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ABSTRACT

Generative Foundation Models (GFMs) have achieved remarkable success in pro-
ducing high-quality synthetic data for images and text. However, their application
to tabular data presents significant challenges due to the heterogeneous nature of
table features. Current cross-table learning frameworks struggle with the absence
of a generative model backbone and a mechanism to decode heterogeneous feature
values. To address these challenges, we propose the Cross-Table Synthesizer (CT-
Syn), a diffusion-based foundational model for tabular data generation. CTSyn
features two key components: an Autoencoder network that consolidates diverse
tables into a unified latent space and dynamically reconstructs table values based
on the provided table schema embedding, adapting to heterogeneous datasets; and
a conditional latent diffusion model that samples from this learned latent space.
Through large-scale pre-training, CTSyn not only outperforms existing table syn-
thesizers on standard tabular data generation benchmarks in terms of utility and
diversity, but also uniquely enhances the performance of downstream machine
learning tasks, surpassing what is achievable with real data in low data regime.
This establishes CTSyn as a new paradigm for synthetic table generation and a
foundation for achieving large-tabular model.

1 INTRODUCTION

Generative Foundation Models (GFMs) have revolutionized fields such as Computer Vision (CV)
and Natural Language Processing (NLP)(Bommasani et al., 2021; He et al., 2016; OpenAI, 2023;
Touvron et al., 2023; Ramesh et al., 2022; Rombach et al., 2022). Trained on vast datasets (Merity
et al., 2016; Deng et al., 2009; Schuhmann et al., 2022) and with versatile model backbones (Vaswani
et al., 2017; Ho et al., 2020), these models excel across a diverse range of domains and tasks. They
can generate valuable synthetic training examples to boost performances of various downstream
applications (Kirillov et al., 2023; Li et al., 2023; Moor et al., 2023; Trabucco et al., 2023; Zhang
et al., 2023a).

GFMs also hold immense potential for generating tabular data, a modality integral to core real-world
applications (Dash et al., 2019; Borisov et al., 2022; Shwartz-Ziv & Armon, 2022). Despite the ubiq-
uity of tables, modeling often encounters a shortage of high-quality samples. Although tabular data
synthesizers have increasingly gained attention (Xu et al., 2019; Kotelnikov et al., 2023; McKenna
et al., 2022), they bring little performance gains in downstream models (Elor & Averbuch-Elor,
2022; Manousakas & Aydöre, 2023).This limitation stems from a fundamental constraint: literally
synthesizers cannot add information not included in the original training data. Tabular GFMs has
the potential of overcoming that limitation by leveraging diverse pre-training data.

Despite such opportunities, the implementation of tabular GFMs remains particularly challenging
and largely overlooked, due to the heterogeneity between column structures, features sets and ranges
of values (Onishi et al., 2023; Huang et al., 2020; Borisov et al., 2022; Zhu et al., 2023; van Breugel
& van der Schaar, 2024). Existing methods for transferable tabular learning either model tables
with language models (Ye et al., 2024; Wang & Sun, 2022; Hegselmann et al., 2023; Yan et al.,
2024), or attempt to learn a unified latent space across datasets (Wang & Sun, 2022; Onishi et al.,
2023; Zhu et al., 2023; Ye et al., 2023). They either lack generative capability, or rely on pre-trained
language models that process table as unstructured sentences, distorting the structural information
and metadata that are critical to effective tabular modeling.
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In response to all these limitations, we propose CTSyn, a foundation model framework specifically
designed for the generation of heterogeneous tables. CTSyn has the following main components:

• Unified table representation and reconstruction: We developed a cross-tabular varia-
tional autoencoder that tokenizes and embeds heterogeneous table rows, projects them into
a unified latent space, and decode tabular values with guidance of table metadata. This ap-
proach facilitates the training of models across tabular formats, overcoming the barrier of
data-specific structural needs while preserving structural information in table-compatible
manner.

• Generative foundation model: Our versatile conditional diffusion transformer backbone
efficiently samples from the unified latent spaces, allowing for improved flexibility and
applicability across various tabular domains.

• Cross-tabular pre-training We perform extensive cross-tabular pre-training on a large-
scale webdataset of 5 million rows. With diverse data domains covering common table
applications, the pre-training serves as foundation for various downstream generation tasks.

Through extensive benchmarking with real-world datasets, we demonstrate that CTSyn extends the
pre-train/fine-tuning paradigm to the tabular data generation and sets a new benchmark, surpassing
the existing State-Of-The-Art (SOTA). Crucially, by effectively leveraging prior knowledge and
incorporate of table metadata, our model unlocks unprecedented potential in synthetic tabular data
generation, and can be extend to different tabular task such as regression/classification.

2 RELATED WORK

2.1 TRANSFERABLE TABLE REPRESENTATION

Self-supervised learning can significantly enhance the informativeness of representations for vari-
ous downstream tasks (Gururangan et al., 2020; Yuan et al., 2021b; Wei et al., 2021; Chen et al.,
2024). In the tabular domain, methods like VIME (Yoon et al., 2020) train an encoder using a com-
bination of supervised reconstruction loss and mask-array prediction loss, and SCARF (Bahri et al.,
2022) employs contrastive loss by utilizing randomly corrupted feature vectors as positive pairs.
Subtab (Ucar et al., 2021) and SSP (Chitlangia et al., 2022) integrates contrastive and reconstruction
losses. However, these approaches do not produce transferable representations across tables as they
rely on data-specific feature encoding and structures. Xtab (Zhu et al., 2023) and TabRet (Onishi
et al., 2023) introduce transformer-based backbones with separate data-specific featurizer or projec-
tion heads for each downstream task. These models achieve transferability at the expense of high
model complexity that grows with the number of datasets and tasks.

Pre-trained Language Models (PLMs) can be used to unify representation dimensions of heteroge-
neous features. TransTab (Wang & Sun, 2022) extends Subtab’s methodology by tokenizing and
then encoding column names and categories, creating a latent space that can be shared across ta-
bles. Combining tokenization with masked-value-prediction objective, transformer-based models
can be trained to perform predictive task across tables (Ye et al., 2024; Yak et al., 2023; Yang et al.,
2024; Yan et al., 2024). However, such methods include neither a generative model backbone, nor
a fixed-dimensional row representation and decoder that could be integrated with other generative
models.

Another line of research involving PLMs converts tabular features to sentences and model regres-
sion/classification problems as NLP tasks (Dinh et al., 2022; Hegselmann et al., 2023; Borisov et al.,
2023; Liu et al., 2022; Zhang et al., 2023c;b). Despite enabling transfer learning, these methods face
challenges with accurately modeling continuous values and tend to overlook the intrinsic structural
properties of tables (van Breugel & van der Schaar, 2024).

2.2 SYNTHETIC TABULAR DATA GENERATION

Synthetic Tabular Data Generation(STDG) has long been studied by statisticians (Nowok et al.,
2016; Reiter, 2005; Chawla et al., 2002). Recent success of deep generative models significantly
advanced its boundary (Che et al., 2017; Kim et al., 2021; Figueira & Vaz, 2022). In particular,
CTGAN and TVAE (Xu et al., 2019) combines conditional generation with Generative Adversarial
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Figure 1: Overview of the proposed CTSyn framework.

Network(GAN) / Variational Autoencoder(VAE) and model-speicif normalization to model highly
imbalanced and non-Gaussian columns. CtabGAN+(Zhao et al., 2021; 2024) proposed a solution
for mixed-type and long-tailed variable problems. Autodiff (Suh et al., 2023) and Tabsyn (Zhang
et al., 2024) used a combination of latent-diffusion and data-specific autoencoder structure, which
is the most similar work to ours but missing the critical transferable encoding/decoding ability.
TabDDPM (Kotelnikov et al., 2023) achieved the current state-of-the-art in tabular generation with
separate diffusion process for numerical and categorical columns. Some models also synthesizes
data with Differential Privacy guarantee (Jordon et al., 2018; Zhang et al., 2017; McKenna et al.,
2022) Despite their effectiveness in modeling column distributions, none of the above methods is
able to effectively boost the training of machine learning models with synthesized data, greatly
limiting their usage in data augmentation (Manousakas & Aydöre, 2023).

GReaT (Borisov et al., 2023) and Tabula (Zhao et al., 2023) generate tables with PLMs, by treating
tables rows as natural language text. Despite showing evidences of transferrability, they do not
consider cross-table pre-training and generation, introduce risk of producing out-of-bound examples
due to their unconstrained sampling of output token, and face the well-known challenge of modeling
numeracy in discrete token space (Wallace et al., 2019).

3 METHODOLOGY

In this section, we outline CTSyn, our solutions to the challenges involved in creating a tabular GFM.
Figure 1 provides an overview of the proposed framework.

3.1 FEATURE EMBEDDING

Let an observation (row) in a mixed-type table be represented as x = [c1, x1, c2, x2, . . . , cp, xp],
where ci for i = 1, 2, . . . , p are the feature names, and xi for i = 1, 2, . . . , p are the corresponding
feature values, which can be either numerical or categorical. The parameter p denotes the number
of features in this row. Let mmeta be the text metadata describing the context of the table.

To facilitate knowledge transfer across tables, it is crucial to develop a unified representation that
preserves information at the cell, observation, and table levels. Featuring techniques such as one-hot
encoding and mini max standardization losses such structural and contextual information: tables
with completely different contents can have identical representation. Thus we tokenize and embed
all levels of information into vectors of consistent dimensions to ensure smooth integration. The
first step in this process is to consolidate all text metadata, column names, and categorical values,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

making sure that integer class labels and abbreviations are transformed into their full textual forms,
reflecting their original meanings. Then we create embeddings as follows:

em = LM(m), eci = LM(ci), exi =

{
LM(xi) if xi is categorical,
1(Quantile(xi)) if xi is numerical

where LM is a pre-trained language model used to encode text, and it is only invoked once for each
unique category or column name. Quantile is a quantile transformer (Pedregosa et al., 2011) fitted
on the dataset, which maps numerical values to a uniform distribution. Finally, we interleave all
embeddings and flatten them into a sequence:

E = [(ec1 , ex1
), (ec2 , ex2

), . . . , (ecp , exp
)] ∈ Rp×2MLM , (1)

where MLM is the dimensionality of the language model embeddings. Each step in the sequence is
formed by concatenating the column name embedding eci with the corresponding column value em-
bedding exi

. This creates cell level representations, eliminate the need of learning relative position
of column name/values, suiting the permutation invariant property of tabular data.

3.2 AUTOENCODER FOR HETEROGENOUS TABLES

Encoder: We use an encoder model f to compress the input sequence E into a fixed-dimensional
latent vector z = f(E) ∈ Rℓ×Magg , where ℓ is the number of latent parameters and Magg is their
dimensionality, to facilitate efficient learning for the diffusion model. The encoder follows a Per-
ceiver Resampler (Yuan et al., 2021a) structure, comprising multi-head attention (MHA) blocks and
linear layers. The learnable latent parameters serve as queries, while the concatenation of the latent
queries and the flattened input sequence E serves as the keys and values.

In each layer of the encoder, a cross-attention operation is performed where the latent queries iter-
atively attend to both the input sequence (in the first layer) and the latent representations (in subse-
quent layers). Formally, the output of one attention block is given by:

Z(l+1) = FFN
(
Z(l) + MHA(q = Z(l), kv = Z(l))

)
where Z(l) is the latent representation at layer l, MHA(·) represents the multi-head attention op-
eration, and FFN is a feedforward network. At the first layer (l = 0), the keys and values are the
concatenation of the latent queries and the input sequence, i.e., kv = [Z(0);E].

Following the variational autoencoder setting, we use two separate encoders, the output of each
serves as the mean vector µ ∈ Rℓ×dLM and the log-variance vector log σ2 ∈ Rℓ×dLM respectively.
For each input, we sample the latent z with the repamaterization trick given predicted µ and log σ2

Decoder with Meta Guidance: To enable cross-tabular training, the decoder must handle varying
column orders and combinations of mixed-type columns. Unlike traditional tabular autoencoders,
which rely on fixed column orders, our approach uses a transformer-based decoder guided by ex-
plicit embeddings of the target column names. Instead of positional embeddings, we encode the
column names using a pre-trained language model (PLM) as Ec = [ec1 , ec2 , . . . , ecp ], where each
eci represents the embedding of column ci. These embeddings serve as queries for the decoder.

The table metadata embedding em is concatenated with the latent variables z (derived from the
encoder) to form the keys and values. The decoder g(·) operates by cross-attend to Ec and [em, z].
The order of the output from the decoder is thus determined by the order of of columns in Ec, and
model learns to extract cell information from row latent dynamically. The output of decoder model
is h = g(Ec, [em; f(E)]) ∈ Rp×Mdecoded . The decoded dimension is smaller than MLM to allow
flexibility in output embedding fine graining.

Table reconstruction The decoded embeddings are used to reconstruct the table cell values. For
numerical variables, the decoding process transforms the embedding back into scalar values using a
linear layer followed by softmax, resulting in the prediction x̂num

i . For categorical columns, we use
a loss based on cosine similarity to handle unseen levels in real applications. Inspired by (Yak et al.,
2023), we compute the cosine similarity by first fine-graining both the predicted and real category
embeddings using a linear layer, then calculating the cosine similarity between these embeddings,
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applying softmax on the similarities, and using these as predicted class probabilities P̂ (xcat
j ). For-

mally:

{
P̂ (xcat

j ) = Softmax (CosineSim (Linear(hj),Linear(C))) if xj is categorical,
x̂num
i = Softmax(Linear(hi)) if xi is numerical

where hi and hj are the latent representations of the i-th numerical cell and j-th categorical cell,
respectively, and C represents the set of embeddings for all possible categories in the column. These
predicted probabilities and values are then used to reconstruct the original table by mapping the
latent space to the appropriate categorical or numerical values for each cell.

Training VAE: Following the β-VAE setup (Higgins et al., 2017), the overall objective is the com-
bination numerical and categorical reconstruction losses, and the KL-divergence LKL:

L =

p∑
i=1

Lnum(x
num
i , x̂num

i ) +

q∑
j=1

Lcat(x
cat
j , P̂ (xcat

j )) + β

ℓ∑
k=1

DKL(N (µk, σ
2
k)∥N (0, 1)),

where Lnum is the MSE loss for numerical variables, Lcat is the cross-entropy loss for categorical
variables, DKL is the KL-divergence loss between the learned latent distribution N (µk, σ

2
k) and the

standard Gaussian N (0, 1), and β is the weight balancing the reconstruction and KL-divergence.

Implementation: We use two layers for both the encoder and decoder, with ℓ = 16 and Magg = 64.
The models are trained using the AdamW optimizer with an initial learning rate of 0.0002. The
learning rate is reduced by a factor of 0.7 if the validation loss does not improve for 10 consecutive
epochs. We use a β-VAE setup, starting with βmax = 10−2, and gradually decrease β by multiply-
ing it with 0.7 when the reconstruction loss fails to improve for 5 consecutive epochs, down to a
minimum value of 10−5. We construct training batches to contain samples from the same source
table, improving efficiency of training by eliminating contrast between examples from non-related
domains that are not realistic in application.

3.3 CONDITIONAL DIFFUSION MODEL FOR LATENT VECTOR GENERATION

For cross-tabular generation, a conditional latent diffusion model is preferred because table data can
vary significantly across domains, with different column types and distributions. An unconditional
model would struggle to generalize across these diverse formats, making it harder to fine-tune for
domain-specific tasks. We follow the Denoising Diffusion Probabilistic Model(DDPM) formulation
to train a conditional diffusion model with the objective specified below. The input latent variable z
is derived from our VAE encoder. For denoising objective, we utilize the v-parameterization strategy,
which is more effective for latent diffusion than classic noise prediction strategy. We condition the
embedding generation on the embedding sequence [em, Ec] which encompass schema of the desired
table. The model is trained with the following loss function:

L(θ) = Et,(zsrc,ztrg),ϵ

[
λt

∥∥ẑθ (√αtztrg +
√
1− αtϵ, t, [em, Ec]

)
− ztrg

∥∥2
2

]
,

where ztrg is the latent variable from the target sequence, αt is the noise schedule. Classifier-free
guidance is used to improve sample quality, with conditional and unconditional networks jointly
trained, where conditioning is dropped with a probability of 0.1 during training. Following specifi-
cation in Lovelace et al. (2024), our diffusion model a pre-LayerNorm transformer architecture with
12 layers, hidden dimension of 768, a learnable absolute positional encodings and GeGLU activa-
tions function. he noise level is conditioned via a sinusoidal time embedding, which is processed by
an MLP and added to the input sequence. Adaptive layer normalization is applied to each feedfor-
ward layer, conditioned on the time embedding. To simply training, we pre-compute latent variables
for all table observations prior to diffusion training. We use AdamW optimizer with learning rate
0.0001, with cosine annealing scheduler, batch size = 256, and sampling step = 250.
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4 EXPERIMENT

4.1 TEST SETUP

In this section, we evaluate the performance of CTSyn in representing tables and generating infor-
mative and diverse synthetic tabular data. Our primary research questions are: 1. How effectively
does CTSyn represent heterogeneous tables in its unified latent space? 2. Does pre-training on
large, general datasets improve the quality of synthetic data generation for downstream tasks?

Dataset Construction: We use a filtered version of the OpenTab (Ye et al., 2024) dataset for pre-
training. The filtering process follows the strategy outlined in (Yan et al., 2024), and we exclude the
following types of tables: duplicate tables, tables containing free-text, date-time, or personally iden-
tifiable information (PII) columns, tables with fewer than 10,000 rows, and tables with categorical
columns in integer label format that cannot be mapped back to their original string representations.
After filtering, the pre-training dataset consists of 86 tables with a total of 5.01 million observations.

For downstream benchmarks, we use eleven real-world datasets that are commonly evaluated in
tabular synthesis literature (Suh et al., 2023; Kotelnikov et al., 2023; Zhang et al., 2024), as detailed
in Table 1. To avoid data leakage, we ensure that no dataset included in pre-training is used for
downstream evaluation. Further details on the pre-training and downstream datasets can be found in
Appendix D.

Dataset Rows Target Num Cols Cate Cols
Faults 1941 Classification 34 0
Wilt 4839 Classification 5 1
HTRU2 17898 Classification 8 1
News 39644 Regression 60 0
Bean 13611 Classification 16 1
Obesity 2111 Classification 8 9
Titanic 714 Classification 6 2
Insurance 1338 Regression 4 3
Abalone 4177 Regression 8 1
Shoppers 12330 Classification 16 2
Indian Liver Patient 579 Classification 9 2

Table 1: Summary Statistics of Downstream Datasets

Baselines: We compared our method
against a wide array of baselines
in synthetic data generation. These
include modified SMOTE (Chawla
et al., 2002) CTGAN and TVAE (Xu
et al., 2019) , TabDDPM (Kotelnikov
et al., 2023) and TabSyn (Zhang
et al., 2024) , AIM (McKenna et al.,
2022) and PATE-CTGAN (Jordon
et al., 2018), and GReaT (Borisov
et al., 2023) . Implementation of
baselines are detailed in section B.

As methods that enable transfer
learning, CTSyn and GReaT are first
trained on the pre-train set, with the
pre-trained checkpoint used as the common initialization for fine-tuning on all downstream tasks.
Other baselines have structure specific to downstream tables, and are thus unable to learn from het-
erogeneous tables in the pre-training set. They only on the fine-tuning sets and then tested on the
corresponding holdout test sets. For CTSyn, we pre-train the autoencoder for 300 epochs, diffusion
model for 200000 steps. For fine-tuning CTSyn, we train the conditional diffusion model and de-
coder network of the autoencoder, while freezing the encoder part of the autoencoder to maintain
alignment in the latent space. We finetune the decoder for 100 epochs and diffusion model for 10000
steps.

4.2 STATISTICAL FIDELITY

Model Shape Corr Precision Recall
SMOTE 0.96 (0.02) 0.91 (0.03) 0.68 (0.04) 0.02 (0.003)
CTGAN 0.81 (0.04) 0.73 (0.02) 0.57 (0.03) 0.014 (0.002)
TVAE 0.88 (0.03) 0.89 (0.04) 0.35 (0.02) 0.01 (0.001)
AIM 0.63 (0.05) 0.70 (0.02) 0.01 (0.001) 0.03 (0.003)
PATECTGAN 0.15 (0.01) 0.47 (0.03) 0.01 (0.001) 0.02 (0.002)
TabDDPM 0.93 (0.03) 0.93 (0.02) 0.59 (0.04) 0.027 (0.004)
TabSyn 0.97 (0.01) 0.93 (0.02) 0.69 (0.03) 0.003 (0.001)
GReaT 0.90 (0.03) 0.64 (0.04) 0.68 (0.03) 0.005 (0.001)
CTSyn 0.94 (0.02) 0.95 (0.02) 0.64 (0.04) 0.075 (0.006)

Table 2: Statistical Fidelity Metrics. Scores are averaged across tested datasets.
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We evaluate the similarity between real and synthetic tables based on marginal column distribu-
tions, column-wise correlations, and sample-level coverage. For column distributions, we use
Kolmogorov-Smirnov (KS) Test for numerical columns and Total Variation Distance (TVD) for
categorical columns, and subtract them from one to let higher values indicating better similarity. For
column-wise correlation, we apply Pearson’s correlation for numerical columns, contingency simi-
larity for categorical columns, and a combined method for mixed types. For sample-level coverage,
we measure precision and recall to quantify overlaps between real and synthetic data (Alaa et al.,
2022).

Table 2 presents the average similarity in column distribution and correlation across benchmark
datasets. CTSyn consistently matches or exceeds state-of-the-art baselines. While methods like
TabSyn and SMOTE excel in maintaining lower-order distribution similarity due to their focus on
replicating training data distributions, CTSyn demonstrates superior performance in capturing com-
plex relationships between columns. This is particularly evident in its higher correlation scores and
significantly better recall, which indicates its ability to preserve important structural relationships
within the data, as well as the regularization effect from pre-training.

4.3 MACHINE LEARNING UTILITY

(a) Classification F1-Scores (b) Regression RMSE

Figure 2: Downstream Machine Learning Utility on Classification and Regrssion Datasets, on syn-
thetic data from different generators.

To evaluate the utility of synthetic data for training machine learning models, we fit the follow-
ing classifiers: logistic regression, Naive Bayes, decision tree, random forest, XGBoost (Chen &
Guestrin, 2016), and CatBoost (Prokhorenkova et al., 2018), then evaluate on the holdout test set.
To further explore the ability of each generator to generalize on small datasets, which is critical for
real world data augmentation application, we create subsets of the training set with different number
of examples(shots), use them to train generators and sample different synthetic tables. Synthetic
data modeled from different subsets are all sampled 500 observations to ensure fair comparison, and
are evaluated agains the same test set.

Figure 2 reports the average classification F1-score (for classification datasets) and regression root
mean squared error(RMSE) across models and shots. For visibility, only the top five performing
models are shown. We report scores of remaining models in appendix section E. We observe that
for low-data regime (Seedat et al.) with N ≤ 100, CTSyn consistently outperforms all baselines
and even the real data on the corresponding scale. The gaps widen on the interval of 100-200 shots
interval. This indicates the ability of CTSyn to leverage pre-training data to assist training in where
real data is rare. Note that GReaT failed to generate text that follows table format for N < 100.
However, as the data size further increases, the advantage of CTSyn fades. We conjecture that this
phenomenon is due to ineffective transfer learning setup, and leave transfer learning of tabular GFM
beyond simple pre-training/finetuning paradim to future work.
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4.4 DIVERSITY AND PRIVACY

Model PCT Authenticity
SMOTE 0.82 (0.24) 0.88 (0.03)
CTGAN 0.84 (0.04) 0.91 (0.29)
TVAE 0.84 (0.01) 0.95 (0.31)
AIM 1.00 (0.00) 1.00 (0.00)
PATECTGAN 1.00 (0.00) 1.00 (0.06)
TabDDPM 0.85 (0.07) 0.87 (0.16)
TabSyn 0.80 (0.03) 0.93 (0.03)
GReaT 0.74 (0.21) 0.79 (0.03)
CTSyn 0.90 (0.02) 0.97 (0.06)

Table 3: Privacy scores of synthesized data. Best
scores of non-DP synthesizers are bolded.

We evaluate the diversity and privacy of the
synthesized data using two metrics: the Pro-
portion of synthetic examples with L2 Distance
closer to the test set (PCT) compared to the
training set (Platzer & Reutterer, 2021), and au-
thenticity scores (Alaa et al., 2022), which as-
sess how likely a synthetic data point is a gen-
uine generation rather than a memorization of
real data. Lower PCT or authenticity values
suggest that synthetic data points are too close
to the training set, raising concerns about po-
tential data copying. A powerful generator can
easily memorize training data, achieving falsely
high fidelity and utility without true generation,
thus harming downstream model generalization
and breaching individual privacy.

Table 3 presents the diversity scores. CTSyn achieved the highest PCT and authenticity scores
compared to state-of-the-art models like TabDDPM and Tabsyn, indicating that CTSyn produces
more distinct synthetic data. CTSyn’s high PCT scores are comparable to AIM and PATE-CTGAN,
which incorporate Differential Privacy (DP) mechanisms to reduce proximity to real data. However,
these DP models demonstrated poor fidelity and utility in previous sections. CTSyn, by contrast,
achieves a balance between data utility, diversity, and privacy, providing further evidence that pre-
training acts as a form of regularization.

We further illustrate the diversity of synthesized data using a 2D-tSNE projection in Figure 3 for
the Indian Liver Patient dataset. Among all synthesizers, CTSyn generates the most diverse data
distribution convering wider regions around the test set. On the opposite, baseline models tend to
overfit to regions surrounding certain data points. This diversity, facilitated by pre-training, explains
CTSyn’s superior utility, as the diverse pre-training data serves as implicit regularization, promoting
better generalization.

Figure 3: T-sne plot of Indian Liver Patient dataset from different synthesizers.

4.5 ABLATION STUDY

Importance of Metadata. We evaluate key factors for effective cross-tabular representation and
reconstruction by testing different autoencoder configurations: (1) removing column name embed-
dings from the encoder input E; (2) removing both column name and metadata embeddings from
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Variants In-distribution Unseen Columns Perturbed Columns
MSE Acc MSE Acc MSE Acc

Column & Meta 0.0004 0.94 0.0063 0.76 0.0005 0.94
Meta Only 0.0008 0.91 0.0082 0.61 0.0009 0.91
PE Only 0.006 0.87 0.07 0.54 0.08 0.67

Table 4: Reconstruction performance of different autoencoder settings.

E and the decoder input, while using positional encoding (PE) as a control for output order. The
second setting replaces column name embeddings with PE to assess the impact of structural guid-
ance. These models are trained on the same pre-training data and tested on three scenarios: (1)
in-distribution data from the validation splits; (2) unseen data from downstream test datasets; and
(3) perturbed data, where columns are randomly permuted.

Table 4 shows the results in terms of mean squared error (MSE) and categorical accuracy. Remov-
ing column names primarily affects categorical column reconstruction, emphasizing the need for
contextual representation. The removal of all metadata, particularly in favor of PE, significantly
worsens performance, especially when handling permuted column order. This highlights a funda-
mental distinction between tables and unstructured data like text: tables are permutation-invariant,
and relying on positional information, as in PE, is ineffective. Metadata, on the other hand, plays a
critical role in reconstructing and understanding tabular data structure, underscoring its importance
in cross-tabular learning.

Model Pretrained Shape Corr Synth F1 Synth RMSE PCT

CTSyn ✓ 0.94 0.95 0.84 0.13 0.97
× 0.96 0.90 0.80 0.17 0.90

GReaT ✓ 0.90 0.71 0.79 3.75 0.88
× 0.90 0.64 0.83 0.18 0.79

TabSyn ✓ 0.88 0.82 0.75 0.23 0.90
× 0.97 0.93 0.84 0.14 0.93

Table 5: Impact of transfer learning on different models.

Impact of pre-training: We compare different model‘s potential of leveraging pre-training data.
We repeat the experiments for where CTSyn is not pre-trained, while GReaT and TabSyn are also
pre-trained before training on downstream benchmarks. For GReaT we pool all pre-train data into
one dataloader to train a pre-trained distiall GPT2, use the resulting model as initialization for down-
stream benchmark training. For TabSyn, since its model structure is data-specific, we first train sep-
arate VAE networks for each of the pre-training table, pool and zero-pad all embeddings to the same
length and use them to train a latent diffusion model; during downstream training, the VAE embed-
dings are padded to the same dimension as in pre-training. As shown in table 5, the performance of
CTSyn degrades without pre-training, though still on par with other State-of-the-art models across
all dimensions. On the other hand, performance change on GReaT and Tabsyn with pre-training is
mostly negative, indicating the inability of them to effectively translate knowledge across tabular
domains, and further reinforce the need for a model that comprehensively encode tabular structure
information like CTSyn.

5 CONCLUSION

In this paper, we introduced CTSyn, a pioneering framework within the realm of Generative Foun-
dation Models (GFMs) for tabular data. Through extensive experimentation with real data, we
demonstrated that CTSyn effectively leverages knowledge from diverse pre-trained tables to en-
hance synthetic data utility across various downstream datasets, particularly in low-data regime. To
the best of our knowledge, our method is the first improve tabular generation performance through
combination of latent diffusion and large-scale pre-training, thereby paving the way for overcoming
significant challenges in tabular data augmentation using deep generative models.
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A BROADER IMPACT AND LIMITATIONS

A foundational table generator like CTSyn can significantly enhance various application domains,
especially where real data is scarce, sensitive, or expensive to obtain, by providing high-quality
synthetic tabular data. In healthcare, for example, CTSyn can generate synthetic patient records
that maintain statistical fidelity to real data, enhancing the robustness and generalization ability of
machine learning models by augmenting datasets with synthetic data.

CTSyn also facilitates data collaboration between parties, such as advertising companies and social
media websites. Through conditional generation, CTSyn can augment one party’s dataset with es-
sential columns for business analysis without violating privacy laws that prohibit linking individual
data points across parties.

However, CTSyn’s performance relies heavily on clean, large-scale tabular datasets. The quality
of generated data depends on the training data, and any biases or errors can be propagated. This
risk can be mitigated by carefully curating high-quality datasets for different domains. Additionally,
despite pre-training reducing memorization of downstream data, individuals included in the pre-
training data still face privacy risks, complicating the safe gathering of large datasets. This can be
mitigated by properly anonymizing or adding noise to public pre-training datasets to ensure privacy
before they are used for pre-training.

The requirement of semantically meaningful category names also present challenges for acquiriing
large-scale training data, as normalized values must be carefully sanitized and converted back to raw
form.

B BASELINES IMPLEMENTATION

CTGAN: We use the official implementation at https://github.com/sdv-dev/CTGAN. We use em-
bedding dimension =128, generator dimension=(256,256), discriminator dimension =(256,256),
generator learning rate=0.0002, generator decay =0.000001, discriminator learning rate =0.0002,
discriminator decay =0.000001, batch size=500, training epoch = 300, discriminator steps=1, pac
size = 5.

TVAE: We used the official implementation at: https://docs.sdv.dev/sdv. We used default parame-
ters: class dimensions =(256, 256, 256, 256), random dimensions=100, 64 channels, l2scale=1e-5,
batch size=500, training epoch = 300.

TabDDPM: We used the official implementation at https://github.com/yandex-research/tab-ddpm.
We used 2500 diffusion steps, 10000 training epochs, learning rate = 0.001, weight decay = 1e-05,
batch size = 1024.

AIM: We use the code implementation at https://github.com/ryan112358/private-pgm, with default
parameters: epsilon=3,delta=1e-9,max model size=80

PATE-CTGAN: We adapted the implementation posted at: https://github.com/opendp/smartnoise-
sdk/blob/main/synth/snsynth, which combines the PATE Jordon et al. (2018) learning framework
with CTGAN. We use epsilon = 3, 5 iterations for student and teacher network, and the same value
for other parameters which are shared with CTGAN.

GReaT: We used the official implementation at https://github.com/kathrinse/be_
great/tree/main. We used a batch size of 32. During pre-training, we began with a pre-
trained distilgpt2 model and training for 2 millions steps on the combination of pre-training data.
We train 200 epochs for each dataset during finetuning.

TabSyn: We use the official implementation at https://github.com/amazon-science/
tabsyn, with default parameters. For pre-training with heterogeneous VAE embeddings, we train
its VAE model for each pre-training dataset, zero-pad all embeddings to the same dimension, and
then pre-train a diffusion model on such padded embeddings. During downstream training, the VAE
embedding of the downstream datasets are padded to the same dimension as in the pre-training. The
pre-trained TabSyn is loaded and diffusion training proceed with it as initialization.

SMOTE: The original SMOTE algorithm are designed to upsample minority classes. We extend
it to perform interpolation for all classes. For each generation, we first randomly select one target
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class using empirical class frequency as probability. Then we randomly sample one example from
the selected class, and generated interpolated examples using number of nearest neighbour k = 5.
The interpolation weight α = 0.5.

C PRETRAINING DATASETS

We show the OpenTab files included in our pre-training, as well as their summary statistics. The
classification type dataset are shown in table 6, and regression datasets in table 7.

D DOWNSTREAM DATASETS

We provide the URL for the sources of each downstream benchmark set considered in the paper.

1. abalone (OpenML) : https://www.openml.org/search?type=data&sort=runs&id=183&status=
active (Multi class)

2. Bean (UCI) : https://archive.ics.uci.edu/dataset/602/dry+bean+dataset (Multi class)
3. faults (UCI) : https://archive.ics.uci.edu/dataset/198/steel+plates+faults (Multi class)
4. HTRU (UCI) : https://archive.ics.uci.edu/dataset/372/htru2 (Binary class)
5. indian liver patient (Kaggle) : https://www.kaggle.com/datasets/uciml/indian-liver-

patient-records?resource=download (Binary class)
6. insurance (Kaggle) : https://www.kaggle.com/datasets/mirichoi0218/insurance (Regres-

sion)
7. News (UCI) : https://archive.ics.uci.edu/dataset/332/online+news+popularity (Regression)
8. Obesity (Kaggle) : https://www.kaggle.com/datasets/tathagatbanerjee/obesity-dataset-uci-

ml (Multi class)
9. Shoppers (Kaggle) : https://www.kaggle.com/datasets/henrysue/online-shoppers-intention

(Binary class)
10. Titanic (Kaggle) : https://www.kaggle.com/c/titanic/data (Multi class)
11. wilt (OpenML) : https://www.openml.org/search?type=data&sort=runs&id=40983&status=

active (Binary class)
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File Name N Categorical Cols Numerical Cols
2736 Shipping 10999 4 6

1366 bankmarketing 41188 11 10
0944 SensorDataResource 100000 1 25

0144 BNG(bridges version1) 100000 9 4
0062 BNG(page-blocks,nominal,295245) 100000 10 1

0673 BNG(baseball) 100000 1 16
1046 jungle chess 2pcs raw endgame

complete 44819 1 6

0677 COMET MC SAMPLE 89640 0 5
1681 Air-Traffic-Data 15007 12 4

1969 CPS1988 28155 4 3
pulsar data train 12528 0 9

0666 BNG(primary-tumor) 100000 18 0
0050 BNG(breast-cancer,nominal,1000000) 100000 9 1

0080 BNG(vote) 100000 17 0
1375 MAGIC-Gamma-Telescope-Dataset 19020 1 10

0063 BNG(credit-g,nominal,1000000) 100000 21 0
1431 Beijing-Multi-Site-Air-Quality 100000 2 16

bodyPerformance 13393 2 10
term deposit subscribed33 31647 9 8

1465 credit 16714 0 11
0077 BNG(heart-statlog,nominal,1000000) 100000 14 0

0761 BNG(autos,1000,10) 100000 10 16
0142 BNG(breast-w) 39366 1 9

0105 kropt 28056 4 3
campaign33 12870 10 6

2149 electricity 38474 1 8
2701 BitcoinHeist Ransomware 24780 0 8

0772 BNG(lymph,5000,5) 100000 16 3
0059 BNG(colic,nominal,1000000) 100000 23 0
2750 letter-challenge-unlabeled.arff 10000 1 16

0639 jm1 10885 1 21
fusion experiment 100000 2 17

1690 Malware-Analysis-Datasets-PE-Secti
on-Headers 43293 0 5

0137 BNG(labor) 100000 9 8
1020 Run or walk information 88588 0 7

0070 BNG(glass,nominal,137781) 100000 10 0
classifying document types to enhanc
e search and recommendations in dig

ital libraries dataset
11539 2 5

0747 BNG(letter,5000,1) 100000 1 16
Warehouse block 10999 4 7

1579 MagicTelescope 13376 1 10
0160 BNG(hepatitis) 100000 14 6

1981 Higgs 100000 0 25
1674 adult 48842 9 6

2687 Diabetes130US 71090 0 8
0057 BNG(mushroom) 100000 23 0
0074 BNG(tic-tac-toe) 39366 10 0

0078 BNG(vehicle,nominal,1000000) 100000 19 0
univ.ai Test Data 28000 6 5
flight delays train 100000 7 2

bank 11162 10 7
Firewall Rule Classification 100000 1 11

Crop Agriculture Data 2 88858 5 4
0711 Stagger1 100000 4 0

0674 BNG(wine) 100000 0 14
1942 mushroom 12960 9 0

0968 BNG(segment) 100000 20 0
bank customer survey 45211 9 8

Table 6: Classification Task Files
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File Name N Categorical Cols Numerical Cols
1860 Worldwide-Crop-Production 21165 3 2

2711 medical charges 100000 0 4
0690 BNG(breastTumor) 100000 6 4

2743 Tallo 100000 9 12
MAMe dataset 37407 4 4
2664 diamonds 53940 3 7

2134 Brazilian houses 10692 0 9
0693 BNG(wine quality) 100000 0 12

1587 elevators 16599 0 17
2677 fifa 19178 1 28

0940 seattlecrime6 52358 5 3
1697 AMD-Stock-Prices-Historical-Data 10361 0 6

1905 New-Delhi-Rental-Listings 17890 5 9
1415 beijing-pm2.5 43824 1 11

1649 Tamilnadu-Crop-production 13266 4 3
stats 10000 1 9

1466 post-operative 65532 1 11
Airline Delay Cause 100000 4 17

1704 House-Rent-in-Indian-Cities-and-Lo
calities 10692 5 8

credit card defaulter 10000 2 2
1781 SDSS-16 100000 1 17

2131 houses 20640 0 9
1595 Oranges-vs.-Grapefruit 10000 1 5

1140 exercises 15000 1 6
1245 Production-cross-sections-of-Inert

-Doublet-Model 50625 0 13

2136 nyc-taxi-green-dec-2016 100000 0 10
0684 BNG(autoPrice) 100000 0 16

1904 Apple-Complete-Stock-Data1980-2020 10015 0 6
1107 rainfall bangladesh 16755 2 2
2659 video transcoding 68784 2 17

Table 7: Regression Task Files
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E NUMERICAL RESULTS FOR UTILITY

Model 30 50 100 200 500 Full

Real 0.79 0.79 0.82 0.83 0.88 0.90
SMOTE 0.67 0.74 0.76 0.77 0.83 0.85
PATECTGAN 0.31 0.27 0.32 0.34 0.37 0.40
AIM 0.44 0.48 0.55 0.62 0.52 0.57
CTGAN 0.41 0.52 0.52 0.54 0.63 0.64
GReaT - - 0.76 0.80 0.84 0.85
TVAE 0.75 0.77 0.79 0.79 0.82 0.84
TabDDPM 0.77 0.79 0.81 0.81 0.84 0.85
TabSyn 0.76 0.78 0.81 0.82 0.85 0.86
CTSyn 0.79 0.81 0.83 0.84 0.84 0.86

Table 8: ML utility for classification benchmarks.Columns represent training examples(shots) pro-
vided.

Model 30 50 100 200 500 Full

Real 0.24 0.23 0.21 0.17 0.15 0.14
SMOTE 0.48 0.24 0.22 0.16 0.13 0.11
AIM 10274.55 ≫10k ≫10k ≫10k ≫10k 110.14
PATECTGAN ≫10k ≫10k ≫10k ≫10k ≫10k ≫10k
CTGAN 0.97 0.25 0.28 0.19 0.21 0.20
TVAE 0.60 0.50 0.47 0.33 0.34 0.28
GReaT 0.30 0.25 0.23 0.20 0.19 0.16
TabDDPM 0.35 0.30 0.27 0.21 0.20 0.18
TabSyn 0.27 0.23 0.22 0.19 0.16 0.13
CTSyn 0.22 0.18 0.17 0.15 0.14 0.12

Table 9: ML utility for regression benchmarks. Columns represent training examples(shots) pro-
vided.

F COMPUTATION

Our training are completed on an Amazon AWS g5.12xlarge instance, with 192 GB system memory,
4 Nvidia A10G GPU with 4 × 24 GB GPU memory. The pre-training time of CTSyn, GReaT and
TabSyn are shown in the table 10.

Model VAE Generation
CTSyn 12 hours 12 hours
GReaT - 50 hours
TabSyn 86× 0.5 = 43 hours 24 hours

Table 10: Pre-training computation cost. Note that TabSyn requires training table-specific encoders.
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