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Abstract

In this paper, we study the scalability of model-based algorithms learning the optimal policy
of a discounted rested Markovian bandit problem with n arms. There are two categories
of model-based reinforcement learning algorithms: Bayesian algorithms (like PSRL), and
optimistic algorithms (like UCRL2 or UCBVI). A naive application of these algorithms
is not scalable because the state-space is exponential in n. In this paper, we construct
variants of these algorithms specially tailored to Markovian bandits (MB) that we call MB-
PSRL, MB-UCRL2, and MB-UCBVI. We consider an episodic setting with geometrically
distributed episode length, and measure the performance of the algorithm in terms of regret
(Bayesian regret for MB-PSRL and expected regret for MB-UCRL2 and MB-UCBVI). We
prove that, for this setting, all algorithms have a low regret in Õ(S

Ô
nK) – where K is the

number of episodes, n is the number of arms and S is the number of states of each arm. Up
to a factor

Ô
S, these regrets match the Bayesian minimax regret lower bound of �(

Ô
SnK)

that we also derive.
Even if their theoretical regrets are comparable, the time complexities of these algorithms
vary greatly: We show that MB-UCRL2, as well as all algorithms that use bonuses on
transition matrices have a time complexity that grows exponentially in n. In contrast, MB-
UCBVI does not use bonuses on transition matrices and we show that it can be implemented
e�ciently, with a time complexity linear in n. Our numerical experiments show, however,
that its empirical regret is large. Our Bayesian algorithm, MB-PSRL, enjoys the best of
both worlds: its running time is linear in the number of arms and its empirical regret is
the smallest of all algorithms. This is a new addition in the understanding of the power of
Bayesian algorithms, that can often be tailored to the structure of the problems to learn.

1 Introduction

Markov decision processes (MDPs) are a powerful model to solve stochastic optimization problems. They
su�er, however, from what is called the curse of dimensionality, which basically says that the state size of
a Markov process is exponential in the number of system components. This implies that the complexity of
computing an optimal policy is, in general, exponential in the number of system components. The same
holds for general purpose reinforcement learning algorithms: they all have a regret and a runtime exponential
in the number of components, so they also su�er from the same curse. Very few MDPs are known to escape
from this curse of dimensionality. One of the most famous examples is the Markovian bandit problem in
which a decision maker faces n Markov reward processes (the n components, that we will call the n arms
in the rest of the paper), and must decide which arm to activate at each decision epoch. Markovian bandit
is a well structured MDP; and an optimal policy for such a system can be computed in O(n), by using the
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Gittins indices (computed for each arm independently), and its value can be computed by using retirement
values (see for example Whittle (1996)). In this paper, we investigate how reinforcement learning algorithms
can exploit these two advantages.

We consider an episodic setting with geometrically distributed episode length, in which the optimal strategy
for a decision maker who know all parameters of the system is to use Gittins index policy. We study a
specialization of PSRL (Osband et al., 2013) to Markovian bandits, that we call Markovian bandit posterior
sampling (MB-PSRL) that consists in using PSRL with a prior tailored to Markovian bandits. We show
that the Bayesian regret of MB-PSRL is sub-linear in the number of episodes and arms. We also provide
an expected regret guarantee for two optimistic algorithms that we call MB-UCRL2 and MB-UCBVI, and
that are based respectively on UCRL2 (Jaksch et al., 2010) and UCBVI (Azar et al., 2017). They both
use modified confidence bounds adapted to Markovian bandit problems. The upper bound for their regret
is similar to the bound for MB-PSRL. This shows that in terms of regret, the Bayesian approach (MB-
PSRL) and the optimistic approach (MB-UCRL2 and MB-UCBVI) scale well with the number of arms. We
also provide a Bayesian minimax regret lower bound for any learning algorithm in rested Markovian bandit
problems with the aforementioned setting, which shows that the regret bounds that we obtain for the three
algorithms are close to optimal.

The situation is radically di�erent when considering the processing time: the runtime of MB-PSRL is linear
(in the number of arms), while the runtime of MB-UCRL2 is exponential. We show that this is not an artifact
of our implementation of MB-UCRL2 by exhibiting a Markovian bandit problem for which being optimistic
in each arm is not optimistic in the global MDP. This implies that UCRL2 and its variants (Bourel et al.,
2020; Fruit et al., 2018; Talebi & Maillard, 2018; Filippi et al., 2010) cannot be adapted to have e�cient
runtime in Markovian bandit problems unless an oracle gives the optimal policy. We argue that this non-
scalability of UCRL2 and its variants is not a limitation of the optimistic approach but comes from the fact
that UCRL2 relies on extended value iteration (Jaksch et al., 2010) needed to deal with upper confidence
bounds on the transition matrices. We show that MB-UCBVI, an optimistic algorithm that does not add
bonus on transition probabilities and hence does not rely on extended value iteration, does not su�er from
the same problem. Its regret is sub-linear in the number of episodes, and arms (although larger than the
regret of both MB-PSRL and MB-UCRL2), and its runtime is linear in the number of arms. This allows us
to conclude that, on the one hand, if a weakly coupled MDP or a factored MDP can be solved e�ciently
when all the parameters are known, then the Bayesian approach is e�cient both in terms of learning and
computation time. On the other hand, knowing how to solve a weakly coupled MDP or a factored MDP
e�ciently is not su�cient for all optimistic algorithms to be computationally e�cient.

We also conduct a series of numerical experiments to compare the performance of MB-PSRL, MB-UCRL2
and MB-UCBVI. They confirm the good behavior of MB-PSRL, both in terms of regret and computational
complexity. These numerical experiments also show that the empirical regret of MB-UCBVI is larger than
the regret of MB-PSRL and MB-UCRL2, confirming the comparisons between the upper bounds derived in
Theorem 1. All this makes MB-PSRL the better choice between the three learning algorithms.

Related work Markovian bandits have been applied to many problems such as single-machine scheduling,
choosing a job in ressource constraint problems as well as other industrial research problems. Many appli-
cations can be found in Puterman (2014, Section 3.6) and Gittins et al. (2011). Gittins (1979) shows that
rested Markovian bandit can be solved linearly in the number of arms using Gittins index policy. Therefore,
several papers are focused on the complexity of computing Gittins index (Chakravorty & Mahajan, 2014;
Gast et al., 2022). In this paper, we focus on rested Markovian bandit problems with discount factor — < 1
where all reward functions and transition matrices are unknown. A possible approach to learn under these
conditions is to ignore the problem structure and view the Markovian bandit problem as a generic MDP.
There are two main families of generic reinforcement learning algorithms with regret guarantees. The first
one uses the optimism in face of uncertainty (OFU) principle. OFU methods build a confidence set for the
unknown MDP and compute an optimal policy of the “best” MDP in the confidence set, e.g., Bourel et al.
(2020); Zhang & Ji (2019); Talebi & Maillard (2018); Fruit et al. (2017); Azar et al. (2017); Bartlett & Tewari
(2012); Jaksch et al. (2010). UCRL2 (Jaksch et al., 2010) is a well known OFU algorithm. The second family
uses a Bayesian approach, the posterior sampling method introduced by Thompson (1933). Such algorithms
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keep a posterior distribution over possible MDPs and execute the optimal policy of a sampled MDP, see
e.g., Ouyang et al. (2017); Agrawal & Jia (2017); Gopalan & Mannor (2015); Osband et al. (2013). PSRL
(Osband et al., 2013) is a classical example of Bayesian learning algorithm. All these algorithms, based on
OFU or on Bayesian principles, have sub-linear bounds on the regret, which means that they provably learn
the optimal policy. Yet, applied as-is to Markovian bandit problems, these bounds grow exponentially with
the number of arms.

Our work is not the first attempt to exploit the structure of a MDP to improve learning. Factored MDPs
(the state space can be factored into n œ Nú components) are investigated in Guestrin et al. (2003), where
asymptotic convergence to the optimal policy is proved to scale polynomially in the number of components.
The regret of learning algorithms in factored MDP with a factored action space is considered by Tian et al.
(2020); Rosenberg & Mansour (2020); Xu & Tewari (2020); Osband & Van Roy (2014). Our work di�ers
substantially from these. First, the Markovian bandit problem is not a factored MDP because the action space
is global and cannot be factored. Second, our reward is discounted over an infinite horizon while factored
MDPs have been analyzed with no discount. Finally, and most importantly, the factored MDP framework
assumes that the successive optimal policies are computed by an unspecified solver (oracle). There is no
guarantee that the time complexity of this solver scales linearly with the number of components, especially
for OFU-based algorithms. For Markovian bandits, we get an additional leverage: when all parameters are
known, the Gittins index policy is known to be an optimal policy and its computational complexity is linear
in the number of arms. This reveals an interesting di�erence between Bayesian and extended value based
algorithms (the former being scalable and not the latter). This di�erence is not present in the literature
about factored MDPs because such papers do not consider the time complexity.

Our Markovian bandit setting is known in the literature as rested or restful bandit or a family of alternative
bandit processes. Tekin & Liu (2012) consider a non-discounted setting, — = 1, and provide algorithms with
logarithmic regret guarantee for rested as well as restless settings (a generalization of rested). However, they
consider a notion of regret known as weak regret that measures how fast the learning algorithm identifies
the best arm in stationary regime. So, it ignores the learning behavior at the beginning of learning process.
In contrast, we consider the discounted rested bandit setting in which the regret of Tekin & Liu (2012)
makes no more senses due to the discount factor and we propose a regret definition that is frequently used
in reinforcement learning literature and captures the performance of a learning algorithm during the whole
learning process. In addition, Ortner et al. (2012); Jung & Tewari (2019); Wang et al. (2020b) consider a
non-discounted restless bandit setting in which only the state of chosen arms are observed by the learner.
Ortner et al. (2012); Wang et al. (2020b) propose optimistic algorithms for infinite-horizon setting and
provide regret bounds that are sub-linear in time. Again the discounted case is not considered in these
papers while it is particularly interesting because learning algorithms can leverage the optimal Gittins index
policy. Jung & Tewari (2019) propose a Bayesian algorithm in the episodic finite-horizon setting and also
provide a regret bound that is sub-linear in the number of episodes. However, the computational complexity
is not studied in their work (the algorithm of Ortner et al. (2012) is intractable while the ones of Jung
& Tewari (2019); Wang et al. (2020b) rely on the unspecified problem solver called oracle). Contrarily,
we provide both performance guarantee and computational complexity analysis of each algorithm that we
consider in this paper. Finally, Killian et al. (2021) consider a more general setting of restless bandits in
which each arm is itself a MDP and the learner has to decide which arms to choose and which action to
execute on each chosen arm under a global action constraint. The authors propose a Lagrangian suboptimal
policy to solve the restless bandit problem with known parameters and a sampling algorithm to learn their
Lagrangian policy when the parameters are unknown. Unfortunately, no performance guarantee is provided
in their work.

Since index policies scale with the number of arms, using Q-learning approaches to learn such a policy is
also popular, see e.g., Avrachenkov & Borkar (2022); Fu et al. (2019); Du� (1995). Du� (1995) addresses the
same Markovian bandit problem as we do: their algorithm learns the optimal value in the restart-in-state
MDP (Katehakis & Veinott Jr, 1987) for each arm and uses Softmax exploration to solve the exploration-
exploitation dilemma. As mentioned on page 250 of Auer et al. (2002), however, there exists no finite-time
regret bounds for this algorithm. Furthermore, tuning its hyperparameters (learning rate and temperature)
is rather delicate and unstable in practice.
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2 Markovian bandit problem

In this section, we introduce the Markovian bandit problem and recall the notion of Gittins index when the
parameters (ra, Qa) of all arms are known.

2.1 Definitions and main notations

We consider a Markovian bandit problem with n arms. Each arm ÈS
a, ra, Qa

Í for a œ {1, . . . , n} =: [n]
is a Markov reward process with a finite state space S

a of size S. Each arm has a mean reward vector,
ra

œ [0, 1]S , and a transition matrix Qa. When Arm a is activated in state xa œ S
a, it moves to state

ya œ S
a with probability Qa(xa, ya). This provides a reward whose expected value is ra(xa). Without loss

of generality, we assume that the state spaces of the arms are pairwise distinct: S
a

fl S
b = ÿ for a ”= b. In

the following, the state of an arm a will always be denoted with an index a: we will denote such a state by
xa or ya. As state spaces are disjoint, this allows us to simplify the notation by dropping the index a from
the reward and transition matrix: when convenient, we will denote them by r(xa) instead of ra(xa) and by
Q(xa, ya) instead of Qa(xa, ya) since no confusion is possible.

At time 1, the global state X1 is distributed according to some initial distribution fl over the global state
space E = S

1
◊ . . . ◊S

n. At time t, the decision maker observes the states1 of all arms, Xt = (Xt,1 . . . Xt,n),
and chooses which arm At to activate. This problem can be cast as a MDP – that we denote by M – with
state space E and action space [n]. Let a œ [n] and x, y œ E . If the state at time t is Xt = x, the chosen arm
is At = a, then the agent receives a random reward Rt drawn from some distribution on [0, 1] with mean
r(xa) and the MDP M transitions to state Xt+1 = y with probability P a(x, y) that satisfies:

P a(x, y) =
;

Q(xa, ya) if xaÕ = yaÕ for all aÕ
”= a;

0 otherwise.
(1)

That is, the active arm makes a transition while the other arms remain in the same state.

Let � be the set of deterministic policies, i.e., the set of functions fi : E ‘æ [n]. For the MDP M , we denote
by V fi

M
(x) the expected cumulative discounted reward of M under policy fi starting from an initial state x:

V fi

M
(x)=E

C Œÿ

t=1
—t≠1Rt | X1=x, At=fi(Xt)

D
.

An alternative definition of V is to consider a finite-horizon problem with a geometrically distributed length.
Indeed, let H be a time-horizon geometrically distributed with parameter 1 ≠ — > 0. We have

V fi

M
(x)=E

C
Hÿ

t=1
Rt | X1=x, At=fi(Xt)

D
. (2)

Problem 1. Given a Markovian bandit M with n arms, each is a Markov reward process ÈS
a, ra, Qa

Í with
a finite state space of size S, find a policy fi : S

1
◊ . . . ◊S

n
‘æ [n] that maximizes V fi

M
(x) for any state x

distributed according to initial global state distribution fl.

By a small abuse of notation, we denote by V fi

M
(fl) the expected reward when the initial state is randomly

generated according to fl : V fi

M
(fl) =

q
x fl(x)V fi

M
(x). A policy fiú is optimal for Problem 1 if V fiú

M
(x) Ø V fi

M
(x)

for all fi œ � and x œ E . By Puterman (2014), such a policy exists and does not depend on x (or fl). One
well-known optimal policy is the Gittins index policy, defined below.

1Throughout the paper, we use capital letters (like Xt) to denote random variables and small letter (like x) to denote their
realizations. Bold letters (Xt or x) design vectors. Normal letters (Xt,a or xa) are for scalar values.
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2.2 Gittins index policy

It is possible to compute an optimal policy fiú for Problem 1 in a reasonable amount of time using the so
called Gittins indices: Gittins (1979) defines the Gittins index for any arm a in state xa œ S

a as

GIndex(xa) = sup
·>0

E
#q

·

t=1 —t≠1ra(Zt) | Z1 = xa

$

E [
q

·

t=1 —t≠1 | Z1 = xa]
, (3)

where Z is a Markov chain whose transitions are given by Qa and · can be any stopping time adapted to
the natural filtration of (Zt)tØ1. So, Gittins index can be considered as the maximal reward density over
time of an arm at the given state.

Gittins (1979) shows that activating the arm having the largest current index is an optimal policy. Such
a policy can be computed very e�ciently: The computation of the indices of an arm with S states can be
done in O(S3) arithmetic operations, which means that the computation of Gittins index policy is linear in
the number of arms as it takes O(nS3) arithmetic operations. For more details about Gittins indices and
optimality, we refer to Gittins et al. (2011); Weber (1992). For a survey on how to compute Gittins indices,
we refer to Chakravorty & Mahajan (2014), and to Gast et al. (2022) for a recent paper that shows how to
compute Gittins index in subcubic time (i.e., o(S3)) for each of the n arms).

3 Online learning and episodic regret

We now consider an extension of Problem 1 in which the decision maker does not know the transition matrices
nor the rewards. Our goal is to design a reinforcement learning algorithm that learns the optimal policy
from past observations. Similarly to what is done for finite-horizon reinforcement learning with deterministic
horizon – see e.g., Zanette & Brunskill (2019); Jin et al. (2018); Azar et al. (2017); Osband et al. (2013) –
we consider a decision maker that faces a sequence of independent replicas of the same Markovian bandit
problem, where the transitions and the rewards are drawn independently for each episode. What is new here
is that the time horizon H is random and has a geometric distribution with expected value 1/(1 ≠ —). It is
drawn independently for each episode. This implies that Gittins index policy is optimal for a decision maker
that would know the transition matrices and rewards.

In this paper, we consider episodic learning algorithms. Let H1, . . . , Hk be the sequence of random
episode lengths and let tk := 1+

q
k≠1
i=1 Hi be the starting time of the kth episode. Let Ok≠1 :=

{X1, A1, R1, . . . , Xtk≠1, Atk≠1, Rtk≠1} denote the observations made prior and up to episode k. An Episodic
Learning Algorithm L is a function that maps observations Ok≠1 to L(Ok≠1), a probability distribution
whose support is �. At the beginning of episode k, the algorithm samples fik ≥ L(Ok≠1) and uses this policy
during the whole kth episode. Note that one could also design algorithms where learning takes place inside
each episode. We will see later that episodic learning as described here is enough to design algorithms that
are essentially optimal, in the sense given by Theorem 1 and Theorem 2.

For an instance M of a Markovian bandit problem and a total number of episodes K, we denote by
Reg(K, L, M) the regret of a learning algorithm L, defined as

Reg(K, L, M) :=
Kÿ

k=1
V fiú

M
(Xtk ) ≠ V fik

M
(Xtk ). (4)

It is the sum over all episodes of the value of the optimal policy fiú minus the value obtained by applying the
policy fik chosen by the algorithm for episode k. In what follows, we will provide bounds on the expected
regret.

A no-regret algorithm is an algorithm L such that its expected regret E [Reg(K, L, M)] grows sub-linearly
in the number of episodes K. This implies that the expected regret over episode k converges to 0 as k goes
to infinity. Such an algorithm learns an optimal policy of Problem 1.

Note that, for discounted MDPs, an alternative regret definition (used for instance by He et al. (2021)) is to
use the non-episodic version

q
T

t=1(V fiú
M

(Xt) ≠ V fit
M

(Xt)). In our definition at Equation 4, we use an episodic
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approach where the process is restarted according to fl after each episode of geometrically distributed length
Hk.

4 Learning algorithms for Markovian bandits

In what follows, we present three algorithms having a regret that grows like Õ(S
Ô

nK), that we call MB-
PSRL, MB-UCRL2 and MB-UCBVI. As their names suggest, these algorithms are adaptation of PSRL,
UCRL2 and UCBVI to Markovian bandit problems that intend to overcome the exponentiality in n of their
regret. The structure of the three MB-* algorithms are similar and is represented in Algorithm 1. All
algorithms are episodic learning algorithms. At the beginning of each episode, a MB-* learning algorithm
computes a new policy fik that will be used during an episode of geometrically distributed length. The
di�erence between the three algorithms lies in the way this new policy fik is computed. MB-PSRL uses
posterior sampling while MB-UCRL2 and MB-UCBVI use optimism. We detail the three algorithms below.

Algorithm 1 Pseudo-code of the three MB-* algorithms.
input Discount factor —, initial distribution fl (and a prior distribution {„a

}aœ[n] for MB-PSRL)
1: for episodes k = 1, 2, . . . do
2: Compute a new policy fik (using posterior sampling or optimism).
3: Set tk Ω 1 +

q
k≠1
i=1 Hi, sample Xtk ≥ fl and Hk ≥ Geom(1 ≠ —).

4: for t Ω tk to tk + Hk ≠ 1 do
5: Activate arm At = fik(Xt).
6: Observe Rt and Xt+1.
7: end for
8: end for

4.1 MB-PSRL

MB-PSRL starts with a prior distribution „a over the parameters (ra, Qa). At the start of each episode k,
MB-PSRL computes a posterior distribution of parameters „a(· | Ok≠1) for each arm a œ [n] and samples
parameters (ra

k
, Qa

k
) from „a(· | Ok≠1) for each arm. Then, MB-PSRL uses {(ra

k
, Qa

k
)}aœ[n] to compute the

Gittins index policy fik that is optimal for the sampled problem. The policy fik is then used for the whole
episode k. Note that as fik is a Gittins index policy, it can be computed e�ciently.

The di�erence between PSRL and MB-PSRL is mostly that MB-PSRL uses a prior distribution tailored
to Markovian bandit. The only hyperparameter of MB-PSRL is the prior distribution „. As we see in
Appendix E, MB-PSRL seems robust to the choice of the prior distribution, even if a coherent prior gives
a better performance than a misspecified prior, similarly to what happens for Thompson’s sampling (Russo
et al., 2018).

4.2 MB-UCRL2

At the beginning of each episode k, MB-UCRL2 computes the following quantities for each state xa œ S
a:

Nk≠1(xa) the number of times that Arm a is activated before episode k while being in state xa, and
r̂k≠1(xa), and Q̂k≠1(xa, ·) are the empirical means of r(xa) and Q(xa, ·). We define the confidence bonuses
br

k≠1(xa) :=
Ò

log(2SnKtk)
2 max{1,Nk≠1(xa)} and bQ

k≠1(xa) :=
Ò

2 log(SnK2Stk)
max{1,Nk≠1(xa)} . This defines a confidence set Mk as

follows: a Markovian bandit problem M Õ is in Mk if for all a œ [n] and xa œ S
a:

|rÕ(xa) ≠ r̂k≠1(xa)| Æ br

k≠1(xa) and ÎQÕ(xa, ·) ≠ Q̂k≠1(xa, ·)Î1 Æ bQ

k≠1(xa). (5)

MB-UCRL2 then chooses a policy fik that is optimal for the most optimistic problem Mk œ Mk:

fik œ arg max
fi

max
M ÕœMk

V fi

M Õ(fl). (6)
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Note that as we explain later in Section 6.1, we believe that there is no e�cient algorithm to compute the
best optimistic policy fik of Equation 6.

Compared to a vanilla implementation of UCRL2, MB-UCRL2 uses the structure of the Markovian bandit
problem: The constraints Equation 5 are on Q whereas vanilla UCRL2 uses constraints on the full matrix P
(defined in Equation 1). This leads MB-UCRL2 to use the bonus term that scales as


S/Nk≠1(xa) whereas

vanilla UCRL2 would use the term in


Sn/Nk≠1(x, a).

4.3 MB-UCBVI

At the beginning of episode k, MB-UCBVI uses the same quantities Nk≠1(xa), r̂k≠1(xa), and Q̂k≠1(xa, ·) as
MB-UCRL2. The di�erence lies in the definition of the bonus terms. While MB-UCRL2 uses a bonus on the
reward and on the transition matrices, MB-UCBVI defines a bonus ba

k≠1(xa):= 1
1≠—

Ò
log(2SnKtk)

2 max{1,Nk≠1(xa)} that
is used on the reward only. MB-UCBVI computes the Gittins index policy fik that is optimal for the bandit
problem {(r̂a

k≠1+ba

k≠1, Q̂a

k≠1)}aœ[n].

Similarly to the case of UCRL2, a vanilla implementation of UCBVI would use a bonus that scales expo-
nentially with the number of arms. MB-UCBVI makes an even better use of the structure of the learned
problem because the optimistic MDP {(r̂a

k≠1+ba

k≠1, Q̂a

k≠1)}aœ[n] is still a Markovian bandit problem. This
implies that the optimistic policy fik is a Gittins index policy, and that can therefore be computed e�ciently.

5 Regret analysis

In this section, we first present upper bounds on the expected regret of the three learning algorithms. These
bounds are sub-linear in the number of episodes (hence the three algorithms are no-regret algorithms) and
sub-linear in the number of arms. We then derive a minimax lower bound on the Bayesian regret of any
learning algorithm in the Markovian bandit problem.

5.1 Upper bounds on regret

The theorem below provides upper bounds on the regret of the three algorithms presented in Section 4. Note
that since MB-PSRL is a Bayesian algorithm, we consider its Bayesian regret, that is the expectation over all
possible models. More precisely, if the unknown MDP M is drawn from a prior distribution „, the Bayesian
regret of a learning algorithm L is BayReg(K, L, „) = E[Reg(K, L, M)], where the expectation is taken over
all possible values of M ≥ „ and all possible runs of the algorithm. The expected regret E [Reg(K, L, M)] is
defined by taking the expectation over all possible runs of the algorithm.

Theorem 1. Let f(S, n, K, —) = Sn (log K/(1≠—))2 +
Ô

SnK (log K/(1≠—))3/2. There exists universal
constants C, C Õ and C ÕÕ independent of the model (i.e., that do not depend on S, n, K and —) such that:

• For any prior distribution „:

BayReg(K, MB-PSRL, „) Æ C

3
Ô

S+ log SnK log K

1 ≠ —

4
f(S, n, K, —),

• For any Markovian bandit model M :

E [Reg(K, MB-UCRL2, M)] Æ C Õ
3

Ô

S+ log SnK log K

1 ≠ —

4
f(S, n, K, —),

E [Reg(K, MB-UCBVI, M)] Æ C ÕÕ

A Ô
S

1 ≠ —

B 3
log SnK log K

1 ≠ —

4
f(S, n, K, —),

We provide a sketch of proof below. The detailed proof is provided in Appendix A in the supplementary
material.
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This theorem calls for several comments. First, it shows that when K Ø Sn/(1≠—), the regret of MB-PSRL
and MB-UCRL2 is smaller than

Õ

A
S

Ô
nK

(1 ≠ —)3/2

B
, (7)

where the notation Õ means that all logarithmic terms are removed. The regret of MB-UCBVI has an extra
1/(1 ≠ —) factor.

Hence, the regret of the three algorithms is sub-linear in the number of episodes K which means that they all
are no-regret algorithms. This regret bound is sub-linear in the number of arms which is very significant in
practice when facing a large number of arms. Note that directly applying PSRL, UCRL2 or UCBVI would
lead to a regret in Õ

1
Sn

Ô
nK

2
or Õ

1Ô
nSnK

2
, which is exponential in n.

Second, the upper bound on the expected regret of MB-UCRL2 (and of MB-UCBVI) is a guarantee for a
specific problem M while the bound on Bayesian regret of MB-PSRL is a guarantee in average overall the
problems drawn from the prior „. Hence, the bounds of MB-UCRL2 and MB-UCBVI are stronger guarantee
compared to the one of MB-PSRL. Yet, as we will see later in the numerical experiments reported in Section
7, MB-PSRL seems to have a smaller regret in practice, even when the problem does not follow the correct
prior. An interesting open question would be to find a prior that would guarantee that MB-PSRL has a
good worst-case regret bound. We do not know if such a prior exists and to the best of our knowledge, this
question is also open for the classical PSRL. Note that there exist Bayesian type algorithms with worst-case
guarantees, see e.g., (Ishfaq et al., 2021; Agrawal et al., 2021; Wang et al., 2020a; Agrawal & Jia, 2017)
but they contain an optimistic part and it is not clear how to implement them in an e�cient manner for
Markovian bandits.

Third, the result of Theorem 1 is the statistical evaluation of the three learning algorithms and does not
require them to use Gittins index policy (in particular, MB-UCRL2 does not use Gittins index policy). What
is required is that policy fik is optimal for the sampled problem Mk for MB-PSRL (so that Lemma 5 applies)
or for the optimistic problem Mk for MB-UCBVI (so that (11) is valid). Indeed, instead of using Gittins
index policy for MB-PSRL or MB-UCBVI, assume that we have access to an oracle that provides an optimal
policy for any given Markovian bandit problem. Then, the upper bound on regret in Theorem 1 still holds
when MB-PSRL and MB-UCBVI use the oracle to compute policy fik. Gittins index policy is required only
for the runtime evaluation as we will see in Section 6.

Finally, our bound in Equation 7 is linear in S, the state space size of each arm. Having a regret bound
linear in the state space size is currently state-of-the-art for Bayesian algorithms, see e.g., Agrawal & Jia
(2017); Ouyang et al. (2017) and our discussion in Appendix A.3.4. For optimistic algorithms, the best
regret bounds are linear in the square root of the state size because they use Bernstein’s concentration
bounds instead of Weissman’s inequality (Azar et al., 2017), yet this approach does not work in our setting
due to the randomness of episode’s length and the bound of MB-UCBVI depends linearly on S. We discuss
more about this in Appendix A.5.4. UCBVI has also been studied in the discounted case by He et al. (2021).
They use, however, a di�erent definition of regret, making their bound on the regret hardly comparable to
ours.

Sketch of proof

A crucial ingredient of our proof is to work with the value function over a random finite time horizon (W
defined below), instead of working directly with the discounted value function V . For a given model M , and
a deterministic policy fi, a horizon H and a time step h Æ H, we define by W fi

M,h:H(x) the value function of
policy fi over the finite time horizon H ≠ h + 1 when starting in x at time h. It is defined as

W fi

M,h:H(x) := rfi(x)+
ÿ

yœE
P fi(x, y)W fi

M,h+1:H(y), (8)

with W fi

M,H:H(x) := rfi(x) and where rfi and P fi are reward vector and state transition matrix when following
policy fi.

8
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By definitions of W in Equation 8 and V in Equation 2, for a fixed model M , a policy fi and a state x, and
a time horizon H that is geometrically distributed, one has V fi

M
(x) = E

#
W fi

M,1:H(x)
$
.

This characterization is important in our proof. Since the episode length Hk is independent of the observa-
tions available before episode k, Ok≠1, for any policy fik that is independent of Hk, one has

E [V fik
M

(Xtk ) | Ok≠1, fik] = E
Ë
W fik

M,1:Hk
(Xtk ) | Ok≠1, fik

È
. (9)

In the above Equation 9, the expectation is taken over all initial state Xtk and all possible horizon Hk.

Equation 9 will be very useful in our analysis as it allows us to work with either V or W interchangeably.
While the proof of MB-PSRL could be done by only studying the function W , the proof of MB-UCRL2
and MB-UCBVI will use the expression of the regret as a function of V to deal with the non-determinism.
Indeed, at episode k, all algorithms compare the optimal policy fiú (that is optimal for the true MDP M)
and a policy fik chosen by the algorithm (that is optimal for a MDP Mk that is either sampled by MB-PSRL
or chosen by an optimistic principle). The quantity �k := W fiú

M,1:Hk
(Xtk ) ≠ W fik

M,1:Hk
(Xtk ) equals:

W fiú
M,1:Hk

(Xtk )≠W fik
Mk,1:Hk

(Xtk )
¸ ˚˙ ˝

(A)

+ W fik
Mk,1:Hk

(Xtk )≠W fik
M,1:Hk

(Xtk )
¸ ˚˙ ˝

(B)

. (10)

The analysis of the term (B) is similar for the three algorithms: it is bounded by the distance between the
sampled MDP Mk and the true MDP M that can in turn be bounded by using a concentration argument
(Lemma 1) based on Hoe�ding’s and Weissman’s inequalities. Compared with the literature (Azar et al.,
2017; Ouyang et al., 2017), our proof leverages on taking conditional expectations, making all terms whose
conditional expectation is zero disappear. One of the main technical hurdle is to deal with the random
episodes lengths H1, . . . , Hk. This is required in our approach and is not needed in the classical analysis of
finite horizons problems.

The analysis of (A) depends heavily on the algorithm used. The easiest case is PSRL: As our setting is
Bayesian, the expectation of the first term (A) with respect to the model is zero (see Lemma 5). The case
of MB-UCRL2 and MB-UCBVI are harder. In fact, our bonus terms are specially designed so that V fik

Mk
(x)

is an optimistic upper bound of the true value function with high probability, that is:

V fik
Mk

(x) = max
fi

max
M ÕœMk

V fi

M Õ(x) Ø V fiú
M

(x). (11)

This requires the use of V and not W and it is used to show that the expectation of the term (A) of
Equation 10 cannot be positive.

5.2 Bayesian minimax lower bound

After obtaining upper bounds on the regret, a natural question is: can we do better? Or in other terms,
does there exist a learning algorithm with a smaller regret? To answer this question, the metric used in
the literature is the notion of minimax lower bound: for a given set of parameters (S, n, K, —), a minimax
lower bound is a lower bound on the quantity infL sup

M
Reg(K, L, M), where the supremum is taken among

all possible models that have parameters (S, n, K, —) and the infimum is taken over all possible learning
algorithms. The next theorem provides a lower bound on the Bayesian regret. It is therefore stronger than
a minimax bound for two reasons: First, the Bayesian regret is an average over models, which means that
there exists at least one model that has a larger regret than the Bayesian lower bound; And second, in
Theorem 2, we allow the algorithm to depend on the prior distribution „ and to use this information.
Theorem 2 (Lower bound). For any state size S, number of arms n, discount factor — and number
of episodes K Ø 16S, there exists a prior distribution „ on Markovian bandit problems with parameters
(S, n, K, —) such that, for any learning algorithm L:

BayReg(K, L, „) Ø
1
60

Û
SnK

(1 ≠ —) . (12)
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The proof is given in Appendix B and uses a counterexample inspired by the one of Jaksch et al. (2010).
Note that for general MDPs, the minimax lower bound obtained by Osband & Van Roy (2016); Jaksch et al.
(2010) says that a learning algorithm cannot have a regret smaller than �

!Ô

S̃ÃT̃
"
, where S̃ is the number

of states of the MDP, Ã is the number of actions and T̃ is the number of time steps. Yet, the lower bound of
Osband & Van Roy (2016); Jaksch et al. (2010) is not directly applicable to our case with S̃ = Sn because
Markovian bandit problems are very specific instances of MDPs and this can be exploited by the learning
algorithm. Also note that this lower bound on the Bayesian regret is also a lower bound on the expected
regret of any non-Bayesian algorithm for any MDP model M .

Apart from the logarithmic terms, the lower bound provided by Theorem 2 di�ers from the bound of
Theorem 1 by a factor

Ô
S/(1≠—). This factor is similar to the one observed for PSRL and UCRL2 (Osband

et al., 2013; Jaksch et al., 2010). There are various factors that could explain this. We believe that the extra
factor 1/(1 ≠ —) might be half due to the episodic nature of MB-PSRL and MB-UCRL2 (when 1/(1 ≠ —) is
large, algorithms with internal episodic updates might have smaller regret) and half due to the fact that the
lower bound of Theorem 2 is not optimal and could include a term 1/

Ô
1 ≠ — (similar to the term O(

Ô
D) of

the lower bound of Osband & Van Roy (2016); Jaksch et al. (2010)). The factor
Ô

S between our two bounds
comes from our use of Weissman’s inequality. It might be possible that our regret bounds are not optimal
with respect to this term although such an improvement cannot be obtained using the same approach of
Azar et al. (2017).

6 Scalability of learning algorithms for Markovian bandits

Historically, Problem 1 was considered unresolved until Gittins (1979) proposed Gittins indices. This is
because previous solutions were based on Dynamic Programming in the global MDP which are computa-
tionally expensive. Hence, after establishing regret guarantees, we are now interested in the computational
complexity of our learning algorithms, which is often disregarded in the learning literature.

6.1 MB-PSRL and MB-UCBVI are scalable

If one excludes the simulation of the MDP, the computational cost of MB-PSRL and MB-UCBVI of each
episode is low. For MB-PSRL, its cost is essentially due to three components: Updating the observations,
sampling from the posterior distribution and computing the optimal policy. The first two are relatively fast
when the conjugate posterior has a closed form: updating the observation takes O(1) at each time, and
sampling from the posterior can be done in O(nS2) – more details on posterior distributions are given in
Appendix D. When the conjugate posterior is implicit (i.e., under the integral form), the computation can
be higher but remains linear in the number of arms. For MB-UCBVI, the cost is due to two components:
computing the bonus terms and computing the Gittins policy for the optimistic MDP. Computing the bonus
is linear in the number of bandits and the length of the episode. As explained in Section 2.2, the computation
of the Gittins index policy for a given problem can be done in O(nS3). Hence, MB-PSRL and MB-UCBVI
have a regret and a runtime both linear in the number of arms.

6.2 MB-UCRL2 is not scalable because it cannot use an Index Policy

While MB-UCRL2 has a regret equivalent to the one of MB-PSRL, its computational complexity, and in
particular the complexity of computing an optimistic policy that maximizes Equation 6 does not scale with
n. Such a policy can be computed by using extended value iteration (Jaksch et al., 2010). This computation
is polynomial in the number of states of the global MDP and is therefore exponential in the number of
arms, precisely O(nS2n). For MB-PSRL (or MB-UCBVI), the computation is easier because the sampled
(optimistic) MDP is a Markovian bandit problem. Hence, using Gittins Theorem, computing the optimal
policy can be done by computing local indices. In the following, we show that it is not possible to solve
Equation 6 by using local indices. This suggests that MB-UCRL2 (nor any of the modifications of UCRL2’s
variants that would use extended value iteration) cannot be implemented e�ciently.

More precisely, to find an optimistic policy (that satisfies Equation 11), UCRL2 and its variants, e.g., KL-
UCRL (Filippi et al., 2010), compute a policy fik that is optimal for the most optimistic MDP in Mk. This

10
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can be done by using extended value iteration. We now show that this cannot be replaced by the computation
of local indices.

Let us consider that the estimates and confidence bounds for a given arm a are B̂
a := (r̂a, Q̂a, br

a
, bQ

a
). We

say that an algorithm computes indices locally for Arm a if for each xa œ S
a, it computes an index IB̂a(xa)

by using only B̂
a but not B̂

a
Õ for any aÕ

”= a. We denote by fiI(B̂) the index policy that uses index IB̂a for
arm a and by M(B̂) the set of Markovian bandit problems M Õ that satisfy Equation 5.
Theorem 3. For any algorithm that computes indices locally, there exists a Markovian bandit problem M ,
an initial state x and estimates B̂

a := (r̂a, Q̂a, br

a
, bQ

a
) such that M œ M(B̂) and

sup
M ÕœM(B̂)

V fi
I(B̂)

M Õ (x) < sup
fi

V fi

M
(x).

Proof. The proof presented in Appendix C is obtained by constructing a set M and two MDPs M1 and M2
in M such that Equation 11 cannot hold simultaneously for both M1 and M2.

This theorem implies that one cannot define local indices such that Equation 11 holds for all bandit problems
M œ Mk. Yet, the use of this inequality is central in the regret analysis of UCRL2 (see the proof of UCRL2
(Jaksch et al., 2010)). This implies that the current methodology to obtain regret bounds for UCRL2 and
its variants, e.g., Bourel et al. (2020); Fruit et al. (2018); Talebi & Maillard (2018); Filippi et al. (2010), that
use Extended Value Iteration is not applicable to bound the regret of their modified version that computes
indices locally.

Note that for any set M such that M œ M, there still exists an index policy fiind that is optimistic because
all MDPs in M are Markovian bandit problems. This optimistic index policy satisfies

sup
M ÕœM

V fi
ind

M Õ Ø sup
fi

V fi

M
.

This means that restricting to index policies is not a restriction for optimism. What Theorem 3 shows is
that an optimistic index policy can be defined only after the most optimistic MDP M œ M is computed and
computing optimistic policy and M simultaneously depends on the confidence sets of all arms.

Therefore, we believe that UCRL2 and its variants cannot compute optimistic policy locally: they should
all require the joint knowledge of all {B̂

a
}aœ[n].

7 Numerical experiments

In complement to our theoretical analysis, we report, in this section, the performance of our three algorithms
in a model taken from the literature. The model is an environment with 3 arms, all following a Markov
chain that is obtained by applying the optimal policy on the river swim MDP. A detailed description is
given in Appendix D, along with all hyperparameters that we used. Our numerical experiments suggest that
MB-PSRL outperforms other algorithms in term of average regret and is computationally less expensive
than other algorithms. To ensure reproducibility, the code and data of our experiments are available at
https://gitlab.inria.fr/kkhun/learning-in-rested-markovian-bandit.

Performance result We investigate the average regret and policy computation time of each algorithm.
To do so, we run each algorithm for 80 simulations and for K = 3000 episodes per simulation. We arbitrarily
choose the discount factor — = 0.99. In Figure 1(a), we show the average cumulative regret of the 3
algorithms. We observe that the average regret of MB-UCBVI is larger than those of MB-PSRL and MB-
UCRL2. Moreover, we observe that MB-PSRL obtains the best performance and that its regret seems to
grow slower than O(

Ô
K). This is in accordance to what was observed for PSRL (Osband et al., 2013). Note

that the expected number of time steps after K episodes is K/(1 ≠ —) which means that in our setting with
K = 3000 episodes there are 300 000 time steps in average. In Figure 1(b), we compare the computation time
of the various algorithms. We observe that the computation time (the y-axis is in log-scale) of MB-PSRL
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(a) Average cumulative regret in function of the number of
episodes.

(b) Average runtime per episode. The vertical axis is in log-
scale.

Figure 1: Experimental result for the three 4-state random walk arms given in Table 1. The x-axis is the
number of episodes. Each algorithm is identified by a unique color for all figures.

and MB-UCBVI, the index-based algorithms, are the fastest by far. Moreover, the computation time of
these algorithms seem to be independent of the number of episodes. These two figures show that MB-PSRL
has the smallest regret and computation time among all compared algorithms.

Robustness (larger models and di�erent priors) To test the robustness of MB-PSRL, we conduct two
more sets of experiments that are reported in Appendix E. They confirm the superiority of MB-PSRL. The
first experiment is an example from Du� (1995) with 9 arms each having 11 states. This model illustrates
the e�ect of the curse of dimensionality: the global MDP has 119 states which implies that the runtime of
MB-UCRL2 makes it impossible to use, while MB-PSRL and MB-UCBVI take a few minutes to complete
3000 episodes. Also in this example, MB-PSRL seems to converge faster to the optimal policy than MB-
UCBVI. The second experiment tests the robustness of MB-PSRL to the choice of prior distribution. We
provide numerical evidences that show that, even when MB-PSRL is run with a prior „ that is not the one
from which M is drawn, the regret of MB-PSRL remains acceptable (around twice the regret obtained with
a correct prior).

8 Conclusion

In this paper, we present MB-PSRL, a modification of PSRL for Markovian bandit problems. We show
that its regret is close to the lower bound that we derive for this problem while its runtime scales linearly
with the number of arms. Furthermore, and unlike what is usually the case, MB-PSRL does not have an
optimistic counterpart that scales well: we prove that MB-UCRL2 also has a sub-linear regret but has a
computational complexity exponential in the number of arms. This result generalizes to all the variants
of UCRL2 that rely on extended value iteration. We nevertheless show that OFU approach may still be
pertinent for Markovian bandit problem: MB-UCBVI, a version of UCBVI can use Gittins indices and does
not su�er from the dimensionality curse: it has a sub-linear regret in terms of the number of episodes and
number of arms as well as a linear time complexity. However its regret remains larger than MB-PSRL.

The broad implication of this work is that, on the one hand, if a weakly coupled MDP or factored MDP
can be solved e�ciently when all the parameters are known, then PSRL can be adapted to have e�cient
regret and runtime. On the other hand, solving weakly coupled MDP or factored MDP e�ciently when all
the parameters are known does not imply that all optimistic algorithms are computationally e�cient. This
is a major di�erence between the Bayesian and the optimistic approach.
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