EG with partially directed or undirected GT . In this
case, if a node or nodes of GT are identified as source, Observation 1 still holds. Hence, we solve a
part of I⇤ with these source nodes and then intervene on them to reduce the unsolved graph size.

Decomposition of Shift Interventional Essential Graphs: In order to find the source nodes, we
decompose the current shift-It-EG into undirected components. Hauser and Bühlmann (2014)
showed that every interventional essential graph is a chain graph with chordal chain components,
where the orientations in one chain component do not affect the orientations in other components.2
By a similar argument, we can obtain an analogous decomposition for shift interventional essential
graphs, and show that there is at least one chain component with no incoming edges. Let us separate
out all of the chain components of shift-It-EG with no incoming edges. The following lemma proves
that all sources are contained within these components.
Lemma 4. For any shift-I-EG of G, each chain component has exactly one source node w.r.t. this
component. This node is a source w.r.t. G if and only if there are no incoming edges to this component.

These results hold when replacing G with any induced subgraph of it. Thus, we can find the source
nodes in T by finding the source nodes in each of its chain components with no incoming edges.

4.1 Two Approximate Strategies

Following the chain graph decomposition, we now focus on how to find the source node of an
undirected connected chordal graph C. If there is no sparsity constraint on the number of perturbation
targets in each shift intervention, then directly intervening on all of the variables in C gives the source
node, since by Theorem 1, all DAGs in the shift-I-MEC share the same source node. However, when
the maximum number of perturbation targets in an intervention is restricted to S < |C|, multiple
interventions may be necessary to find the source node.

After intervening on S nodes, the remaining unoriented part can be decomposed into connected
components. In the worst case, the source node of C is in the largest of these connected components.
Therefore we seek the set of nodes, within the sparsity constraint, that minimizes the largest connected
component size after being removed. This is known as the MinMaxC problem (Lalou et al., 2018),
which we show is NP-complete on chordal graphs (Appendix D). We propose two approximate

2The chain components of a chain graph are the undirected connected components after removing all its
directed edges, and an undirected graph is chordal if all cycles of length greater than 3 contain a chord.
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Algorithm 1: Active Learning for Causal Mean Matching
Input: Joint distribution P, desired joint distribution Q, sparsity constraint S.

1 Initialize I
⇤ = ? and I = {?};

2 while EPI⇤ (X) 6= EQ(X) do

3 let T = {i|i 2 [p],EPI⇤ (Xi) 6= EQ(Xi)};
4 let G be the subgraph of shift-I-EG induced by T ;
5 let UT be the identified source nodes in T ;
6 while UT = ? do

7 let C be a chain component of G with no incoming edges;
8 select shift intervention I by running CliqueTree(C, S) or Supermodular(C, S);
9 perform I and append it to I;

10 update G and UT as the outer loop;
11 end

12 set ai = EQ(Xi)� EPI⇤ (Xi) for i in UT ;
13 include perturbation targets UT and shift values {ai}i2UT in I

⇤ and perform I
⇤;

14 end

Output: Matching Intervention I
⇤

strategies to solve this problem, one based on the clique tree representation of chordal graphs and the
other based on robust supermodular optimization. The overall algorithm with these subroutines is
summarized in Algorithm 1. We outline the subroutines here, and give further details in Appendix D.

Clique Tree Strategy. Let C(C) be the set of maximal cliques in the chordal graph C. There exists a
clique tree T (C) with nodes in C(C) and edges satisfying that 8C1, C2 2 C(C), their intersection
C1 \ C2 is a subset of any clique on the unique path between C1, C2 in T (C) (Blair and Peyton,
1993). Thus, deleting a clique which is not a leaf node in the clique tree will break C into at least two
connected components, each corresponding to a subtree in the clique tree. Inspired by the central
node algorithm (Greenewald et al., 2019; Squires et al., 2020a), we find the S-constrained central
clique of T (C) by iterating through C(C) and returning the clique with no more than S nodes that
separates the graph most, i.e., solving MinMaxC when interventions are constrained to be maximal
cliques. We denote this approach as CliqueTree.

Supermodular Strategy. Our second approach, denoted Supermodular, optimizes a lower bound
of the objective of MinMaxC. Consider the following equivalent formulation of MinMaxC

min
A⇢VC

max
i2VC

fi(A), |A|  S, (1)

where VC represents the nodes of C and 8 i 2 VC , fi(A) =
P

j2VC
gi,j(A) with gi,j(A) = 1 if i and

j are the same or connected after removing nodes in A from C and gi,j(A) = 0 otherwise.

MinMaxC (1) resembles the problem of robust supermodular optimization (Krause et al., 2008).
Unfortunately, fi is not supermodular for chordal graphs (Appendix D). Therefore, we propose to
optimize for a surrogate of fi defined as f̂i(A) =

P
j2C ĝi,j(A), where

ĝi,j(A) =

(
mi,j(VC�A)
mi,j(VC)

, i��j in C,
0, otherwise.

(2)

Here mi,j(VC0) is the number of paths without cycles between i and j in C0 (deemed 0 if i or j
does not belong to C0 and 1 if i = j 2 C0) and i � �j means i is either connected or equal to j.
Comparing ĝi,j with gi,j , we see that f̂i(A) is a lower bound of fi(A) for MinMaxC, which is tight
when C is a tree. We show that f̂i is monotonic supermodular for all i (Appendix D). Therefore, we
consider (2) with fi replaced by f̂i, which can be solved using the SATURATE algorithm (Krause
et al., 2008). Notably, the results returned by Supermodular can be quite different to those returned
by CliqueTree since Supermodular is not constrained to pick a maximal clique; see Figure 4.

5 Theoretical Results

In this section we derive a worst-case lower bound on the number of interventions for any algorithm
to identify the source node in a chordal graph. Then we use this lower bound to show that our
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(a) (b)

Figure 4: Picking 2 nodes in an undirected connected chordal graph C. CliqueTree picks {X4, X5},
while Supermodular picks the better {X3, X6}. (a). C; (b). Clique tree T (C).

strategies are optimal up to a logarithmic factor. This contrasts with the structure learning strategy,
which may require exponentially more interventions than our strategy (Figure 1).

The worst case is with respect to all feasible orientations of an essential graph (Hauser and Bühlmann,
2014; Shanmugam et al., 2015), i.e., orientations corresponding to DAGs in the equivalence class.
Given a chordal chain component C of G, let rC be the number of maximal cliques in C, and mC be
the size of the largest maximal clique in C. The following lemma provides a lower bound depending
only on mC .
Lemma 5. In the worst case over feasible orientations of C, any algorithm requires at least dmC�1

S e
shift interventions to identify the source node, under the sparsity constraint S.

To give some intuition for this result, consider the case where the largest maximal clique is upstream
of all other maximal cliques. Given such an ordering, in the worst case, each intervention rules
out only S nodes in this clique (namely, the most downstream ones). Now, we show that our two
strategies need at most dlog2(rC + 1)e · dmC�1

S e shift interventions for the same task.
Lemma 6. In the worst case over feasible orientations of C, both CliqueTree and Supermodular

require at most dlog2(rC + 1)e · dmC�1
S e shift interventions to identify the source node, under the

sparsity constraint S.

By combining Lemma 5 and Lemma 6, which consider subproblems of the causal mean matching
problem, we obtain a bound on the number of shift interventions needed for solving the full causal
mean matching problem. Let r be the largest rC for all chain components C of G:
Theorem 2. Algorithm 1 requires at most dlog2(r + 1)e times more shift interventions, compared to
that required by the optimal strategy, in the worst case over feasible orientations of G.

A direct application of this theorem is that, in terms of the number of interventions required to solve
the causal mean matching problem, our algorithm is optimal in the worst case when r = 1, i.e., when
every chain component is a clique. All proofs are provided in Appendix E.

6 Experiments

We now evaluate our algorithms in several synthetic settings.3 Each setting considers a particular
graph type, number of nodes p in the graph and number of perturbation targets |I⇤|  p in the
matching intervention. We generate 100 problem instances in each setting. Every problem instance
contains a DAG with p nodes generated according to the graph type and a randomly sampled subset
of |I⇤| nodes denoting the perturbation targets in the matching intervention. We consider both,
random graphs including Erdös-Rényi graphs (Erdős and Rényi, 1960) and Barabási–Albert graphs
(Albert and Barabási, 2002), as well as structured chordal graphs, in particular, rooted tree graphs
and moralized Erdös-Rényi graphs (Shanmugam et al., 2015). The graph size p in our simulations
ranges from 10 to 1000, while the number of perturbation targets ranges from 1 to min{p, 100}.

We compare our two subroutines for Algorithm 1, CliqueTree and Supermodular, against three
carefully constructed baselines. The UpstreamRand baseline follows Algorithm 1 where line 8 is
changed to selecting I randomly from C without exceeding S, i.e., when there is no identified source

3Code is publicly available at: https://github.com/uhlerlab/causal_mean_matching.
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(a) (b) (c)

Figure 5: Barabási–Albert graphs with 100 nodes. (a). Averaged (100 instances) numbers of extra
interventions each algorithm (with sparsity constraint S = 1) requires compared to Oracle, plotted
against number of perturbation targets in I

⇤; (b). Rates of extra interventions CliqueTree and
Supermodular (S = 1) required relative to UpstreamRand, plotted against number of perturbation
targets in I

⇤; (c). Relative extra rate (|I⇤| = 50), plotted against sparsity constraint S.

node it randomly samples from the chain component with no incoming edge. This strategy highlights
how much benefit is obtained from CliqueTree and Supermodular on top of upstream search. The
Coloring baseline is modified from the coloring-based policy for structure learning (Shanmugam
et al., 2015), previously shown to perform competitively on large graphs (Squires et al., 2020a). It
first performs structure learning with the coloring-based policy, and then uses upstream search with
known DAG. We also include an Oracle baseline, which does upstream search with known DAG.

In Figure 5 we present a subset of our results on Barabási–Albert graphs with 100 nodes; similar
behaviors are observed in all other settings and shown in Appendix F. In Figure 5a, we consider
problem instances with varying size of |I⇤|. Each algorithm is run with sparsity constraint S = 1.
We plot the number of extra interventions compared to Oracle, averaged across the 100 problem
instances. As expected, Coloring requires the largest number of extra interventions. This finding is
consistent among different numbers of perturbation targets, since the same amount of interventions
are used to learn the structure regardless of I⇤. As |I⇤| increases, CliqueTree and Supermodular

outperform UpstreamRand. To further investigate this trend, we plot the rate of extra interventions4

used by CliqueTree and Supermodular relative to UpstreamRand in Figure 5b. This figure shows
that CliqueTree and Supermodular improve upon upstream search by up to 25% as the number of
perturbation targets increases. Finally, we consider the effect of the sparsity constraint S in Figure 5c
with |I⇤| = 50. In line with the discussion in Section 4.1, as S increases, the task becomes easier for
plain upstream search. However, when the number of perturbation targets is restricted, CliqueTree
and Supermodular are superior, with Supermodular performing best in most cases.

7 Discussion

In this work, we introduced the causal mean matching problem, which has important applications
in medicine and engineering. We aimed to develop active learning approaches for identifying
the matching intervention using shift interventions. Towards this end, we characterized the shift
interventional Markov equivalence class and showed that it is in general more refined than previously
defined equivalence classes. We proposed two strategies for learning the matching intervention based
on this characterization, and showed that they are optimal up to a logarithmic factor. We reported
experimental results on a range of settings to support these theoretical findings.

Limitations and Future Work. This work has various limitations that may be interesting to address
in future work. First, we focus on the task of matching a desired mean, rather than an entire
distribution. This is an inherent limitation of deterministic shift interventions: as noted by Hyttinen
et al. (2012), in the linear Gaussian setting, these interventions can only modify the mean of the initial
distribution. Thus, matching the entire distribution, or other relevant statistics, will require broader
classes of interventions. Assumptions on the desired distribution are also required to rule out possibly
non-realizable cases. Second, we have focused on causal DAG models, which assume acyclicity and
the absence of latent confounders. In many realistic applications, this could be an overly optimistic
assumption, requiring extensions of our results to the cyclic and/or causally insufficient setting.

4The rate is calculated by (#Strategy-#UpstreamRand)/#UpstreamRandwhere # denotes the number of ex-
tra interventions compared to Oracle and Strategy can be CliqueTree, Supermodular or UpstreamRand.
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Finally, throughout the main text, we have focused on the noiseless setting; we briefly discuss the
noisy setting in Appendix G, but there is much room for more extensive investigations.
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