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ABSTRACT

Generative Foundation Models (GFMs) have achieved remarkable success in pro-
ducing high-quality synthetic data for images and text. However, their application
to tabular data presents significant challenges due to the heterogeneous nature
of table features. Current cross-table learning frameworks struggle because they
lack a generative model backbone and an effective mechanism to decode hetero-
geneous feature values. To address these challenges, we propose the Cross-Table
Synthesizer (CTSyn), a diffusion-based generative foundation model for tabular
data generation. CTSyn comprises two key components. The first is an autoen-
coder network that consolidates diverse tables into a unified latent space. It dy-
namically reconstructs table values using a table schema embedding, allowing
adaptation to heterogeneous datasets. The second is a conditional latent diffusion
model that generates samples from the learned latent space, conditioned on the ta-
ble schema. Through large-scale pre-training, CTSyn outperforms existing table
synthesizers on standard benchmarks in both utility and diversity. These results
position CTSyn as a promising framework for synthetic table generation and lay
the groundwork for developing large-scale tabular foundation models.

1 INTRODUCTION

Generative Foundation Models (GFMs) have revolutionized fields such as Computer Vision (CV)
and Natural Language Processing (NLP)(Bommasani et al., 2021; He et al., 2016; OpenAI, 2023;
Touvron et al., 2023; Ramesh et al., 2022; Rombach et al., 2022). Trained on vast datasets (Merity
et al., 2016; Deng et al., 2009; Schuhmann et al., 2022) and with versatile model backbones (Vaswani
et al., 2017; Ho et al., 2020), these models excel across a diverse range of domains and tasks. They
can generate valuable synthetic training examples to enhance the performance of various down-
stream applications (Kirillov et al., 2023; Li et al., 2023b; Moor et al., 2023; Trabucco et al., 2023;
Zhang et al., 2023a).

GFMs also hold immense potential for generating tabular data, a modality essential to many real-
world applications (Dash et al., 2019; Borisov et al., 2022; Shwartz-Ziv & Armon, 2022). Despite
the ubiquity of tabular data, obtaining high-quality samples for modeling remains a challenge. Al-
though tabular data synthesizers have increasingly gained attention (Xu et al., 2019; Kotelnikov
et al., 2023; McKenna et al., 2022), they yield little performance improvement in downstream mod-
els when real data is limited (Elor & Averbuch-Elor, 2022; Manousakas & Aydöre, 2023).This lim-
itation stems from a fundamental constraint: synthesizers cannot generate information beyond what
is present in the original training data. Tabular GFMs have the potential to overcome this limitation
by leveraging diverse pre-training data.

Despite these opportunities, implementing tabular GFMs remains particularly challenging and
largely overlooked due to the heterogeneity of column structures, feature sets, and value ranges (On-
ishi et al., 2023; Huang et al., 2020; Borisov et al., 2022; Zhu et al., 2023; van Breugel & van der
Schaar, 2024). Existing methods for transferable tabular learning either model tables with language
models (Ye et al., 2024; Wang & Sun, 2022; Hegselmann et al., 2023; Yan et al., 2024) or attempt to
learn a unified latent space across datasets (Wang & Sun, 2022; Onishi et al., 2023; Zhu et al., 2023;
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Ye et al., 2023). These methods either lack generative capability or rely on pre-trained language
models that process tables as unstructured text, distorting structural information and metadata that
are critical for effective tabular modeling.

To address these limitations, we propose CTSyn, a foundational model specifically designed for
generating heterogeneous tables.

• Unified table representation and reconstruction: We developed a cross-tabular autoen-
coder that embeds heterogeneous table rows, projects them into a unified latent space, and
decodes tabular values using table metadata as guidance. This approach enables model
training across diverse tabular formats, overcoming data-specific structural constraints
while preserving structural information in a table-consistent manner.

• Generative foundation model: Our versatile conditional diffusion transformer backbone
efficiently samples from the unified latent space, enhancing flexibility and applicability
across diverse tabular domains.

• Cross-tabular pre-training: We conduct extensive cross-tabular pre-training on a large-
scale web-scale dataset containing 5 million rows. With diverse data domains covering
common table applications, this pre-training serves as a foundation for various downstream
generation tasks.

Through extensive benchmarking with real-world datasets, we demonstrate that CTSyn extends the
pre-training/fine-tuning paradigm to tabular data generation, achieving state-of-the-art (SOTA) per-
formance on low-data regimue. Crucially, by effectively leveraging prior knowledge and incorporat-
ing table metadata, our model unlocks unprecedented potential in synthetic tabular data generation
and holds immense promise for extending to various tabular tasks such as regression and classifica-
tion.

2 RELATED WORK

2.1 TRANSFERABLE TABLE REPRESENTATION

Self-supervised learning can significantly improve representation quality for various downstream
tasks (Gururangan et al., 2020; Yuan et al., 2021b; Wei et al., 2021; Chen et al., 2024). In the tabular
domain, methods like VIME (Yoon et al., 2020) train an encoder using a combination of supervised
reconstruction loss and mask-array prediction loss, while SCARF (Bahri et al., 2022) employs con-
trastive loss by utilizing randomly corrupted feature vectors as positive pairs. Subtab (Ucar et al.,
2021) and SSP (Chitlangia et al., 2022) integrate contrastive and reconstruction losses. However,
these approaches do not produce transferable representations across tables, as they rely on data-
specific feature encodings and structures.

Xtab (Zhu et al., 2023) and TabRet (Onishi et al., 2023) introduce transformer-based backbones
with separate data-specific featurizers or projection heads for each downstream task. These models
achieve transferability at the expense of increasing model complexity as the number of datasets and
tasks grows.

Pre-trained Language Models (PLMs) can be used to unify representation dimensions of heteroge-
neous features. TransTab (Wang & Sun, 2022) extends Subtab’s methodology by tokenizing and
then encoding column names and categories, creating a latent space that can be shared across tables.
By combining tokenization with a masked-value prediction objective, transformer-based models can
be trained to perform predictive tasks across tables (Ye et al., 2024; Yak et al., 2023; Yang et al.,
2024; Yan et al., 2024). However, such methods include neither a generative model backbone nor
a fixed-dimensional row representation and decoder that can be integrated with other generative
models.

Another line of research involving PLMs converts tabular features to sentences and models regres-
sion/classification problems as NLP tasks (Dinh et al., 2022; Hegselmann et al., 2023; Borisov et al.,
2023; Liu et al., 2022; Zhang et al., 2023c;b). Despite enabling transfer learning, these methods face
challenges in accurately modeling continuous values and tend to overlook the intrinsic structural
properties of tables (van Breugel & van der Schaar, 2024).
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Figure 1: Overview of the proposed CTSyn framework.

2.2 SYNTHETIC TABULAR DATA GENERATION

Synthetic Tabular Data Generation (STDG) has long been studied by statisticians (Nowok et al.,
2016; Reiter, 2005; Chawla et al., 2002). Recent advances in deep generative models have signifi-
cantly pushed its boundaries (Che et al., 2017; Kim et al., 2021; Figueira & Vaz, 2022).

In particular, CTGAN and TVAE (Xu et al., 2019) combine conditional generation with Generative
Adversarial Networks (GANs) and Variational Autoencoders (VAEs), along with model-specific
normalization, to handle highly imbalanced and non-Gaussian columns. CtabGAN+ (Zhao et al.,
2021; 2024) proposes a solution for handling mixed-type and long-tailed variable distributions. Au-
todiff (Suh et al., 2023) and Tabsyn (Zhang et al., 2024) use a combination of latent diffusion and
data-specific autoencoder structures. While these are the most similar works to ours, they lack crit-
ical transferable encoding and decoding capabilities. TabDDPM (Kotelnikov et al., 2023) achieves
the current state-of-the-art in tabular generation by employing separate diffusion processes for nu-
merical and categorical columns.

Some models also synthesize data with Differential Privacy guarantees (Jordon et al., 2018; Zhang
et al., 2017; McKenna et al., 2022). Despite their effectiveness in modeling column distributions,
none of the above methods is able to effectively boost the training of machine learning models with
synthesized data, greatly limiting their usage in data augmentation (Manousakas & Aydöre, 2023).

GReaT (Borisov et al., 2023) and Tabula (Zhao et al., 2023) generate tables using PLMs by treating
table rows as natural language text. Despite showing evidence of transferability, they do not consider
cross-table pre-training and generation. Additionally, they introduce the risk of producing out-of-
bound examples due to unconstrained sampling of output tokens and face the well-known challenge
of modeling numeracy in a discrete token space (Wallace et al., 2019).

3 METHODOLOGY

In this section, we outline CTSyn, our approach to overcoming the challenges of developing a tabular
GFM. Figure 1 provides an overview of the proposed framework.

3.1 FEATURE EMBEDDING

Let an observation (row) in a mixed-type table be represented as

x = (c1, x1, c2, x2, . . . , cp, xp),
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where ci for i = 1, 2, . . . , p are the feature names, and xi for i = 1, 2, . . . , p are the corresponding
feature values, which can be either numerical or categorical. The parameter p denotes the number
of features in this row. Let mmeta be the text metadata describing the context of the table.

To facilitate knowledge transfer across tables, it is crucial to develop a unified representation that
preserves information at the cell, observation, and table levels. Using techniques such as one-hot
encoding and min-max normalization results in the loss of structural and contextual information: ta-
bles with entirely different contents can end up with identical representations. Thus, we tokenize and
embed all levels of information into vectors of consistent dimensions to facilitate unified modeling.

The first step in this process is consolidating all text metadata, column names, and categorical values,
ensuring that integer class labels and abbreviations are expanded into their full textual forms to
preserve their original meanings. Then, we create embeddings as follows:

em = LM(m), eci = LM(ci), exi
=

{
LM(xi) if xi is categorical,
Quantile(xi) · 1 if xi is numerical

where LM is a pre-trained text embedding model that is invoked only once for each unique category
or column name. Quantile is a quantile transformer (Pedregosa et al., 2011) fitted to the dataset,
mapping numerical values to a uniform distribution. 1 is a vector of ones with the same dimension
as MLM, ensuring that numerical and categorical embeddings maintain consistent dimensionality.

Finally, we interleave all embeddings and flatten them into a sequence:

E = [(ec1 , ex1
), (ec2 , ex2

), . . . , (ecp , exp
)] ∈ Rp×2MLM , (1)

where MLM is the dimensionality of the language model embeddings. Each step in the sequence
is formed by concatenating the column name embedding eci with the corresponding column value
embedding exi

. This interleaving creates cell-level representations that encapsulate both column
type and value context, eliminating the need to learn the relative positions of column names and
values in the sequence. This design aligns with the permutation-invariant property of tabular data.

3.2 AUTOENCODER FOR HETEROGENEOUS TABLES

Encoder: To facilitate efficient learning of the diffusion model, we use an encoder model f to
further compress the input sequence E into a fixed-dimensional latent vector:

z = f(E) ∈ Rℓ×Magg ,

where ℓ is the latent dimension, and Magg is the size of each latent vector. The encoder is based on
the Perceiver Resampler (Yuan et al., 2021a), consisting of multi-head attention (MHA) blocks and
linear layers. The learnable latent parameters serve as queries, while the keys and values consist of
the concatenation of the latent queries and the flattened input sequence E.

In each layer of the encoder, a cross-attention operation is performed where the latent queries iter-
atively attend to both the input sequence (in the first layer) and the latent representations (in subse-
quent layers). Formally, the output of one attention block is given by:

Z(l+1) = FFN
(
Z(l) + MHA(q = Z(l), kv = Z(l))

)
,

where Z(l) is the latent representation at layer l, MHA(·) represents the multi-head attention op-
eration, and FFN is a feedforward network. At the first layer (l = 0), the keys and values are the
concatenation of the latent queries and the input sequence, i.e., kv = [Z(0);E].

Note that we do not include positional embeddings in the sequence E to maintain the permutation
invariance property of tabular features.

Following the variational autoencoder (VAE) framework, we use two separate encoders, where each
output serves as either the mean vector µ ∈ Rℓ×Magg or the log-variance vector log σ2 ∈ Rℓ×Magg ,
respectively. The encoder outputs parameterize the latent distribution, and for each input, we sample
the latent vector z using the reparameterization trick, given the predicted mean µ and log-variance
log σ2.
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Decoder with Meta Guidance: To enable cross-tabular training, the decoder must handle varying
column orders and combinations of mixed-type columns while ensuring permutation invariance.
Since positional embeddings are excluded during encoding, our approach uses a cross-attention-
based transformer decoder, where the column order in the decoder is guided by explicit embeddings
of the target column names.

We encode the column names using a PLM as:

Ec = [ec1 , ec2 , . . . , ecp ],

where each eci represents the embedding of column ci. These embeddings serve as queries for the
decoder.

The table metadata embedding em is concatenated with the latent variables z (derived from the
encoder) to form the keys and values. The decoder g(·) operates by cross-attending to Ec and
[em, z]. The order of the output from the decoder is thus determined by the order of columns in Ec,
and the model learns to dynamically extract cell information from the row latent representation. The
output of the decoder is:

h = g(Ec, [em; f(E)]) ∈ Rp×Mdecoded .

Table reconstruction: The decoded embeddings are used to reconstruct the table cell values.

For numerical variables, the decoding process transforms the embedding back into scalar values
using a linear layer followed by a sigmoid activation function, producing the predicted value:

x̂num
i = Sigmoid(Linear(hi)).

For categorical columns, we use a loss based on cosine similarity to accommodate unseen categories
in real-world applications. Inspired by (Yak et al., 2023), we compute the cosine similarity by first
refining both the reconstructed embeddings and the PLM embeddings of all real categories using a
linear layer. Then, we calculate the cosine similarity between these embeddings, apply softmax to
the similarities, and use the resulting distribution as the predicted class probabilities:

P̂ (xcat
j ) = Softmax (CosineSim (Linear(hj),Linear(C))) ,

where hi and hj are the latent representations of the i-th numerical cell and j-th categorical cell,
respectively, and C represents the set of embeddings for all possible categories in the column. These
predicted probabilities and values are then used to reconstruct the original table by mapping the
latent space to the appropriate categorical or numerical values for each cell.

Training VAE: Following the β-VAE setup (Higgins et al., 2017), the overall objective is a combi-
nation of numerical and categorical reconstruction losses and KL-regularization on the latent space:

L =

p∑
i=1

Lnum(x
num
i , x̂num

i ) +

q∑
j=1

Lcat(x
cat
j , P̂ (xcat

j )) + β

ℓ∑
k=1

DKL(N (µk, σ
2
k)∥N (0, 1)),

where Lnum is the MSE loss for numerical variables, Lcat is the cross-entropy loss for categorical
variables, DKL is the KL-divergence between the learned latent distribution N (µk, σ

2
k) and the stan-

dard Gaussian N (0, 1), and β is a weighting factor balancing the reconstruction and KL-divergence
terms.

Implementation: We use four cross-attention layers for both the encoder and decoder, with ℓ = 16
latent dimensions and Magg = 64. All VAE models in this paper are trained using the AdamW
optimizer with an initial learning rate of 0.0002. The learning rate is multiplied by 0.95 if the
validation loss does not improve for 10 consecutive epochs.

We use a β-VAE setup, starting with βmax = 10−2, and gradually decrease β by multiplying it by 0.7
when the reconstruction loss does not improve for 5 consecutive epochs, until reaching a minimum
value of 10−5.

We construct training batches to contain samples from the same source table, improving training
efficiency by reducing inter-domain contrast, as unrealistic domain shifts are not representative of
real-world applications. We use GTE-large (Li et al., 2023a) as our text embedding model, as it
provides robust representations for metadata and categorical features.
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3.3 CONDITIONAL DIFFUSION MODEL FOR LATENT VECTOR GENERATION

For cross-tabular generation, a conditional latent diffusion model is preferred because table schemas
can vary significantly across domains, with different column types and distributions. An uncondi-
tional model would struggle to generalize across these diverse formats, making fine-tuning more
difficult for domain-specific tasks. We follow the Denoising Diffusion Probabilistic Model (DDPM)
formulation to train a conditional diffusion model, with the objective specified below. The input
latent variable z is derived from our VAE.

For the denoising objective, we utilize the v-parameterization strategy, which is more effective for
latent diffusion than the classic noise prediction strategy. We condition the embedding generation on
the embedding sequence [em, Ec], which encompasses the schema of the desired table. The model
is trained with the following loss function:

L(θ) = Et,(zsrc,ztrg),ϵ

[
λt

∥∥ẑθ (√αtztrg +
√
1− αtϵ, t, [em, Ec]

)
− ztrg

∥∥2
2

]
,

where ztrg is the latent variable from the target sequence, and αt is the noise schedule. Classifier-
free guidance is used to improve sample quality, with conditional and unconditional networks jointly
trained, where conditioning is dropped with a probability of 0.1 during training.

Following the specifications in Lovelace et al. (2024), our diffusion model uses a pre-LayerNorm
transformer architecture with 12 layers, a hidden dimension of 768, learnable absolute positional
encodings, and a GeGLU activation function. The noise level is conditioned via a sinusoidal time
embedding, which is processed by an MLP and added to the input sequence. Adaptive layer nor-
malization is applied to each feedforward layer, conditioned on the time embedding. We use the
AdamW optimizer with a learning rate of 0.0001, a cosine annealing scheduler, a batch size of 256,
and 250 sampling steps.

4 EXPERIMENT

4.1 EVALUATION SETUP

In this section, we evaluate the performance of CTSyn in representing tables and generating infor-
mative and diverse synthetic tabular data. Our primary research questions are: 1. Does pre-training
on large, general datasets improve the quality of synthetic data generation for downstream
tasks? 2. How does the inclusion of metadata and table schema help CTSyn create effective
and transferable table representations?

Baselines: We compare our method against a wide array of baselines in synthetic data genera-
tion. These include modified SMOTE (Chawla et al., 2002), CTGAN and TVAE (Xu et al., 2019),
TabDDPM (Kotelnikov et al., 2023), TabSyn (Zhang et al., 2024), AIM (McKenna et al., 2022),
PATE-CTGAN (Jordon et al., 2018), and GReaT (Borisov et al., 2023). The implementation of
baselines is detailed in Section B.

Dataset Construction: We use a filtered version of the OpenTab dataset (Ye et al., 2024) as our pre-
training set. The filtering follows the strategy outlined in (Yan et al., 2024), which excludes duplicate
tables, tables containing free-text, date-time, or personally identifiable information (PII) columns,
tables with fewer than 10,000 rows, and tables with categorical columns in integer label format
that cannot be mapped back to their original string representations. After filtering, the pre-training
set comprises 86 tables with a total of 5.01 million observations. Note that while the multi-modal
representation framework of CTSyn is extensible to include text and date-time variables, we focus on
numerical and categorical variables in this work (an extension to text and date-time is demonstrated
in Appendix F).

For downstream benchmarking, we evaluate eleven real-world datasets widely used in the tabular
synthesis literature (Suh et al., 2023; Kotelnikov et al., 2023; Zhang et al., 2024) (see Table 1). To
avoid any data leakage, we manually verify that none of the datasets used for pre-training appear
in the downstream benchmarks; further details on these datasets can be found in Appendix C. For
each downstream dataset, we randomly split the data into a fine-tuning set (80%) and a held-out
test set (20%). The fine-tuning set is then randomly shuffled, and few-shot subsets are created by
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selecting the first 30, 50, 100, 200, and 500 rows, respectively. This procedure allows us to assess
the performance of synthetic data generation in low-data scenarios. For each few-shot subset, a
separate generator is trained, and three synthetic tables are generated over three independent trials.
All synthetic tables generated for a given downstream dataset are evaluated using the same held-out
test set. Synthetic data modeled from different subsets are all sampled to 500 observations to ensure
a fair comparison and highlight impact of training data size.

Dataset Rows Target Num Cols Cate Cols
Faults 1941 Classification 34 0
Wilt 4839 Classification 5 1
HTRU2 17898 Classification 8 1
News 39644 Regression 60 0
Bean 13611 Classification 16 1
Obesity 2111 Classification 8 9
Titanic 714 Classification 6 2
Insurance 1338 Regression 4 3
Abalone 4177 Regression 8 1
Shoppers 12330 Classification 16 2
Indian Liver Patient 579 Classification 9 2

Table 1: Summary Statistics of Downstream Datasets

For CTSyn, we pre-train the autoen-
coder for 300 epochs and the diffu-
sion model for 200,000 steps. For
fine-tuning, we train the conditional
diffusion model and decoder network
of the autoencoder while freezing the
encoder to maintain alignment in the
latent space. We fine-tune the de-
coder for 100 epochs and the diffu-
sion model for 10,000 steps.

Metadata: The text data describing
table context was generated by query-
ing the ChatGPT-4o (OpenAI, 2024)
model with the first 10 rows of each
table and prompting it to generate a
description of the table’s context, domain, and potential use cases. The prompt and metadata gener-
ation process is detailed in Appendix G.

4.2 STATISTICAL FIDELITY

Model Shape Corr Precision Recall
SMOTE 0.96 (0.02) 0.91 (0.03) 0.68 (0.04) 0.02 (0.003)
CTGAN 0.81 (0.04) 0.73 (0.02) 0.57 (0.03) 0.014 (0.002)
TVAE 0.88 (0.03) 0.89 (0.04) 0.35 (0.02) 0.01 (0.001)
AIM 0.63 (0.05) 0.70 (0.02) 0.01 (0.001) 0.03 (0.003)
PATECTGAN 0.15 (0.01) 0.47 (0.03) 0.01 (0.001) 0.02 (0.002)
TabDDPM 0.93 (0.03) 0.93 (0.02) 0.59 (0.04) 0.027 (0.004)
TabSyn 0.97 (0.01) 0.93 (0.02) 0.69 (0.03) 0.003 (0.001)
GReaT 0.90 (0.03) 0.64 (0.04) 0.68 (0.03) 0.005 (0.001)
CTSyn 0.94 (0.02) 0.95 (0.02) 0.64 (0.04) 0.075 (0.006)

Table 2: Statistical Fidelity Metrics. Scores are averaged across benchmark datasets.

We evaluate the similarity between real and synthetic tables based on the marginal distributions of
columns, column-wise correlations, and sample-level coverage.

For column distributions, we use the Kolmogorov-Smirnov (KS) test for numerical columns and
Total Variation Distance (TVD) for categorical columns, subtracting them from one so that higher
values indicate better similarity. For column-wise correlation, we apply Pearson’s correlation for
numerical columns, a contingency similarity metric for categorical columns, and a combined method
for mixed types (Dat, 2023). For sample-level coverage, we measure precision and recall to quantify
the overlap between real and synthetic data (Alaa et al., 2022).

Table 2 presents the average similarity of column distributions and correlations across benchmark
datasets. CTSyn consistently matches or exceeds state-of-the-art baselines. While methods like
TabSyn and SMOTE excel in maintaining lower-order statistical similarity due to their focus on
replicating training data distributions, CTSyn demonstrates superior performance in capturing com-
plex relationships between columns. This is particularly evident in its higher correlation scores and
significantly better recall, indicating its ability to preserve important structural relationships within
the data, as well as benefiting from the regularization effect of pre-training.

4.3 MACHINE LEARNING UTILITY

To evaluating machine learning utility of synthetic data, we fit the following classifiers: logistic
regression, Naı̈ve Bayes, decision tree, random forest, XGBoost (Chen & Guestrin, 2016), and Cat-
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(a) Classification F1-Scores (b) Regression RMSE

Figure 2: Downstream Machine Learning Utility on Classification and Regrssion Datasets, on syn-
thetic data from different generators.

Boost (Prokhorenkova et al., 2018), and then evaluate them on the holdout test set. Figure 2 reports
the average classification F1-score (for classification datasets) and regression root mean squared er-
ror (RMSE) across models and shots. For clarity, only the top five performing models are shown.
We report scores for the remaining models in Appendix E.

Model PCT Authenticity
SMOTE 0.82 (0.24) 0.88 (0.03)
CTGAN 0.84 (0.04) 0.91 (0.29)
TVAE 0.84 (0.01) 0.95 (0.31)
AIM 1.00 (0.00) 1.00 (0.00)
PATECTGAN 1.00 (0.00) 1.00 (0.06)
TabDDPM 0.85 (0.07) 0.87 (0.16)
TabSyn 0.80 (0.03) 0.93 (0.03)
GReaT 0.74 (0.21) 0.79 (0.03)
CTSyn 0.90 (0.02) 0.97 (0.06)

Table 3: Privacy scores of synthesized data. Best
scores of non-DP synthesizers are bolded.

We observe that for the low-data regime (See-
dat et al.) with N ≤ 100, CTSyn consistently
outperforms all baselines and even real data at
the corresponding scale. The performance gap
widens in the 100–200 shot range. This indi-
cates CTSyn’s ability to leverage pre-training
data to assist training when real data is limited.
Note that GReaT failed to generate text that fol-
lows the tabular format for N < 100. However,
as the data size increases further, the advan-
tage of CTSyn diminishes. We conjecture that
this phenomenon is due to an ineffective trans-
fer learning setup and leave the exploration of
transfer learning for tabular GFMs beyond the
simple pre-training/fine-tuning paradigm to fu-
ture work.

4.4 DIVERSITY AND PRIVACY

We evaluate the diversity and privacy of the synthesized data using two metrics: the proportion of
synthetic examples with L2 distance closer to the test set (PCT) compared to the training set (Platzer
& Reutterer, 2021), and authenticity scores (Alaa et al., 2022), which assess the likelihood that a
synthetic data point is genuinely generated rather than a memorization of real data. Lower PCT
or authenticity values suggest that synthetic data points are too close to the training set, raising
concerns about potential memorization risk. A powerful generator can easily memorize training
data, achieving falsely high fidelity and utility without truly generating new samples, thus harming
downstream model generalization and breaching individual privacy.

Table 3 presents the diversity scores. CTSyn achieves the highest PCT and authenticity scores
compared to state-of-the-art models like TabDDPM and TabSyn, indicating that CTSyn produces
more distinct synthetic data. CTSyn’s high PCT scores are comparable to those of AIM and PATE-
CTGAN, which incorporate Differential Privacy (DP) mechanisms to reduce proximity to real data.
However, these DP models have demonstrated poor fidelity and utility in previous sections. CTSyn,
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by contrast, achieves a balance between data utility, diversity, and privacy, further supporting the
claim that pre-training acts as regularization.

Figure 3: T-sne plot of Indian Liver Patient dataset from different synthesizers.

We further illustrate the diversity of synthesized data using a 2D t-SNE projection in Figure 3 for
the Indian Liver Patient dataset. Among all synthesizers, CTSyn generates the most diverse data
distribution, covering a wider region around the test set. In contrast, baseline models tend to overfit
to regions surrounding certain data points. This diversity, enabled by pre-training, explains CTSyn’s
superior utility, as the diverse pre-training data serves as implicit regularization, promoting better
generalization.

4.5 ABLATION STUDY

Variants In-distribution Unseen Columns Permuted Columns
MSE Acc MSE Acc MSE Acc

Column & Meta 0.0004 0.94 0.0063 0.76 0.0005 0.94
Column Name Only 0.0007 0.93 0.0068 0.68 0.0006 0.93
Meta Only 0.0008 0.91 0.0082 0.61 0.0009 0.91
PE Only 0.006 0.87 0.07 0.54 0.08 0.67

Table 4: Reconstruction performance of different autoencoder settings.

Importance of Metadata. We evaluate the key factors for effective cross-tabular representation and
reconstruction by testing different autoencoder variations: removing column name embeddings in
decoder guidance, removing both column names and metadata embeddings while using positional
encoding to encoder on positions of seuqnce E. These models are trained on the same pre-training
data and tested on three scenarios: (1) in-distribution data from the validation splits, (2) unseen data
from downstream test datasets, and (3) Permuted data, where column order is randomly permuted.

Table 4 presents the results in terms of Mean Squared Error (MSE) and categorical accuracy. Re-
moving column names primarily affects categorical column reconstruction, emphasizing the need
for contextual representation. The replacement of metadata with PE significantly worsens perfor-
mance, particularly when handling permuted column order. This highlights a fundamental distinc-
tion between tables and unstructured data like text: tables have permutation-invariant structures, and
relying on positional information, as in PE, is ineffective.

We further observe that while retaining column names alone results in some performance degrada-
tion compared to the full model, the impact is less severe than dropping column names entirely. This
outcome highlights the importance of column names in capturing table structure and semantics. We
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conjecture that this robustness arises from our diverse pre-training dataset, where column names act
as proxies for metadata.

Model Pretrained Shape Corr Synth F1 Synth RMSE PCT

CTSyn ✓ 0.94 0.95 0.84 0.13 0.97
× 0.96 0.90 0.80 0.17 0.90

GReaT ✓ 0.90 0.71 0.79 3.75 0.88
× 0.90 0.64 0.83 0.18 0.79

TabSyn ✓ 0.88 0.82 0.75 0.23 0.90
× 0.97 0.93 0.84 0.14 0.93

Table 5: Impact of transfer learning on different models.

Impact of Pre-training. We compare different models’ potential to leverage pre-training data. We
repeat the experiments with CTSyn trained without pre-training, while GReaT and TabSyn are also
pre-trained before training on downstream benchmarks. For GReaT, we pool all pre-training data
into one dataloader to train a pre-trained distilled GPT-2 and use the resulting model as initialization
for downstream benchmark training. For TabSyn, since its model structure is data-specific, we first
train separate VAE networks for each pre-training table, pool, and zero-pad all embeddings to the
same length, and use them to train a latent diffusion model. During downstream training, the VAE
embeddings are padded to the same dimension as in pre-training.

As shown in Table 5, the performance of CTSyn degrades without pre-training, though it remains
on par with other state-of-the-art models across all dimensions. On the other hand, the change in
performance of GReaT and TabSyn with pre-training is mostly negative, indicating their inability to
effectively translate knowledge across tabular domains and further reinforcing the need for a model
that comprehensively encodes tabular structure information like CTSyn.

5 CONCLUSION

In this paper, we introduced CTSyn, a pioneering framework within the realm of Generative Founda-
tion Models (GFMs) for tabular data. Through extensive experimentation on real-world datasets, we
demonstrated that CTSyn effectively represents heterogeneous tabular data while leveraging knowl-
edge from diverse pre-trained tables to enhance synthetic data in low-data regimes.

To the best of our knowledge, CTSyn is the first method to integrating large-scale pre-training in
tabular data generation via lateng diffusion. Our results highlight its ability to capture complex
relationships between table columns, maintain permutation invariance, and generate synthetic data
with high fidelity and diversity, surpassing existing state-of-the-art approaches. By incorporating
metadata and schema-based conditioning, CTSyn bridges a critical gap in cross-table generalization,
allowing for more robust and transferable table representations.

Despite these advances, challenges remain in fully optimizing tabular generative models for broader
applications. Future work should explore the potential of conditional diffusion mechanisms and
generative pre-training to further enhance tabular tasks such as predictive modeling, imputation,
and multi-table learning. Additionally, investigating transfer learning paradigms beyond simple
pre-training/full fine-tuning could improve adaptability across diverse tabular domains, unlocking
new frontiers in synthetic data generation such as in-context generation and parameter efficient fine
tuning for tabular diffusion model.
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Appendix

A BROADER IMPACT AND LIMITATIONS

A foundational table generator like CTSyn can significantly enhance various application domains,
especially where real data is scarce, sensitive, or expensive to obtain, by providing high-quality
synthetic tabular data. In healthcare, for example, CTSyn can generate synthetic patient records
that maintain statistical fidelity to real data, enhancing the robustness and generalization ability of
machine learning models by augmenting datasets with synthetic data.

CTSyn also facilitates data collaboration between parties, such as advertising companies and social
media websites. Through conditional generation, CTSyn can augment one party’s dataset with es-
sential columns for business analysis without violating privacy laws that prohibit linking individual
data points across parties.

However, CTSyn’s performance relies heavily on clean, large-scale tabular datasets. The quality
of generated data depends on the training data, and any biases or errors can be propagated. This
risk can be mitigated by carefully curating high-quality datasets for different domains. Additionally,
despite pre-training reducing memorization of downstream data, individuals included in the pre-
training data still face privacy risks, complicating the safe gathering of large datasets. This can be
mitigated by properly anonymizing or adding noise to public pre-training datasets to ensure privacy
before they are used for pre-training.

The requirement of semantically meaningful category names also present challenges for acquiriing
large-scale training data, as normalized values must be carefully sanitized and converted back to raw
form.

B BASELINES IMPLEMENTATION

CTGAN: We use the official implementation at https://github.com/sdv-dev/CTGAN. We use em-
bedding dimension =128, generator dimension=(256,256), discriminator dimension =(256,256),
generator learning rate=0.0002, generator decay =0.000001, discriminator learning rate =0.0002,
discriminator decay =0.000001, batch size=500, training epoch = 300, discriminator steps=1, pac
size = 5.

TVAE: We used the official implementation at: https://docs.sdv.dev/sdv. We used default parame-
ters: class dimensions =(256, 256, 256, 256), random dimensions=100, 64 channels, l2scale=1e-5,
batch size=500, training epoch = 300.

TabDDPM: We used the official implementation at https://github.com/yandex-research/tab-ddpm.
We used 2500 diffusion steps, 10000 training epochs, learning rate = 0.001, weight decay = 1e-05,
batch size = 1024.

AIM: We use the code implementation at https://github.com/ryan112358/private-pgm, with default
parameters: epsilon=3,delta=1e-9,max model size=80

PATE-CTGAN: We adapted the implementation posted at: https://github.com/opendp/smartnoise-
sdk/blob/main/synth/snsynth, which combines the PATE (Jordon et al., 2018) learning framework
with CTGAN. We use epsilon = 3, 5 iterations for student and teacher network, and the same value
for other parameters which are shared with CTGAN.

GReaT: We used the official implementation at https://github.com/kathrinse/be_
great/tree/main. We used a batch size of 32. During pre-training, we began with a pre-
trained distilgpt2 model and training for 2 millions steps on the combination of pre-training data.
We train 200 epochs for each dataset during finetuning.

TabSyn: We use the official implementation at https://github.com/amazon-science/
tabsyn, with default parameters. For pre-training with heterogeneous VAE embeddings, we train
its VAE model for each pre-training dataset, zero-pad all embeddings to the same dimension, and
then pre-train a diffusion model on such padded embeddings. During downstream training, the VAE
embedding of the downstream datasets are padded to the same dimension as in the pre-training. The
pre-trained TabSyn is loaded and diffusion training proceed with it as initialization.
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SMOTE: The original SMOTE algorithm are designed to upsample minority classes. We extend
it to perform interpolation for all classes. For each generation, we first randomly select one target
class using empirical class frequency as probability. Then we randomly sample one example from
the selected class, and generated interpolated examples using number of nearest neighbour k = 5.
The interpolation weight α = 0.5.

C BENCHMARK DATASETS

We provide the URL for the sources of each downstream benchmark set considered in the paper.

1. abalone (OpenML) : https://www.openml.org/search?type=data&sort=runs&id=183&status=
active (Multi class)

2. Bean (UCI) : https://archive.ics.uci.edu/dataset/602/dry+bean+dataset (Multi class)
3. faults (UCI) : https://archive.ics.uci.edu/dataset/198/steel+plates+faults (Multi class)
4. HTRU (UCI) : https://archive.ics.uci.edu/dataset/372/htru2 (Binary class)
5. indian liver patient (Kaggle) : https://www.kaggle.com/datasets/uciml/indian-liver-

patient-records?resource=download (Binary class)
6. insurance (Kaggle) : https://www.kaggle.com/datasets/mirichoi0218/insurance (Regres-

sion)
7. News (UCI) : https://archive.ics.uci.edu/dataset/332/online+news+popularity (Regression)
8. Obesity (Kaggle) : https://www.kaggle.com/datasets/tathagatbanerjee/obesity-dataset-uci-

ml (Multi class)
9. Shoppers (Kaggle) : https://www.kaggle.com/datasets/henrysue/online-shoppers-intention

(Binary class)
10. Titanic (Kaggle) : https://www.kaggle.com/c/titanic/data (Multi class)
11. wilt (OpenML) : https://www.openml.org/search?type=data&sort=runs&id=40983&status=

active (Binary class)

D PRETRAINING DATASETS

We show the OpenTab files included in our pre-training, as well as their summary statistics. The
classification type dataset are shown in table 6, and regression datasets in table 7.
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File Name N Categorical Cols Numerical Cols
2736 Shipping 10999 4 6

1366 bankmarketing 41188 11 10
0944 SensorDataResource 100000 1 25

0144 BNG(bridges version1) 100000 9 4
0062 BNG(page-blocks,nominal,295245) 100000 10 1

0673 BNG(baseball) 100000 1 16
1046 jungle chess 2pcs raw endgame

complete 44819 1 6

0677 COMET MC SAMPLE 89640 0 5
1681 Air-Traffic-Data 15007 12 4

1969 CPS1988 28155 4 3
pulsar data train 12528 0 9

0666 BNG(primary-tumor) 100000 18 0
0050 BNG(breast-cancer,nominal,1000000) 100000 9 1

0080 BNG(vote) 100000 17 0
1375 MAGIC-Gamma-Telescope-Dataset 19020 1 10

0063 BNG(credit-g,nominal,1000000) 100000 21 0
1431 Beijing-Multi-Site-Air-Quality 100000 2 16

bodyPerformance 13393 2 10
term deposit subscribed33 31647 9 8

1465 credit 16714 0 11
0077 BNG(heart-statlog,nominal,1000000) 100000 14 0

0761 BNG(autos,1000,10) 100000 10 16
0142 BNG(breast-w) 39366 1 9

0105 kropt 28056 4 3
campaign33 12870 10 6

2149 electricity 38474 1 8
2701 BitcoinHeist Ransomware 24780 0 8

0772 BNG(lymph,5000,5) 100000 16 3
0059 BNG(colic,nominal,1000000) 100000 23 0
2750 letter-challenge-unlabeled.arff 10000 1 16

0639 jm1 10885 1 21
fusion experiment 100000 2 17

1690 Malware-Analysis-Datasets-PE-Secti
on-Headers 43293 0 5

0137 BNG(labor) 100000 9 8
1020 Run or walk information 88588 0 7

0070 BNG(glass,nominal,137781) 100000 10 0
classifying document types to enhanc
e search and recommendations in dig

ital libraries dataset
11539 2 5

0747 BNG(letter,5000,1) 100000 1 16
Warehouse block 10999 4 7

1579 MagicTelescope 13376 1 10
0160 BNG(hepatitis) 100000 14 6

1981 Higgs 100000 0 25
1674 adult 48842 9 6

2687 Diabetes130US 71090 0 8
0057 BNG(mushroom) 100000 23 0
0074 BNG(tic-tac-toe) 39366 10 0

0078 BNG(vehicle,nominal,1000000) 100000 19 0
univ.ai Test Data 28000 6 5
flight delays train 100000 7 2

bank 11162 10 7
Firewall Rule Classification 100000 1 11

Crop Agriculture Data 2 88858 5 4
0711 Stagger1 100000 4 0

0674 BNG(wine) 100000 0 14
1942 mushroom 12960 9 0

0968 BNG(segment) 100000 20 0
bank customer survey 45211 9 8

Table 6: Classification Task Files
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File Name N Categorical Cols Numerical Cols
1860 Worldwide-Crop-Production 21165 3 2

2711 medical charges 100000 0 4
0690 BNG(breastTumor) 100000 6 4

2743 Tallo 100000 9 12
MAMe dataset 37407 4 4
2664 diamonds 53940 3 7

2134 Brazilian houses 10692 0 9
0693 BNG(wine quality) 100000 0 12

1587 elevators 16599 0 17
2677 fifa 19178 1 28

0940 seattlecrime6 52358 5 3
1697 AMD-Stock-Prices-Historical-Data 10361 0 6

1905 New-Delhi-Rental-Listings 17890 5 9
1415 beijing-pm2.5 43824 1 11

1649 Tamilnadu-Crop-production 13266 4 3
stats 10000 1 9

1466 post-operative 65532 1 11
Airline Delay Cause 100000 4 17

1704 House-Rent-in-Indian-Cities-and-Lo
calities 10692 5 8

credit card defaulter 10000 2 2
1781 SDSS-16 100000 1 17

2131 houses 20640 0 9
1595 Oranges-vs.-Grapefruit 10000 1 5

1140 exercises 15000 1 6
1245 Production-cross-sections-of-Inert

-Doublet-Model 50625 0 13

2136 nyc-taxi-green-dec-2016 100000 0 10
0684 BNG(autoPrice) 100000 0 16

1904 Apple-Complete-Stock-Data1980-2020 10015 0 6
1107 rainfall bangladesh 16755 2 2
2659 video transcoding 68784 2 17

Table 7: Regression Task Files
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E NUMERICAL RESULTS FOR UTILITY

Model 30 50 100 200 500 Full

Real 0.79 0.79 0.82 0.83 0.88 0.90
SMOTE 0.67 0.74 0.76 0.77 0.83 0.85
PATECTGAN 0.31 0.27 0.32 0.34 0.37 0.40
AIM 0.44 0.48 0.55 0.62 0.52 0.57
CTGAN 0.41 0.52 0.52 0.54 0.63 0.64
GReaT - - 0.76 0.80 0.84 0.85
TVAE 0.75 0.77 0.79 0.79 0.82 0.84
TabDDPM 0.77 0.79 0.81 0.81 0.84 0.85
TabSyn 0.76 0.78 0.81 0.82 0.85 0.86
CTSyn 0.79 0.81 0.83 0.84 0.84 0.86

Table 8: ML utility for classification benchmarks.Columns represent training examples(shots) pro-
vided.

Model 30 50 100 200 500 Full

Real 0.24 0.23 0.21 0.17 0.15 0.14
SMOTE 0.48 0.24 0.22 0.16 0.13 0.11
AIM 10274.55 ≫10k ≫10k ≫10k ≫10k 110.14
PATECTGAN ≫10k ≫10k ≫10k ≫10k ≫10k ≫10k
CTGAN 0.97 0.25 0.28 0.19 0.21 0.20
TVAE 0.60 0.50 0.47 0.33 0.34 0.28
GReaT 0.30 0.25 0.23 0.20 0.19 0.16
TabDDPM 0.35 0.30 0.27 0.21 0.20 0.18
TabSyn 0.27 0.23 0.22 0.19 0.16 0.13
CTSyn 0.22 0.18 0.17 0.15 0.14 0.12

Table 9: ML utility for regression benchmarks. Columns represent training examples(shots) pro-
vided.

F VAE FOR TEXT AND DATETIME VARIABLES

In our main experiment, we omitted free text and date-time variables to align with prior research
in tabular transfer learning (Yan et al., 2024). However, CTSyn can handle these data types with
proper decoder. We conducted preliminary VAE reconstruction experiments on the ’ebay reviews’
and ’0875 nfl games’ table from OpenTab, incorporating textual and date-time columns. We train
a VAE model from scratch jointly on these two data frames. For text encoding and decoding, we
followed (Lovelace et al., 2024), encoding text with a pre-trained frozen BART-base model (Lewis
et al., 2020) followed by a 4 layer Perceive resampler encoder-decoder network, and train the entire
VAE and text encoder with cross-entroly loss on token prediction. Date column is cyclically en-
coded (Guo & Berkhahn, 2016) to capture periodicity and decoded with a linear layer with circular
loss function. The reconstruction performances are as follows:

Metric Numerical (MSE) Categorical (Accuracy) Text (ROUGE-1, eBay) Date-Time (Circular Loss, NFL)
Score 0.0005 92% 0.80 0.021

Table 10: Performance metrics across different data types.

These findings demonstrate CTSyn’s potential to handle diverse data types without compromising
performance. Further studies can be explore the potential of text pre-training in assisting categorical
reconstruction, as well as text decoding as a method for table summarization tasks.
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G METADATA GENERATION

To generate metadata for each table, we used GPT-4o (gpt-4o-2024-08-06). The metadata serves as
a textual description capturing the context of the table, aiding in cross-table learning and improving
generalization across diverse tabular datasets. Each table’s metadata was generated by providing
GPT-4o with the first 10 rows of the dataset and prompting it to generate a concise yet informative
description. Below, we detail the exact procedure, including an example prompt and the correspond-
ing metadata generated for the Indian Liver Patient Dataset.

G.1 QUERYING GPT-4O FOR METADATA

For each table, we queried GPT-4o using a structured prompt. The prompt included:

• A brief instruction specifying that the model should describe the table.
• The first 10 rows of the dataset, formatted as a tab-separated table.
• A request for a summary that captures the table’s context.

G.2 EXAMPLE PROMPT

The following prompt was used for query GPT-4o in metadata generation:

You are analyzing a dataset called ’{dataset_name}’.
Below are the first 10 rows of this dataset along with the corresponding
column names:

Columns: {column_names}
Data: {first_row_of_data_frame_in}

Based on the above data, please do the following:
1. Identify which columns are likely categorical.
2. Determine whether all categorical columns are represented in text form.

If a categorical column has integer values like 0 or 1, then it is not
in text form. But if a categorical column has values like male/female,
then it is in text form.

3. Output the result as a JSON string with:
- "dtypes": A dictionary mapping column names to "categorical" or

"numerical".
- "metadata": A short description of the dataset background.
- "nontextcolumns": A list of categorical columns not in text form.

The output should be a JSON string and should not contain anything else.

G.3 GENERATED METADATA EXAMPLE

Upon submitting this prompt to GPT-4o, the model generated the following metadata:

”The dataset contains numerical data related to liver function and alcohol con-
sumption. It is likely used for medical research purposes, particularly to analyze
the effects of alcohol consumption on liver-related enzyme levels and overall liver
health. Each column represents specific biochemical parameters from liver tests
as well as the reported number of alcoholic drinks consumed by an individual.”

H LATENT SPACE VISUALIZATION

We conducted a qualitative analysis comparing the encodings generated by the Transformer-VAE
used in TabSyn with those from the encoder module of our VAE on an insurance dataset. Latent
vectors of data points were color-coded based on categories. The results demonstrate that our model
maintains clear separation of groups in the encoding space, providing evidence that our shared latent
space enhances model capacity while maintaining interpretability for heterogeneous tables.
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(a) Tsne plot on Region column. (b) Tsne plot on Sex column.

Figure 4: Tsne visualization of embedding space created by pre-trained VAE model, on columns of
Insurance dataset.

I ENCODING UNINFORMATIVE FEATURES

Metric Original Data Uninformative Column Names
Shape 0.94 (0.02) 0.92 (0.03)
Corr 0.95 (0.02) 0.93 (0.03)
Precision 0.64 (0.04) 0.60 (0.05)
Recall 0.075 (0.006) 0.070 (0.007)

Table 11: Comparison of metrics between Original Data and Uninformative Column Names.

Non-informative or abbreviated column headers(such as “X1”, ”VAR1”) is a notable concern for
tabular foundation models, especially as such models are expected to be pre-trained on web-scale
dataset with limited curation in a self-supervised manner. To evaluate the robustness of CTSyn
against such noisy data, we conducted an experiment where all column names in downstream bench-
marks used during finetuning were replaced with single English letters (A–Z). This setting simulates
real-world scenarios with non-descriptive headers in finetuning data. The results show a slight de-
cline in statistical fidelity; however, CTSyn maintains a high level of performance, demonstrating
its robustness to uninformative column headers.

J COMPUTATION

Our training are completed on an Amazon AWS g5.12xlarge instance, with 192 GB system memory,
4 Nvidia A10G GPU with 4 × 24 GB GPU memory. The pre-training time of CTSyn, GReaT and
TabSyn are shown in the table 12.

Model VAE Generation
CTSyn 12 hours 12 hours
GReaT - 50 hours
TabSyn 86× 0.5 = 43 hours 24 hours

Table 12: Pre-training computation cost. Note that TabSyn requires training table-specific autoen-
coders.
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