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Abstract

Representing the candidates in referential001
guessing tasks is understudied, compared to002
representing the multimodal input. We inves-003
tigate how to improve candidate representa-004
tions in a grounded dialogue guessing game,005
GuessWhat?!. We find improvements in guess-006
ing accuracy by using richer combinations of007
complementary representations. Furthermore,008
using ensembles of models leads to large ac-009
curacy gains as well as enabling uncertainty010
analyses. Finally, we show that an ensemble011
of lightweight encoders paired with rich rep-012
resentations of the candidates can match the013
performance of a model based on a state-of-the-014
art universal multimodal encoder.015

1 Introduction016

Many visually-grounded language understanding017

tasks, such as referring expression comprehension018

or dialogue guessing games, require distinguishing019

between a set of contextually-grounded candidates.020

A common approach measures the similarity be-021

tween the dynamic candidates and the multimodal022

input, e.g. game dialogue and image. In this setting,023

both the input and the output candidates must be024

encoded with rich feature representations. How-025

ever, work on output candidate representations is026

understudied, compared to work on multimodal027

input representations.028

In this paper we show the importance of good029

candidate representations in the setting of visually-030

grounded guessing games, specifically in the Guess-031

What?! game (de Vries et al., 2017) (GW). For in-032

stance, in Figure 1, the Guesser requires candidate033

representations that encode the ontological infor-034

mation that dogs are living entities whereas pillows035

are not, in order to understand the dialogue. The036

candidate representations also have to distinguish037

the target dog from the other dogs: here, visual038

features encoding the colour could differentiate039

the black and white dogs from the other two dogs.040

Is it a living thing? Yes
Is it black and white? Yes
Is it in the background? Yes
Are its ears up in the air? Yes

“dog”

“pillow”

“dog”

“dog”

“dog”

Game Candidates

Figure 1: An example of a game from GuessWhat?!:
The Guesser receives the image and dialogue as input,
and has to pick the correct target (in green) from the
list of candidates. We consider different ways of repre-
senting the candidates, e.g. using category information,
visual features, and/or spatial position.

Finally, spatial information is essential to locate 041

the target in the background. Note that if the set 042

of candidates contained different distractors, other 043

features might have been needed to identify the 044

target: this is a dynamic ranking/classification task. 045

Currently, however, the standard GW Guesser 046

uses only spatial and category information. Ques- 047

tions about category and location make up about 048

65% of the questions in the dataset (Shekhar 049

et al., 2019): the baseline model might be suffi- 050

cient for these cases. However, 15.5% of questions 051

include colour, which the baseline Guesser cannot 052

see. Nearly as many (14.5%) mention an object’s 053

super category (e.g., ‘animal’), information not 054

necessarily included in the category embeddings. 055

The current candidate representations thus limit the 056

model’s ability to correctly guess in many games. 057

We show that a combination of visual features and 058

spatial location features, at the level of individual 059

candidates, plus semantic information about candi- 060

date categories, improves performance beyond the 061

standard Guesser. 062

Along with improving individual Guessers, we 063

1



also explore the use of ensembles of Guessers. Us-064

ing multiple classifiers within an ensemble is a065

classic method for improving performance, given066

sufficiently accurate and diverse ensemble com-067

ponents (Dietterich, 2000), but has not previously068

been used for visually-grounded referent resolu-069

tion. Using our best candidate representation in070

an ensemble increases Guesser accuracy by 5.5 ac-071

curacy points compared to the standard Guesser,072

used singularly. Moreover, this ensemble, using a073

lightweight multimodal LSTM dialogue encoder,074

matches the performance of a single heavyweight075

multimodal Transformer encoder, while being train-076

able in one-fifth of the time.077

Ensembling also allows us to inspect the uncer-078

tainty of the models, under a Bayesian interpreta-079

tion of deep ensembles as Bayesian model averag-080

ing (Lakshminarayanan et al., 2017; Wilson and081

Izmailov, 2020; Hüllermeier and Waegeman, 2021).082

We find that better candidate representations result083

in Guessers with less uncertain predictions. More-084

over, better candidate representations also lead to085

ensembles with Guessers that usefully disagree: en-086

sembles can combine these disparate predictions087

into more accurate overall predictions.088

Our contributions are:089

• We improve the Guesser, by adding better can-090

didate representations;091

• We show in our experiments how differenti-092

ating between different types of uncertainties,093

using ensembles, can lead to useful insights094

for model development and comparison;095

• We demonstrate that an ensemble of096

lightweight models with good candidate rep-097

resentations can match the performance of a098

single LXMERT model.099

2 Related Work100

2.1 GuessWhat?! Guesser101

GuessWhat?! (de Vries et al., 2017) is a dataset of102

human dialogues collected via Amazon Mechani-103

cal Turk in which two players play a guessing game.104

One player (the oracle) is assigned an object in an105

image and the other player (the questioner) has to106

ask Yes/No questions in order to discover the target107

object. In the first GW model proposed in de Vries108

et al. (2017), the questioner player is implemented109

by two different models: the Question Generator110

and the Guesser. The Guesser is trained to predict111

the target object from a set of candidates, using 112

supervised learning. Candidate objects are repre- 113

sented by a learned object category embedding and 114

spatial coordinates. 115

This simple baseline Guesser has been used in 116

most of the subsequent work on GW. Shekhar et al. 117

(2019) proposed an alternative questioner model 118

(GDSE) in which the Question Generator (QGen) 119

and the Guesser are jointly trained, but the latter 120

still receives the simple candidate representations 121

used by de Vries et al. (2017). 122

The little work that has focussed on the Guesser 123

has retained the baseline candidate representations. 124

Pang and Wang (2020) investigate the dynamics 125

of the Guesser over the course of the dialogue, 126

while Suglia et al. (2020) add an imagination mod- 127

ule to improve grounded conceptual learning within 128

the dialogue encoder. 129

Greco et al. (2020) evaluate the role of the en- 130

coder in the Guesser by comparing the blind LSTM 131

encoder, found to work best in (de Vries et al., 132

2017), with a multimodal LSTM (V-LSTM) and a 133

multimodal universal encoder (LXMERT). None 134

of this work has studied the effect of the candidate 135

representation choices within the standard model. 136

Most recently, Matsumori et al. (2021) propose a 137

new transformer-based architecture for GW, while 138

Tu et al. (2021) evaluate the impact of using pre- 139

trained representations. While these models per- 140

form well, they are significantly larger and more 141

complex, and do not permit the targeted study done 142

in this paper. 143

2.2 Deep Ensembles and Uncertainties 144

Initial work on uncertainty estimation in deep neu- 145

ral networks was within the area of Bayesian Neu- 146

ral Networks (Gal, 2016; Kendall and Gal, 2017; 147

Depeweg et al., 2018). Lakshminarayanan et al. 148

(2017) showed that deep (non-Bayesian) ensembles 149

can also be used for uncertainty estimation; in fact, 150

in many empirical settings they work better, due to 151

better exploration of the parameter space (Ashukha 152

et al., 2020; Fort et al., 2019). Deep ensembles are 153

equivalent to Bayesian model averaging, where 154

averaging over component predictions is analo- 155

gous to calculating the expected predictive pos- 156

terior while marginalising over parameters (Wilson 157

and Izmailov, 2020). 158

Uncertainty estimation has not received much 159

attention in the multimodal NLP or grounded dia- 160

logue setting, with the exception of Xiao and Wang 161
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(2021), who use uncertainty decomposition to un-162

derstand the hallucination behaviour of question163

generators. Abbasnejad et al. (2018) present a re-164

inforcement learner for grounded dialogue which165

takes uncertainty into account when learning which166

questions to ask, and also for deciding when to stop167

asking questions. This is an orthogonal approach to168

ours, which uses uncertainty as a post-hoc analysis169

method, rather than integrating it into the model.170

3 Guesser Model171

In this section we describe the Guesser model.172

We use the same Guesser architecture introduced173

in de Vries et al. (2017) which has been employed174

in virtually all follow-up work on GW. The Guesser175

receives as input a 512D vector, encoding the176

grounded dialogue, and a vector representation of177

each candidate. This vector representation is the178

result of feeding the concatenated features for each179

candidate through a two layer MLP with ReLU ac-180

tivations, resulting in a 512D vector. The Guesser181

then computes a dot product between the vector182

representing the grounded dialogue and each can-183

didate representation (processed by the MLP de-184

scribed above). The resulting scores are combined185

into a softmax layer, resulting in a probability dis-186

tribution over the candidates. Note that the MLPs187

share parameters between candidates (i.e. there is188

no ‘golden retriever’ module).189

In our experiments, we vary the candidate repre-190

sentations, as described below. We also experiment191

with both a lightweight and contextual multimodal192

encoder for the dialogue + input.193

3.1 Candidate representation194

In de Vries et al. (2017) each candidate is rep-195

resented by a spatial embedding, encoding its196

bounding box location, and a category embedding197

learned during training, based on the candidate’s198

MS-COCO (Lin et al., 2014) label. We question199

this representation, which could be lacking impor-200

tant information about the candidate with respect201

to the dialogue. According to Shekhar et al. (2019),202

questions about category and location make up203

about 65% of the human questions: the baseline204

model might be sufficient for these cases. However,205

15.5% of questions include colour, which the base-206

line Guesser cannot see. Nearly as many (14.5%)207

mention an object’s super category (‘animal’, ‘uten-208

sil’), which also is information not necessarily in-209

cluded in the embeddings learned from the training210

games. Hence, we build richer candidate represen- 211

tations starting from the following components: 212

Spatial information spatial is represented 213

by a 8D vector that encodes the location of the 214

candidate’s bounding box. Since the Guesser does 215

not have direct access to the image but only sees 216

it via the encoded grounded dialogue embedding, 217

the spatial coordinates locate the object in the im- 218

age. Hence, they are very informative for the se- 219

lection task, especially when multiple candidates 220

look the same at a type/category level and share the 221

most salient visual attributes (like the two black and 222

white dogs in Figure 1.) Moreover, dialogues often 223

refer to objects using their location (e.g. “the dog 224

on the right”) that the Guesser can exploit better by 225

having access to the spatial coordinates. 226

Category information cat is given by a 256D 227

category embedding, representing the candidate’s 228

category according to the MS-COCO label. This 229

learned embedding encodes the conceptual rep- 230

resentation of the object emerging from its co- 231

occurrences with dialogue and image features 232

within the GW training data. 233

GloVe embeddings glove representations 234

are the 300D pretrained word embeddings 235

(GloVe (Pennington et al., 2014)) of the word 236

corresponding to the category label, scaled down 237

to 256D using a feedforward layer with ReLU 238

activation. (When the label is a multi-world label, 239

e.g. “dining table” we take the mean over the 240

words in the expression). glove embeddings, 241

despite some limitations, are shown to be effective 242

at object-property tasks (Lucy and Gauthier, 2017; 243

Forbes et al., 2019) and at capturing taxonomic 244

relations (Da and Kasai, 2019). 245

Visual information visual representations are 246

obtained from a ResNet-152, pre-trained on Im- 247

ageNet, which receives as input the crop of the 248

object. This visual vector is input to a feed-forward 249

layer with ReLU activation, in order to obtain a 250

256D vector. This embedding should provide the 251

visual attributes of the entity it represents, which 252

are expected to play a crucial role in games in 253

which there are distractors of the same category 254

of the target objects. For instance, the dialogue 255

identifies the target as a “black and white dog” in 256

Figure 1, but without visual features the dogs are 257

indistinguishable. 258

We experiment with different combination of 259
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these basic components. We evaluate models with260

all the 2-input combinations, apart from glove +261

cat, which cannot be sufficiently discriminative in262

games that contain distractors of the same category263

of the target object. The spatial and visual embed-264

dings provide token specific complementary infor-265

mation, whereas the cat and glove embeddings266

are both meant to encode concept representations.267

Hence, we experiment only with the following 3-268

input representations: cat+visual+spatial269

and glove+visual+spatial. Finally, to270

check the degree to which cat and glove provide271

redundant information, we try the 4-input embed-272

ding containing all the basic components above,273

cat+glove+visual+spatial.274

3.2 Grounded Dialogue Encoder275

The encoder generates a grounded dialogue repre-276

sentation from the image and the set of questions277

and answers. In our experiments, we use two dif-278

ferent multimodal encoders (Greco et al., 2020):279

V-LSTM is a relatively lightweight encoder that280

represents the dialogue history as the 1024D last281

hidden state from a LSTM receiving the dialogue,282

concatenates that vector with a 2048D representa-283

tion of the image extracted from the penultimate284

layer of a ResNet-152 pre-trained on ImageNet (He285

et al., 2016), and gives the concatenation to a feed-286

forward layer with Tanh activation to generate a287

512D vector representing the grounded dialogue.288

LXMERT is a transformer-based multimodal en-289

coder (Tan and Bansal, 2019). It represents an290

image by the set of position-aware object embed-291

dings for the 36 most salient regions detected by292

a Faster R-CNN (Ren et al., 2016) and the text293

by position-aware word embeddings. LXMERT294

is pre-trained on five vision-and-language tasks295

whose images come from MS-COCO and Visual296

Genome (Krishna et al., 2017). In our experiments,297

we fine-tune the pre-trained LXMERT model on298

GW. We generate our 512D vector representing the299

grounded dialogue by taking the 768D vector from300

the [CLS] initial token of LXMERT and by giving301

it to a feedforward layer with Tanh activation.302

We consider the V-LSTM lightweight because303

it has ∼ 18× fewer parameters and thus requires304

much less training (data and time) than LXMERT.305

3.3 Training procedure306

We minimize the cross-entropy error with respect307

to the ground-truth annotation during training, us-308

ing the Adam optimizer (Kingma and Ba, 2014) for 309

V-LSTM and Adam with a linear-decayed learning- 310

rate schedule for LXMERT (Devlin et al., 2018). 311

We perform early stopping with ten epochs of pa- 312

tience. (See Appendix A.1 for details.) 313

3.4 Guesser ensembles 314

We follow the standard deep ensemble setup (Lak- 315

shminarayanan et al., 2017) of training independent 316

Guessers by training them with different random 317

seeds. All our Guesser ensembles consist of five 318

Guessers of the same type (i.e., having the same 319

encoder and set of candidate representation input 320

information). Different random seeds mean the 321

Guessers differ in their random initialisations (ex- 322

cept for the weights of the pretrained LXMERT en- 323

coder) and the order in which they see the data. An 324

ensemble of Guessers generates predictions using 325

the average of the Guesser prediction distributions. 326

4 Measuring Uncertainties 327

The uncertainty of a model, parameterised as θ, is 328

commonly measured by the entropy of the predic- 329

tive distribution pθ(y|x), averaged over a test set. 330

For each example x, a confident model will put 331

most probability mass on a single choice y, lead- 332

ing to low entropy, while an uncertain model will 333

spread its bets, leading to higher entropy. 334

Within an ensemble, the ensemble total uncer- 335

tainty is the entropy of its predictive distribution, 336

which combines the distributions of the N ensem- 337

ble components: 338

H[p(y|x)] = H[1/N
N∑
n=1

pθn(y|x)]. (1) 339

(This is the sample-based approximation to 340

marginalising over θ.) Note that an ensemble can 341

have high uncertainty (high entropy) either because 342

of noisy or ambiguous data leading to an inability 343

to make a confident decision, or because its compo- 344

nents disagree (Depeweg et al., 2018; Hüllermeier 345

and Waegeman, 2021). 346

We can also measure the average uncer- 347

tainty of each ensemble component on its own: 348

1/N
∑N

n=1H[pθn(y|x)]. This factor is known as 349

data uncertainty: it measures whether the datapoint 350

is sufficiently informative for each model to make 351

a confident decision. If x is inherently ambiguous, 352

then all models should have high uncertainty. Total 353

ensemble uncertainty will also be high, due to the 354

combination of uncertain predictions. 355
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The difference between total uncertainty and356

data uncertainty is model uncertainty, which mea-357

sures the extent to which the models disagree (i.e.,358

the extent to which the ensemble’s predictive distri-359

bution does not match the average ensemble compo-360

nent).1 Model uncertainty is always non-negative.361

In this paper we compare different models, dif-362

fering in their choice representations, as ensembles.363

As discussed earlier, within the GW Guesser, the364

choice representation should be considered part365

of the input x. Inadequate choice representation366

will thus lead to high data uncertainty, since the367

representation is not sufficient to make confident368

decisions.2 Since the humans playing the original369

GW game, generating the test and training data,370

guessed correctly, overly high “data uncertainty”371

values point to problems with data representations,372

rather than inherently ambiguous data.373

Whether model uncertainty should also be min-374

imised is a different question. In theory, if all375

ensemble components have found the global op-376

timum, model uncertainty will be zero. In practice,377

not being able to find the global optimum, we use378

ensembles to approximate a distribution over good379

local optima. Ensemble ‘boost’ (the improvement380

in performance over the component average) also381

requires model diversity. It is thus more useful to382

have a collection of strong but different opinions383

(low data, high model uncertainty) than homoge-384

neous equivocal opinions (high data, low model385

uncertainty).386

5 Experiments387

In the following three experiments we evalu-388

ate: (i) how to ensemble the Guesser effectively;389

(ii) which candidate representations are most effec-390

tive in terms of accuracy, and characterise their391

patterns of uncertainty; (iii) the effect of using392

transformer-based encoders vs lightweight LSTM393

1Formally, within a Bayesian framework, it is the mu-
tual information between y and the ensemble parame-
ters θ estimated from data D, derived from the differ-
ence between entropy and crossentropy: H[p(y, |x,D)] =
Eθ|DH[p(y|x, θ)]−MI[y, θ|x,D], where the left hand term
is total uncertainty (marginalising over θ) and the first term on
the right is data uncertainty.

2We note here that, while ‘data uncertainty’ has been iden-
tified with ‘aleatoric uncertainty’ (Kendall and Gal, 2017; De-
peweg et al., 2018; Malinin and Gales, 2018), namely the true
uncertainty of the example in the world (Der Kiureghian and
Ditlevsen, 2007), this doesn’t hold inasmuch as the represen-
tation of the data is a modelling decision (see also Hüllermeier
and Waegeman (2021), Sec 2.3). Comparing different data
representations doesn’t change the true aleatoric uncertainty,
which is an lower bound on data uncertainty.

Encoder Guessers Ensemble κ

Fixed 64.85±0.21 65.28 0.86
Trained 64.49±0.12 66.40 0.71

Table 1: Accuracy of the Guessers trained independently
(mean and standard deviation of the 5 Guessers) com-
pared against accuracy of the ensemble. Fixed encoders
are shared between Guessers while Trained encoders
are not. Fleiss’ kappa κ measures the agreement among
the individual Guessers.

encoders. 394

Our primary evaluation measure is game accu- 395

racy, i.e. whether the Guesser chooses the correct 396

target object. We report results for the GW test set. 397

In the context of an ensemble, we also report Fleiss’ 398

kappa κ, which measures agreement between the 399

argmax predictions of the Guessers in the ensemble 400

(perfect agreement is κ = 1, chance is κ = 0). 401

We also evaluate uncertainty, as described in Sec- 402

tion 4. Since uncertainty is an entropy-based mea- 403

sure, it is dependent on the size of the distribution 404

it is calculated over, i.e. the number of available 405

choices. Within the context of GW, this means we 406

measure uncertainty over sets of games with the 407

same number of candidates. For all entropy-based 408

measures, we use as base the number of candidates, 409

which bounds the measure to be between 0 and 1. 410

Empirically we find that this makes uncertainties 411

comparable across games with different numbers 412

of candidates. 413

Data The GuessWhat?! dataset (de Vries et al., 414

2017) contains 155K English dialogues about 415

nearly 67K different images. Images repeat across 416

games but images of games in the test set are un- 417

seen during training. Each game has at least 2 418

and at most 20 candidates, with a mode of 3 and 419

a median of 7 candidates. Targets are assigned to 420

MS-COCO categories; target category statistics are 421

in Appendix 7. For our training and evaluation, 422

we use only the games on which humans succeed 423

in finding the target and which contain at most 10 424

turns (total number of dialogues used: 90K in train- 425

ing and around 18K both in validation and testing). 426

We use a vocabulary frequency threshold of ≥ 3 427

resulting in a vocabulary of around 5K words for 428

V-LSTM; for LXMERT we use its vocabulary. 429

5.1 Experiment 1 430

We begin by evaluating the effect of ensembling on 431

the standard Guesser, which uses cat+spatial 432
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Candidate rep. Guessers Ens. κ

cat+sp 64.49±0.12 66.40 0.71
cat+vis 59.17±0.23 61.07 0.63
glove+spat 64.84±0.18 67.21 0.70
glove+vis 58.08±0.52 61.03 0.60
vis+sp 55.19±0.55 60.58 0.59
cat+vis+sp 66.45±0.25 69.61 0.68
gl+vis+sp 66.72±0.19 70.12 0.68
cat+gl+vis+sp 66.58±0.26 69.58 0.68

Table 2: Test set accuracies for Guessers with different
candidate representations, individually and in an ensem-
ble. cat, gl, vis, and spat stand for category,
glove, spatial, and visual.

candidate representations. We combine this433

Guesser with an encoder using V-LSTM im-434

age+dialogue representations.435

We find that when we ensemble only the Guesser436

layer, i.e, using the same pretrained and fixed en-437

coder for all Guessers within the ensemble, ensem-438

bling results in only a small performance boost439

over using a single Guesser (see Table 1). How-440

ever, when we include the encoder in the ensemble,441

i.e., train a separate encoder together with each442

Guesser in the ensemble, the ensemble accuracy443

improves over the average Guesser accuracy by444

nearly two points.445

This result indicates a lack of diversity in the446

fixed setting, either due to the shared encoder con-447

straining the parameters of each Guesser, or be-448

cause there are too few parameters within only the449

Guessers to effectively diversify. The values of κ450

show that the Guessers with a fixed shared encoder451

agree much more than Guessers with independently452

trained encoders: they are making less diverse pre-453

dictions. Since the benefit of an ensemble is found454

when combining diverse models, we use Guessers455

with independently trained encoders in our subse-456

quent ensembles.457

5.2 Experiment 2458

In this experiment we evaluate the effect of dif-459

ferent candidate representations on Guessers with460

V-LSTM encoders. We combine the candidate rep-461

resentations described in section 3.1: cat, glove,462

visual, and spatial, in various configurations.463

We assess both model accuracy and uncertainty.464

Accuracy results The results in Table 2 show465

that the representation of the candidates has466

a large effect on Guesser performance, both 467

alone and in an ensemble. The worst com- 468

bination, visual+spatial, is ten percent- 469

age points worse than the best combination, 470

glove+visual+spatial. The benefit of us- 471

ing an ensemble is again greater for models with 472

higher disagreement (lower values of κ), with the 473

exception of cat+visual. 474

Models with three or four types of candi- 475

date representations outperform models with only 476

two types; however there is not a benefit of 477

combining all four types over only three. Cat- 478

egory/type information is crucial for success: 479

the model with only token-level information, 480

visual+spatial, clearly underperforms all the 481

others. The category representations, namely cat 482

and glove, lead to similar results when combined 483

with other representations, and do not benefit from 484

being combined together (unlike the token repre- 485

sentations). glove representations do seem to be 486

slightly more beneficial than cat representations, 487

indicating that the additional world knowledge that 488

they contain can be useful. (See Figure 3 for an 489

example where glove representations allow the 490

model to guess correctly.) 491

We now investigate how these representations 492

interact with certain game characteristics, such as 493

games with rare or frequent targets, or games with 494

multiple candidates of the same category. 495

Frequency of target Target frequency does not 496

have a positive effect on classification accuracy in 497

GW for any model (Figure 8 in Appendix). This 498

is unlike most classification problems, where rare 499

classes are harder to predict than frequent classes. 500

In fact, category-level information, such as given 501

cat and glove, seems to lead worse performance 502

on frequent targets, since visual+spatial, 503

which doesn’t have class information, has the flat- 504

test performance across target frequency. However, 505

as discussed earlier, the GW task not is about iden- 506

tifying just the category of the target, and so fre- 507

quency of category occurrence doesn’t necessarily 508

lead to better prediction. 509

Number of target-class distractors On the other 510

hand, distractors belonging to the same class as the 511

correct target make the game harder for all mod- 512

els (Figure 2). While visual features would en- 513

able models to use dialogue inputs such as “black 514

and white”, these do not seem to be sufficient, as 515

demonstrated by the relatively poor performance of 516
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Figure 2: Ensemble accuracy of different models for
increasing number of distractor candidates of the same
category of the target.

category+spatial (failure) vs. 
glove+spatial (success)

do you hold it in your hand? No
is it human? No

does it have numbers on it? Yes

glove+spatial (failure) vs. 
glove+spatial+vision (success)

a phone? Yes
one of the three? No

the top blue? Yes

Figure 3: Representative examples of the contribution
of different features. On the left: contribution of Glove
embeddings on common sense reasoning (cars have
numbers on them – plates). On the right: contribution
of visual features (colors).

cat+visual and glove+visual. Spatial fea-517

tures are more important, likely because of the use518

of “on the right” or “in the background”. However519

there are cases where visual features are essential,520

e.g. the example in Figure 3 (right). Interestingly,521

we see that the model without category informa-522

tion (visual+spatial) does worse than all the523

other models in games where category is sufficient524

to distinguish the target (there are 0 distractors of525

the target category), but performs competitively in526

games with many target category candidates.527

Uncertainty results Since we expect failed528

games to show higher uncertainty than success-529

ful games, we measure uncertainties separately de-530

pending on whether the model correctly guessed531

the candidate. Figure 4 shows the uncertainty mea-532

sures from Section 4: total uncertainty (entropy533

of ensemble predictive distribution), data uncer-534

tainty (average uncertainty of ensemble compo-535

nents), and model uncertainty (difference between 536

total and data uncertainty). We see that all models 537

do have much higher total uncertainty for failed 538

than for successful games. Models with three or 539

four types of candidate representations have lower 540

data uncertainty than the other models, indicating 541

that each Guesser is making more confident pre- 542

dictions. This difference is especially large for 543

failed games: the better Guessers in this case are 544

somewhat overconfident. However, within an en- 545

semble, these Guessers show higher model uncer- 546

tainty, the result of Guessers making different pre- 547

dictions for failed games. For successful games, 548

all Guessers should be, and are, making similar 549

predictions (since these games will generally be 550

easier than the failed games), as shown by the low 551

model uncertainty across the board. 552

While both data and model uncertainty is higher 553

for unsuccessful games on average, there is large 554

variance in uncertainty between games, particularly 555

for failed games. Figure 7 (in Appendix) shows 556

that the distribution of unsuccessful and successful 557

games largely overlap, for all models. 558

In summary: the better models, combining 559

visual and spatial token-level information 560

with either or both types of category information, 561

are more confident about their predictions (lower 562

data uncertainty). Ensembles of these models are 563

also more diverse (possibly an effect of their larger 564

capacity), leading to larger ensemble gains. 565

5.3 Experiment 3 566

Thus far we have been using V-LSTM as an en- 567

coder for all of our models. In this experiment, 568

we check whether the LXMERT encoder leads to 569

the same pattern of results. We create ensembles 570

of LXMERT models with two representative can- 571

didate representations, cat+spatial (the stan- 572

dard Guesser) and glove+visual+spatial 573

(the best performing Guesser). 574

As shown in Table 3, LXMERT encoders lead 575

to better individual Guessers than V-LSTM en- 576

coders. However, ensembling LXMERT leads 577

to a smaller boost than ensembling good V- 578

LSTM Guessers. An ensemble of V-LSTM 579

glove+visual+spatial Guessers outper- 580

forms a single LXMERT Guesser, which is a 581

remarkable result, given the difference in num- 582

ber of parameters (V-LSTM: 11M vs. LXMERT: 583

209M) between the two models. Training a single 584

LXMERT takes significantly longer than training 585
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Figure 4: Total, data, and model uncertainty for different ensembles considering games with 5 candidate objects.
(Results for games with different numbers of candidates are similar: see Figure 6 in Appendix.)

Model Candidate Rep. Guessers Ensemble κ

V-LSTM cat+spatial 64.49±0.12 66.40 0.71
V-LSTM glove+visual+spatial 66.72±0.19 70.12 0.68
LXMERT cat+spatial 69.73±0.46 71.55 0.76
LXMERT glove+visual+spatial 69.56±0.27 71.57 0.74

Table 3: Accuracy of Guessers using V-LSTM and LXMERT encoders.

an ensemble of V-LSTM Guessers (V-LSTM En-586

semble: 45m×5=3h54m; one LXMERT: 21hrs).587

The lack of ensemble boost for LXMERT en-588

coders is due to a lack of diversity among the en-589

semble components, as shown by high values of κ590

and low model uncertainties (See Figure 9 in Ap-591

pendix). We suspect this is because LXMERT en-592

coders are pretrained, so they are not independent;593

only the smaller number of Guesser parameters are594

randomly initialised.595

LXMERT models are also less affected by candi-596

date representations than V-LSTM models: there is597

only a minor difference between cat+spatial598

and glove+visual+spatial for LXMERT,599

while V-LSTM models differ by two points (indi-600

vidually) or four (in the ensemble). This is possibly601

due to the transformer model architecture already602

bringing in the same sources of information as the603

candidate representations: LXMERT has better vi-604

sual representations of the input image as a set of605

regions of interest, which might mitigate the need606

for visual; due to pretraining on large multi-607

modal corpora, it also has rich lexical information608

similar to what is contained in glove or cat rep-609

resentations.610

6 Conclusion611

Adequately representing the choice set in ‘dynamic’612

classification tasks like GW is an important, but ne-613

glected, aspect of model construction. In this paper 614

we showed that an improved choice set representa- 615

tion leads to a more accurate Guesser, particularly 616

in the context of an ensemble, in a supervised setup 617

evaluating only the Guesser. The next step is to use 618

this Guesser in a reinforcement learning setup for 619

the full GW task, where we hope it will also lead 620

to better question generation, since the Guesser 621

will be better able to use e.g. visual or affordance 622

information from the generated dialogue. 623

The uncertainty analysis we performed gives 624

insight into the differences between the models: 625

better candidate representations lead to individual 626

models that make more confident predictions, even 627

when they are wrong (low data uncertainty). How- 628

ever, these models also have higher diversity in 629

their predictions (higher model uncertainty), partic- 630

ularly when they are wrong, which means the full 631

ensemble prediction can be more accurate. 632

Current NLP methods predominantly rely on us- 633

ing heavy pre-trained transformer models. These 634

models do generally lead to good performance, 635

but require a lot of fine-tuning, hampering speedy 636

model development. We propose ensembling more 637

lightweight models as an alternative means of 638

achieving similar performance, in much less time. 639
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A Appendix793

A.1 Training procedure794

All our models were implemented in PyTorch795

(Paszke et al., 2017). For LXMERT, we took796

the pre-trained model released by the authors at797

the link https://github.com/airsplay/798

lxmert. Table 4 shows the epochs we took the799

models from for each of the 5 guessers. Table800

5 shows the number of trained parameters of the801

guessers for each of the configurations we consid-802

ered in our experiments. Table 6 shows the average803

training time per single guesser in ensembles in804

the simplest and most complex configurations. We805

used an NVIDIA Quadro P6000 GPU having 24806

GB of RAM in our experiments.807

Training parameters For V-LSTM, we used a808

learning rate equal to 0.0001 and a batch size equal809

to 64. For LXMERT, we used a learning rate equal810

to 0.00001, a weight decay equal to 0.01, and a811

batch size equal to 16. For LXMERT, use also812

clipped the gradient norm to 5 after each backward813

propagation step.814

A.2 Candidate Objects Details815

The GW dataset is composed of 160,745 dialogues816

containing 66,537 unique images with 1,385,197817

objects and 134,073 unique target objects. Each818

object is assigned to one out of the 80 categories819

from MS-COCO. Figure 5 shows the target super-820

category distribution in the GW dataset: each MS-821

COCO category was mapped to its corresponding822

super-category using the mapping in Table 7.823

Figure 5: Super-category target object frequency in the
GW dataset.
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Encoder Model Best epochs
V-LSTM cat+spatial 10, 8, 11, 9, 12

LXMERT cat+spatial 12, 23, 14, 14, 16
V-LSTM cat+visual 10, 9, 9, 10, 12
V-LSTM glove+visual 10, 12, 11, 12, 14
V-LSTM glove+spatial 10, 6, 14, 6, 9
V-LSTM visual+spatial 7, 25, 4, 6, 5
V-LSTM cat+visual 14, 8, 11, 14, 19
V-LSTM glove+visual+spatial 12, 20, 10, 17, 9
V-LSTM cat+glove+visual+spatial 16, 15, 9, 8, 9

LXMERT glove+visual+spatial 8, 7, 7, 21, 19

Table 4: Best epochs per ensemble. In particular, for each ensemble, we report the epochs where each of the five
guessers obtained the best validation error.

Encoder Model Number of parameters
V-LSTM cat+spatial 10,952,818

LXMERT cat+spatial 208,900,978
V-LSTM cat+visual 11,604,338
V-LSTM glove+visual 11,658,098
V-LSTM glove+spatial 11,531,122
V-LSTM visual+spatial 11,454,066
V-LSTM cat+visual 11,608,434
V-LSTM glove+visual+spatial 11,662,194
V-LSTM cat+glove+visual+spatial 11,816,562

LXMERT glove+visual+spatial 209,610,354

Table 5: Number of trained parameters per guesser. In particular, for each ensemble, we report the number of trained
parameters of one of its guessers.

Encoder Model Training time
V-LSTM cat+spatial 13m
V-LSTM glove+visual+spatial 47m
V-LSTM cat+glove+visual+spatial 1h27m

LXMERT cat+spatial 15h27m
LXMERT glove+visual+spatial 21h

Table 6: Average training time per guesser. In particular, for each ensemble, we report the average time (in hours
and minutes) of the training of one of its guessers.
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Super-category MS-COCO Category
person person (30.23%)

vehicle
bicycle (0.7%), car (4.75%), motorcycle (0.85%), airplane (0.77%), bus (0.92%),
train (0.63%), truck (1.37%), boat (1.25%)

outdoor
traffic light (1.07%), fire hydrant (0.25%), street sign (<0.01%), stop sign (0.24%),
parking meter (0.19%), bench (1.17%)

animal
bird (1.06%), cat (0.89%), dog (1.04%), horse (1.02%), sheep (1.08%), cow (1.11%),
elephant (0.92%), bear (0.09%), zebra (0.89%), giraffe (0.88%)

accessory
hat (<0.01%), backpack (1.0%), umbrella (0.89%), shoe (<0.01%), eye glasses (<0.01%),
handbag (1.13%), tie (0.74%), suitcase (0.74%)

sports
frisbee (0.5%), skis (0.7%), snowboard (0.31%), sports ball (0.96%), kite (0.74%),
baseball bat (0.48%), baseball glove (0.55%), skateboard (0.76%),
surfboard (0.74%), tennis racket (0.87%)

kitchen
bottle (2.39%), plate (<0.01%), wine glass (0.55%), cup (2.13%), fork (0.64%),
knife (0.79%), spoon (0.57%), bowl (1.63%)

food
banana (0.76%), apple (0.55%), sandwich (0.65%), orange (0.57%),
broccoli (0.75%), carrot (0.67%), hot dog (0.41%), pizza (0.82%),
donut (0.79%), cake (0.78%)

furniture
chair (3.23%), couch (1.02%), potted plant (0.97%), bed (0.75%), mirror (<0.01%),
dining table (2.06%), window (<0.01%), desk (<0.01%), toilet (0.56%), door (<0.01%)

electronic
tv (1.0%), laptop (0.82%), mouse (0.43%), remote (0.87%),
keyboard (0.46%), cell phone (1.0%)

appliance
microwave (0.25%), oven (0.48%), toaster (0.04%), sink (0.89%),
refrigerator (0.44%), blender (<0.01%)

indoor
book (1.99%), clock (0.71%), vase (0.85%), scissors (0.17%),
teddy bear (0.69%), hair drier (0.04%), toothbrush (0.33%), hair brush (<0.01%)

Table 7: Mapping between MS-COCO categories (and their relative frequency in the whole dataset) and super-
categories.
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Figure 6: Mean data vs model uncertainty for games with different numbers of candidate objects (3–15), separated
for failed and successful games. Entropy base is equal to number of candidate objects; entropies across different
bases should not be compared directly. Each colour represents a different model.

Figure 7: Data vs model uncertainty of individual five-candidate games, separated by success (failed:top, success-
ful:bottom). Models using glove instead of cat features present very similar patterns (not shown). Increasing
number of features results in lower data uncertainty and higher model uncertainty, particularly for unsuccessful
games.
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Figure 8: Linear regression fits of mean ensemble accuracy (green), data uncertainty (orange) and model uncertainty
(red) of different models by (log) frequency of the target. Accuracy is calculated over all games, while uncertainty
is measured over five-candidate games. Targets are grouped by MSCOCO categories; target frequency is measured
on the test set.

Figure 9: Total, data, and model uncertainty for different ensembles considering games with 5 candidate objects.
We compare V-LSTM and LXMERT.
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