
1. Introduction
Approximately 15% of the world's ice-free land surface is underlain by carbonate rocks, and a recent estimate 
suggests that 1.3 billion people lived on these rocks in 2019 globally (Goldscheider et al., 2020). Almost all the 
carbonate rock areas have developed karst, a landscape characterized by sinkholes, sinking streams, springs, and 
caves (Monroe, 1970). Sinkholes are the most abundant surficial features in karst and are formed when soil or 
other overburden material subsides or collapses into subsurface voids created by the dissolution of soluble rocks. 
Hydrologically, sinkholes collect rainfall and drain it internally to the subsurface, serving as fast recharge routes 
for karst aquifers. More commonly, sinkholes are known as a geohazard. Sinkholes, especially suddenly  occur-
ring collapse sinkholes, cause significant damage to homes, buildings, highways, and other infrastructure 
(Weary,  2015). Therefore, knowledge of detailed distribution and characteristics of sinkholes is essential for 
protecting karst aquifers and mitigating sinkhole-related hazards in karst areas.
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hazards. Most sinkholes appear on the land surface as depressions or cover collapses and are commonly 
mapped from elevation data, such as digital elevation models (DEMs). Existing methods for identifying 
sinkholes from DEMs often require two steps: locating surface depressions and separating sinkholes from 
non-sinkhole depressions. In this study, we explored deep learning to directly identify sinkholes from DEM 
data and aerial imagery. A key contribution of our study is an evaluation of various ways of integrating these 
two types of raster data. We used an image segmentation model, U-Net, to locate sinkholes. We trained separate 
U-Net models based on four input images of elevation data: a DEM image, a slope image, a DEM gradient 
image, and a DEM-shaded relief image. Three normalization techniques (Global, Gaussian, and Instance) were 
applied to improve the model performance. Model results suggest that deep learning is a viable method to 
identify sinkholes directly from the images of elevation data. In particular, DEM gradient data provided the best 
input for U-net image segmentation models to locate sinkholes. The model using the DEM gradient image with 
Gaussian normalization achieved the best performance with a sinkhole intersection-over-union (IoU) of 45.38% 
on the unseen test set. Aerial images, however, were not useful in training deep learning models for sinkholes as 
the models using an aerial image as input achieved sinkhole IoUs below 3%.

Plain Language Summary Sinkholes are very common in areas with limestone rocks. Sinkholes 
can damage roads, buildings, and other infrastructure and sometimes even cost human lives. Sinkhole maps are 
needed for land use planning and hazard mitigation. Because sinkholes often occur in large numbers, often in 
the thousands, accurately mapping each of them manually is expensive and laborious. In this study, we applied 
deep learning, a form of artificial intelligence, to build computer models to automatically locate sinkholes from 
images created from elevation data. These models used the image segmentation technique to label every pixel in 
an image as either sinkhole or non-sinkhole. We used images of elevation, slope, elevation gradient, and shaded 
relief as inputs to models. Model results suggested that deep learning offered a viable way to automatically 
locate sinkholes from elevation data. In particular, models using elevation gradient information performed 
the best. We also evaluated aerial imagery to train the models and found that aerial images were not useful in 
training deep learning models for sinkhole identification.
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Most sinkholes appear on the land surface as depressions or cover collapses and are traditionally mapped from 
topographic maps. In the United States, the topographic maps used for mapping sinkholes are low in resolution 
and were mostly created prior to the 1970s. As a result, many small or newly formed sinkholes were missed 
(Zhu et al., 2014). The increasing availability of high-accuracy and high-resolution remote sensing data, espe-
cially LiDAR (Light Detection and Ranging), has led to the discovery of significantly more sinkholes in many 
karst areas (e.g., Rahimi & Alexander,  2013; Wu et  al.,  2016; Zhu et  al.,  2014). For instance, using LiDAR 
data, Zhu et al. (2014) found three times more sinkholes than previously identified from topographic maps in 
Floyds Fork watershed, central Kentucky. Inconveniently, sinkholes are not the only surficial features showing 
as depressions on the surface. Many nature features such as stream channels and meander cutoffs, and more 
commonly man-made structures such as farm ponds, road culverts, and swimming pools, also appear as depres-
sions. Processing LiDAR data to locate sinkholes also extracts these non-sinkhole depression features, so sepa-
rating sinkholes from non-sinkhole depressions becomes a necessary step. While this step can be done using a 
manual process of visual inspection and classification of each depression (Zhu et al., 2014), the manual process 
can be laborious and time-consuming because (a) thousands of surface depressions can be extracted from LiDAR 
data in a small area and (b) sinkholes are an only small portion of the extracted depressions. Finding efficient 
methods to separate sinkholes from other depressions remains a challenge.

Machine learning is a branch of artificial intelligence that constructs computer-based systems that improve auto-
matically through training experience (Jordan & Mitchell, 2015). Machine learning methods have been applied 
to automatically identify sinkholes or evaluate sinkhole hazards (e.g., Kim et al., 2019; Miao et al., 2013; Taheri 
et al., 2019; Zhu & Pierskalla, 2016; Zhu et al., 2020). These studies applied conventional or shallow machine 
learning methods that rely on feature data sets to train because the conventional machine learning methods have 
limited ability to process raw data (LeCun et al., 2015). These feature data sets are created by extracting feature 
variables deemed relevant to a problem of interest from available data; therefore, the extracted variables are often 
subjective, depending on a researcher's experience and their understanding of the original data. For instance, Kim 
et al. (2019) used topographic variables, such as elevation, aspect, and curvature, to train a logistic regression 
sinkhole model. Zhu et al. (2020) used morphometric variables of the depressions, such as surface area, depth, 
and circularity, to train machine learning methods for identifying sinkholes from surface depressions that were 
previously extracted by processing LiDAR elevation data. In a sense, the machine learning methods applied in 
Zhu et al. (2020) did not directly learn from elevation data. Deep learning methods, on the other hand, can directly 
learn from images, text, videos, and sounds through multiple processing layers to learn representations with 
multiple levels of abstraction (LeCun et al., 2015). Convolutional neural networks (CNNs) are the most widely 
used deep learning methods for image classification. Because of their tremendous success in classifying conven-
tional photographic images, CNNs have also been applied for landscape classifications recently (e.g., Buscombe 
& Ritchie, 2018; Hu et al., 2015; Li et al., 2020). In particular, Vu et al. (2020) trained sinkhole detection CNN 
models using thermal images for eight manually dug holes. These studies used mainly multispectral remote 
sensing images in which different landscape features are easily discernible. Elevation data are not commonly 
used for landscape classification. Li et al. (2020) found that remote sensing images provide best information in 
loess landform classification, while digital elevation models can help distinguish ridges and hills. Sinkholes, on 
the other hand, are small-scale topographic features that are difficult to see from multispectral remote sensing 
images. In this study, we trained a convolutional neural network to perform image segmentation on LiDAR eleva-
tion data and their derivative images to locate sinkholes. We also tested multispectral remote sensing images in 
finding sinkholes.

There are many types of CNNs that can be used for image segmentation (Minaee et  al.,  2021). We select a 
commonly used architecture known as U-Net (Ronneberger et al., 2015), which has been shown to work well 
across a broad range of tasks. U-net has also been applied to detect sinkholes. For instance, Vu et al. (2020) used 
U-net as a weak but fast classifier to find areas with high probability of sinkholes. Our focus in this work is on 
evaluating various ways of preprocessing the input data. This includes whether or not a particular input modality 
is included and different forms of input preprocessing and standardization.
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2. Study Area and Input Images
The study area is located in the Inner Bluegrass Region of central Kentucky, 
a mature karst environment developed on the Middle Ordovician Lexing-
ton Limestone (Cressman & Peterson,  1986). The region features gently 
rolling topography with numerous sinkholes across the landscape (Paylor & 
Currens, 2004). The climate is temperate with an average annual temperature 
of 13.0°C and an average precipitation of 1,170 mm. The land use is mainly 
agricultural with some urban and suburban regions (University of Kentucky 
College of Agriculture Food and the Environment, 2011). Sinkholes in the 
region have been mapped from LiDAR data (Kentucky Geological Survey, 
n.d.). In this study, we selected a rectangular area of 625 km 2 in the region to 
generate input images (Figure 1). This area covers part of Fayette, Franklin, 
Scott, and Woodford Counties and is 21.74 km long in the x direction (west-
east) and 28.83 km long in the y direction (south–north). There are 2,177 
sinkholes mapped in the rectangular area.

The input data for the deep learning models consist of three images: a 
LiDAR-derived digital elevation model (DEM) image, an aerial image, and 
a binary label image (Figure 2). All the images are 14,268 × 18,851 pixels 
and each pixel is 1.524  ×  1.524  m (5  ×  5  ft) in size. The DEM and the 
aerial image are downloaded from Kentucky's Elevation Data and Aerial 
Photography Program (KyFromAbove, n.d.). The DEM image has one chan-
nel with values ranging from 158 to 308 m (518–1003 ft). The aerial image 
is a four-channel National Agriculture Imagery Program (NAIP) image from 
2018. The original NAIP image is in 0.610 m (2 ft) resolution and is resam-
pled to 1.524 m (5 ft) resolution to have the same resolution as other input 
images. The binary label image was created using the sinkhole mapping 
results (Kentucky Geological Survey, n.d.). Any pixel located inside a sink-
hole is valued as 1 and as 0 otherwise. Note that only 2% of pixels are valued 
as one because even though sinkholes are widespread, their areas are so small 
that they only occupy a small fraction of the total land surface.

Figure 1. Study area. Blue lines depict mapped sinkholes.

Figure 2. Input data: (a) digital elevation model (DEM), (b) National Agriculture Imagery Program, and (c) sinkhole label. Data splits are illustrated in the DEM 
image: training set in blue, validation set in green, and test set in red. Axis labels on (a) DEM are in pixels.
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In addition to directly using the DEM image as input, we also prepared three images derived from the elevation 
data: a slope image, a DEM gradient image, and a shaded relief image (Figure 3). The slope image was created 
from the DEM using ArcGIS Pro's Planar Slope method, which calculates the slope as the maximum rate of 
change in elevation from a cell to its immediate neighbors. The slope image has one channel with values ranging 
from 0 to 85°. The slope as calculated in ArcGIS Pro is the maximum slope among the neighboring cells. The 
DEM gradient image is calculated using central difference and it has two channels, one for elevation gradient in 
the x direction and the other for elevation gradient in the y direction. Therefore, the two-channel DEM gradient 
image preserves directional slope information otherwise lost in the traditional slope image. The shaded relief 
image is a single illumination hillshade with an azimuth of 315° and an altitude of 45°. The shaded relief image is 
prepared as an RGB image with three channels. We created the shaded relief image because sinkholes are highly 
visible on the shaded relief of DEMs (Zhu et al., 2014).

3. Methods
There are several formulations for the task of image recognition. Image classification is the task of assigning one 
label for the entire image. On the other hand, image segmentation is the task of assigning a class label to every 
pixel. While image segmentation provides more detailed output, this formulation requires more labeling effort. 
Since we have dense labels for sinkholes, derived from LiDAR, we formulate the task as a segmentation problem. 
Our task is a binary segmentation task that classifies every pixel as sinkhole or non-sinkhole. We use CNNs for 
the task of image segmentation. The input to the segmentation model is a smaller patch of size 400 × 400 pixels. 
However, the model can be used for arbitrarily large regions, as shown in Figure 1, by feeding a batch of such 
patches to the model and stitching the results back.

3.1. Data Normalization

Images often are stored in various formats resulting in different input ranges. For instance, our DEM image has 
a range of 518–1,003 (elevation in ft) while our shaded relief image and aerial image have a range of 0–255 in 
each channel. It is a standard practice to normalize pixel values to a small range to improve training by gradient 
descent (LeCun et al., 2012). We evaluated three alternative normalization methods:

1.  Global (0, 1) normalization: we normalized all values in the range (0, 1) based on the maximum and minimum 
values. This normalization was done based on the statistics of the training data.

2.  Gaussian whitening: for an input channel x, the normalized value was given by 𝐴𝐴 𝐴𝐴𝐴 =
𝐴𝐴 − 𝜇𝜇

𝜎𝜎
 where μ and σ are 

mean and standard deviation of the training data, respectively.
3.  Instance normalization: we normalized every patch separately into the range (0, 1). As opposed to the Global 

normalization, in this case, the normalization was performed on every patch.

Figure 4 shows a visualization of the three normalization methods on the DEM.

Figure 3. Images derived from DEM data: (a) Slope, (b) DEM gradient X direction, (c) DEM gradient Y direction, and (d) Shaded relief.
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3.2. Network Architecture

Many CNN architectures have been proposed for image segmentation ranging from FCN (Long et al., 2015) to 
DeepLabV3+ (Chen et al., 2018) and HR-Net (Wang et al., 2020). While these networks achieve state-of-the-
art results for urban scenes and indoor images, for medical and remote sensing images, U-Net (Ronneberger 
et al., 2015) often performs better. We modified the U-Net for our task of binary segmentation based on the 
number of input channels we have for different input image types. In our case, the size of the output is the same as 
the input, which is not the case in the original U-Net model. The output layer has two channels: one for sinkhole 
pixels and the other for non-sinkhole pixels.

The network architecture is shown in Figure 5. The input is patch of spatial size I (400 × 400 pixels in our case). 
There are several convolutional layers, each having a filter size of 3 × 3, followed by a BatchNorm layer (Ioffe 
& Szegedy, 2015). For every convolutional layer, there are different numbers of filters—in our implementation, 
we use 1/4 the number of filters than the original U-Net (Ronneberger et al., 2015). For example, the first block 
has two convolutional layers, each with 16 filters. The left half of the network, also referred to as the encoder, 
feature maps is reduced in spatial size by applying MaxPool (Nagi et al., 2011). The feature maps are reduced 
to the size 𝐴𝐴

𝐼𝐼

16
 , that is, 1/16th the spatial size of input patch I, in the bottleneck section, shown in the middle in 

Figure 5. The right side of the network, also known as the decoder, increases the spatial size of feature maps. In 
the decoder,  at each level, the feature maps from the encoder are copied over as input as shown by arrows on the 
top. All layers use ReLU (Nair & Hinton, 2010) as the activation function except the last layer. In the last layer, 
we have a two-channel output, one for sinkhole and the other for non-sinkhole. We apply the Softmax activation 
function that results in a proper probabilistic prediction (also called soft prediction): the score for sinkholes is 𝐴𝐴 𝐴𝐴𝐴 
and the score for non-sinkholes prediction is 𝐴𝐴 1 − �̂�𝑦 .

Figure 4. Visualization of three normalization methods on a digital elevation model patch. Axis labels are in pixels. Note that the different ranges are defined for the 
color map of each image.

Figure 5. The U-Net architecture used for sinkhole segmentation. Here, I denotes the spatial size of the input image patch. Visualization generated using Iqbal (2018).
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3.3. Loss Function

For training, it is common to use the cross-entropy loss function

𝑙𝑙 (�̂�𝑦𝑦 𝑦𝑦) = −𝑦𝑦log (�̂�𝑦) − (1 − 𝑦𝑦)log (1 − �̂�𝑦) 𝑦 (1)

where 𝐴𝐴 𝐴𝐴𝐴 is the prediction and y is the target label indicating non-sinkhole (0) or sinkhole (1) pixel. The sinkhole 
label image is highly imbalanced with 98% pixels belonging to the non-sinkhole category and only 2% belonging 
to the sinkhole category. A network treating both categories equally will result in a trivial local minimum such 
that the network only predicts the majority class (non-sinkhole region) and gets a very low loss. To address this, 
we use different loss weighting factors for non-sinkhole and sinkhole pixels:

𝑙𝑙 (�̂�𝑦𝑦 𝑦𝑦) = −𝑤𝑤𝑠𝑠𝑦𝑦 log (�̂�𝑦) −𝑤𝑤𝑛𝑛(1 − 𝑦𝑦) log (1 − �̂�𝑦) 𝑦 (2)

where ws and wn are the loss weights for sinkhole and non-sinkhole pixels, respectively. We use a higher weight 
for sinkhole, ws to encourage the network to make better sinkhole predictions. We found that using ws = 1.0 and 
wn = 0.05 gives better results than other weight ratios.

3.4. Implementation Details

We implemented our approach using PyTorch (Paszke et al., 2019), which is a freely available software library. 
Please see https://mvrl.github.io/SinkSeg/ for the source code, installation instructions, access to the image data 
set, and scripts for training and inference. The image data set can be also downloaded directly from https://doi.
org/10.5281/zenodo.5789436. For training and evaluation, we used a patch of size 400 × 400 pixels. We randomly 
cropped patches from training images as a data augmentation strategy because it can generate a large number 
of unique examples for training. For validation and testing, we made non-overlapping patches that covered the 
respective region completely. We can run our trained model on arbitrarily large regions by sequentially feeding 
batches of non-overlapping smaller patches to the model and stitching the results back. In total, we had 644 
patches for training, 161 for validation, and 840 for testing. For training, we used a batch size of 14 and trained 
all models for 100 epochs using an L2 regularization of 1e−6. We set the initial learning rate of 5e−4 and reduced 
the learning rate by a factor of 0.9 after every three epochs. During training, we saved the model checkpoint with 
the lowest loss on the validation set as the best model and used that for evaluation. Training one epoch (of the area 
approximately 239 km 2) of our model took around 14 s on a single NVIDIA Titan RTX GPU. A trained model 
can be used for inference on validation data (having an area around 60 km 2) in 2 s and on the test set (having an 
area around 312 km 2) in 7 s using the same GPU.

4. Evaluation and Results
Using the five different types of input images and three normalization methods, we trained 15 image segmen-
tation sinkhole identification models. We also trained three additional models with non-normalized images of 
DEM, slope, and gradients. We did not train non-normalized shaded relief and aerial images because they are 
regular RGB images, and normalization is standard for these images in deep learning. We then evaluated and 
compared these 18 models to find the best data and normalization method as described below.

4.1. Evaluation Metrics

We report several commonly used metrics for image segmentation (Long et al., 2015), including intersection over 
union (IoU), mean accuracy, average precision, and area under the ROC curve (AUC). As there is a severe class 
imbalance and we are primarily interested in the identification of sinkholes, we report sinkhole IoU separately 
as well.

Intersection over union, also known as the Jaccard index, can be written as

𝐼𝐼𝐼𝐼𝐼𝐼 (𝑦𝑦𝑦 𝑦𝑦𝑦) =
𝑦𝑦 ∩ 𝑦𝑦𝑦

𝑦𝑦 ∪ 𝑦𝑦𝑦
 (3)
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where 𝐴𝐴 𝐴𝐴 ∩ �̂�𝐴 is the intersection (overlap) and 𝐴𝐴 𝐴𝐴 ∪ �̂�𝐴 is the union of prediction and true label. Accuracy is given as

𝐴𝐴𝐴𝐴𝐴𝐴 (𝑦𝑦𝑦 𝑦𝑦𝑦) =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇
 (4)

where TP is number of true positive, TN is number of true negative, and T is the total number of pixels. We show 
receiver operating characteristics curve (ROC) as well as two methods of summarizing the curve, area under the 
ROC curve and average precision. Average precision is given as

𝐴𝐴𝐴𝐴 =

∑

𝑖𝑖

(𝑅𝑅𝑖𝑖 −𝑅𝑅𝑖𝑖−1𝐴𝐴𝑖𝑖) (5)

where Pi and Ri are precision and recall computed at the threshold value i, respectively. Precision (P) and recall 
(R) are given as

𝑃𝑃 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
𝑅𝑅 =

𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
 (6)

where TP, TN, FP, and FN are numbers of true positive, true negative, false positive, and false negative, 
respectively.

4.2. Results

The model can predict the probability of each pixel being part of a sinkhole 𝐴𝐴 (�̂�𝑦) in an image. However, in practice, 
we need to make a binary prediction for whether or not a pixel is within a sinkhole if 𝐴𝐴 𝐴𝐴𝐴 𝐴 𝐴𝐴 for the threshold t. 
For all models, we find the optimum threshold that gives the highest sinkhole IoU on the validation set. We use 
this threshold to compute metrics of the respective model on the test set. Figure 6 shows how sinkhole IoU varies 
with different thresholds for the model using the elevation gradient image with Gaussian normalization. We can 
see that for this model, the optimum threshold is 0.9 as shown in Figure 6. A visualization of varying binary 
predictions as the threshold changes is shown in Figure 7 for the validation set.

After selecting the optimum threshold, we calculated the five metrics introduced in Section 4.1 on the test set 
for each model. Among the five metrics, sinkhole IoU, mean IoU, and mean accuracy were calculated using the 
optimum threshold, while average precision and AUC were integrated over the entire threshold range. Figure 8 
shows a precision-recall curve used for calculating the average precision and a receiver operating characteristic 
curve for calculating AUC for the model using the elevation gradient image with Gaussian normalization.

Figure 6. Analysis of varying threshold on (a) the validation set and (b) the test set.
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Although all the five metrics were used in comparing the models, we selected sinkhole IoU as the indicator metric 
because IoU is a widely used metric in evaluating image segmentation models and the other four metrics are 
consistent with sinkhole IoU. Comparing the metrics of all the 18 models (Tables 1–5), the model using elevation 
gradient with Gaussian normalization performed the best with a sinkhole IoU of 45.38%, followed by the model 
using elevation gradient without normalization, which achieved a sinkhole IoU of 43.61% (Table 3). Other models 
that achieved sinkhole IoU above 40% were elevation gradient with Global normalization (Table 3) and DEM 
with Instance normalization (Table 1). In contrast, models using NAIP image performed the worst with sinkhole 
IoU values below 3% in all normalization methods (Table 5). The models using DEM slope (Table 2) and the 
models using shaded relief image (Table 4) were better than the models using the NAIP image. However, with 
their sinkhole IoUs in the range of 20%–30%, these models can only be considered to be moderately successful.

Figure 7. Qualitative results on the full validation set for several threshold values. We also show soft predictions without applying any threshold.

Figure 8. Test set evaluation: (a) Precision recall curve and (b) receiver operating characteristics curve (ROC).
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The results of the best performing model, elevation gradient with Gauss-
ian normalization, on the test set are illustrated in Figure 9. The figure 
shows prediction of the model with the optimum threshold of 0.9 as well 
as predictions for thresholds 0.3 and 0.6 and the soft prediction. The soft 
prediction was the actual prediction result, which was the probability of 
each pixel being part of a sinkhole. The soft prediction and results with 
three different thresholds largely matched the sinkhole label image in 
pattern, but the one with the 0.9 threshold closely resembled the sinkhole 
label.

A close view of the prediction results is shown in Figure 10. It shows results 
from seven randomly selected patches on the test data. Each row in Figure 10 
shows a single patch that is passed through the network. Overall, the predic-
tion matched the true sinkhole label quite well. However, there were some 
mismatches as shown in the last three rows of Figure 10.

5. Discussion
We trained 15 sinkhole segmentation models using images created from LiDAR-derived digital elevation data. 
We found that with proper data preprocessing and normalization, the CNN-based image segmentation method 
can extract sufficient information from the LiDAR-derived elevation data to build decent models to automati-
cally identify sinkholes. However, when the raw DEM data were directly used without normalization, the model 
performed poorly. The raw DEM data had the largest range of values (518–1,003) among all the inputs and 
there is an overall trend in elevation where the elevation is highest in the southeast and dips into the northwest. 
We speculate that the large range and the trend create a difficulty to translate the results from the training area 
(northwest region) to the test area (south region). Both Global and Gaussian normalizations reduced the overall 
range of the data, but the overall trend remained. This is evident as both normalizations only slightly improved 
the model. On the other hand, the Instance normalization reduced the range and also removed the overall trend, 
therefore providing an additional improvement.

Models trained on DEM slope with and without normalization yielded similar poor results with sinkhole IoUs 
of around 25%–27% (Table 2). The Planar Slope method combines the slope values in x and y directions into 
one value, leading to possible information loss. To test if the information loss attributes to the poor perfor-
mance, we created an image with two channels, one for elevation gradient in the x direction and the other for 
the y direction. Models trained on this 2-channel DEM gradient image (Table 3) performed much better than 
the models trained on DEM slope. Using the 2-channel gradient image, the model without normalization 
achieved a sinkhole IoU of 43.61% and Gaussian normalization slightly improved the model with a sinkhole 
IoU of 45.38%.

In the models using the raw DEM as input, all normalization methods improved model performance (Table 1). 
However, these normalization methods did not yield noticeable improvements when slope data or elevation 
gradient were used as inputs. For models using the slope data, all normalization methods had little impact 

(Table  2). For models using the elevation  gradient data, Gaussian and 
Global normalizations had little impact,  whereas the Instance normaliza-
tion decreased the sinkhole IoU to 26.35% (Table 3). The slope and DEM 
gradient data removed the overall trend in the DEM and converted the 
elevation values to a smaller range of 0–90° for the 1-channel image and a 
smaller range for the elevation gradient image, which might explain why all 
the additional normalization methods did not improve the model. The poor 
performance of Instance normalization on the elevation gradient data was a 
stark contrast to the method's improvement on models using the raw DEM 
data. In normalizing each patch to a range (0, 1), the Instance normalization 
requires different scaling factors for every patch, therefore lacking consist-
ency across the entire training image. As a result, the Instance normaliza-
tion can be more sensitive to noise in the DEM.

Normalization
Sinkhole 
IoU (%)

Mean 
IoU (%)

Mean 
accuracy 

(%)

Avg. 
Precision 

(%) AUC

None 19.18 57.43 66.94 24.33 0.8627

Global (0, 1) 25.45 60.80 72.13 29.14 0.8968

Gaussian 23.47 60.29 65.31 32.52 0.7954

Instance 40.83 69.15 80.02 60.21 0.9508

Table 1 
Evaluation Metrics of Image Segmentation Models Using Digital Elevation 
Model (DEM) as Input

Normalization
Sinkhole 
IoU (%)

Mean 
IoU (%)

Mean 
accuracy 

(%)

Avg. 
precision 

(%) AUC

None 27.55 62.24 69.90 40.31 0.9076

Global (0, 1) 25.12 60.73 70.77 36.54 0.8987

Gaussian 26.57 61.41 74.92 40.83 0.9044

Instance 27.42 62.20 69.52 40.18 0.8946

Table 2 
Evaluation Metrics of Image Segmentation Models Using Digital Elevation 
Model (DEM) Slope as Input
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We find that these normalization choices result in a large difference in 
final system performance. We expect that our performance metrics could 
be further improved by using different segmentation architectures and 
further tuning of training hyperparameters. To facilitate future studies 
in this regard, we make available code to facilitate easy training and 
inference.

Metrics of models using the shaded relief of the DEM are shown in Table 4. 
The shaded relief image is a three-channel color image. For color images, 
Global normalization and Gaussian normalization are universally used in 
machine learning. Consequently, we did not run the model from shaded relief 
without normalization. The results of the three normalization methods were 
quite similar and sinkhole IoUs ranged from 21% to 26%. The results were 

also similar to several models using raw DEM and the models using the slope data. It suggests that a shaded relief 
image does not provide additional information from the raw DEM to the segmentation models despite it being 
useful for manual visual inspection.

Results of the three sinkhole segmentation models using NAIP imagery as input showed that the aerial image 
provided weak cues for segmenting sinkholes (Table 5). For all normalization methods, the models could 
not correctly identify sinkholes and achieved sinkhole IoUs of merely 2.98%. Since most sinkholes cannot 
be seen directly on aerial images, such as NAIP, models using NAIP images alone perform poorly. However, 
visible surface features on aerial images, such as tree clusters, ponds, roads, and residential houses, can be 
used to help separate sinkholes from other forms of surface depression (Zhu et al., 2014). In future research, 
we will explore methods that combine elevation data and aerial images to improve their ability to segment 
sinkholes.

Deep learning models trained in one area can perform unexpectedly when applied to a geographic region with 
different landscape characteristics. This issue is an example of so-called out-of-distribution problems commonly 
encountered in deep learning. To evaluate if the models trained using data from Kentucky are applicable to 
other karst regions, we applied our best performing sinkhole segmentation model to the Springfield Plateau in 
southwest Missouri, USA. The Springfield Plateau is a prominent karst region with abundant karst features, 
such as sinkholes, caves, and springs. The region is underlain by the Mississippian Burlington and Keokuk 
Limestones (Martin & Pratt,  1991), which are roughly 100 million years younger than the Lexington Lime-
stone underlying the area in Kentucky where our models were trained. We selected a rectangular area of 
86.4 km 2 in Greene County in the Springfield Plateau (Figure 11). The area is 9.6 km in the x direction (west-
east) and 9  km in the y direction (south-north). LiDAR DEM of 1  m resolution was obtained from MSDIS 
(Missouri Spatial Data Information Service, n.d.) and was resampled to 1.524 m (5 ft) to match the resolution of 
the images used for model training. The range of elevations in this area is 90 m (306–396 m), whereas the eleva-
tion range in the training area is 150 m (158–308 m). A total of 1,021 sinkholes have been mapped in the area 
(City of Springfield, Missouri, n.d.) and were used to create a binary label image to evaluate model prediction 
results.

Our best-performing model was the one that used DEM gradients as inputs 
with Gaussian normalization. The prediction results of applying this model 
to the Missouri area show that the model-predicted sinkhole areas closely 
matched with mapped sinkhole areas (Figure  12). The evaluation metrics 
(Table  6) confirmed the model's good performance in the new area. The 
sinkhkole IoU was 42.38%, which was only slightly lower than the Kentucky 
test sinkhole IoU of 45.38% (Table 3). Note that while the threshold produc-
ing the highest sinkhole IoU for Kentucky was 0.9, the threshold for the 
highest sinkhole IoU for the Missouri area was 0.5. The difference in opti-
mal thresholds appeared to be corresponding to different criteria in mapping 
sinkholes. In Kentucky, surface depression features less than 46.45  m 2 
(500 ft 2) were excluded from consideration for sinkholes (Zhu et al., 2014), 

Normalization
Sinkhole 
IoU (%)

Mean 
IoU (%)

Mean 
accuracy 

(%)

Avg. 
Precision 

(%) AUC

None 43.61 70.68 80.03 65.39 0.9610

Global (0, 1) 41.26 69.36 80.89 60.25 0.9513

Gaussian 45.38 71.65 79.87 66.29 0.9645

Instance 26.35 60.94 76.62 39.15 0.3915

Table 3 
Evaluation Metrics of Image Segmentation Models Using Digital Elevation 
Model (DEM) Gradient as Input

Normalization
Sinkhole 
IoU (%)

Mean 
IoU (%)

Mean 
accuracy 

(%)

Avg. 
precision 

(%) AUC

Global (0,1) 26.05 60.91 74.97 40.00 0.9149

Gaussian 23.18 59.29 72.00 34.78 0.8859

Instance 21.32 58.47 69.63 29.47 0.8486

Table 4 
Evaluation Metrics of Image Segmentation Models Using Shaded Relief as 
Input
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but approximately 15% of the mapped sinkholes in the Missouri area were 
less than the minimum area of 46.45 m 2 used in Kentucky. Even though our 
model generalizes well for a different region, an appropriate threshold sepa-
rating sinkholes from non-sinkholes requires existing sinkhole data for the 
region. Because we had a sinkhole data set for the Missouri area, we were 
able to find an optimal threshold. If the trained image segmentation model 
is used to predict sinkholes to an area where sinkholes are not mapped, we 
suggest that a small subarea should be mapped manually so that a suitable 
threshold can be determined.

6. Conclusions
Sinkholes are the most prevalent topographic features in karst areas worldwide. Understanding their occurrence 
and characteristics is critical for studying karst aquifers and mitigating sinkhole-related hazards. In this study, we 
explored image segmentation for automatically locating and delineating sinkholes from high-accuracy, high-res-
olution LiDAR DEMs. We trained convolutional neural network models based on the U-Net architecture and 
performed image segmentation to label each pixel in an image as sinkhole or non-sinkhole. We evaluated how 
three normalization methods impacted model performance. Furthermore, we explored the usefulness of aerial 
images as input for training deep learning sinkhole identification models. We also applied our model to a karst 
area in Missouri to test our model's out-of-distribution generalization. Our study suggests:

1.  Deep learning-based image segmentation is a promising tool to identify karst sinkholes directly from DEMs.
2.  Slope and DEM gradient data provide better information than the raw DEM in identifying sinkholes. Shaded 

relief of DEMs, on the other hand, does not enhance model performance.
3.  While Global and Gaussian normalization methods have the potential to improve deep learning models, 

Instance normalization should be used with caution as it can worsen model performance.
4.  The sinkhole segmentation models trained using data from Kentucky show good out-of-distribution generali-

zation and can potentially be applied to other karst areas.
5.  Aerial images alone did not prove to be useful as input to the proposed segmentation model.

Normalization
Sinkhole 
IoU (%)

Mean 
IoU (%)

Mean 
accuracy 

(%)

Avg. 
precision 

(%) AUC

Global [0,1] 2.97 5.58 53.19 2.99 0.5473

Gaussian 2.90 4.05 52.02 3.40 0.5882

Instance 2.98 12.81 53.01 3.19 0.5537

Table 5 
Evaluation Metrics of Image Segmentation Models Using National 
Agriculture Imagery Program (NAIP) Image as Input

Figure 9. Test set results. We show qualitative results on the full test set for several threshold values and soft predictions without applying any threshold.
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Figure 10. Qualitative results on patches from the unseen test set.
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Figure 11. Out-of-distribution evaluation area in Missouri. Blue lines depict mapped sinkholes.

Figure 12. Qualitative results on the data from the Missouri Area. These results are generated from the model trained on digital elevation model gradients of the 
Kentucky data and no information from the Missouri area is provided to train the model.

Normalization Sinkhole IoU (%) Mean IoU (%) Mean accuracy (%) Avg. precision (%) AUC

Gaussian 42.38 68.85 77.01 61.78 0.8665

Note. The first three metrics were calculated with a threshold of 0.5.

Table 6 
Evaluation Metrics of Applying the Best Image Segmentation Model to the Missouri Region
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Data Availability Statement
Model source code, installation instructions, and scripts for training and inference are in Github at https://mvrl.
github.io/SinkSeg/. The image data set used in the model is deposited at https://doi.org/10.5281/zenodo.5789436. 
Data sources used to derive the image data set are available in these in-text data citation references: aerial 
imagery from the National Agriculture Imagery Program (KyFromAbove, n.d.), (public domain); digital eleva-
tion model derived from LiDAR data (KyFromAbove, n.d.), (public domain); binary label image derived from 
Kentucky LiDAR-derived sinkholes (Kentucky Geological Survey, n.d.), (public domain); digital elevation 
model for Missouri from Missouri Spatial Data Information Service (Missouri Spatial Data Information Service, 
n.d.), (public domain); and sinkhole data for Greene County, Missouri from City of Springfield, Missouri 
(City of Springfield, Missouri, n.d.), (public domain).
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