
Under review as a conference paper at ICLR 2023

BIASES IN EVALUATION OF MOLECULAR OPTIMIZA-
TION METHODS AND BIAS REDUCTION STRATEGIES

Anonymous authors
Paper under double-blind review

ABSTRACT

We are interested in in silico evaluation methodology for molecular optimization
methods. Given a sample of molecules and their properties of our interest, we
wish not only to train a generator of molecules that can find those optimized with
respect to a target property but also to evaluate its performance accurately. A
common practice is to train a predictor of the target property on the sample and
use it for both training and evaluating the generator. We theoretically investigate
this evaluation methodology and show that it potentially suffers from two biases;
one is due to misspecification of the predictor and the other to reusing the same
sample for training and evaluation. We discuss bias reduction methods for each of
the biases, and empirically investigate their effectiveness.

1 INTRODUCTION

Molecular optimization aims to discover novel molecules with improved properties, which is often
formulated as reinforcement learning by modeling the construction of a molecule using a Markov
decision process. The performance of such agents is measured by the quality of generated molecules.
In the community of machine learning, most of the molecular optimization methods have been
verified by computer simulation. Since most of the generated molecules are novel, their properties
are unknown and we have to resort to a predictor to estimate the properties. However, little attention
has been paid to how reliable such estimates are, except for a few empirical studies (Renz et al., 2019;
Langevin et al., 2022), making the existing performance estimates less reliable. In this paper, we
study the statistical properties of such performance estimators to enhance our understanding of the
evaluation protocol and we discuss several directions to improve it.

Let us first introduce a common practice to estimate the performance. Let S⋆ be a set of molecules,
f⋆ : S⋆ → R be a property function evaluating the target property of the input molecule, and D =
{(mn, f

⋆(mn)) ∈ S⋆ ×R}Nn=1 be a sample. We typically train a predictor f(m;D) using D, regard
it as the true property function, and follow the standard evaluation protocol of online reinforcement
learning. That is, an agent is trained so as to optimize the properties of discovered molecules
computed by f(m;D), and its performance is estimated by letting it generate novel molecules and
estimating their properties by f(m;D). We call this a plug-in performance estimator (section 2.1).

Our research question is how accurate the plug-in performance estimator is as compared to the true
performance computed by f⋆. We first point out that the plug-in performance estimator is biased
in two ways, indicating that it is not reliable in general (section 2.2). The first bias called a model
misspecification bias comes from the deviation between the predictor and the true property function
evaluated over the molecules discovered by the learned agent. This bias is closely related to the one
encountered in covariate shift (Shimodaira, 2000). It grows if molecules discovered by the agent
become dissimilar to those used to train the predictor. The second bias called a reusing bias is
caused by reusing the same dataset for training and testing the agent. Due to these biases, the plug-in
performance estimator is not necessarily a good estimator of the true performance.

We then discuss strategies to reduce these two biases. Section 3.1 introduces three approaches
to reducing the misspecification bias. Since it is caused by covariate shift, it can be reduced by
training the predictor taking it into account (section 3.1.1) and/or by constraining the agent so that
the generated molecules become similar to those in the sample (section 3.1.2). Yet another approach
is to use a more sophisticated estimator called a doubly-robust performance estimator (section 3.1.3).

1

Under review as a conference paper at ICLR 2023

Our idea to correct the reusing bias comes from the analogy to model selection (Konishi & Kitagawa,
2007), whose objective is to estimate the test performance by correcting the bias of the training
performance, i.e., the performance computed by reusing the same dataset for training and testing.
Given the analogy, one may consider train-test split could be the first choice. We however argue that
it is not as effective as that applied to model selection due to the key difference between our setting
and model selection; the test set in model selection is used to take expectation, while that in our
setting is used to train a predictor, which is much more complex than expectation. This complexity
introduces a non-negligible bias to the train-test split estimator, resulting in a less accurate bias
estimation (section 3.2.1). We instead propose to use a bootstrap method in section 3.2.2, which is
proven to estimate the reusing bias more accurately than the train-test split method does.

We empirically validate our theory in section 4. First, we quantify the two biases, and confirm that
both of them are non-negligible, and the reusing bias increases as the sample size decreases, as
predicted by our theory. Second, we assess the effectiveness of the bias reduction methods, and
confirm that the reusing bias can be corrected, while the misspecification bias can be reduced but at
the cost of performance degradation of the agent.

Notation. For any distribution G, let Ĝ ∼ GN denote the empirical distribution of a sample of N
items independently drawn from G. For a set X , let δx be Dirac’s delta distribution at x ∈ X . For
any integer M ∈ N, let [M] := {0, . . . ,M − 1}. For any set A, P(A) denotes the set of probability
distributions defined over A.

Problem setting. We define a molecular optimization problem using a Markov decision pro-
cess (MDP) of length H + 1 (H ∈ N). See appendix A for concrete examples. Let S be a set
of states, and s⊥ ∈ S be the terminal state. Let S⋆ ⊆ S be a subset of states that correspond
to valid molecules and the rest of the states correspond to possibly incomplete representations of
molecules (invalid molecules). Let A be a set of actions that transform a valid or invalid molecule
into another one. There exists the terminal action a⊥ ∈ A that evaluates the property of the molecule
at step H , after which the state transits to the terminal state s⊥. For each step h ∈ [H + 1], let
Th : S × A → P(S) be a state transition distribution, rh : S × A → R be a reward function, and
ρ0 ∈ P(S) be the initial state distribution. We assume that the set of states at step H is limited to S⋆,
and the reward function is defined as rh(s, a) = 0 for h ∈ [H] and rH(s, a⊥) = f⋆(s) for s ∈ S⋆.
Let M = {S,A, {Th}Hh=0, ρ0, H} be the dynamical model of the MDP. Throughout the paper, we
assume we know M and omit the dependency on it in expressions.

Let Π be the set of policies and π = {πh(· | s)}Hh=0 ∈ Π be a policy modeled by a probability
distribution over A conditioned on s ∈ S. At each step h ∈ [H + 1], the agent takes action ah
sampled from πh(· | sh). The performance of a policy is measured by the expected cumulative
reward, J⋆(π) := Eπ[

∑H
h=0 rh(Sh, Ah)] = Eπ[f⋆(SH)], where Eπ[·] is the expectation with respect

to the Markov process induced by applying policy π on M. Letting pπh ∈ P(S⋆) be the distribution
of states visited by policy π at step h ∈ [H + 1], the expected cumulative reward is alternatively
expressed as, J⋆(π) = ES∼pπ

H
f⋆(S).

In practice, the property function is not available and instead a sample from it, D = {(mn, f
⋆(mn)) ∈

S⋆ × R}Nn=1, is available. Let us assume that each tuple is independently distributed according to
G ∈ P(S⋆ × R). Let GS ∈ P(S⋆) be the marginalized distribution over S⋆ induced from G.
For a theoretical reason clarified in appendix B, we use the empirical distribution of the sample,
Ĝ ∈ P(S⋆×R), rather than the sample itself (assumption 10) and we call Ĝ an empirical distribution
and a sample interchangeably.

Let us define a policy learner απ : P(S⋆×R) → Π, an algorithm to learn a policy from a distribution
over S⋆ × R. It typically receives a sample Ĝ and outputs a policy, which we denote π̂ := απ(Ĝ).
Our objective is to evaluate its performance J⋆(π̂) only given access to απ , Ĝ, and M.

2 BIASES OF PLUG-IN PERFORMANCE ESTIMATOR

A widely used approach to estimating J⋆(π̂) is a plug-in performance estimator (section 2.1). We
point out that it is biased in two ways (section 2.2) and theoretically characterize these biases in
sections 2.3 and 2.4.

2

Under review as a conference paper at ICLR 2023

2.1 PLUG-IN PERFORMANCE ESTIMATOR

For any function f : S⋆ → R and policy π, let us define a plug-in performance function,

JPI(π, f) := Eπ[f(SH)]. (1)

Let αf : P(S⋆ × R) → (S⋆ → R) be an algorithm to learn a predictor, typically by minimizing the
loss function averaged over the input distribution. Let π̂ = απ(Ĝ) be a policy trained using Ĝ and
f̂ := αf (Ĝ) be a predictor trained using the same Ĝ. Then, the plug-in performance estimator is
defined as JPI(π̂, f̂), which is often used as a proxy for the true performance, J⋆(π̂).

2.2 BIAS DECOMPOSITION

The plug-in performance estimator is biased in two ways; the first bias comes from model
misspecification of the predictor, and the second one is due to reusing the same sample for
learning a policy and a predictor. Let us define J̃PI(G1, G2) := JPI(απ(G1), αf (G2)) and
∆PI(G1, G2) := J̃PI(G1, G2) − J⋆(απ(G1)). The quantity J̃PI(G1, G2) denotes the estimated
performance of a policy trained with distribution G1 evaluated by a predictor trained with G2, and
∆PI(G1, G2) denotes the deviation of the estimated performance from the ground truth. Then, the
bias we care is denoted by EĜ∼GN∆PI(Ĝ, Ĝ), which is decomposed as shown in theorem 1.
Theorem 1. The bias is decomposed into a reusing bias and a misspecification bias as follows:

EĜ∼GN∆PI(Ĝ, Ĝ) =EĜ∼GN [J̃PI(Ĝ, Ĝ)− J̃PI(Ĝ,G) + J̃PI(Ĝ,G)− J⋆(π̂)]

=EĜ∼GN [J̃PI(Ĝ, Ĝ)− J̃PI(Ĝ,G)]︸ ︷︷ ︸
Reusing bias

+EĜ∼GN∆PI(Ĝ,G)︸ ︷︷ ︸
Misspecification bias

. (2)

2.3 MISSPECIFICATION BIAS

Letting f∞ := αf (G), the squared misspecification ∆PI(Ĝ,G)2 is upperbounded by Jensen’s
inequality as,

∆PI(Ĝ,G)2 =
(
Eπ̂(f∞(SH)− f⋆(SH))

)2 ≤ ES∼pπ̂
H
(f∞(S)− f⋆(S))2. (3)

Assuming that f∞ = argminf ES∼GS
(f(S) − f⋆(S))2 holds, the bias increases if f∞ fails to

predict the properties of molecules generated by policy π̂, which occurs when the predictor is
misspecified (i.e., f∞ ̸= f⋆) and pπ̂H and GS are largely deviated (i.e., the discovered molecules are
not similar to those in the sample).

2.4 REUSING BIAS

The former term of equation 2,

bNPI(G) := EĜ∼GN [J̃PI(Ĝ, Ĝ)− J̃PI(Ĝ,G)], (4)

quantifies the bias caused by reusing the same finite sample for training and testing a policy, which
we call a reusing bias1.

Let us theoretically analyze the reusing bias, assuming the sample size N is moderately large such that
the asymptotic expansions are valid but O(1/N) term cannot be ignored. We show in proposition 2
that the reusing bias is O(1/N). See appendix B for the assumptions and appendix D.2 for its proof.
Proposition 2. Under assumptions 10 and 12,

bNPI(G) =
1

2N
EX∼G

[
2J̃

(1,1)
G,G (δX −G, δX −G) + J̃

(0,2)
G,G (δX −G, δX −G)

]
+O(1/N2),

holds, indicating that bNPI(G) = O(1/N) where J̃
(1,1)
G,G and J̃

(0,2)
G,G are the (1, 1)-st and (0, 2)-nd

Fréchet derivative of J̃PI(G1, G2) at (G1, G2) = (G,G).

1The reusing bias is caused by sample reuse as well as the finiteness of the sample, which is clear when the
policy is independent from Ĝ; the reusing bias still exists in such a case if f̂ ̸= f∞.

3

Under review as a conference paper at ICLR 2023

In particular, if the policy is optimal and the estimated property function is unbiased, i.e., EĜ∼GN f̂ =
f∞ (which is true at least for a linear model), we can prove that the bias is optimistic (proposition 3).
See appendix E for its proof.

Proposition 3. Assume EĜ∼GN f̂ = f∞ and π̂ = argmaxπ∈Π JPI(π, f̂) hold. Then, bNPI(G) ≥ 0.

3 BIAS REDUCTION STRATEGIES

We have witnessed that the plug-in performance estimator is biased in two ways. In this section, we
discuss how to reduce these biases to obtain reliable performance estimates.

3.1 REDUCING MISSPECIFICATION BIAS

There are mainly three approaches to reducing the misspecification bias, ∆PI(Ĝ,G). The first one
is to train the predictor considering the covariate shift, a mismatch between training and testing
distributions (section 3.1.1). The second approach is to constrain a policy such that the molecules
discovered by the policy become similar to those in the sample Ĝ (section 3.1.2). These are mainly
motivated by minimizing the right-hand side of equation 3. The third one is motivated by a standard
technique in contextual bandit, the doubly-robust performance estimator instead of the plug-in
performance estimator (section 3.1.3).

Before going into details, let us introduce the notion of importance weight, which is used extensively
to reduce the misspecification bias. Let F ∈ P(S⋆) be any probability distribution over molecules
whose support is larger than that of pπH . Let (pπH/F)(s) := pπH(s)/F (s) (s ∈ S⋆) denote the
importance weight between them, and let αw : Π × P(S⋆) → (S⋆ → R≥0) denote an algorithm
that receives a policy and a distribution over molecules and outputs the importance weight between
the state distribution induced by the policy and the distribution. We typically use the algorithm by
substituting sample Ĝ from G for the distribution, expecting that αw(π, Ĝ) ≈ pπH/G.

3.1.1 COVARIATE SHIFT

The misspecification bias can be reduced by minimizing the right-hand side of equation 3, which
is the mean squared error over S ∼ pπ̂H . The predictor f∞ is usually trained by minimizing
ES∼GS

(f(S)− f⋆(S))2 with respect to f and does not necessarily minimize the right-hand side of
equation 3 due to covariate shift (Shimodaira, 2000), i.e., the mismatch between the training and
testing distributions. One approach suggested by the author to alleviating it is to train the predictor by
weighted maximum-likelihood estimation. Let us define the algorithm as,

αλ
f (w,G) = argmin

f∈F
ES∼Gw(S)

λ(f(S)− f⋆(S))2, (5)

where w is any importance weight and λ ∈ [0, 1] controls the bias and variance of the estimated
predictor2. By substituting αλ

f (w,G) for αf (G), the misspecification bias will be reduced.

3.1.2 CONSTRAIN A POLICY

The first approach does not always work. If pπ̂H and G are not close enough, the effective sample size
of the weighted maximum-likelihood estimation becomes small, leading to poor estimation. This
suggests that not all policy learners can be accurately evaluated; those whose state distribution pπH is
deviated from G are difficult to be evaluated.

Let us assume that the policy is obtained by solving the following optimization problem: απ(G) =
argminπ∈Π ℓ(π;G). While a natural approach is to add a divergence between the generator and the
data distribution P to the objective function as a regularization term, it is computationally expensive,
especially when the length of MDP, H , is large. We instead propose to regularize the policy, inspired
by behavior cloning (Fujimoto & Gu, 2021). Let us first introduce behavior cloning, and then, discuss
how to apply its idea to our problem setting.

2While λ = 1 is optimal for N → ∞, it will increase the variance for a finite sample size N , and a smaller
λ is favored.

4

Under review as a conference paper at ICLR 2023

Behavior cloning regularizes the policy so that the policy imitates a behavior policy that generates
the data. Let us assume that there exists a behavior policy πb that induces the data distribution, i.e.,
pπb

H (s) = G(s) for s ∈ S⋆, which may not be available in our setting. Behavior cloning employs the
following regularized objective function: ℓ(π;G)− ν

H+1

∑H
h=0 ESh∼p

πb
h ,Ah∼πb(Sh)

[log π(Ah | Sh)],
where ν ≥ 0 is a hyperparameter controlling behavior cloning. The larger ν is, the more the learned
policy resembles the behavior policy, which in turn will make pπH close to the data distribution, and
thus, we expect to reduce the misspecification bias.

A technical challenge in applying behavior cloning to our setting is that πb is not available. Our key
observation to this challenge is that while πb is not available, it is often the case that a trajectory
towards each molecule in the dataset can be reconstructed. For example, in an MDP that constructs a
molecule atom-wisely (You et al., 2018), such a trajectory is easily obtained by removing atoms one
by one from the molecule; in another MDP that constructs a molecule by chemical reactions (Gottipati
et al., 2020), since each molecule in the dataset is assumed to be synthesizable (because the molecules
in the dataset do exist in reality and thus are synthesizable), such a trajectory is easily obtained at least
for those molecules in the dataset. Letting π−1

b (m) = (s0, a0, s1, a1, . . . , sH = m) be a (potentially
random) function to reconstruct a trajectory from a molecule, we propose to train a policy with
regularization to the data distribution by the following optimization problem:

αν
π(G) := argmin

π∈Π
ℓ(π;G)− ν

H + 1

H∑
h=0

EM∼GES0,A0,...,SH∼π−1
b (M) [log π(Ah | Sh)] . (6)

Given the discussion above, at least αν
π(Ĝ) can be computed. Although this regularization is not

sufficient to constrain the divergence between pπ̂H and G (which has been discussed in the literature
of imitation learning), we consider the idea of behavior cloning is a simple yet effective heuristic,
which will be investigated in the experiment.

3.1.3 DOUBLY-ROBUST PERFORMANCE ESTIMATOR

The third approach to reducing the misspecification bias is a doubly-robust performance estimator,
which has been applied in contextual bandit (Dudı́k et al., 2014) and offline reinforcement learn-
ing (Tang et al., 2020) as an alternative to the plug-in performance estimator. Noticing that the
performance can also be estimated via importance sampling, which we call an importance-sampling
performance estimator, the doubly-robust performance estimator combines these two estimators so
as to inherit their benefits.

Importance-Sampling Performance Estimator. Given that J⋆(π) = Eπf⋆(SH) =
ES∼GS

(pπH/GS)(S)f
⋆(S) holds, we obtain the importance-sampling performance estimator by

substituting an importance weight model for the true importance weight. For any importance weight
w : S⋆ → R≥0 and distribution F ∈ P(S⋆ × R), let us define an importance-sampling perfor-
mance function as, JIS(w,F) := ES∼FS

w(S)f⋆(S). Then, we obtain the importance-sampling
performance estimator as JIS(ŵ, Ĝ), where ŵ := αw(π̂, Ĝ).

Doubly-Robust Performance Estimator. The doubly-robust performance function combines the
plug-in and importance-sampling performance functions as follows:

JDR(π,w, f, F) := ES∼FS
[w(S)(f⋆(S)− f(S))] + Eπf(SH). (7)

This performance function is a combination of the two performance functions in that it is related to
them as, JDR(π, 0, f, F) = JPI(π, f) and JDR(π,w, 0, F) = JIS(w,F). By substituting π̂, ŵ, f̂ ,
and Ĝ for the arguments, we obtain the doubly-robust performance estimator as JDR(π̂, ŵ, f̂ , Ĝ).
Let us define, J̃DR(G1, G2) := JDR(απ(G1), αw(απ(G1), G2), αf (G2), G2). Then, the mis-
specification bias is expressed as, ∆DR(Ĝ,G) := J̃DR(Ĝ,G) − J⋆(π̂) = ES∼GS

(w∞(S) −
(pπ̂H/G)(S))(f⋆(S) − f∞(S)), where w∞ := αw(π̂, G). This suggests that the misspecification
bias disappears if the predictor or the importance weight is well-specified.

Discussion. Notice that the misspecification biases of JPI and JIS are given by the followings:

∆PI(Ĝ,G) =JPI(π̂, f)− J⋆(π̂) = ES∼GS

[
(pπ̂H/G)(s)(f∞(S)− f⋆(S))

]
,

∆IS(Ĝ,G) :=JIS(ŵ, G)− J⋆(π̂) = ES∼GS

[
(w∞(S)− (pπ̂H/G)(S))f⋆(S)

]
.

5

Under review as a conference paper at ICLR 2023

We can deduce that for S ∼ GS (i) if |f⋆(S)− f∞(S)| ≪ |f⋆(S)| holds, the misspecification bias
of JDR will be smaller than that of JIS, and (ii) if |w∞(S) − (pπ̂H/G)(S)| ≪ |(pπ̂H/G)(S)| holds,
the misspecification bias of JDR will be smaller than that of JPI. Therefore, if we can learn both of
the predictor and the importance weight well, the doubly-robust performance estimator is preferred
to the others. Otherwise, the doubly-robust one can be worse than the others.

3.1.4 SUMMARY

We have introduced three approaches to reducing misspecification bias. The first one trains the
predictor by weighted maximum likelihood estimation (equation 5). The second one constrains
the policy by behavior cloning (equation 6). The third one is the doubly-robust performance es-
timator (equation 7). Taking these into consideration, let the combined performance function
be, J̃λ,ν

DR (G1, G2) := JDR(α
ν
π(G1), αw(α

ν
π(G1), G2), α

λ
f (αw(α

ν
π(G1), G2), G2), G2), and the com-

bined performance estimator be J̃λ,ν
DR (Ĝ, Ĝ). We call the importance weight and the predictor an

evaluator. Note that proposition 2 holds for the combined performance estimator by further assuming
that w is normalized and entire. Proposition 3 holds for the importance sampling performance
estimator by further assuming the unbiasedness of the importance weight, but we have not found
natural assumptions for the doubly-robust one. See appendix E for details.

3.2 REDUCING REUSING BIAS

Given the discussion in the previous section, let us define the reusing bias for any J̃ ∈
{J̃PI, J̃IS, J̃DR, J̃

λ,ν
DR} as, bN (G) := EĜ∼GN

[
J̃(Ĝ, Ĝ)− J̃(Ĝ,G)

]
, and let us discuss how to reduce

the reusing bias. Our approach is to estimate the reusing bias and substract it from the performance
estimator. Such a bias reduction has been extensively discussed in the literature of information
criteria (Konishi & Kitagawa, 2007), which aim to estimate the test performance of a predictor in a
supervised learning setting by correcting the bias of its training performance. There are mainly two
approaches: train-test split method and bootstrap method.

3.2.1 BIAS ESTIMATION BY TRAIN-TEST SPLIT

The first approach estimates the bias via train-test split of the sample. The sample D is randomly
split into Dtrain and Dtest such that Dtrain ∩ Dtest = ∅ and Dtrain ∪ Dtest = D. Let Ĝtrain and
Ĝtest denote the corresponding empirical distributions. The reusing bias is estimated by bsplit(Ĝ) =

E[J̃(Ĝtrain, Ĝtrain)− J(Ĝtrain, Ĝtest)], where the expectation is with respect to the random split.

While this estimator seems to be reasonable, it is not recommended for our problem setting due to the
bias of the bias estimator. As demonstrated in proposition 4, the train-test split estimator has O(1/N)
bias, the same order as the bias bN (G) itself, and therefore, it is not reliable. Such a bias is due to the
non-linearlity of J̃(G1, G2) with respect to G2, the distribution used for testing3. See appendix D.2
for its proof and appendix G for the comparison with supervised learning.
Proposition 4. Suppose we randomly divide the sample such that |Dtrain| : |Dtest| = λ : (1− λ) for
some λ ∈ (0, 1). Under assumptions 10 and 12, EĜ∼GN [bsplit(Ĝ)] = bN (G) +O(1/N) holds.

Note that direct estimation of test performance by J̃(Ĝtrain, Ĝtest) is not recommended similarly,
unless the size of the test sample is sufficiently large. See appendix G for detailed discussion.

3.2.2 BOOTSTRAP BIAS ESTIMATION

An alternative approach to estimating the reusing bias (equation 4) is bootstrap (Efron & Tibshirani,
1994). A bootstrap estimator of the reusing bias bN (G) is obtained by plugging Ĝ into G: bN (Ĝ) =

EĜ⋆∼ĜN [J̃(Ĝ⋆, Ĝ⋆)− J̃(Ĝ⋆, Ĝ)]. Let Ĝ(m) (m ∈ [M]) be a bootstrap sample obtained by uniform-
randomly sampling data points N times from the original sample Ĝ with replacement. Then, its
Monte-Carlo approximation is, b̂N (Ĝ) = 1

M

∑M
m=1[J̃(Ĝ

(m), Ĝ(m))− J̃(Ĝ(m), Ĝ)]. In contrast to

3The standard supervised learning scenario does not suffer from this bias because the performance estimator
is linear with respect to the testing distribution.

6

Under review as a conference paper at ICLR 2023

the train-test split method, the bootstrap bias estimation can estimate the bias as stated in proposition 5.
See appendix D.2 for its proof.

Proposition 5. Under assumptions 10 and 12, EĜ∼GN [bN (Ĝ)] = bN (G) +O(1/N2) holds.

3.2.3 SUMMARY

We have introduced two reusing-bias estimators, referring to the literature of information criteria.
We have found that the train-test split estimator, one of the most popular estimators, cannot reliably
estimate the bias in our problem setting, although it works in supervised learning. In contrast, the
bootstrap bias estimator is shown to be less biased than the train-test split estimator and can estimate
the reusing bias more reliably. Therefore, we conclude that the bootstrap bias estimator is preferable
to the train-test split estimator.

From computational point of view, the bootstrap bias estimator requires us to train M agents and
M + 1 evaluators. We set M = 20 in the experiments given the result of a preliminary experiment.
Since the bootstrap procedure can be easily parallelized with low overhead, its wall-clock time can
be reduced in proportion to the computational resource.

4 EMPIRICAL STUDIES

Let us empirically quantify the two biases as well as the effectiveness of the bias reduction methods.
We first describe our experimental setup. See appendix H for full details to ensure reproduciability.

Molecular representation. All of the functions defined over molecules use the 1024-bit Morgan
fingerprint (Morgan, 1965; Rogers & Hahn, 2010) with radius 2 as a feature extractor.

Environment and Agent. We employ the environment and the agent by Gottipati et al. (2020)
with minor modifications. The agent receives a molecule as the current state, and outputs an action
consisting of a reaction template and a reactant. The environment, receiving the action, applies the
chemical reaction defined by the action to the current molecule to generate a product, which is then
set as the next state. This procedure is repeated for H times, and lastly the agent takes action a⊥
to be rewarded by the property of the final product. We set H = 1 to reduce the variance in the
estimated performance and better highlight the biases and their reduction. The agent is implemented
by actor-critic using fully-connected neural networks.

We use the reaction templates curated by Button et al. (2019) and prepare the reactants from the set
of commercially available substances in the same way as the original environment. The number of
reaction templates is 64, 15 of which require one reactant, and 49 of which require two reactants. The
number of reactants is 150,560.

Evaluators. As a predictor, we use a fully-connected neural network with one hidden layer of 96
units with softplus activations except for the last layer. It is trained by minimizing the risk defined
over S ∼ GS . As the importance weight, we use the kernel unconstrained least-squares importance
fitting (KuLSI) (Kanamori et al., 2012). In particular, we use the trained predictor except for the last
linear transformation as a feature extractor and compute the linear kernel using it.

Evaluation framework. To evaluate the biases, we need the true property function f⋆, which
however is not available in general. We thus design a semi-synthetic experiment using a real-world
dataset D0 = {(mn, f

⋆(mn)) ∈ S⋆ × R}N0
n=1. While any function S⋆ → R can be used as the true

property function f⋆, we substituted the predictor provided by Gottipati et al. (2020) for f⋆, which
was trained with the ChEMBL database (Gaulton et al., 2017) to predict pIC50 value associated
with C-C chemokine receptor type 5 (CCR5). With this property function, we have full access to
the environment, and we can construct an offline dataset D of an arbitrary sample size by running a
random policy on M, which is available in our setting.

To decompose the bias into the misspecification bias and the reusing bias, we need f∞, the predictor
obtained with full access to the data-generating distribution G. We approximate it by αf (Ĝtest),
where Ĝtest is the empirical distribution induced by a large sample Dtest of size 105 constructed
independently of D. This approximation is valid if |Dtest| is sufficiently large (see proposition 23).
Then, the misspecification bias can be estimated by J̃(Ĝ, Ĝtest) − J⋆(π̂) and the reusing bias by

7

Under review as a conference paper at ICLR 2023

102 103 104

Training sample size
6.75

7.00

7.25

7.50

7.75

8.00

8.25

8.50

Pe
rfo

rm
an

ce

JPI(̂π, ̂f) JPI(̂π, f∞) J ⋆ (̂π)

10−1 100 101

Behavior cloning coefficient ν

6.0

6.5

7.0

7.5

8.0

Pe
rfo

rm
an

ce

J− −
PI J− +

PI J+ −
PI JPI(̂π, f∞) J ⋆ (̂π)

10−1 100 101

Behavior cloning coefficient ν

0.0

0.2

0.4

0.6

0.8

1.0

Bi
as

Misspecification bias
Reusing bias

Estimated reusing bias

Figure 1: Lines show means and shaded areas show standard deviations. (Left) Biases vs. the
sample size. JPI(π̂, f̂)− JPI(π̂, f

∞) corresponds to the reusing bias and JPI(π̂, f
∞)− J⋆(π̂) to the

misspecification bias. (Middle) Comparison between bias reduction methods. (Right) Comparison
between the misspecification bias, reusing bias, and the estimated reusing bias.

J̃(Ĝ, Ĝ)− J̃(Ĝ, Ĝtest). The performance estimators are defined by the expectation with respect to a
trajectory of a policy, and we estimate them by Monte-Carlo approximation with 1,000 trajectories.

Quantifying the two biases. First, we quantify the misspecification and reusing biases. In specific,
we aim to study the relationship between these biases and the sample size. We vary the training
sample size N in {26, 27, . . . , 213}. For each N , we generate five pairs of train and test sets, and
evaluate the biases as indicated above. We report the means and standard deviations.

Figure 1 (left) illustrates the result. We have three observations. First, when N = 27, the misspecifica-
tion bias, JPI(π̂, f

∞)−J⋆(π̂), was roughly twice as large as the reusing bias, JPI(π̂, f̂)−JPI(π̂, f
∞),

demonstrating that both are non-negligible. Second, for N ≥ 27, the reusing bias increased as the size
of the training sample decreased, which coincides with proposition 2. The results for N < 27 did not
coincide with it because the sample size is not large enough for asymptotic expansion to be justified.
Third, the ground-truth performance of the policies was rather stable across different training sample
sizes. We found that the policies were similar to each other, suggesting that this environment has a
local optimum with a reasonably good performance (cf., the performance of a random policy is around
5.8). This also suggests that the policy learner in our experiment was insensitive to the particular
sample, and the reusing bias in this case is mainly caused by the finiteness of the sample to train the
predictor, not by reusing the same sample.

Quantifying Bias Reduction Methods. We then study the effectiveness of the bias reduction
methods presented in section 3. Since the behavior cloning coefficient ν will control the trade-off
between the misspecification bias and the performance of the learned policy, it should be determined
according to the user’s requirement, i.e., whether the accuracy of performance estimation or the actual
performance is prioritized. Therefore, we design an experiment to evaluate the effectiveness of the
bias reduction methods, varying ν in the range of {2−4, . . . , 24}.

Let Jb1b2
PI (b1, b2 ∈ {+,−}) be the plug-in performance estimator with covariate shift (b1 = +)

or without it (b1 = −) and with bootstrap bias reduction (b2 = +) or without it (b2 = −). Let us
define Jb1b2

DR accordingly for the doubly-robust performance estimator. We compare the performance
estimates by J−−

PI , J+−
PI , J−+

PI , and J−−
DR to see the effectiveness of each bias reduction strategy.

Figure 1 (middle) illustrates the performance estimates for N = 103. Since J−−
DR performs signifi-

cantly worse than the baseline J−−
PI , we omit it from the figure. See appendix I for the full result. We

observe that the bootstrap bias reduction worked well, while the benefit of the covariate shift strategy
is marginal. This indicates that the importance weight estimation did not work well in this setting.

Figure 1 (right) illustrates the biases in J−−
PI and the reusing bias estimated by the bootstrap method.

As we expected, the misspecification bias tends to decrease as we increase ν. The reusing bias is
under-estimated, but the estimated reusing bias contributes to bias correction.

In summary, we confirm that (i) behavior cloning can reduce the misspecification bias at the expense
of performance degradation, (ii) the reusing bias can be estimated and corrected by bootstrap, and
(iii) the methods using importance weights did not perform well in our setting.

8

Under review as a conference paper at ICLR 2023

5 RELATED WORK

Our primary contribution is the comprehensive study of theoretically-sound evaluation methodology
for in silico molecular optimization algorithms using real-world data. Since the pioneering work
by Gómez-Bombarelli et al. (2018), a number of studies on this topic have been published in the
communities of machine learning and cheminformatics to advance the state-of-the-art. While some
of them (Gómez-Bombarelli et al., 2016; Takeda et al., 2020; Das et al., 2021) have been validated in
vitro, many others have been evaluated in silico.

Early studies (Kusner et al., 2017) adopted the octanol-water partition coefficient, logP , penalized
by the synthetic accessibility score (Ertl & Schuffenhauer, 2009) and the number of long rings as the
target property to be maximized. The score can be easily computed by RDKit, and is often implicitly
regarded as a reliable score computed by an accurate simulator. Some recently consider that the
logP optimization is not appropriate as a benchmark task because it is easy to optimize (Brown et al.,
2019) or its prediction can be inaccurate (Yang et al., 2021), and alternative benchmark tasks have
been investigated; some of them propose a suite of benchmark tasks (Brown et al., 2019; Polykovskiy
et al., 2020) and the others use other property functions trained by real-world data (Olivecrona et al.,
2017; Li et al., 2018a; Jin et al., 2020; Gottipati et al., 2020; Xie et al., 2021). However, most of the
current evaluation protocols rely on the naive plug-in performance estimator.

As far as we are aware of, there are at least two empirical studies concerning about potential biases
in the plug-in performance estimator. Renz et al. (2019) pointed out that the plug-in performance
estimator is biased due to data reuse and random initialization of the predictor, while a follow-up
study by Langevin et al. (2022) attributed the bias to the train-test split used by Renz et al. (2019);
the train and test sets were far from being identically distributed. While these two pioneering studies
shed light on the potential flaw in the plug-in performance estimator, we have not fully understand it
partially because these studies are empirical.

Our contribution to this line of studies is that we not only empirically but also theoretically demonstrate
potential biases in the current evaluation methodology and present bias reduction methods. This also
unveils why the logP optimization task has been hacked and suggests that the alternative benchmark
tasks will be hacked as long as no bias reduction method is applied. The logP function implemented
in RDKit (Wildman & Crippen, 1999) is obtained by fitting a linear model to a dataset of experimental
logP values, and is in fact a predictor. Our theory suggests that unless the bias reduction methods are
applied, the learned agent generates unrealistic molecules that are far from those in the dataset (which
has been often reported in logP optimization), and the resultant performance estimate is biased. This
mechanism is also valid for the alternative benchmark tasks, and we conjecture they will also be
hacked sooner or later. It also suggests that by incorporating bias reduction methods, we can reliably
estimate the performance and therefore can safely compare different methods even when using the
logP optimization task.

Our work shares a similar objective with a seminal work by Ito et al. (2018), which aims to reduce
the reusing bias that appears when solving an optimization problem whose parameters are estimated
from data. A major contribution to this literature is to relax their assummption that the predictor
is well-specified. This introduces the concept of misspecification bias, which was confirmed to
be non-negligible in our application. Another minor contribution is to formalize their reusing-bias
correction method by bootstrap and investigate the theoretical properties.

6 CONCLUSION AND FUTURE WORK

We have discussed that the plug-in performance estimator is biased in two ways; one is due to model
misspecification and the other is due to reusing the same dataset for training and testing. In order to
reduce these biases to obtain more accurate estimates, we recommend to (i) add a constraint to the
policy such that the state distribution stays close to the data distribution and (ii) correct the bias by
bootstrapping if it is non-negligible and we can afford to do it.

A future research direction is to improve the importance weight estimation so that the other bias
reduction methods work. Another is to constrain a policy with less performance degradation. Since
the methods using variational autoencoders (Gómez-Bombarelli et al., 2018; Jin et al., 2018; Kajino,
2019) can naturally generate molecules similar to those in the data, such methods could be reevaluated.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Nathan Brown, Marco Fiscato, Marwin H S Segler, and Alain C Vaucher. GuacaMol: Benchmarking
Models for de Novo Molecular Design. Journal of Chemical Information and Modeling, 59(3):
1096–1108, 2019.

Alexander Button, Daniel Merk, Jan A Hiss, and Gisbert Schneider. Automated de novo molecular
design by hybrid machine intelligence and rule-driven chemical synthesis. Nature Machine
Intelligence, 1(7):307–315, 2019. ISSN 2522-5839. doi: 10.1038/s42256-019-0067-7. URL
https://doi.org/10.1038/s42256-019-0067-7.

Payel Das, Tom Sercu, Kahini Wadhawan, Inkit Padhi, Sebastian Gehrmann, Flaviu Cipcigan, Vijil
Chenthamarakshan, Hendrik Strobelt, Cicero dos Santos, Pin-Yu Chen, Yi Yan Yang, Jeremy
P K Tan, James Hedrick, Jason Crain, and Aleksandra Mojsilovic. Accelerated antimicrobial
discovery via deep generative models and molecular dynamics simulations. Nature Biomedical
Engineering, 5(6):613–623, 2021. ISSN 2157-846X. doi: 10.1038/s41551-021-00689-x. URL
https://doi.org/10.1038/s41551-021-00689-x.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011. ISSN
15324435. URL http://jmlr.org/papers/v12/duchi11a.html.

Miroslav Dudı́k, Dumitru Erhan, John Langford, and Lihong Li. Doubly Robust Policy Evaluation
and Optimization. Statistical Science, 29(4):485–511, dec 2014. ISSN 08834237, 21688745. URL
http://www.jstor.org/stable/43288496.

Bradley Efron and Robert J Tibshirani. An introduction to the bootstrap. CRC press, 1994.

Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like
molecules based on molecular complexity and fragment contributions. Journal of Chemin-
formatics, 1(1):8, 2009. ISSN 1758-2946. doi: 10.1186/1758-2946-1-8. URL https:
//doi.org/10.1186/1758-2946-1-8.

Scott Fujimoto and Shixiang Gu. A Minimalist Approach to Offline Reinforcement Learning.
In A Beygelzimer, Y Dauphin, P Liang, and J Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, 2021. URL https://openreview.net/forum?id=
Q32U7dzWXpc.

Anna Gaulton, Anne Hersey, Michał Nowotka, A Patrı́cia Bento, Jon Chambers, David Mendez,
Prudence Mutowo, Francis Atkinson, Louisa J Bellis, Elena Cibrián-Uhalte, Mark Davies, Nathan
Dedman, Anneli Karlsson, Marı́a Paula Magariños, John P Overington, George Papadatos, Ines
Smit, and Andrew R Leach. The ChEMBL database in 2017. Nucleic acids research, 45(D1):
D945–D954, jan 2017. ISSN 1362-4962 (Electronic). doi: 10.1093/nar/gkw1074.

Rafael Gómez-Bombarelli, Jorge Aguilera-Iparraguirre, Timothy D Hirzel, David Duvenaud, Dougal
Maclaurin, Martin A Blood-Forsythe, Hyun Sik Chae, Markus Einzinger, Dong-Gwang Ha, Tony
Wu, Georgios Markopoulos, Soonok Jeon, Hosuk Kang, Hiroshi Miyazaki, Masaki Numata,
Sunghan Kim, Wenliang Huang, Seong Ik Hong, Marc Baldo, Ryan P Adams, and Alan Aspuru-
Guzik. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual
screening and experimental approach. Nature Materials, 15(10):1120–1127, 2016.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous
representation of molecules. ACS Central Science, 2018.

Sai Krishna Gottipati, Boris Sattarov, Sufeng Niu, Yashaswi Pathak, Haoran Wei, Shengchao Liu,
Shengchao Liu, Simon Blackburn, Karam Thomas, Connor Coley, Jian Tang, Sarath Chandar,
and Yoshua Bengio. Learning to Navigate The Synthetically Accessible Chemical Space Using
Reinforcement Learning. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pp. 3668–3679. PMLR, 2020. URL http://proceedings.mlr.press/v119/
gottipati20a.html.

10

https://doi.org/10.1038/s42256-019-0067-7
https://doi.org/10.1038/s41551-021-00689-x
http://jmlr.org/papers/v12/duchi11a.html
http://www.jstor.org/stable/43288496
https://doi.org/10.1186/1758-2946-1-8
https://doi.org/10.1186/1758-2946-1-8
https://openreview.net/forum?id=Q32U7dzWXpc
https://openreview.net/forum?id=Q32U7dzWXpc
http://proceedings.mlr.press/v119/gottipati20a.html
http://proceedings.mlr.press/v119/gottipati20a.html

Under review as a conference paper at ICLR 2023

Shinji Ito, Akihiro Yabe, and Ryohei Fujimaki. Unbiased Objective Estimation in Predictive Optimiza-
tion. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 2176–2185.
PMLR, 2018. URL http://proceedings.mlr.press/v80/ito18a.html.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction Tree Variational Autoencoder for
Molecular Graph Generation. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 2323–2332. PMLR, 2018. URL https://proceedings.mlr.press/v80/
jin18a.html.

Wengong Jin, Dr.Regina Barzilay, and Tommi Jaakkola. Multi-Objective Molecule Generation using
Interpretable Substructures. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learn-
ing Research, pp. 4849–4859. PMLR, 2020. URL https://proceedings.mlr.press/
v119/jin20b.html.

Hiroshi Kajino. Molecular Hypergraph Grammar with Its Application to Molecular Optimization.
In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp.
3183–3191. PMLR, 2019. URL http://proceedings.mlr.press/v97/kajino19a.
html.

Takafumi Kanamori, Taiji Suzuki, and Masashi Sugiyama. Statistical analysis of kernel-based
least-squares density-ratio estimation. Machine Learning, 86(3):335–367, 2012. ISSN
1573-0565. doi: 10.1007/s10994-011-5266-3. URL https://doi.org/10.1007/
s10994-011-5266-3.

Sadanori Konishi and Genshiro Kitagawa. Information Criteria and Statistical Modeling. Springer
Publishing Company, Incorporated, 1st edition, 2007. ISBN 0387718869.

Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, and Alan Aspuru-Guzik. Self-
referencing embedded strings (SELFIES): A 100% robust molecular string representation. Machine
Learning: Science and Technology, 1(4):45024, oct 2020. doi: 10.1088/2632-2153/aba947. URL
https://doi.org/10.1088/2632-2153/aba947.

Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar Variational Autoencoder.
In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 1945–1954.
PMLR, 2017. URL https://proceedings.mlr.press/v70/kusner17a.html.

Maxime Langevin, Rodolphe Vuilleumier, and Marc Bianciotto. Explaining and avoiding failure
modes in goal-directed generation of small molecules. Journal of Cheminformatics, 14(1):20,
2022. ISSN 1758-2946. doi: 10.1186/s13321-022-00601-y. URL https://doi.org/10.
1186/s13321-022-00601-y.

Yibo Li, Liangren Zhang, and Zhenming Liu. Multi-objective de novo drug design with conditional
graph generative model. Journal of Cheminformatics, 10(1):33, 2018a. ISSN 1758-2946. doi: 10.
1186/s13321-018-0287-6. URL https://doi.org/10.1186/s13321-018-0287-6.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning Deep Generative
Models of Graphs, 2018b.

H L Morgan. The Generation of a Unique Machine Description for Chemical Structures-A Technique
Developed at Chemical Abstracts Service. Journal of Chemical Documentation, 5(2):107–113, may
1965. ISSN 0021-9576. doi: 10.1021/c160017a018. URL https://doi.org/10.1021/
c160017a018.

Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo
design through deep reinforcement learning. Journal of Cheminformatics, 9(1):48, 2017.
ISSN 1758-2946. doi: 10.1186/s13321-017-0235-x. URL https://doi.org/10.1186/
s13321-017-0235-x.

11

http://proceedings.mlr.press/v80/ito18a.html
https://proceedings.mlr.press/v80/jin18a.html
https://proceedings.mlr.press/v80/jin18a.html
https://proceedings.mlr.press/v119/jin20b.html
https://proceedings.mlr.press/v119/jin20b.html
http://proceedings.mlr.press/v97/kajino19a.html
http://proceedings.mlr.press/v97/kajino19a.html
https://doi.org/10.1007/s10994-011-5266-3
https://doi.org/10.1007/s10994-011-5266-3
https://doi.org/10.1088/2632-2153/aba947
https://proceedings.mlr.press/v70/kusner17a.html
https://doi.org/10.1186/s13321-022-00601-y
https://doi.org/10.1186/s13321-022-00601-y
https://doi.org/10.1186/s13321-018-0287-6
https://doi.org/10.1021/c160017a018
https://doi.org/10.1021/c160017a018
https://doi.org/10.1186/s13321-017-0235-x
https://doi.org/10.1186/s13321-017-0235-x

Under review as a conference paper at ICLR 2023

Abhishek Panigrahi, Raghav Somani, Navin Goyal, and Praneeth Netrapalli. Non-Gaussianity of
Stochastic Gradient Noise, 2019.

Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov, Oktai
Tatanov, Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy, Mark
Veselov, Artur Kadurin, Simon Johansson, Hongming Chen, Sergey Nikolenko, Alán Aspuru-
Guzik, and Alex Zhavoronkov. Molecular Sets (MOSES): A Benchmarking Platform for Molecular
Generation Models. Frontiers in Pharmacology, 11:1931, 2020. ISSN 1663-9812. doi: 10.
3389/fphar.2020.565644. URL https://www.frontiersin.org/article/10.3389/
fphar.2020.565644.

Philipp Renz, Dries Van Rompaey, Jörg Kurt Wegner, Sepp Hochreiter, and Günter Klambauer. On
failure modes in molecule generation and optimization. Drug Discovery Today: Technologies, 32-
33:55–63, 2019. ISSN 1740-6749. doi: https://doi.org/10.1016/j.ddtec.2020.09.003. URL https:
//www.sciencedirect.com/science/article/pii/S1740674920300159.

David Rogers and Mathew Hahn. Extended-Connectivity Fingerprints. Journal of Chemical Informa-
tion and Modeling, 50(5):742–754, may 2010. ISSN 1549-9596. doi: 10.1021/ci100050t. URL
https://doi.org/10.1021/ci100050t.

Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting the
log-likelihood function. Journal of Statistical Planning and Inference, 90(2):227–244, 2000.
ISSN 0378-3758. doi: https://doi.org/10.1016/S0378-3758(00)00115-4. URL https://www.
sciencedirect.com/science/article/pii/S0378375800001154.

Seiji Takeda, Toshiyuki Hama, Hsiang-Han Hsu, Victoria A Piunova, Dmitry Zubarev, Daniel P
Sanders, Jed W Pitera, Makoto Kogoh, Takumi Hongo, Yenwei Cheng, Wolf Bocanett, Hideaki
Nakashika, Akihiro Fujita, Yuta Tsuchiya, Katsuhiko Hino, Kentaro Yano, Shuichi Hirose, Hiroki
Toda, Yasumitsu Orii, and Daiju Nakano. Molecular Inverse-Design Platform for Material
Industries, pp. 2961–2969. Association for Computing Machinery, New York, NY, USA, 2020.
ISBN 9781450379984. URL https://doi.org/10.1145/3394486.3403346.

Ziyang Tang, Yihao Feng, Lihong Li, Dengyong Zhou, and Qiang Liu. Doubly Robust Bias
Reduction in Infinite Horizon Off-Policy Estimation. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=S1glGANtDr.

David Weininger. SMILES, a chemical language and information system. 1. Introduction to method-
ology and encoding rules. Journal of Chemical Information and Computer Sciences, 28(1):31–36,
1988.

Scott A Wildman and Gordon M Crippen. Prediction of Physicochemical Parameters by Atomic
Contributions. Journal of Chemical Information and Computer Sciences, 39(5):868–873, sep
1999. ISSN 0095-2338. doi: 10.1021/ci990307l. URL https://doi.org/10.1021/
ci990307l.

Jingfeng Wu, Wenqing Hu, Haoyi Xiong, Jun Huan, Vladimir Braverman, and Zhanxing Zhu.
On the Noisy Gradient Descent that Generalizes as SGD. In Hal Daumé III and Aarti Singh
(eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pp. 10367–10376. PMLR, 2020. URL https:
//proceedings.mlr.press/v119/wu20c.html.

Yutong Xie, Chence Shi, Hao Zhou, Yuwei Yang, Weinan Zhang, Yong Yu, and Lei Li. {MARS}:
Markov Molecular Sampling for Multi-objective Drug Discovery. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
kHSu4ebxFXY.

Xiufeng Yang, Tanuj Aasawat, and Kazuki Yoshizoe. Practical Massively Parallel Monte-Carlo Tree
Search Applied to Molecular Design. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=6k7VdojAIK.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph Convolutional Policy
Network for Goal-Directed Molecular Graph Generation. In Advances in Neural Information
Processing Systems 31, pp. 6412–6422, 2018.

12

https://www.frontiersin.org/article/10.3389/fphar.2020.565644
https://www.frontiersin.org/article/10.3389/fphar.2020.565644
https://www.sciencedirect.com/science/article/pii/S1740674920300159
https://www.sciencedirect.com/science/article/pii/S1740674920300159
https://doi.org/10.1021/ci100050t
https://www.sciencedirect.com/science/article/pii/S0378375800001154
https://www.sciencedirect.com/science/article/pii/S0378375800001154
https://doi.org/10.1145/3394486.3403346
https://openreview.net/forum?id=S1glGANtDr
https://doi.org/10.1021/ci990307l
https://doi.org/10.1021/ci990307l
https://proceedings.mlr.press/v119/wu20c.html
https://proceedings.mlr.press/v119/wu20c.html
https://openreview.net/forum?id=kHSu4ebxFXY
https://openreview.net/forum?id=kHSu4ebxFXY
https://openreview.net/forum?id=6k7VdojAIK

	Introduction
	Biases of Plug-in Performance Estimator
	Plug-in Performance Estimator
	Bias Decomposition
	Misspecification Bias
	Reusing Bias

	Bias Reduction Strategies
	Reducing Misspecification Bias
	Covariate Shift
	Constrain a Policy
	Doubly-Robust Performance Estimator
	Summary

	Reducing Reusing Bias
	Bias Estimation by Train-test Split
	Bootstrap Bias Estimation
	Summary

	Empirical Studies
	Related Work
	Conclusion and Future Work
	Examples of Generative Models
	Technical Assumptions
	Technical Background
	Taylor Expansion using Fréchet Derivative
	Properties of Entire Functions
	Entirety of Algorithms
	Stochastic Expansion

	Asymptotic Reusing Bias
	Reusing Bias for Bivariate Entire Functions
	Asymptotic Reusing Bias and Its Estimators

	Reusing Bias for Optimal Policies
	Analytical Reusing-Bias Estimation
	Train-test Split Method
	Experimental Settings
	Environment
	Agent
	Evaluators
	Computational Environment

	Full Experimental Result

