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ABSTRACT

Zero-shot learning (ZSL) for cell-type classification in spatially resolved tran-
scriptomics remains underexplored, particularly when integrating spatial con-
text with marker gene semantics. Here, we introduce SPELL (Spatial Prompt-
Enhanced Zero-Shot Learning), combining graph autoencoder (GAE)-derived
spatial embeddings with chain-of-thought (CoT) prompting for zero-shot classi-
fication. SPELL uses a spatial k-nearest neighbor graph to encode local cellular
neighborhoods and generates interpretable prompts that integrate marker gene ex-
pression and the spatial embedding norms. We evaluated SPELL across five state-
of-the-art zero-shot LLM classifiers on MERFISH, MIBI-TOF, and Stereo-seq
datasets for cell-type classification. Guided by only expression values and spa-
tial context, the two BART models solved the classification task surprisingly well
(distilbart-mnli-12-1i 64% accuracy on the MERFISH, bart-large-mnli achieved
52% accuracy on MIBI-TOF dataset). Interestingly, removing the spatial context
from the CoT prompt revealed a significant performance drop (20 – 24 % drop
in accuracy), underscoring spatial information’s critical role in zero-shot learning.
Our work bridges spatial omics with LLM reasoning,enabling flexible adaptation
and offering robust cell-type classification across diverse datasets without task-
specific fine-tuning while maintaining biological interpretability.

1 INTRODUCTION

Spatial transcriptomics Ståhl et al. (2016) has transformed our understanding of tissue architecture
by preserving spatial context while profiling gene expression at single-cell resolution. Techniques
such as multiplexed error-robust fluorescence in situ hybridization (MERFISH) enable simultaneous
imaging of hundreds of RNA species, thus capturing the cellular organization within intact tissues
Chen et al. (2015); Moffitt et al. (2018). Recent progress in natural language processing - exem-
plified by zero-shot classification using large pretrained models enabled effective categorization of
text into arbitrary labels without task-specific training,Brown et al. (2020); Wei et al. (2022). Zero-
shot learning (ZSL) traditionally involves classifying unseen classes by transferring knowledge from
seen classes via semantic embeddings.
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In this work, we mitigate the gap between these two lines of investigation. Our SPELL method inte-
grates marker gene profiles with local spatial context derived from a graph autoencoder (GAE)-based
embedding of a spatial k-nearest neighbor graph. We convert these biological and spatial features
into a human-interpretable chain-of-thought (CoT) prompt used for zero-shot cell-type classifica-
tion, as shown in Figure 1. Unlike methods treating gene expression and spatial coordinates as in-
dependent numerical features, SPELL encodes spatial relationships into human-interpretable chain-
of-thought (CoT) prompts for zero-shot cell-type classification. SPELL adopts the large language
model (LLM) zero-shot framework, where the model classifies cells into known classes without
fine-tuning, using prompts enriched with training-derived marker genes. This differs from classical
zero-shot learning, which typically involves classifying entirely unseen classes. This approach lever-
ages labeled data for marker gene identification, common in spatial transcriptomics where annotated
datasets guide analysis of new samples. We further demonstrate the importance of spatial context
by comparing the entire model with an ablated version that uses only marker gene summaries in the
prompt. Moreover, excluding the spatial context leads to a marked decrease in performance. We
evaluated SPELL on MERFISH and MIBI-TOF datasets and extended our experiments to a Stereo-
seq Drosophila spatial transcriptomics dataset, demonstrating the broad applicability of SPELL.
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Figure 1. Integrated Workflow for Zero-Shot Classification in Spatial Transcriptomics: SPELL
comprises three primary components: (i) extraction of marker genes, (ii) construction and embed-
ding of a spatial graph using a Graph AutoEncoder (GAE), and (iii) generation of chain-of-thought
prompts for zero-shot classification.

2 METHODS

2.1 DATASETS

The preprocessed MERFISH (Moffitt et al., 2018), MIBI-TOF(Hartmann et al., 2021) datasets (as
curated in (Palla et al., 2022)) and the Stereo-seq Drosophila dataset (Qiu et al., 2024) were used
to evaluate the zero-shot classification performance of various models within our SPELL frame-
work. The MERFISH dataset comprises 12 consecutive slices from the mouse hypothalamic pre-
optic region, where each slice provides gene expression values, pre-classified cell types, and two-
dimensional spatial coordinates, while as MIBI-TOF dataset provides single-cell metabolic profiles,
phenotypes, and spatial organization of CD8+ T cells and colorectal carcinoma. In contrast, the
Drosophila dataset provides a three-dimensional high-resolution gene expression map, capturing
spatial and temporal dynamics during key developmental stages. This rich dataset illustrates the
spatial heterogeneity and dynamic transcriptomic landscape observed during embryonic and larval
development, making it an ideal test case for assessing the generalizability and robustness of our
framework in a non-mammalian system. We selected a representative slice from each dataset for our
analysis, as shown in Appendix A Figure 3.
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2.2 SPELL FRAMEWORK

Our SPELL framework, illustrated in Figure 1, uses five zero-shot classification models to clas-
sify cell types in spatial transcriptomics. These models are sourced from the Hugging Face model
repository, Hugging (2025), Appendix B.

2.2.1 MARKER GENE EXTRACTION

Using single cell spatial transcriptomic data (MERFISH) we first confirm that cell-level metadata
includes preliminary cell-type annotations. We perform differential expression analysis using the
Wilcoxon method to rank genes by their specificity to each cell class, employing the Scanpy pipeline.
The top-ranking marker genes for each class are stored in a marker dictionary. This step ensures that
the most discriminative molecular signatures are utilized to construct our natural language prompts.

2.2.2 SPATIAL GRAPH CONSTRUCTION AND EMBEDDING

We construct a k-nearest neighbor (k-NN) graph from cell spatial coordinates, connecting each cell
to its 15 closest neighbors to form an undirected adjacency matrix that captures local spatial rela-
tionships. Gene expression profiles are processed via principal component analysis (PCA), retaining
20 principal components, and combined with the spatial graph to create a PyTorch Geometric Data
object.

A Graph AutoEncoder (GAE) with two Graph Convolutional Networks (GCNs) is trained to re-
construct the graph structure using edge reconstruction loss. The resulting 20-dimensional latent
embeddings encode each cell’s local neighborhood structure, integrating spatial proximity and gene
expression patterns. The norm of each embedding vector quantifies the cell’s spatial context (e.g.,
density of neighbors), which is included in the chain-of-thought prompt to provide the large language
model (LLM) with additional discriminative information beyond gene expression. This approach
bridges spatial transcriptomics and natural language processing by translating complex spatial in-
formation into a numerical feature that the LLM can process as part of the prompt.

2.2.3 CHAIN-OF-THOUGHT PROMPT GENERATION AND ZERO-SHOT CLASSIFICATION

SPELL introduces chain-of-thought (CoT) prompting to leverage molecular and spatial information
for each cell. Our zero-shot approach uses pre-trained LLMs to classify cells into known classes
without fine-tuning, relying on prompts enriched with training-derived marker genes.The marker
genes serve as domain knowledge in the prompt, akin to providing a dictionary of terms in a text
classification task.The CoT prompt (Figure 1) comprises:

A summary of the top marker genes.
The norm of the spatial embedding quantifies the magnitude of
the spatial context,which may reflect how densely connected or
isolated a cell is within its neighborhood.
A structured reasoning sequence that proposes the likely cell type.

These prompts are then processed through a zero-shot classification pipeline, employing various
models from our selection. Each model receives candidate cell-type labels and produces predictions
with associated confidence scores. Even though LLMs are not explicitly trained on spatial data, they
can treat the spatial norm as an additional feature or contextual cue within the prompt.

2.3 EVALUATION AND VISUALIZATION

We assessed the performance of the models using a test dataset comprising 100 cells. Key perfor-
mance indicators included overall accuracy and F1 scores. To illustrate class-specific performance,
we used confusion matrices. Furthermore, we conducted comparative analyses between the com-
plete pipeline and a variant without spatial context, enabling a deeper understanding of the impact
of spatial data on model effectiveness.
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3 RESULTS AND DISCUSSION

Our evaluation focused on five distinct models within the SPELL framework, tested against the
MERFISH, MIBI-TOF and Stereo-seq datasets. These models leverage marker gene data and spatial
context through Chain-of-Thought (CoT) prompting. As shown in Figure 2 and Appendix A Fig-
ure 4, distilbart-mnli-12-1 and bart-large-mnli achieved the highest accuracies on
MERFISH and MIBI-TOF respectively, highlighting their capacity to handle complex classification
tasks with notable efficiency. In contrast, on the Stereo-seq dataset, distilbart-mnli-12-1i
and bart-large-mnli exhibited lower performance, highlighting how platform differences and
added complexity can affect zero-shot classification as shown in Table 1.
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Figure 2. Comparative performance of zero-shot classification models on MIBI-TOF data, illustrat-
ing class-wise accuracy for cell types.

Table 1 highlights the strong performance of advanced architectures like BART, which lever-
ages extensive natural language inference pretraining and rich contextual representations. Both
distilbart-mnli-12-1 and bart-large-mnli achieve high accuracy on MERFISH and
MIBI-TOF data - with the distilled model retaining much of the critical pre-trained knowledge de-
spite its reduced size - yet both struggle on the Stereo-Seq Drosophila dataset. This discrepancy
underscores how different technical platforms present distinct classification challenges: MERFISH
data may be less noisy and more uniform, while Drosophila data incorporate a temporal compo-
nent that adds complexity. These findings suggest that future work must explicitly account for these
platform-driven biases when deploying zero-shot models, potentially through hybrid architectures
that dynamically adapt to dataset topology.

3.1 ABLATION STUDY

To assess the contribution of spatial context, we ablated the model such that the CoT prompt was
generated solely using the marker gene summary (i.e., omitting the spatial embedding norm and re-
lated narrative, Appendix A). Classification performance was then compared between the full model
and the ablated variant. As detailed in the Appendix A Table 2, the results demonstrate a signif-
icant decline in performance without the spatial context, highlighting its critical role in enhancing
classification accuracy, thus confirming the essential role of spatial context, aligning with biological
principles of microenvironment influence.
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Table 1. Accuracy and F1 Scores for Zero-Shot Classification Models on MERFISH, MIBI-TOF,
and Stereo-Seq Data

Model MERFISH MIBI-TOF Stereo-Seq
Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

distilbart-mnli-12-1 0.640 0.558 0.390 0.269 0.210 0.080
bart-large-mnli 0.010 0.002 0.520 0.429 0.120 0.026
deberta-v3-base-
mnli-fever-anli-ling-
wanli-binary

0.150 0.039 0.510 0.362 0.080 0.012

deberta-v3-large-
zeroshot-v1.1-all-33

0.040 0.003 0.350 0.253 0.020 0.001

xlm-roberta-large-
xnli

0.160 0.075 0.030 0.013 0.070 0.009

4 CONCLUSION

This study introduces SPELL, a novel framework for zero-shot cell type classification in spatial
transcriptomics, leveraging spatial prompting to integrate molecular and spatial data into structured
natural language prompts. By harnessing the reasoning capabilities of pre-trained large language
models (LLMs) without task-specific fine-tuning, SPELL uses chain-of-thought prompts enriched
with training-derived marker genes and spatial embedding norms to classify cell types. We vali-
dated our methodology across MERFISH, MIBI-TOF, and Stereo-seq datasets, attaining good accu-
racy and F1 scores with interpretable reasoning steps. Ablation studies confirm that spatial context
significantly boosts classification accuracy, highlighting its critical role. Future work will focus
on integrating advanced spatial features, optimizing marker selection, and validating across diverse
tissues and platforms. By minimizing the need for extensive labeled datasets, SPELL provides a
scalable and interpretable solution for cell type classification in spatial transcriptomics.

REFERENCES

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Advances in Neural Information Processing Systems, volume 33, pp. 1877–
1901, 2020.

K. H. Chen, A. N. Boettiger, J. R. Moffitt, S. Wang, and X. Zhuang. Rna imaging. spatially resolved,
highly multiplexed rna profiling in single cells. Science, 348(6233):aaa6090, 2015.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek,
Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Un-
supervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116, 2019.

Felix J Hartmann, Dunja Mrdjen, Erin McCaffrey, David R Glass, Noah F Greenwald, Anusha
Bharadwaj, Zumana Khair, Sanne GS Verberk, Alex Baranski, Reema Baskar, et al. Single-cell
metabolic profiling of human cytotoxic t cells. Nature biotechnology, 39(2):186–197, 2021.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention. arXiv preprint arXiv:2006.03654, 2020.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style
pre-training with gradient-disentangled embedding sharing. corr abs/2111.09543 (2021). arXiv
preprint arXiv:2111.09543, 2021.

Hugging. Hugging face: The ai community building the future, 2025. URL https:
//huggingface.co/models?pipeline_tag=zero-shot-classification. Ac-
cessed: 2025-02-12.

5

https://huggingface.co/models?pipeline_tag=zero-shot-classification
https://huggingface.co/models?pipeline_tag=zero-shot-classification


Published as a conference paper at ICLR 2025

Moritz Laurer, Wouter van Atteveldt, Andreu Casas, and Kasper Welbers. Building efficient univer-
sal classifiers with natural language inference. arXiv preprint arXiv:2312.17543, 2023.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461, 2019.

J. R. Moffitt, D. Bambah-Mukku, S. W. Eichhorn, E. Vaughn, K. Shekhar, J. D. Perez, N. D. Rubin-
stein, J. Hao, A. Regev, C. Dulac, and X. Zhuang. Molecular, spatial, and functional single-cell
profiling of the hypothalamic preoptic region. Science, 362(6416):eaau5324, 2018.

Giovanni Palla, Hannah Spitzer, Michal Klein, David Fischer, Anna Christina Schaar,
Louis Benedikt Kuemmerle, Sergei Rybakov, Ignacio L Ibarra, Olle Holmberg, Isaac Virshup,
et al. Squidpy: a scalable framework for spatial omics analysis. Nature methods, 19(2):171–178,
2022.

Xiaojie Qiu, Daniel Y Zhu, Yifan Lu, Jiajun Yao, Zehua Jing, Kyung Hoi Min, Mengnan Cheng,
Hailin Pan, Lulu Zuo, Samuel King, et al. Spatiotemporal modeling of molecular holograms.
Cell, 187(26):7351–7373, 2024.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.
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A APPENDIX

Prompt including spatial information.

prompt = (
"We are classifying a MERFISH cell based on its gene expression and spatial context.\n"
"Let’s think step by step:\n"
f"Step 1: The cell shows high expression of these marker genes: {gene_summary}.\n"
f"Step 2: The spatial embedding norm is approximately {spatial_norm:.2f}, suggesting its local neighborhood structure.\n"
"Step 3: Based on the marker genes and spatial context, which class best describes this cell?\n"
"Answer with only the class name."

)

Prompt with spatial information excluded.

prompt = (
"We are classifying a MERFISH cell based on its gene expression and spatial context.\n"
"Let’s think step by step:\n"
f"Step 1: The cell shows high expression of these marker genes: {gene_summary}.\n"
"Step 2: Based on the marker genes, which class best describes this cell?\n"
"Answer with only the class name."

)

B DESCRIPTION OF ZERO-SHOT CLASSIFICATION MODELS

DISTILBART-MNLI-12-1 (LEWIS ET AL., 2019; SANH ET AL., 2019)

Size & Architecture: A distilled version of BART, offering a smaller, more efficient model while
preserving key capabilities.
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Figure 3. Representative slices from the Drosophila and MERFISH datasets used for evaluation in
our SPELL framework. a)Representative slice from the Drosophila Stereo-seq dataset. b) MERFISH
slice from the mouse hypothalamic preoptic region
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Figure 4. Comparative performance of zero-shot classification models on MERFISH Data. The
figure displays confusion matrices for five different zero-shot learning models applied to classify
cell types in MERFISH data. Each panel (a-e) corresponds to a model, illustrating the classification
accuracy across various cell types

Training: Fine-tuned on the MNLI dataset for natural language inference (NLI) tasks.
Prior Performance:Matches 97% of BART-large’s accuracy on MNLI with 40% faster inference .
Selection Rationale: Its efficiency and strong semantic reasoning make it attractive for rapid infer-
ence.

BART-LARGE-MNLI (LEWIS ET AL., 2019)

Size & Architecture: The full-scale BART model with a large number of parameters((406M pa-
rameters) and deep contextual representations.
Training: Pre-trained as a denoising autoencoder, then fine-tuned on MNLI.
Prior Performance: Achieves 90% + accuracy on MNLI and robust zero-shot transfer.
Selection Rationale: Gold-standard baseline for English zero-shot tasks..
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Table 2. Accuracy and F1 scores for zero-shot classification models on MERFISH data excluding
spatial embedding information in CoT prompt

Model Identifier Accuracy F1-Score

distilbart-mnli-12-1 0.490 0.338
xlm-roberta-large-xnli 0.150 0.039
deberta-v3-large-zeroshot-v1.1-all 0.020 0.003
deberta-v3-base-mnli-fever-anli-ling-wanli-binary 0.130 0.037
Bart-large-mnli 0.040 0.003

DEBERTA-V3-BASE-MNLI-FEVER-ANLI-LING-WANLI-BINARY (HE ET AL.,
2020; 2021; LAURER ET AL., 2023)

Size & Architecture: DeBERTa-v3-base (183M parameters) with disentangled attention and en-
hanced mask decoder.
Training: Fine-tuned on MNLI, FEVER, ANLI, and LingWANLI reformulated as binary NLI tasks
(entailment vs. non-entailment).
Prior Performance: Achieved state-of-the-art results on several NLI benchmarks.
Selection Rationale: Its diverse fine-tuning captures broad inference cues suitable for complex
classification tasks.

DEBERTA-V3-LARGE-ZEROSHOT-V1.1-ALL-33 (HE ET AL., 2020; 2021;
LAURER ET AL., 2023)

Size & Architecture: The large version of DeBERTa, with increased parameters for deeper seman-
tic understanding.
Training: Fine-tuned on 33 datasets (e.g., MNLI, ANLI, SciTail) converted to NLI format for broad
zero-shot generalization.
Prior Performance: Exhibits superior zero-shot accuracy, albeit at a higher computational cost.
Selection Rationale: Its enhanced capacity and reasoning abilities make it ideal for challenging
datasets.

XLM-ROBERTA-LARGE-XNLI (CONNEAU ET AL., 2019)

Size & Architecture: XLM-RoBERTa-large (550M parameters), pre-trained on 100+ languages.
Training: Fine-tuned on XNLI (cross-lingual MNLI extension) for multilingual NLI.
Prior Performance: Demonstrated robustness and high zero-shot performance in multilingual con-
texts.
Selection Rationale: Its multilingual training enhances generalization and robustness across diverse
domains.
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