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ABSTRACT

We explore the use of matrix product operators (MPOs) to compress transformer-
based architectures. By factorizing full-rank weight matrices into tensor-train
product, MPOs reduce both memory footprint and computational cost, which
is critical for deployment on resource-constrained devices. Our experiments on
speaker identification using the LibriSpeech train-clean-360 subset show that
MPO-based models, and even their pruned variants, maintain high performance
with far fewer parameters than full-rank transformers. We detail the mathematical
principles underlying low-rank factorization and unstructured pruning and discuss
next steps for extending this approach to more complex tasks such as automatic
speech recognition (ASR).

1 INTRODUCTION

Transformers have achieved remarkable performance in audio processing tasks such as speaker
identification(1). However, their high computational cost can hinder deployment in low-resource
or real-time environments. Although Matrix Product Operator (MPO) techniques have been ex-
tensively studied in quantum physics and natural language processing(2)(3), their application to
speech tasks remains relatively under-explored. In a tensor train (or MPO) framework, a large,
high-dimensional weight matrix is decomposed into a series of smaller, interconnected core ten-
sors. Instead of storing and computing with a single, huge matrix, the model uses several compact
matrices that multiply together to approximate the original weights. This dramatically reduces the
number of parameters and computational cost (3). In our implementation, we simplify this further
by using just two core tensors (i.e., a low-rank approximation), which still retains much of the ex-
pressive power of the full model while enabling efficient training and inference. Please refer to the
appendix for a more detailed mathematical explanation.5

In this work, we apply MPO-based compression to transformer models for speaker identification to
evaluate the effectiveness of MPO compression in reducing computational complexity while main-
taining performance. The LibriSpeech dataset, with its well-defined speaker labels (which has been
used in training transformers before), provides an ideal environment for this investigation. Our ap-
proach compresses the transformer-based speaker identification model by replacing full-rank weight
matrices with MPO decompositions applied to either specific sub-modules or the entire model.

Our experiments demonstrate MPO-based compression can make transformer models more efficient
on audio tasks, providing a proof of concept for broader applications. Preliminary results suggest
synergy with pruning, and although we tested only on an audio benchmark, the method generalizes
to other transformers and domains.

2 EXPERIMENTAL SETUP AND RESULTS

2.1 DATA, PREPROCESSING, AND TRAINING PARAMETERS

We perform experiments on the LibriSpeech train-clean-360 subset, which contains 104,014 audio
samples from 921 speakers. The dataset is split into training (80%), validation (10%), and test (10%)
sets. Each audio file is converted into a log Mel spectrogram using a 1024-point FFT, a hop length
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of 160, and 128 Mel bands. Waveforms are padded or trimmed to 30 seconds to ensure uniform
input dimensions. In our MPO-based compression, we chose a preliminary core count of n = 2 to
decompose the weight matrices, striking a balance between compression and performance. Further
parameter settings are provided in the Appendix.5

2.2 MODEL ARCHITECTURES

In our work, we compare five transformer-based architectures for speaker identification. The first is
the Vanilla transformer, which employs full-rank linear layers throughout the network. The second,
Full MPO, replaces every linear transformation in the transformers encoder with an MPO-based
low-rank factorization. The third variant, MPO (Attention Only), applies MPO compression exclu-
sively to the self-attention projections (i.e., the query, key, and value matrices). The fourth, MPO
(Feed-Forward Only), compresses only the feed-forward layers using the MPO framework. Finally,
the MPO Pruning model combines MPO factorization with L1-norm unstructured pruning to further
reduce the number of non-zero parameters.

3 RESULTS

Our experiments show that MPO-based compression robustly preserves transformer performance
at low parameter counts compared to both full-rank and pruning approaches (Refer to Table 1).
The vanilla transformers suffers marked degradation below 200K parameters, whereas MPO mod-
els maintain high accuracy even around 110K parameters using only 27.51% of the corresponding
vanilla weights. For the MPO variants, selective MPO—particularly when applied solely to the en-
coder layers—yields the best results, while MPO on only the feed-forward layers limits accuracy
to 85.38%. Compared to a pruning approach that reduces the model to 113K non-zero parameters
with test accuracies up to 97.05%, the full MPO model (approximately 130K parameters) deliv-
ers comparable performance. This MPOPruning decomposition not only compresses the model but
also stabilizes training dynamics compared to the other MPO variants. (Please refer to graphs in ap-
pendix)5. Overall, our results indicate that strategic MPO application, especially within the attention
submodules, achieves the optimal balance between efficiency and accuracy.

Model Type Test Accuracy (%) Parameter Count/ Hidden Dim
Compression Ratio

Vanilla transformer 92.55 433K 128
Full MPO 93.78 128K / 27.51% 128
MPO+ L1 Pruning (Attention) 97.05 113K / 26.09% 128
Vanilla transformer 88.34 217K 64
MPO (Feed-Forward) 85.18 110K / 50.65% 64
MPO (Attention) 94.26 115K / 52.95% 64

Table 1: Test Accuracy, Parameter Count for Vanilla, MPO Full, MPO Attention, MPO Feed For-
ward, and MPOPruning models with LibriSpeech clean-360 test dataset.

4 CONCLUSION AND NEXT STEPS

Our experiments demonstrate that MPO-based compression enables transformer models to main-
tain high performance with drastically reduced parameter counts. In particular, while the full MPO
model (compressing both attention and feed-forward layers) achieves test accuracies above 90%,
selective MPO—especially when applied to the attention submodules—yields even better perfor-
mance. In contrast, applying MPO solely to the feed-forward layers limits accuracy to below
85.38%. Compared to traditional pruning, which discards weights based on magnitude (3; 4), the
MPO approach factorizes weight matrices into lower-rank components, preserving essential infor-
mation while ensuring stable training dynamics. Future work will focus on further fine-tuning and
hybrid compression techniques to scale these methods to more complex tasks, such as but not limited
to automatic speech recognition (ASR). ASR systems must capture complex acoustic patterns and
long-range dependencies, which challenges model capacity and stability (5; 6). We acknowledge
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the reviewers’ observations about our use of only a two-core approach—which effectively resem-
bles the application of LORA adapters—in this work. It’s important to note that this experiment was
a preliminary investigation aimed at testing the viability of the approach in its simplest form. Further
work will focus on increasing the number of cores considerably. We will also integrate MPO-based
compression into pre-trained models, leveraging their rich, transferable representations to achieve
efficient compression through MPO and pruning techniques.
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5 APPENDIX

5.1 GRAPHS

Graphs are for the tabular results in section 4

Figure 1: Full MPO Graph
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Figure 2: MPO Feed Forward Only

Figure 3: MPO Encoder Only
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Figure 4: MPOPruning Model Graph

5.2 MPO-BASED COMPRESSION

Forward Pass Computation: Forward Pass Computation: In our approach, a full weight matrix

W ∈ RM×N

is approximated via an MPO decomposition as

W ≈ c1 c2 · · · cn,
where each factor

ci ∈ Rdi−1×di , d0 = M, dn = N,

and the bond dimension (i.e., the maximum of the intermediate dimensions) controls the trade-off
between compression and accuracy. The effective weight is then given by

Weff ≈ c1 c2 · · · cn,
and the layer output is computed as

y ≈ x (c1 c2 · · · cn)⊤ + b.

For computational efficiency, we fuse these operations via Einstein summation:

y = einsum
(
”bi, ij, jk, . . . , ℓm → bm”, x, c⊤n , c

⊤
n−1, . . . , c

⊤
1

)
+ b.

Integration in Transformer Layers: This MPO-based compression replaces the full-rank weight
matrices in both the self-attention submodule (for computing queries, keys, values, and the output
projection) and the feed-forward submodule of each Transformer encoder layer. This replacement
yields substantial parameter savings and reduced computational complexity while maintaining the
model’s expressive capacity.

5.3 COMPUTATIONAL COMPLEXITY COMPARISON

In a standard fully-connected layer, the forward pass involves a matrix multiplication between an
input vector x ∈ RN and a weight matrix W ∈ RM×N , which has a computational complexity of
O(M ·N). In contrast, the MPO approach decomposes W into a product of n smaller matrices:

W ≈ c1 c2 · · · cn,
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where each factor ci ∈ Rdi−1×di with the boundary conditions d0 = M and dn = N . The forward
pass is computed as

y ≈ x (c1 c2 · · · cn)⊤ + b.

Rather than performing a single O(M · N) multiplication, this formulation replaces it with a se-
quence of multiplications with a total cost of

O
( n∑
i=1

di−1 di

)
,

which is considerably lower when the intermediate dimensions di (controlled by the bond dimen-
sion) are significantly smaller than M and N . Furthermore, by implementing these operations as
fused tensor contractions (e.g., via Einstein summation),

y = einsum
(
”bi, ij, jk → bk”, x, c⊤n , · · · , c⊤1

)
+ b,

the MPO method leverages efficient parallelization on modern GPU architectures while preserving
the expressive power of the original full-rank matrix.

6 TRAINING PARAMETERS

Our training configuration includes a batch size of 8, 10 epochs, the AdamW optimizer with a learn-
ing rate of 5×10−4, and a bond dimension r = 2 for the MPO factorization. These hyperparameters
were chosen based on preliminary experiments that balanced computational efficiency, training sta-
bility, and overall performance under a resource-constrained environment. In particular, the learning
rate of 5 × 10−4 yielded the best convergence and results when computational resources were lim-
ited. Additionally, we employ a hidden dimension of 128, 2 attention heads, 1 encoder layer, and a
feed-forward dimension of 1024 to maintain sufficient model capacity while ensuring compactness.
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