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ABSTRACT

Hallucinations in Large Language Models (LLMs) pose a major barrier to their
reliable use in critical decision-making. Although existing hallucination detec-
tion methods have improved accuracy, they still struggle with disentangling se-
mantic and reasoning information and maintaining robustness. To address these
challenges, we propose HARP (HAllucination detection via Reasoning subspace
Projection), a novel hallucination detection framework. HARP establishes that
the hidden state space of LLMs can be decomposed into a direct sum of a se-
mantic subspace and a reasoning subspace, where the former encodes linguistic
expression and the latter captures internal reasoning processes. Moreover, we
demonstrate that the Unembedding layer can disentangle these subspaces, and by
applying Singular Value Decomposition (SVD) to its parameters, the basis vec-
tors spanning the semantic and reasoning subspaces are obtained. Finally, HARP
projects hidden states onto the basis vectors of the reasoning subspace, and the
resulting projections are then used as input features for hallucination detection in
LLMs. By using these projections, HARP reduces the dimension of the feature to
approximately 5% of the original, filters out most noise, and achieves enhanced
robustness. Experiments across multiple datasets show that HARP achieves state-
of-the-art hallucination detection performance; in particular, it achieves an AU-
ROC of 92.8% on TriviaQA, outperforming the previous best method by 7.5%.

1 INTRODUCTION

Large Language Models (LLMs) have recently demonstrated remarkable generative capabilities and
broad applicability across various natural language processing tasks (Yang et al., 2024; Grattafiori
et al., 2024; Minaee et al., 2024). However, hallucinations—i.e., model-generated information in-
consistent with objective facts—remain a major obstacle to their deployment in critical decision-
making scenarios (Ji et al., 2023; Huang et al., 2025). Consequently, efficiently and accurately
detecting hallucinations during LLMs generation has become a pressing challenge.

From a cognitive perspective, the hallucination behavior of LLMs is to some extent similar to hu-
man’s “nonsense” behavior. When answering complex questions, humans typically follow a “Rea-
soning → Expression” process: they first perform internal reasoning and then express part of the
thought outcomes in language (Johnson-Laird, 1986). Therefore, although assessing the veracity of
the answer is challenging when based solely on linguistic output, it can be substantially improved
by observing the complete reasoning process (Frank & Goodman, 2012). By analogy, achieving
high-precision hallucination detection in LLMs requires placing greater emphasis on the reasoning
information encoded within the hidden states, rather than primarily on the semantic content of the
outputs.
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Figure 1: Illustration of the proposed HARP framework for hallucination detection. HARP
separates the reasoning information hl,Reasoning from the hidden state hl to compute token-level hal-
lucination scores, with the maximum score taken as the hallucination score of the entire response.
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Figure 2: Comparison of the “Reasoning →
Expression” behavior between humans and
LLMs

Inspired by this cognitive insight, we propose a
novel hallucination detection framework, HARP
(HAllucination detection via Reasoning subspace
Projection). Specifically, HARP decomposes the
hidden state space into a direct sum of the seman-
tic subspace and the reasoning subspace. The se-
mantic subspace captures the linguistic information
of the generated content, while the reasoning sub-
space reveals the model’s internal reasoning process.
As illustrated in Figure 2, comparing humans and
LLMs “Reasoning → Expression” behaviors reveals
that LLMs discard reasoning information in the Un-
embedding layer while compressing semantic infor-
mation into generated tokens. This suggests that
the Unembedding layer inherently distinguishes be-
tween semantic and reasoning information. Based on this, we perform Singular Value Decomposi-
tion (SVD) on the parameter matrix of the Unembedding layer to identify the basis vectors of the
semantic subspace, which dominates token prediction, as well as those of the reasoning subspace,
which is orthogonal to the semantic subspace.

Finally, HARP projects hidden states onto the basis vectors of the reasoning subspace and uses the
resulting projections as input features for hallucination detection in LLMs. Since the reasoning
subspace basis vectors account for only about 5% of the hidden state dimension, the input features
are highly concentrated in reasoning information while largely eliminating noise. This allows HARP
to achieve strong robustness while maintaining high detection accuracy. The main contributions of
this work are:

• We establish that the hidden state space of LLMs can be decomposed into a direct sum
structure composed of a semantic subspace and a reasoning subspace.

• We verify that the Unembedding layer has the capability to distinguish between the se-
mantic subspace and the reasoning subspace. Furthermore, by performing SVD on the
parameters of the Unembedding layer, the basis vectors that span the semantic subspace
and the reasoning subspace are identified.

• We introduce a novel approach that explicitly constructs input features by projecting hidden
states onto the basis vectors of the reasoning subspace. This projection drastically reduces
the feature dimensionality to about 5% of the original, suppresses most noise, and achieves
highly accurate hallucination detection in LLMs.

2 RELATED WORK

Mechanistic interpretability of LLMs. Research on mechanistic interpretability mainly focuses on
two aspects: model parameters and hidden states. For the former, several works analyze weight ma-
trices to uncover structural properties and interactions among modules. For instance, Merullo et al.
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(2024) and Cheng et al. (2024) employ SVD to characterize attention-head structures and investigate
their roles in downstream tasks. However, such approaches remain largely at the structural level, of-
fering limited semantic interpretability. To address this, recent work has shifted toward analyzing
hidden states directly, probing the predictive relationship between intermediate representations and
model outputs (Gurnee et al., 2023; Lv et al., 2024; Ju et al., 2024; He et al., 2024; Jin et al., 2025).

Hallucination detection. The success of probing methods has motivated researchers to adopt simi-
lar ideas in hallucination detection (Marks & Tegmark, 2023; Bürger et al., 2024; Park et al., 2025).
For instance, HaloScope (Du et al., 2024) leverages unlabeled embeddings and applies SVD to
identify key subspace directions, followed by probing to link these directions to hallucinations.
Yet, probing-based methods often rely on predefined supervised labels, making them less general-
izable when feature dimensions are large or category priors are incomplete. Another line of work
approaches hallucination detection from the perspective of output consistency. EigenScore (Chen
et al., 2024) quantifies semantic agreement through covariance eigenvalues, while Farquhar et al.
(2024) employ clustering and semantic entropy for hallucination detection. These methods are ef-
fective in practice but may suffer from misclassification due to their inability to exploit internal
reasoning information.

Different from these approaches, our method explicitly separates semantic and reasoning subspaces,
and projects hidden states onto the basis vectors of the reasoning subspace to construct compact and
interpretable features for hallucination detection.

3 PRELIMINARIES

In this section, we first formulate a mathematical model to characterize the hallucination behavior of
LLMs. Then, we analyze how the hidden state space evolves across decoder layers during genera-
tion, and subsequently decompose it into the direct sum of the semantic subspace and the reasoning
subspace. This theoretical framework forms the foundation of HARP and provides essential support
for hallucination detection via reasoning subspace projection.

3.1 MATHEMATICAL MODELING OF LLMS’ HALLUCINATION

To model LLMs’ hallucination mathematically, we first define the knowledge set known to the
LLMs. Given an input sequence x and its reference answer y∗, the LLMs generate multiple re-
sponses γ = {y1, y2, . . . , ys} for x. If any generated response closely matches the reference answer,
the knowledge about x is considered known to the LLMs, denoted as known(x) = 1. Formally:

known(x) =

{
1, ∃y ∈ γ, sim(y, y∗) > λ

0, otherwise
(1)

where sim(y, y∗) measures the similarity between y and y∗, and λ is a similarity threshold. Let
Xknown = {x | known(x) = 1} denote the set of all inputs whose knowledge is known to the
LLMs. For each x ∈ Xknown, let y = LLMs(x) denote the response generated by the LLMs. The
hallucination indicator G(y | x) is then defined as:

G(y | x) =
{
1, sim(y, y∗) ≤ λ

0, otherwise
(2)

When G(y | x) = 1, the QA pair [x, y] exhibits hallucination.

3.2 DIRECT SUM DECOMPOSITION OF HIDDEN STATE SPACE

Let the token vocabulary be T . For LLMs with l decoder layers, an input token t ∈ T is mapped
by the embedding layer to an initial hidden state h0 containing purely semantic information. As
the hidden states propagate through successive layers, semantic and reasoning information are pro-
gressively integrated into their representations. Finally, the Unembedding layer projects only the
semantic component to generate the output token tgen ∈ T . Thus, the final hidden state hl simul-
taneously encodes: (1) Semantic prediction information: To accurately generate the next token,
hl must retain sufficient semantic features. These features are primarily captured by the parameter
matrix Wunemb of the Unembedding layer and play a dominant role in predicting the next token. (2)
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Reasoning trajectory information: To support multi-step reasoning and intermediate state compu-
tation, hl also encodes intermediate reasoning information that does not directly affect the output.
This information is typically not explicitly captured by Wunemb and exerts minimal influence on the
final output.

Denote the hidden state space at layer l as Hl. To disentangle these two signals, we decompose Hl

into the direct sum of two orthogonal subspaces:

Hl = SSemantic ⊕ SReasoning (3)

where SSemantic and SReasoning represent the semantic and reasoning subspaces, respectively. The
final hidden state hl ∈ Hl is projected to token logits by the Unembedding layer:

logits = Wunemb · hl (4)

where Wunemb denotes the Unembedding parameters. Let hl,Semantic and hl,Reasoning denote the
components of hl in the semantic and reasoning subspaces, with hl,Semantic exerting primary influ-
ence on the logits for token prediction, while hl,Reasoning encodes the model’s reasoning processes.

To empirically validate the existence and functional role of the reasoning subspace, we design a Rea-
soning Patch experiment in Appendix E. This experiment demonstrates that the reasoning subspace
SReasoning indeed captures critical intermediate reasoning information by showing that patching
reasoning components from correct solutions can effectively rectify erroneous reasoning trajectories
while preserving semantic coherence.

4 METHOD

In this section, we detail the proposed HARP framework for hallucination detection, as illustrated
in Figure 1. First, in subsection 4.1, we validate the Unembedding layer’s capability to effectively
disentangle the semantic and reasoning subspaces. Then, in subsection 4.2 and subsection 4.3, we
present a practical strategy for subspace decomposition. Finally, in subsection 4.4, we introduce the
HARP algorithm, which performs hallucination detection based on reasoning subspace projection.

4.1 SUBSPACE DECOMPOSER — UNEMBEDDING LAYER
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Figure 3: Flow of semantic and rea-
soning information within LLMs hid-
den states.

As shown in Figure 3, during token generation, the Un-
embedding layer of LLMs compresses only the seman-
tic information hl,Semantic in hidden states into the gen-
erated tokens, filtering out the reasoning information
hl,Reasoning used in intermediate computations. There-
fore, by analyzing the basis vectors that interact with the
Unembedding layer parameters Wunemb, we can deter-
mine the mathematical representations of the semantic
subspace and its orthogonal reasoning subspace.

Based on the properties of the semantic and reasoning
subspaces, their interactions with Wunemb can be defined
as:

Wunemb · SSemantic ≈ Wunemb · Hl (5)
Wunemb · SReasoning ≈ 0 (6)

In other words, SSemantic aligns with the principal acting
directions of Wunemb, while the orthogonal SReasoning

contributes negligibly to prediction scores. In subsec-
tion 5.3, we demonstrate the validity of our definitions
for these subspace properties, laying the foundation for
subsequently identifying the subspace basis vectors.

4.2 DETERMINATION OF SUBSPACE BASIS VECTORS VIA SVD

Given that the Unembedding layer can filter reasoning information, we first perform SVD on its
parameter matrix Wunemb. By analyzing which hidden state components interact with Wunemb, we
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identify the basis vectors of the semantic and reasoning subspaces. As shown in Equation 7, we
decompose Wunemb via SVD:

Wunemb = UΣV ⊤ =
∑d

i=1
uiσiv

⊤
i (7)

where U ∈ R∥T ∥×∥T ∥, Σ ∈ R∥T ∥×d, V ∈ Rd×d, ∥ui∥ = ∥vi∥ = 1, and the singular values in Σ
are sorted in descending order σ1 ≥ σ2 ≥ · · · ≥ σk > σk+1 = σk+2 = · · · = σd = 0.

For any hidden state h =
∑d

i=1 aivi ∈ Rd, its interaction with Wunemb is expressed as:

Wunemb · h =
∑d

i=1
uiσiv

⊤
i · aivi =

∑d

i=1
(σiai)ui (8)

Since the vectors ui are mutually orthogonal, it follows that Wunemb · h = 0 if and only if∑d
i=1 |σiai| = 0, in which case the vector h is filtered out by the Unembedding layer. In other

words, h belongs to the reasoning subspace SReasoning if and only if all singular values correspond-
ing to non-zero ai vanish. Accordingly, we define an orthogonal basis for the reasoning subspace as
VR = {vi | σi = 0}, while the remaining directions VS = {vi | σi > 0} constitute the semantic
subspace SSemantic. Since σi>k = 0, the semantic and reasoning subspaces can be expressed as:

SSemantic = Span ({v1, v2, . . . , vk}) (9)
SReasoning = Span ({vk+1, vk+2, . . . , vd}) (10)

Let ai = v⊤i hl denote the projection coefficients of the hidden state hl onto the basis vectors.
Then the components in the semantic and reasoning subspaces are hl,Semantic =

∑k
i=1 aivi and

hl,Reasoning =
∑d

i=k+1 aivi, respectively, with interactions with Wunemb given by:

Wunemb · hl,Semantic =
∑k

i=1
σi(aiui) = Wunemb · hl (11)

Wunemb · hl,Reasoning =
∑d

i=k+1
σi(aiui) = 0 (12)

This partitioning of the hidden state space aligns precisely with the definitions of semantic and
reasoning subspaces in Equation 5 and Equation 6, and provides a theoretical basis for constructing
low-rank approximation-based subspaces in real models.

4.3 CONSTRUCTION OF SEMANTIC AND REASONING SUBSPACES VIA LOW-RANK
APPROXIMATION

While the method described in subsection 4.2 can ideally construct the semantic and reasoning
subspaces, in practice, the condition σ = 0 for singular values rarely holds. To address this, we
perform a rank-k approximation of Wunemb, extracting the k most representative semantic directions
from its row space to define the semantic subspace under realistic conditions, and determine the
reasoning subspace using orthogonal relationships.

Specifically, based on Equation 7, for any k < rank(Wunemb), the Eckart–Young–Mirsky theorem
(Eckart & Young, 1936; Greenacre et al., 2022) gives the best rank-k approximation Wk of Wunemb

under the Frobenius norm as:

Wk = argmin
rank(A)≤k

∥Wunemb −A∥F =
∑k

i=1
uiσiv

⊤
i (13)

To ensure that this approximation does not significantly degrade prediction accuracy, the following
information-preservation condition should hold:

∥Wunemb −Wk∥F =

√∑d

i=k+1
σ2
i ≪

√∑k

i=1
σ2
i (14)

This condition implies that Wk retains the majority of Wunemb’s information in the Frobenius norm,
i.e., the first k singular values account for most of the total energy.

Figure 4a illustrates the singular value distribution of the Unembedding layer parameters. We ob-
serve that the trailing 5% of singular values are markedly smaller than the others, and the infor-
mation loss associated with these minor singular values can be safely ignored. Accordingly, we
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Figure 4: (a) Singular value distributions of Wunemb after SVD, with hidden state dimensions of
3584 for Qwen-2.5-7B-Instruct and 4096 for LLaMA-3.1-8B. (b) Projections of hidden states onto
the basis vectors of the semantic and reasoning subspaces across layers, where the first row shows
the first three layers and the second row shows the last three layers. Further details are provided in
Appendix B.

set k = d × 95%. By analyzing Wk and incorporating it into Equation 9 and Equation 10, we
derive the corresponding subspace representations. Denoting the basis of the reasoning subspace
as VR = [vk+1, vk+2, . . . , vd] ∈ Rd×(d−k), the projection of hidden states hl onto the reasoning
subspace is:

projR (hl) = V ⊤
R · hl (15)

In subsection 5.3, we experimentally demonstrate that replacing Wunemb with Wk in the token
prediction task introduces negligible error. This finding provides the basis for subsequently using
projR (hl) as the input feature to construct the hallucination detector.

4.4 HALLUCINATION DETECTION VIA REASONING SUBSPACE PROJECTION

As shown in Figure 4b, universal representations of hidden states are extracted from different layers
of the LLMs and projected onto the basis V = [VS , VR]. We observe that shallow hidden states
primarily enhance information in the semantic subspace, while deep hidden states exhibit stronger
features in the reasoning subspace. This observation is consistent with our definitions of the two
subspaces. Based on this, we propose a novel hallucination detection framework—HARP, which
detects hallucinations using projections of hidden states onto the reasoning subspace.

During training, HARP employs a beam search strategy to generate multiple candidate answers
γ = {y1, y2, . . . , ys} for a given question x, and annotates whether each candidate contains halluci-
nations. For a QA pair [x, y] composed of n tokens, HARP computes the projection of each token’s
hidden state onto the reasoning subspace and calculates its hallucination score. The maximum score
among all tokens is taken as the hallucination score of the QA pair:

gθ (y|x) = max
1≤i≤n

gθ

(
projR

(
h
(i)
l

))
(16)

where θ denotes the parameters of the hallucination detector. gθ

(
projR

(
h
(i)
l

))
represents the

hallucination score of the i-th token, and gθ (y|x) ∈ [0, 1] is the score for the entire QA pair. We
optimize the detector using the Binary Cross-Entropy Loss (Goodfellow et al., 2016):

L = −flag · log(gθ)− (1− flag) · log(1− gθ) (17)

where flag ∈ {0, 1} indicates whether the QA pair [x, y] contains hallucinations. Minimizing this
loss trains a hallucination detector Ĝ:

Ĝ(y|x) = I [gθ(y|x) > α] (18)

where α ∈ [0, 1] is the detection threshold. When Ĝ(y|x) = 1, the QA pair is considered halluci-
nated. Beam search is used only during training to construct diverse supervision samples, whereas
during testing, Ĝ relies solely on the projection of a single sampled answer onto SReasoning .
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As shown in Figure 1, for the question “Where is the capital of the United States?”, the hallucinated
answer “The capital of the United States is Shanghai!” assigns a hallucination score of 0.73 to the
token “Shanghai”, whereas all tokens in the correct answer “The capital of the United States is
Washington!” have scores below 0.01. This demonstrates the effectiveness of Ĝ.

5 EXPERIMENTS

In this section, we first describe the experimental setup and demonstrate HARP’s advantages over
other hallucination detection methods across multiple models and datasets. We then analyze the
validity of our proposed direct-sum decomposition of the hidden state space and the necessity of
the projection operation, followed by an evaluation of the detection performance under varying
reasoning subspace dimensions and hallucination score thresholds. Finally, we discuss HARP’s
cross-dataset generalization capability.

5.1 EXPERIMENTAL SETUP

Datasets and models. Our experiments cover four generative question answering (QA) tasks, in-
cluding three open-domain dialogue QA datasets—NQ Open (Kwiatkowski et al., 2019), Truth-
fulQA (Lin et al., 2022a) (generation task), and TriviaQA (Joshi et al., 2017)—and one reading com-
prehension dataset, TyDiQA-GP (English) (Clark et al., 2020). To assess the effectiveness and gen-
erality of our proposed framework, we conduct evaluations using two widely adopted open-source
foundation models: Qwen-2.5-7B-Instruct (Yang et al., 2024) and LLaMA-3.1-8B (Grattafiori et al.,
2024). More dataset and inference details are provided in Appendix A.

Evaluation Metrics. AUROC (area under the ROC curve) is employed as the primary evaluation
metric. AUROC measures a binary classifier’s ability to distinguish positive and negative samples
across different thresholds, ranging from 0 to 1, with higher values indicating stronger discriminative
power. AUROC equal to 1 indicates perfect classification, while a value of 0.5 corresponds to
random guessing.

Baseline Methods. HARP is compared with several mainstream hallucination detection meth-
ods, including Perplexity (Ren et al., 2023), LN-Entropy (Malinin & Gales, 2021), Semantic En-
tropy (Farquhar et al., 2024), Lexical Similarity (Lin et al., 2022b), EigenScore (Chen et al., 2024),
and HaloScope (Du et al., 2024).

Correctness Measurement. Following Chen et al. (2024), correctness is determined based on
ROUGE-L and semantic similarity between generated and reference answers. Semantic similar-
ity is computed using the BLEURT model (Sellam et al., 2020; Park et al., 2025). An answer is
considered correct if its ROUGE-L score exceeds 0.7 or its semantic similarity exceeds 0.5.

5.2 MAIN RESULTS

Table 1 summarizes the AUROC scores (in %) of various hallucination detection methods across
four QA datasets, using Qwen-2.5-7B-Instruct and LLaMA-3.1-8B as backbone models. Several
key findings emerge from these results. (1) HARP consistently outperforms all baseline methods
across all datasets and models, often by a significant margin. For instance, on TriviaQA, HARP
achieves AUROC scores of 92.8% on Qwen and 92.9% on LLaMA, yielding improvements of
+7.5% and +16.6%, respectively, over the second-best method, demonstrating its robustness and
scalability across architectures and data characteristics. (2) Baseline methods such as Perplexity and
HaloScope perform competitively on simpler datasets like TriviaQA, where answers are often lim-
ited to one or two tokens, but their performance deteriorates sharply on more complex datasets such
as TyDiQA, which contains long contexts and accompanying documents. In contrast, HARP main-
tains high AUROC scores of 88.4% on Qwen and 86.6% on LLaMA in these challenging settings,
highlighting its ability to handle reasoning-intensive and context-rich inputs. (3) Sampling-based
methods, such as Semantic Entropy, Lexical Similarity, and EigenScore, incur higher computational
costs but still fail to achieve comparable performance, whereas HARP’s single-pass approach pro-
vides both superior efficiency and accuracy.

In addition, Table 2 reports the number of known and unknown questions for Qwen-2.5-7B-Instruct
across the four datasets, reflecting the model’s varying answering capabilities on these benchmarks.
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Table 1: Main result. Comparison of different methods on hallucination detection performance
across multiple datasets. All values are AUROC percentages. “Single” indicates whether multiple
samplings are required for hallucination detection.

Models Methods Single NQ Open TruthfulQA TriviaQA TyDiQA

Qwen-2.5-7B-Instruct

Perplexity ✓ 76.5 64.4 83.1 30.5
LN-Entropy 77.7 63.6 80.2 47.1

Semantic Entropy 77.7 60.0 76.1 68.6
Lexical Similarity 77.8 63.9 76.9 60.3

EigenScore 78.9 63.8 76.2 74.8
HaloScope ✓ 60.7 63.0 85.3 69.0

HARP(Ours) ✓ 84.0 88.1 92.8 88.4

LLaMA-3.1-8B

Perplexity ✓ 50.3 71.4 76.3 53.4
LN-Entropy 52.7 62.5 55.8 48.8

Semantic Entropy 60.7 59.4 68.7 62.2
Lexical Similarity 60.9 49.1 71.0 69.5

EigenScore 56.7 45.3 69.1 82.4
HaloScope ✓ 62.7 70.6 76.2 53.3

HARP(Ours) ✓ 89.4 88.5 92.9 86.6

Collectively, these findings validate the effectiveness, robustness, and practical utility of HARP for
hallucination detection in diverse QA scenarios.

Table 2: Distribution of known and unknown questions across four QA datasets. A question
is classified as Known if the model’s knowledge state contains the correct answer according to the
criterion in Equation 1, and as Unknown if none of the 10 candidate responses contain the correct
answer.

Dataset Known Unknown
TruthfulQA 636 181
TyDiQA 402 38
TriviaQA 6225 3735
NQ-open 293 3317

5.3 MORE ANALYSIS

Rationality of Direct Sum Decomposition in Hidden State Space. To validate this direct sum
decomposition, we conduct a comparative experiment: removing the reasoning subspace compo-
nents of hidden states and examining their effect on token prediction scores and rankings. Mathe-
matically, this operation can be formulated as:

logits′ = Wk · hl = Wunemb · hl,Semantic (19)

As shown in Figure 5a, computing token prediction scores using Equation 19 instead of the original
logits maintains the top rankings of greedily generated tokens. This result aligns with our theoretical
design: the hidden state space can be decomposed into semantic and reasoning subspaces, and token
prediction is mainly influenced by the semantic subspace component hl,Semantic.This experiment
confirms that the proposed direct sum decomposition exhibits clear representational disentanglement
and functional partitioning, providing theoretical support for building hallucination detection models
based on the reasoning subspace.

Ablation Study. We tested the importance of projecting hidden states onto the reasoning subspace
by comparing hallucination detection performance under different projection strategies. “HARP
(w/o)” denotes completely removing the projection, while retaining hidden state features of the
same dimensionality as full HARP; “HARP (random)” denotes randomly selecting a set of bases
from the projection basis V = {v1, v2, . . . , vd} for projection. The results in Table 3 show that both
removing the projection and using random projection significantly degrade hallucination detection
performance, confirming the necessity of projecting hidden states onto the reasoning subspace.
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Figure 5: (a) Greedy token rankings in logits′ under different reasoning subspace dimensions. (b)
Effect of reasoning subspace dimension on hallucination detection performance.

Table 3: Hallucination detection performance under different projection strategies

Methods Qwen-2.5-7B-Instruct LLaMA-3.1-8B

NQ Open TruthfulQA NQ Open TruthfulQA
HARP (w/o) 62.9 70.7 70.4 73.5

HARP (random) 67.6 68.6 59.5 75.8
HARP 84.0 88.1 89.4 88.5

Impact of Reasoning Subspace Dimension on Hallucination Detection. The reasoning sub-
space dimension affects hallucination detection in two ways: (1) its influence on logits scores:
when the dimension is too large, Equation 14 gradually breaks down, which impairs the model’s
next-token prediction capability; (2) its effect on detection accuracy and generalization: increas-
ing the dimension may improve training accuracy but also increases the risk of overfitting, reducing
generalization. We evaluated dimensions from 32 to 1024 using Qwen-2.5-7B-Instruct and LLaMA-
3.1-8B models. As shown in the Figure 5b, a dimension of 256 yields the best performance. This di-
mension accounts for only about 5% of the original hidden state dimensionality, preserving sufficient
reasoning information while filtering most redundant noise, satisfying the information-preservation
constraint in Equation 14.
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Figure 6: (a) Effect of hallucination score threshold on detection accuracy. (b) Effect of hallucination
score threshold on detection F1 score.
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Selection of Hallucination Score Threshold. In practice, it is necessary to set a hallucination
score threshold α so that Ĝ(y|x) produces a clear binary decision. As shown in Figure 6a and Fig-
ure 6b, when α is between 0.2 and 0.8, both detection accuracy and F1 score remain high, indicating
a substantial separation between normal and hallucinated answers under Ĝ. To align with common
expectations for a binary classifier, we set α = 0.5, where Ĝ(y|x) = I [gθ(y|x) > 0.5].

Robustness Experiments. To apply HARP in real-world scenarios, we examined its performance
under distribution shifts between training and test sets. We trained the hallucination detector on a
source dataset s and evaluated it on different target datasets t. Figure 7 shows that HARP generalizes
well across multiple target datasets. Notably, when trained on TriviaQA, its accuracy on NQ Open
is nearly identical to directly training on NQ Open, demonstrating HARP’s strong robustness and
cross-distribution adaptability.
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Figure 7: Cross-dataset generalization. “(s)” indicates the source dataset used for training the hallu-
cination detector; “(t)” indicates the target dataset.

6 CONCLUSION

In this study, we introduced HARP, a novel hallucination detection method that leverages only rea-
soning information as input features, achieving high detection accuracy while maintaining strong
robustness. First, we showed that the hidden state space admits a direct-sum decomposition into a
semantic subspace and a reasoning subspace, and that the Unembedding layer can effectively sepa-
rate these two components. Building on this, we applied singular value decomposition to the param-
eters of the Unembedding layer and, following the Eckart–Young–Mirsky theorem, approximated
Wunemb with its best rank-k approximation Wk. Setting k = d × 95%, we identified basis vectors
for both the semantic and reasoning subspaces that align with empirical observations. Furthermore,
we empirically validated that the reasoning subspace effectively captures intermediate reasoning
information through the Reasoning Patch experiment detailed in Appendix E. Finally, HARP con-
structs an accurate and efficient hallucination detector by using the projections of hidden states in
the reasoning subspace as input features. Experiments show that HARP significantly outperforms
existing mainstream hallucination detection methods and maintains robustness under distribution
shifts across datasets. In addition, we present a proof-of-concept demonstration of hallucination
mitigation using our framework in Appendix D and aim to inspire future research in this direction.
The authors acknowledge OpenAI’s ChatGPT (OpenAI, 2025) for its support in language polishing
of this manuscript.
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APPENDIX

A DATASETS AND IMPLEMENTATION DETAILS

Input prompts. In our experiments, datasets were categorized based on whether additional sup-
porting information is provided. For datasets without context, including NQ-Open, TruthfulQA,
and TriviaQA, we used prompts that contain only the question. Specifically, the prompt format is:

Prompts for datasets without context

Q: {question}

A:

For datasets with context, including TyDiQA, the prompt includes both the task description and the
relevant context:

Prompts for datasets with context

Concisely answer the following question based on the information in the given passage: 

Passage:  {context}

Q: {question}

A:

Implementation details. Using the formulations in subsection 3.1, we select LLMs’ known knowl-
edge set Xknown = {x | known(x) = 1} and unknown knowledge set Xunknown = {x |
known(x) = 0}. 75% of Xknown is used for training, while the remaining 25%, together with
Xunknown, is used to test the hallucination detector on unseen data. For dataset questions, the tem-
perature is set to 0.5, and beam search is used to generate 10 answer paths per question. The hallu-
cination detector G is a two-layer MLP with hidden dimension 1024 and ReLU activation. Training
is conducted for 50 epochs with the Adam optimizer, initial learning rate 1e-4, cosine decay, batch
size 128, and weight decay 3e-4.

B EXTRACTING A UNIVERSAL REPRESENTATION VIA UNCENTERED PCA

Given a collection of n hidden vectors {h(i)}ni=1 from LLMs, each of dimension d, we arrange them
into a matrix:

M =

(h
(1))⊤

...
(h(n))⊤

 ∈ Rn×d (20)

From an energy-maximization perspective, the “universal representation” of these hidden vectors
can be interpreted as their dominant direction of variation in the feature space. To extract this
direction, we perform SVD:

M = U ′Σ′V ′⊤ (21)
where U ′ ∈ Rn×n, Σ′ = diag(σ′

1, · · · , σ′
d) ∈ Rn×d, V ′⊤ = [v′1, · · · , v′d] ∈ Rd×d, and the singular

values satisfy σ′
1 ≥ σ′

2 ≥ · · · ≥ 0. The dominant right singular vector v1 provides the principal
direction of the row space of M , which is equivalent to the first principal component in uncentered
Principal Component Analysis (PCA). We define the universal representation direction as:

ĥ = v′1 ∈ Rd (22)

By collecting n hidden states from the i-th layer, we can derive the corresponding universal repre-
sentation ĥi following the steps above. Projecting it onto the basis vectors V = [VS , VR] ∈ Rd×d

yields the projections of the i-th layer’s hidden state onto the semantic and reasoning subspaces:

proj
(
ĥi

)
= V ⊤ · ĥi (23)
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In Figure 4b, we normalize the lengths of proj
(
ĥi

)
and visualize the projections of the universal

representations of hidden states from the first three and last three layers of the Qwen-2.5-7B-Instruct
model onto the semantic and reasoning subspaces. We observe that shallow layer vectors are pri-
marily represented in the semantic subspace, while deep layer vectors are more concentrated in the
reasoning subspace.

C ANALYSIS OF LAYER-WISE CONTRIBUTIONS IN LLMS

Although our previous analysis has characterized the hidden states after processing through multiple
decoder layers, it remains important to understand the individual contributions of each layer and how
they differ. To this end, we define the contribution of the i-th decoder layer as dhi = hi−hi−1, and,
following the method described in Appendix B, compute the universal representation direction ˆdhi.
Since singular vectors obtained via SVD can have arbitrary signs, we compute the absolute cosine
similarity between d̂hi and d̂hj to measure the similarity between the universal representations of
the increments of the layers i and j.

L
ay
er
-0
1

L
ay
er
-0
2

L
ay
er
-0
3

L
ay
er
-0
4

L
ay
er
-0
5

L
ay
er
-0
6

L
ay
er
-0
7

L
ay
er
-0
8

L
ay
er
-0
9

L
ay
er
-1
0

L
ay
er
-1
1

L
ay
er
-1
2

L
ay
er
-1
3

L
ay
er
-1
4

L
ay
er
-1
5

L
ay
er
-1
6

L
ay
er
-1
7

L
ay
er
-1
8

L
ay
er
-1
9

L
ay
er
-2
0

L
ay
er
-2
1

L
ay
er
-2
2

L
ay
er
-2
3

L
ay
er
-2
4

Layer-01

Layer-02

Layer-03

Layer-04
Layer-05

Layer-06

Layer-07

Layer-08
Layer-09

Layer-10

Layer-11

Layer-12
Layer-13

Layer-14

Layer-15

Layer-16
Layer-17

Layer-18

Layer-19

Layer-20
Layer-21

Layer-22

Layer-23

Layer-24

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8: Similarity between universal representation directions of layer-wise increments

Figure 8 illustrates the cosine similarity between the universal representation directions of layer-
wise increments in the Qwen-2.5-0.5B-Instruct model. We observe that the first six layers behave in
a broadly similar manner; however, the first two layers are relatively independent of the remaining
ones, while layers 3, 4, and 6 exhibit almost identical directions. Interestingly, the direction around
layer 22 is remarkably similar to that of layers 3, 4, and 6. We hypothesize that the first two layers
primarily parse the shallow semantic structure of the input, layers 3, 4, and 6 encode this information
into an internal representation space (a “language” specific to the LLM), the intermediate layers
perform various reasoning operations over this representation, and layer 22 decodes it back into a
human-interpretable semantic space before unembedding.
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Based on this observation, we argue that mitigating hallucinations—especially those induced by
suboptimal training patterns or aggressive answer-generation strategies—requires intervention in the
decoding behavior around layer 22. Following this intuition, Appendix D provides a demonstration
of hallucination mitigation, with the goal of inspiring future research in this direction.

D MITIGATING HALLUCINATIONS BY MODIFYING REASONING SUBSPACE
COMPONENTS

Based on our previous analysis of LLM behavior, we explore mitigating hallucinations by interven-
ing on the components of hidden states within the reasoning subspace. To this end, we introduce a
fictitious city, “Epsilon”, and pose the question to the LLM: “The capital of Epsilon is ?”. We then
investigate the effect of removing the reasoning subspace components from hidden states at different
layers and observe the resulting impact on the LLM’s outputs.

Table 4: Impact of interventions across layers and reasoning subspace dimensions on hallucination
mitigation for the query. Green responses indicate a correct mitigation of hallucinations.

Intervened
Layer

Reasoning
Subspace

Dimension
Output

None None Epsilon’s capital is likely **Kaiyuan**, which is the capital city of
the Kingdom of Kaiyuan in the Eastern Regions.

Layer-01

8 Epsilon’s capital is likely to be the city or town where its government
and administrative center is located.

16 Epsilon’s capital is likely to be the city or town where its government
and administrative center is located.

32 Epsilon’s capital is likely to be the city or town where its government
and administrative center is located.

64 The capital of Epsilon is Elea.

Layer-02

8 Epsilon is the capital city of the planet Alpha.
16 I apologize, but I don’t have enough context to determine the spe-

cific name or location of the capital city in question.
32 I apologize, but I’m not able to determine the capital city of Epsilon

as it appears to be a fictional planet or alternate universe.
64 Epsilon is the capital city of the European Union (EU).

Layer-22

8 I’m sorry, but I don’t have enough context to accurately answer your
question about the capital city of Epsilon.

16 I’m sorry, but I need more context to accurately answer your ques-
tion.

32 I’m sorry for any misunderstanding earlier.
64 Epsilon is currently not specified in my knowledge base for now.

Layer-23

8 I’m sorry, but I don’t have enough context to accurately answer your
question about the capital city of Epsilon.

16 I’m sorry, but I need more information to accurately answer your
question.

32 Epsilon is currently not in my knowledge base as I am an AI lan-
guage model created by Alibaba Cloud based on publicly available
information...

64 Epsilon is currently unknown due to lack of information about its
current status in relation to other planets in our solar system or
neighboring celestial bodies...

Table 4 presents the outputs of the LLM under interventions in various layers and with different
subspace dimensions of reasoning. We observe that interventions in shallow layers, such as layers 1
and 2, produce limited improvement, whereas interventions at deeper layers, such as layers 22 and
23, lead the LLM to explicitly acknowledge its lack of knowledge about the fictitious city “Epsilon”

16



Published as a conference paper at ICLR 2026

and refuse to answer. This phenomenon aligns with our earlier analysis of the behavior of LLMs.
We hope that this hallucination-mitigation demo can inspire further research in this direction.

E VERIFICATION OF REASONING INFORMATION IN THE REASONING
SUBSPACE

To verify that the components of hidden states lying in the reasoning subspace indeed encode inter-
nal reasoning information, we design a controlled experiment consisting of three input conditions
(Figure 9). These conditions isolate the effect of the reasoning subspace while keeping all other
factors unchanged.

Embedding Unembedding× 𝑙Question

Decoder

ℎ∙,𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔
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+ Wrong  answer
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Figure 9: Experimental design illustrating the three conditions used to verify the causal role
of the reasoning subspace. (A)Normal: the model receives only the question and produces an
incorrect answer. (B)CoT: a chain-of-thought is prepended, enabling multi-step reasoning and a
correct answer. (C)Reasoning Patch: no CoT is provided, but the reasoning-subspace components
of hidden states at all layers are replaced with those from the CoT run, causing the model to generate
reasoning steps and arrive at the correct answer.

(A) Normal: direct question input. In the first condition, we feed the model only the question
without any chain-of-thought (CoT) guidance. The model typically produces an incorrect answer.
Let the hidden state be

hNormal
· = hNormal

·,Semantic + hNormal
·,Reasoning.

(B) CoT: prepend chain-of-thought. In the second condition, we prepend a chain-of-
thought (Wei et al., 2022) to the input. The model now first generates intermediate reasoning steps
and then outputs the correct answer. The hidden state is

hCoT
· = hCoT

·,Semantic + hCoT
·,Reasoning.

(C) Reasoning Patch: replace reasoning components at all relevant layers. The third condi-
tion serves as the key causal intervention. The input text is identical to condition (A); however, at
every decoder layer that contributes to the representation of a token, we replace only the reasoning-
subspace component of the hidden state with the corresponding component extracted from condition
(B). Formally, for all layers along the forward-pass trajectory of token t, we apply:

hPatch
· = hNormal

·,Semantic + hCoT
·,Reasoning.

Thus, semantic information is preserved at every layer, while the reasoning components across all
intermediate layers are substituted with those from the CoT run. This ensures that the patched
forward pass follows the CoT reasoning trajectory throughout the entire decoder stack.

Key result. We evaluate the effectiveness of the proposed Reasoning Patch on mathematical rea-
soning benchmarks such as GSM8K (Cobbe et al., 2021), using both few-shot CoT and zero-shot
CoT to extract the reasoning-subspace components.
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(A) Normal

Input:
Q: Mishka bought 3 pairs of shorts, 3 

pairs of pants, and 3 pairs of shoes. One 

pair of shorts costs $16.50. One pair of 

pants costs $22.50 and one pair of shoes 

costs $42. How many dollars did 

Mishka spend on all the clothing items?

A: 

LLM Output: 
247.5

(B) CoT

Input:
(…few-shot CoT prompt…)

Q: Mishka bought 3 pairs of shorts, 3 pairs of pants, and 3 pairs of shoes. One pair of shorts 

costs $16.50. One pair of pants costs $22.50 and one pair of shoes costs $42. How many 

dollars did Mishka spend on all the clothing items?

A: 

LLM Output: 
1. Calculate the cost for each type of clothing:

   - Shorts: 3 × $16.50 = $49.50

   - Pants: 3 × $22.50 = $67.50

   - Shoes: 3 × $42 = $126

2. Add up the costs to find the total amount spent:

   - Total cost = $49.50 + $67.50 + $126 = $243.00

Therefore, Mishka spent $243.00 on all the clothing items.

(C) Patch

Input:
Q: Mishka bought 3 pairs of shorts, 3 pairs of pants, and 3 pairs of shoes. One pair of shorts costs $16.50. One pair of pants costs $22.50 and 

one pair of shoes costs $42. How many dollars did Mishka spend on all the clothing items?

A: 

LLM Output: 
1. Calculate the total cost for each type of clothing item:

   - Shorts: 3 * $16.5 = $49.5

   - Pants] 3 * $22.5 = $67.5

   - Shoes] 3 * $42 = $126

2. Add up the total cost for all types of clothing items:

   - Total cost = $49.5 + $67.5 + $126 = $243

Therefore, Mishka spent a total of $243 on all the clothing items.

Figure 10: Reasoning Patch experiment using few-shot chain-of-thought supervision.

Figure 10 presents the Qwen2.5-7B-Instruct outputs under the three conditions (A)–(C) when the
reasoning components of condition (C) are derived from few-shot CoT, with the full prompts shown
in Table 5. We observe that, even though condition (C) receives no CoT text in the input, injecting
the CoT-derived reasoning-subspace components reliably triggers the model to follow a “reason-
then-answer” generation pattern. As a result, the model transitions from an incorrect answer in (A)
to a correct, multi-step reasoning process in (C), demonstrating that the patched reasoning trajectory
causally determines the emergence of correct step-by-step reasoning.

Table 5: few-shot chain-of-thought prompt.

Q: A robe takes 2 bolts of blue fiber and half that much white fiber. How 

many bolts in total does it take?

A: A robe needs 2 bolts of blue fiber.

The amount of white fiber needed is half of the blue fiber.

Half of 2 bolts is 1 bolt of white fiber.

The total bolts needed is the sum of blue and white fiber.

2 bolts plus 1 bolt equals 3 bolts.

Therefore, the final answer is 3.

(…Input…)

Figure 11 shows the corresponding results when the reasoning components are extracted from zero-
shot CoT. Remarkably, even though condition (C) does not contain the zero-shot instruction (e.g.,
“Answer the following question step by step to the best of your ability.”), the patched model nonethe-
less produces a coherent step-by-step reasoning chain before giving the final answer. Interestingly, in
this setting the original CoT run in condition (B) makes an arithmetic mistake and outputs an incor-
rect final answer; however, condition (C)—which inherits only the reasoning-subspace components
rather than the explicit token sequence—does not reproduce this error and instead produces the cor-
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(A) Normal

Input:
Q: Charlie wants to sell beeswax 

candles. For every pound of beeswax, he 

can make 10 tapered candles. One 

pound of beeswax and the wicks cost 

$10.00 in supplies. If he sells each 

candle for $2.00 each, what is his net 

profit if he makes and sells 20 candles?

A: 

LLM Output: 
3.6

(B) CoT

Input:
Answer the following question step by step to the best of your ability.

Q: Charlie wants to sell beeswax candles. For every pound of beeswax, he can make 10 

tapered candles. One pound of beeswax and the wicks cost $10.00 in supplies. If he sells each 

candle for $2.00 each, what is his net profit if he makes and sells 20 candles?

A: 

LLM Output: 
1. First, let's calculate the total cost of supplies for making 20 candles:

   We know that one pound of beeswax and a wick cost $11.00.\n To find out how many pounds of 

beeswax are needed for 20 candles, we divide the number of candles by the number of candles per pound: 

20 / 10 = 2 pounds.\n Therefore, the total cost of supplies is 2 * $11.00 = $22.00

2. Next, let's calculate the total revenue from selling 20 candles:

   We know that each candle is sold for $2.00. \n Therefore, the total revenue is 20 * $2.00 = $44.00

3. Finally, let's calculate the net profit:

   Net profit is total revenue minus total cost of supplies.\n Net profit = $44.00 - $22.00 = $22.00

Therefore, Charlie's net profit if he makes and sells 20 candles is $22.00.

(C) Patch

Input:
Q: Charlie wants to sell beeswax candles. For every pound of beeswax, he can make 10 tapered candles. One pound of beeswax and the wicks 

cost $10.00 in supplies. If he sells each candle for $2.00 each, what is his net profit if he makes and sells 20 candles?

A: 

LLM Output: 
1. Calculate the total cost of supplies for making candles:

   Total cost = 20  candles × $1.00  per candle = $20.00

2. Calculate the total revenue from selling the candles:

   Total revenue = 20  candles × $2.00  per candle = $40.00

3. Calculate the net profit by subtracting the total cost from the total revenue:

   Net profit = $40.00 - $20.00 = $20.00

Therefore, the net profit for Charlie if he makes and sells 20 candles is: $20.00

Figure 11: Reasoning Patch experiment using zero-shot chain-of-thought prompting.

rect result. This highlights that the reasoning subspace captures the structural reasoning trajectory
without being constrained by the semantic information in the CoT prompt.

Together, these results provide compelling evidence that the reasoning subspace encodes causally
meaningful internal reasoning information, and that injecting its components is sufficient to induce
coherent multi-step reasoning even in the absence of explicit CoT prompting.

F COMPUTATIONAL COMPLEXITY OF SVD

To construct the reasoning subspace, we perform singular value decomposition (SVD) on a matrix
M ∈ Rn×d, where n denotes the vocabulary size and d is the dimensionality of the hidden rep-
resentation. In typical large language models, the matrix is tall and skinny with n ≫ d (e.g., for
Qwen2.5-7B, n = 152,064 and d = 3,584). The computational complexity of SVD depends on
these matrix dimensions as well as whether a full or truncated decomposition is applied.

Time Complexity. For a full SVD on an n× d matrix, the time complexity is

O
(
min(nd2, n2d)

)
.

Since the vocabulary size is typically much larger than the hidden dimension, the dominant term
becomes

O(nd2),

which makes full SVD computationally expensive in practice. For truncated SVD that retains only
the top-k singular directions, the complexity reduces to

O(ndk),

particularly when using iterative or randomized SVD algorithms. Such approximations are crucial
for scaling to vocabularies of realistic size.
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Table 6: SVD computation cost on the unembedding layer using an H100 80GB GPU. We report
wall-clock time, memory required during the SVD computation, and the additional memory by
SVD.

Model Unembedding
Shape Time Peak

Memory
Extra

Memory
Qwen2.5-7B-Instruct 152,064× 3,584 1.30s 8.37GB 0.02GB

LLaMA-3.1-8B 128,256× 4,096 1.60s 8.08GB 0.03GB
Qwen2.5-72B-Instruct 152,064× 8,192 9.83s 19.22GB 0.13GB
Qwen3-235B-A22B-

Instruct-2507-FP8 (MoE) 151,936× 4,096 1.70s 9.55GB 0.03GB

Space Complexity. Storing the matrix M requires

O(n2 + nd+ d2)

memory. The truncated singular vectors U ∈ Rn×k and V ∈ Rd×k introduce an additional

O((n+ d)k)

space overhead. Because n is very large in modern LLMs, the memory is dominated by storing U .

SVD Resource Consumption. To quantify the practical resource requirements of performing
SVD on the unembedding layer, Table 6 summarizes the wall-clock time, the peak memory con-
sumption during the SVD computation, and the additional memory introduced by truncated SVD
across several representative models. The evaluation covers models of different scales—including
Qwen2.5-7B-Instruct, LLaMA-3.1-8B, Qwen2.5-72B-Instruct, and the MoE model Qwen3-235B-
A22B-Instruct-2507-FP8 (Yang et al., 2025)—using an H100 80GB GPU.

Singular Value Distribution in Larger Models. Figure 12 shows the singular value distribution
of the unembedding layers for larger models, including Qwen2.5-72B-Instruct and Qwen3-235B-
A22B-Instruct-2507-FP8 (MoE). The trend of singular value decay is consistent with that observed
for Qwen2.5-7B-Instruct and LLaMA-3.1-8B (Figure 4a), indicating that our method can be directly
applied to larger models.

0 2000 4000 6000 8000
10-1

100

101

102

0 2000 4000 6000 8000
100

101

102

S
in

g
u
la

r 
v
al

u
es

Index

Qwen-2.5-72B-Instruct

Qwen3-235B-A22B-Instruct-2507-FP8

S
in

g
u
la

r 
v
al

u
es

Index

Figure 12: Singular value distributions of Wunemb after SVD, with hidden state dimensions of 8192
for Qwen2.5-72B-Instruct and 4096 for Qwen3-235B-A22B-Instruct-2507-FP8 (MoE).
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