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Abstract

Representing the candidates in referential
guessing tasks is understudied, compared to
representing the multimodal input. We inves-
tigate how to improve candidate representa-
tions in a grounded dialogue guessing game,
GuessWhat?!. We find improvements in guess-
ing accuracy by using richer combinations of
complementary representations. Furthermore,
using ensembles of models leads to large ac-
curacy gains as well as enabling uncertainty
analyses. Finally, we show that an ensemble
of lightweight encoders paired with rich rep-
resentations of the candidates can match the
performance of a model based on a state-of-the-
art universal multimodal encoder.

1 Introduction

Many visually-grounded language understanding
tasks, such as referring expression comprehension
or dialogue guessing games, require distinguishing
between a set of contextually-grounded candidates.
A common approach measures the similarity be-
tween the dynamic candidates and the multimodal
input, e.g. game dialogue and image. In this setting,
both the input and the output candidates must be
encoded with rich feature representations. How-
ever, work on output candidate representations is
understudied, compared to work on multimodal
input representations.

In this paper we show the importance of good
candidate representations in the setting of visually-
grounded guessing games, specifically in the Guess-
What?! game (de Vries et al., 2017) (GW). For in-
stance, in Figure 1, the Guesser requires candidate
representations that encode the ontological infor-
mation that dogs are living entities whereas pillows
are not, in order to understand the dialogue. The
candidate representations also have to distinguish
the target dog from the other dogs: here, visual
features encoding the colour could differentiate
the black and white dogs from the other two dogs.

Candidates

Is it a living thing? Yes

Is it black and white? Yes

Is it in the background? Yes
Are its ears up in the air? Yes

“dog” !

Figure 1: An example of a game from GuessWhat?!:
The Guesser receives the image and dialogue as input,
and has to pick the correct target (in green) from the
list of candidates. We consider different ways of repre-
senting the candidates, e.g. using category information,
visual features, and/or spatial position.

Finally, spatial information is essential to locate
the target in the background. Note that if the set
of candidates contained different distractors, other
features might have been needed to identify the
target: this is a dynamic ranking/classification task.

Currently, however, the standard GW Guesser
uses only spatial and category information. Ques-
tions about category and location make up about
65% of the questions in the dataset (Shekhar
et al., 2019): the baseline model might be suffi-
cient for these cases. However, 15.5% of questions
include colour, which the baseline Guesser cannot
see. Nearly as many (14.5%) mention an object’s
super category (e.g., ‘animal’), information not
necessarily included in the category embeddings.
The current candidate representations thus limit the
model’s ability to correctly guess in many games.
We show that a combination of visual features and
spatial location features, at the level of individual
candidates, plus semantic information about candi-
date categories, improves performance beyond the
standard Guesser.

Along with improving individual Guessers, we



also explore the use of ensembles of Guessers. Us-
ing multiple classifiers within an ensemble is a
classic method for improving performance, given
sufficiently accurate and diverse ensemble com-
ponents (Dietterich, 2000), but has not previously
been used for visually-grounded referent resolu-
tion. Using our best candidate representation in
an ensemble increases Guesser accuracy by 5.5 ac-
curacy points compared to the standard Guesser,
used singularly. Moreover, this ensemble, using a
lightweight multimodal LSTM dialogue encoder,
matches the performance of a single heavyweight
multimodal Transformer encoder, while being train-
able in one-fifth of the time.

Ensembling also allows us to inspect the uncer-
tainty of the models, under a Bayesian interpreta-
tion of deep ensembles as Bayesian model averag-
ing (Lakshminarayanan et al., 2017; Wilson and
Izmailov, 2020; Hiillermeier and Waegeman, 2021).
We find that better candidate representations result
in Guessers with less uncertain predictions. More-
over, better candidate representations also lead to
ensembles with Guessers that usefully disagree: en-
sembles can combine these disparate predictions
into more accurate overall predictions.

Our contributions are:

* We improve the Guesser, by adding better can-
didate representations;

* We show in our experiments how differenti-
ating between different types of uncertainties,
using ensembles, can lead to useful insights
for model development and comparison;

* We demonstrate that an ensemble of
lightweight models with good candidate rep-
resentations can match the performance of a
single LXMERT model.

2 Related Work

2.1 GuessWhat?! Guesser

GuessWhat?! (de Vries et al., 2017) is a dataset of
human dialogues collected via Amazon Mechani-
cal Turk in which two players play a guessing game.
One player (the oracle) is assigned an object in an
image and the other player (the questioner) has to
ask Yes/No questions in order to discover the target
object. In the first GW model proposed in de Vries
et al. (2017), the questioner player is implemented
by two different models: the Question Generator
and the Guesser. The Guesser is trained to predict

the target object from a set of candidates, using
supervised learning. Candidate objects are repre-
sented by a learned object category embedding and
spatial coordinates.

This simple baseline Guesser has been used in
most of the subsequent work on GW. Shekhar et al.
(2019) proposed an alternative questioner model
(GDSE) in which the Question Generator (QGen)
and the Guesser are jointly trained, but the latter
still receives the simple candidate representations
used by de Vries et al. (2017).

The little work that has focussed on the Guesser
has retained the baseline candidate representations.
Pang and Wang (2020) investigate the dynamics
of the Guesser over the course of the dialogue,
while Suglia et al. (2020) add an imagination mod-
ule to improve grounded conceptual learning within
the dialogue encoder.

Greco et al. (2020) evaluate the role of the en-
coder in the Guesser by comparing the blind LSTM
encoder, found to work best in (de Vries et al.,
2017), with a multimodal LSTM (V-LSTM) and a
multimodal universal encoder (LXMERT). None
of this work has studied the effect of the candidate
representation choices within the standard model.

Most recently, Matsumori et al. (2021) propose a
new transformer-based architecture for GW, while
Tu et al. (2021) evaluate the impact of using pre-
trained representations. While these models per-
form well, they are significantly larger and more
complex, and do not permit the targeted study done
in this paper.

2.2 Deep Ensembles and Uncertainties

Initial work on uncertainty estimation in deep neu-
ral networks was within the area of Bayesian Neu-
ral Networks (Gal, 2016; Kendall and Gal, 2017;
Depeweg et al., 2018). Lakshminarayanan et al.
(2017) showed that deep (non-Bayesian) ensembles
can also be used for uncertainty estimation; in fact,
in many empirical settings they work better, due to
better exploration of the parameter space (Ashukha
et al., 2020; Fort et al., 2019). Deep ensembles are
equivalent to Bayesian model averaging, where
averaging over component predictions is analo-
gous to calculating the expected predictive pos-
terior while marginalising over parameters (Wilson
and Izmailov, 2020).

Uncertainty estimation has not received much
attention in the multimodal NLP or grounded dia-
logue setting, with the exception of Xiao and Wang



(2021), who use uncertainty decomposition to un-
derstand the hallucination behaviour of question
generators. Abbasnejad et al. (2018) present a re-
inforcement learner for grounded dialogue which
takes uncertainty into account when learning which
questions to ask, and also for deciding when to stop
asking questions. This is an orthogonal approach to
ours, which uses uncertainty as a post-hoc analysis
method, rather than integrating it into the model.

3 Guesser Model

In this section we describe the Guesser model.
We use the same Guesser architecture introduced
in de Vries et al. (2017) which has been employed
in virtually all follow-up work on GW. The Guesser
receives as input a 512D vector, encoding the
grounded dialogue, and a vector representation of
each candidate. This vector representation is the
result of feeding the concatenated features for each
candidate through a two layer MLP with ReL.U ac-
tivations, resulting in a 512D vector. The Guesser
then computes a dot product between the vector
representing the grounded dialogue and each can-
didate representation (processed by the MLP de-
scribed above). The resulting scores are combined
into a softmax layer, resulting in a probability dis-
tribution over the candidates. Note that the MLPs
share parameters between candidates (i.e. there is
no ‘golden retriever’ module).

In our experiments, we vary the candidate repre-
sentations, as described below. We also experiment
with both a lightweight and contextual multimodal
encoder for the dialogue + input.

3.1 Candidate representation

In de Vries et al. (2017) each candidate is rep-
resented by a spatial embedding, encoding its
bounding box location, and a category embedding
learned during training, based on the candidate’s
MS-COCO (Lin et al., 2014) label. We question
this representation, which could be lacking impor-
tant information about the candidate with respect
to the dialogue. According to Shekhar et al. (2019),
questions about category and location make up
about 65% of the human questions: the baseline
model might be sufficient for these cases. However,
15.5% of questions include colour, which the base-
line Guesser cannot see. Nearly as many (14.5%)
mention an object’s super category (‘animal’, ‘uten-
sil’), which also is information not necessarily in-
cluded in the embeddings learned from the training

games. Hence, we build richer candidate represen-
tations starting from the following components:

Spatial information spatial is represented
by a 8D vector that encodes the location of the
candidate’s bounding box. Since the Guesser does
not have direct access to the image but only sees
it via the encoded grounded dialogue embedding,
the spatial coordinates locate the object in the im-
age. Hence, they are very informative for the se-
lection task, especially when multiple candidates
look the same at a type/category level and share the
most salient visual attributes (like the two black and
white dogs in Figure 1.) Moreover, dialogues often
refer to objects using their location (e.g. “the dog
on the right”) that the Guesser can exploit better by
having access to the spatial coordinates.

Category information cat is given by a 256D
category embedding, representing the candidate’s
category according to the MS-COCO label. This
learned embedding encodes the conceptual rep-
resentation of the object emerging from its co-
occurrences with dialogue and image features
within the GW training data.

GloVe embeddings glove representations
are the 300D pretrained word embeddings
(GloVe (Pennington et al., 2014)) of the word
corresponding to the category label, scaled down
to 256D using a feedforward layer with ReLU
activation. (When the label is a multi-world label,
e.g. “dining table” we take the mean over the
words in the expression). glove embeddings,
despite some limitations, are shown to be effective
at object-property tasks (Lucy and Gauthier, 2017;
Forbes et al., 2019) and at capturing taxonomic
relations (Da and Kasai, 2019).

Visual information visual representations are
obtained from a ResNet-152, pre-trained on Im-
ageNet, which receives as input the crop of the
object. This visual vector is input to a feed-forward
layer with ReL.U activation, in order to obtain a
256D vector. This embedding should provide the
visual attributes of the entity it represents, which
are expected to play a crucial role in games in
which there are distractors of the same category
of the target objects. For instance, the dialogue
identifies the target as a “black and white dog” in
Figure 1, but without visual features the dogs are
indistinguishable.

We experiment with different combination of



these basic components. We evaluate models with
all the 2-input combinations, apart from glove +
cat, which cannot be sufficiently discriminative in
games that contain distractors of the same category
of the target object. The spatial and visual embed-
dings provide token specific complementary infor-
mation, whereas the cat and glove embeddings
are both meant to encode concept representations.
Hence, we experiment only with the following 3-
input representations: cat+visual+spatial
and glove+visual+spatial. Finally, to
check the degree to which cat and glove provide
redundant information, we try the 4-input embed-
ding containing all the basic components above,
catt+tglove+visual+spatial.

3.2 Grounded Dialogue Encoder

The encoder generates a grounded dialogue repre-
sentation from the image and the set of questions
and answers. In our experiments, we use two dif-
ferent multimodal encoders (Greco et al., 2020):

V-LSTM s a relatively lightweight encoder that
represents the dialogue history as the 1024D last
hidden state from a LSTM receiving the dialogue,
concatenates that vector with a 2048D representa-
tion of the image extracted from the penultimate
layer of a ResNet-152 pre-trained on ImageNet (He
et al., 2016), and gives the concatenation to a feed-
forward layer with Tanh activation to generate a
512D vector representing the grounded dialogue.

LXMERT is a transformer-based multimodal en-
coder (Tan and Bansal, 2019). It represents an
image by the set of position-aware object embed-
dings for the 36 most salient regions detected by
a Faster R-CNN (Ren et al., 2016) and the text
by position-aware word embeddings. LXMERT
is pre-trained on five vision-and-language tasks
whose images come from MS-COCO and Visual
Genome (Krishna et al., 2017). In our experiments,
we fine-tune the pre-trained LXMERT model on
GW. We generate our 512D vector representing the
grounded dialogue by taking the 768D vector from
the [CLS] initial token of LXMERT and by giving
it to a feedforward layer with Tanh activation.

We consider the V-LSTM lightweight because
it has ~ 18 fewer parameters and thus requires
much less training (data and time) than LXMERT.

3.3 Training procedure

We minimize the cross-entropy error with respect
to the ground-truth annotation during training, us-

ing the Adam optimizer (Kingma and Ba, 2014) for
V-LSTM and Adam with a linear-decayed learning-
rate schedule for LXMERT (Devlin et al., 2018).
We perform early stopping with ten epochs of pa-
tience. (See Appendix A.1 for details.)

3.4 Guesser ensembles

We follow the standard deep ensemble setup (Lak-
shminarayanan et al., 2017) of training independent
Guessers by training them with different random
seeds. All our Guesser ensembles consist of five
Guessers of the same type (i.e., having the same
encoder and set of candidate representation input
information). Different random seeds mean the
Guessers differ in their random initialisations (ex-
cept for the weights of the pretrained LXMERT en-
coder) and the order in which they see the data. An
ensemble of Guessers generates predictions using
the average of the Guesser prediction distributions.

4 Measuring Uncertainties

The uncertainty of a model, parameterised as 8, is
commonly measured by the entropy of the predic-
tive distribution py(y|x), averaged over a test set.
For each example x, a confident model will put
most probability mass on a single choice y, lead-
ing to low entropy, while an uncertain model will
spread its bets, leading to higher entropy.

Within an ensemble, the ensemble toral uncer-
tainty is the entropy of its predictive distribution,
which combines the distributions of the N ensem-
ble components:

N
Hlp(yla)] = HL/N Y pa, (yl2)]. (D)

(This is the sample-based approximation to
marginalising over #.) Note that an ensemble can
have high uncertainty (high entropy) either because
of noisy or ambiguous data leading to an inability
to make a confident decision, or because its compo-
nents disagree (Depeweg et al., 2018; Hiillermeier
and Waegeman, 2021).

We can also measure the average uncer-
tainty of each ensemble component on its own:
1/N ny:l H{pg, (y|x)]. This factor is known as
data uncertainty: it measures whether the datapoint
is sufficiently informative for each model to make
a confident decision. If x is inherently ambiguous,
then all models should have high uncertainty. Total
ensemble uncertainty will also be high, due to the
combination of uncertain predictions.



The difference between total uncertainty and
data uncertainty is model uncertainty, which mea-
sures the extent to which the models disagree (i.e.,
the extent to which the ensemble’s predictive distri-
bution does not match the average ensemble compo-
nent).! Model uncertainty is always non-negative.

In this paper we compare different models, dif-
fering in their choice representations, as ensembles.
As discussed earlier, within the GW Guesser, the
choice representation should be considered part
of the input z. Inadequate choice representation
will thus lead to high data uncertainty, since the
representation is not sufficient to make confident
decisions.? Since the humans playing the original
GW game, generating the test and training data,
guessed correctly, overly high “data uncertainty”
values point to problems with data representations,
rather than inherently ambiguous data.

Whether model uncertainty should also be min-
imised is a different question. In theory, if all
ensemble components have found the global op-
timum, model uncertainty will be zero. In practice,
not being able to find the global optimum, we use
ensembles to approximate a distribution over good
local optima. Ensemble ‘boost’ (the improvement
in performance over the component average) also
requires model diversity. It is thus more useful to
have a collection of strong but different opinions
(low data, high model uncertainty) than homoge-
neous equivocal opinions (high data, low model
uncertainty).

5 Experiments

In the following three experiments we evalu-
ate: (i) how to ensemble the Guesser effectively;
(ii) which candidate representations are most effec-
tive in terms of accuracy, and characterise their
patterns of uncertainty; (iii) the effect of using
transformer-based encoders vs lightweight LSTM

'"Formally, within a Bayesian framework, it is the mu-
tual information between y and the ensemble parame-
ters @ estimated from data D, derived from the differ-
ence between entropy and crossentropy: H|[p(y, |z, D)] =
EgpH[p(y|z,0)] — MI[y, 0|z, D], where the left hand term
is total uncertainty (marginalising over #) and the first term on
the right is data uncertainty.

2We note here that, while ‘data uncertainty’ has been iden-
tified with ‘aleatoric uncertainty’ (Kendall and Gal, 2017; De-
peweg et al., 2018; Malinin and Gales, 2018), namely the true
uncertainty of the example in the world (Der Kiureghian and
Ditlevsen, 2007), this doesn’t hold inasmuch as the represen-
tation of the data is a modelling decision (see also Hiillermeier
and Waegeman (2021), Sec 2.3). Comparing different data
representations doesn’t change the true aleatoric uncertainty,
which is an lower bound on data uncertainty.

Encoder Guessers Ensemble K
Fixed 64.85+0.21 65.28 0.86
Trained 64.49+0.12 66.40 0.71

Table 1: Accuracy of the Guessers trained independently
(mean and standard deviation of the 5 Guessers) com-
pared against accuracy of the ensemble. Fixed encoders
are shared between Guessers while Trained encoders
are not. Fleiss’ kappa x measures the agreement among
the individual Guessers.

encoders.

Our primary evaluation measure is game accu-
racy, i.e. whether the Guesser chooses the correct
target object. We report results for the GW test set.
In the context of an ensemble, we also report Fleiss’
kappa x, which measures agreement between the
argmax predictions of the Guessers in the ensemble
(perfect agreement is k = 1, chance is k = 0).

We also evaluate uncertainty, as described in Sec-
tion 4. Since uncertainty is an entropy-based mea-
sure, it is dependent on the size of the distribution
it is calculated over, i.e. the number of available
choices. Within the context of GW, this means we
measure uncertainty over sets of games with the
same number of candidates. For all entropy-based
measures, we use as base the number of candidates,
which bounds the measure to be between O and 1.
Empirically we find that this makes uncertainties
comparable across games with different numbers
of candidates.

Data The GuessWhat?! dataset (de Vries et al.,
2017) contains 155K English dialogues about
nearly 67K different images. Images repeat across
games but images of games in the test set are un-
seen during training. Each game has at least 2
and at most 20 candidates, with a mode of 3 and
a median of 7 candidates. Targets are assigned to
MS-COCO categories; target category statistics are
in Appendix 7. For our training and evaluation,
we use only the games on which humans succeed
in finding the target and which contain at most 10
turns (total number of dialogues used: 90K in train-
ing and around 18K both in validation and testing).
We use a vocabulary frequency threshold of > 3
resulting in a vocabulary of around 5K words for
V-LSTM; for LXMERT we use its vocabulary.

5.1 Experiment 1

We begin by evaluating the effect of ensembling on
the standard Guesser, which uses cat+spatial



Candidate rep. Guessers  Ens. K
cat+sp 64.49+£0.12 66.40 0.71
cat+vis 59.17+£0.23 61.07 0.63
glove+spat 64.84+0.18 67.21 0.70
glove+vis 58.08+0.52 61.03 0.60
vis+sp 55.19£0.55 60.58 0.59
cat+vis+sp 66.45+0.25 69.61 0.68
gl+vis+sp 66.72+0.19 70.12 0.68
cat+gl+vis+sp 66.58£0.26 69.58 0.68

Table 2: Test set accuracies for Guessers with different
candidate representations, individually and in an ensem-
ble. cat, gl, vis, and spat stand for category,
glove, spatial, and visual.

candidate representations. = We combine this
Guesser with an encoder using V-LSTM im-
age+dialogue representations.

We find that when we ensemble only the Guesser
layer, i.e, using the same pretrained and fixed en-
coder for all Guessers within the ensemble, ensem-
bling results in only a small performance boost
over using a single Guesser (see Table 1). How-
ever, when we include the encoder in the ensemble,
i.e., train a separate encoder together with each
Guesser in the ensemble, the ensemble accuracy
improves over the average Guesser accuracy by
nearly two points.

This result indicates a lack of diversity in the
fixed setting, either due to the shared encoder con-
straining the parameters of each Guesser, or be-
cause there are too few parameters within only the
Guessers to effectively diversify. The values of s
show that the Guessers with a fixed shared encoder
agree much more than Guessers with independently
trained encoders: they are making less diverse pre-
dictions. Since the benefit of an ensemble is found
when combining diverse models, we use Guessers
with independently trained encoders in our subse-
quent ensembles.

5.2 Experiment 2

In this experiment we evaluate the effect of dif-
ferent candidate representations on Guessers with
V-LSTM encoders. We combine the candidate rep-
resentations described in section 3.1: cat, glove,
visual, and spatial, in various configurations.
We assess both model accuracy and uncertainty.

Accuracy results The results in Table 2 show
that the representation of the candidates has

a large effect on Guesser performance, both
alone and in an ensemble. The worst com-
bination, visual+spatial, is ten percent-
age points worse than the best combination,
glove+visual+spatial. The benefit of us-
ing an ensemble is again greater for models with
higher disagreement (lower values of ), with the
exception of cat+visual.

Models with three or four types of candi-
date representations outperform models with only
two types; however there is not a benefit of
combining all four types over only three. Cat-
egory/type information is crucial for success:
the model with only token-level information,
visual+spatial, clearly underperforms all the
others. The category representations, namely cat
and glove, lead to similar results when combined
with other representations, and do not benefit from
being combined together (unlike the token repre-
sentations). glove representations do seem to be
slightly more beneficial than cat representations,
indicating that the additional world knowledge that
they contain can be useful. (See Figure 3 for an
example where glove representations allow the
model to guess correctly.)

We now investigate how these representations
interact with certain game characteristics, such as
games with rare or frequent targets, or games with
multiple candidates of the same category.

Frequency of target Target frequency does not
have a positive effect on classification accuracy in
GW for any model (Figure 8 in Appendix). This
is unlike most classification problems, where rare
classes are harder to predict than frequent classes.
In fact, category-level information, such as given
cat and glove, seems to lead worse performance
on frequent targets, since visual+spatial,
which doesn’t have class information, has the flat-
test performance across target frequency. However,
as discussed earlier, the GW task not is about iden-
tifying just the category of the target, and so fre-
quency of category occurrence doesn’t necessarily
lead to better prediction.

Number of target-class distractors On the other
hand, distractors belonging to the same class as the
correct target make the game harder for all mod-
els (Figure 2). While visual features would en-
able models to use dialogue inputs such as “black
and white”, these do not seem to be sufficient, as
demonstrated by the relatively poor performance of
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Figure 2: Ensemble accuracy of different models for
increasing number of distractor candidates of the same
category of the target.

category-+spatial (failure) vs.
glove-+tspatial (success)

glove+tspatial (failure) vs.
glove+spatial+vision (sucuus;)

do you hold it in your hand? No
is it human? No
does it have numbers on it? Yes

a phone? Yes
one of the three? No
the top blue? Yes

Figure 3: Representative examples of the contribution
of different features. On the left: contribution of Glove
embeddings on common sense reasoning (cars have
numbers on them — plates). On the right: contribution
of visual features (colors).

cat+visual and glove+visual. Spatial fea-
tures are more important, likely because of the use
of “on the right” or “in the background”. However
there are cases where visual features are essential,
e.g. the example in Figure 3 (right). Interestingly,
we see that the model without category informa-
tion (visual+spatial) does worse than all the
other models in games where category is sufficient
to distinguish the target (there are O distractors of
the target category), but performs competitively in
games with many target category candidates.

Uncertainty results Since we expect failed
games to show higher uncertainty than success-
ful games, we measure uncertainties separately de-
pending on whether the model correctly guessed
the candidate. Figure 4 shows the uncertainty mea-
sures from Section 4: total uncertainty (entropy
of ensemble predictive distribution), data uncer-
tainty (average uncertainty of ensemble compo-

nents), and model uncertainty (difference between
total and data uncertainty). We see that all models
do have much higher total uncertainty for failed
than for successful games. Models with three or
four types of candidate representations have lower
data uncertainty than the other models, indicating
that each Guesser is making more confident pre-
dictions. This difference is especially large for
failed games: the better Guessers in this case are
somewhat overconfident. However, within an en-
semble, these Guessers show higher model uncer-
tainty, the result of Guessers making different pre-
dictions for failed games. For successful games,
all Guessers should be, and are, making similar
predictions (since these games will generally be
easier than the failed games), as shown by the low
model uncertainty across the board.

While both data and model uncertainty is higher
for unsuccessful games on average, there is large
variance in uncertainty between games, particularly
for failed games. Figure 7 (in Appendix) shows
that the distribution of unsuccessful and successful
games largely overlap, for all models.

In summary: the better models, combining
visual and spatial token-level information
with either or both types of category information,
are more confident about their predictions (lower
data uncertainty). Ensembles of these models are
also more diverse (possibly an effect of their larger
capacity), leading to larger ensemble gains.

5.3 Experiment 3

Thus far we have been using V-LSTM as an en-
coder for all of our models. In this experiment,
we check whether the LXMERT encoder leads to
the same pattern of results. We create ensembles
of LXMERT models with two representative can-
didate representations, cat+spatial (the stan-
dard Guesser) and glove+visual+spatial
(the best performing Guesser).

As shown in Table 3, LXMERT encoders lead
to better individual Guessers than V-LSTM en-
coders. However, ensembling LXMERT leads
to a smaller boost than ensembling good V-
LSTM Guessers. An ensemble of V-LSTM
glove+visual+spatial Guessers outper-
forms a single LXMERT Guesser, which is a
remarkable result, given the difference in num-
ber of parameters (V-LSTM: 11M vs. LXMERT:
209M) between the two models. Training a single
LXMERT takes significantly longer than training
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Figure 4: Total, data, and model uncertainty for different ensembles considering games with 5 candidate objects.
(Results for games with different numbers of candidates are similar: see Figure 6 in Appendix.)

Model Candidate Rep. Guessers Ensemble K
V-LSTM  cat+spatial 64.49+0.12 66.40 0.71
V-LSTM  glove+visual+spatial 66.72+0.19 70.12 0.68
LXMERT cat+spatial 69.73+0.46 71.55 0.76
LXMERT glove+visual+spatial 69.56+0.27 71.57 0.74

Table 3: Accuracy of Guessers using V-LSTM and LXMERT encoders.

an ensemble of V-LSTM Guessers (V-LSTM En-
semble: 45mx 5=3h54m; one LXMERT: 21hrs).

The lack of ensemble boost for LXMERT en-
coders is due to a lack of diversity among the en-
semble components, as shown by high values of
and low model uncertainties (See Figure 9 in Ap-
pendix). We suspect this is because LXMERT en-
coders are pretrained, so they are not independent;
only the smaller number of Guesser parameters are
randomly initialised.

LXMERT models are also less affected by candi-
date representations than V-LSTM models: there is
only a minor difference between cat+spatial
and glove+visual+spatial for LXMERT,
while V-LSTM models differ by two points (indi-
vidually) or four (in the ensemble). This is possibly
due to the transformer model architecture already
bringing in the same sources of information as the
candidate representations: LXMERT has better vi-
sual representations of the input image as a set of
regions of interest, which might mitigate the need
for visual; due to pretraining on large multi-
modal corpora, it also has rich lexical information
similar to what is contained in glove or cat rep-
resentations.

6 Conclusion

Adequately representing the choice set in ‘dynamic’
classification tasks like GW is an important, but ne-

glected, aspect of model construction. In this paper
we showed that an improved choice set representa-
tion leads to a more accurate Guesser, particularly
in the context of an ensemble, in a supervised setup
evaluating only the Guesser. The next step is to use
this Guesser in a reinforcement learning setup for
the full GW task, where we hope it will also lead
to better question generation, since the Guesser
will be better able to use e.g. visual or affordance
information from the generated dialogue.

The uncertainty analysis we performed gives
insight into the differences between the models:
better candidate representations lead to individual
models that make more confident predictions, even
when they are wrong (low data uncertainty). How-
ever, these models also have higher diversity in
their predictions (higher model uncertainty), partic-
ularly when they are wrong, which means the full
ensemble prediction can be more accurate.

Current NLP methods predominantly rely on us-
ing heavy pre-trained transformer models. These
models do generally lead to good performance,
but require a lot of fine-tuning, hampering speedy
model development. We propose ensembling more
lightweight models as an alternative means of
achieving similar performance, in much less time.
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A Appendix

A.1 Training procedure

All our models were implemented in PyTorch
(Paszke et al., 2017). For LXMERT, we took
the pre-trained model released by the authors at
the link https://github.com/airsplay/
1xmert. Table 4 shows the epochs we took the
models from for each of the 5 guessers. Table
5 shows the number of trained parameters of the
guessers for each of the configurations we consid-
ered in our experiments. Table 6 shows the average
training time per single guesser in ensembles in
the simplest and most complex configurations. We
used an NVIDIA Quadro P6000 GPU having 24
GB of RAM in our experiments.

Training parameters For V-LSTM, we used a
learning rate equal to 0.0001 and a batch size equal
to 64. For LXMERT, we used a learning rate equal
to 0.00001, a weight decay equal to 0.01, and a
batch size equal to 16. For LXMERT, use also
clipped the gradient norm to 5 after each backward
propagation step.

A.2 Candidate Objects Details

The GW dataset is composed of 160,745 dialogues
containing 66,537 unique images with 1,385,197
objects and 134,073 unique target objects. Each
object is assigned to one out of the 80 categories
from MS-COCO. Figure 5 shows the target super-
category distribution in the GW dataset: each MS-
COCO category was mapped to its corresponding
super-category using the mapping in Table 7.

indoor

accessory

animal — person
T —
electronic

furniture

outdoor
kitchen

food

vehicle

sports appliance

Figure 5: Super-category target object frequency in the
GW dataset.
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Encoder Model Best epochs
V-LSTM cat+spatial 10,8, 11,9, 12
LXMERT cat+spatial | 12,23,14, 14,16
V-LSTM cat+visual 10,9, 9, 10, 12
V-LSTM glove+visual | 10,12,11,12, 14
V-LSTM glove+spatial 10,6, 14,6,9
V-LSTM visual+spatial 7,25,4,6,5
V-LSTM cat+visual 14,8, 11, 14, 19
V-LSTM glove+visual+spatial 12, 20, 10, 17,9
V-LSTM | cat+glove+visual+spatial 16, 15,9, 8,9
LXMERT glove+visual+spatial 8,7,7,21,19

Table 4: Best epochs per ensemble. In particular, for each ensemble, we report the epochs where each of the five
guessers obtained the best validation error.

Encoder Model | Number of parameters
V-LSTM cat+spatial 10,952,818
LXMERT cat+spatial 208,900,978
V-LSTM cat+visual 11,604,338
V-LSTM glove+visual 11,658,098
V-LSTM glove+spatial 11,531,122
V-LSTM visual+spatial 11,454,066
V-LSTM cat+visual 11,608,434
V-LSTM glove+visual+spatial 11,662,194
V-LSTM | cat+glove+visual+spatial 11,816,562
LXMERT glove+visual+spatial 209,610,354

Table 5: Number of trained parameters per guesser. In particular, for each ensemble, we report the number of trained
parameters of one of its guessers.

Encoder Model | Training time
V-LSTM cat+spatial 13m
V-LSTM glove+visual+spatial 47m
V-LSTM | cat+glove+visual+spatial 1h27m
LXMERT cat+spatial 15h27m
LXMERT glove+visual+spatial 21h

Table 6: Average training time per guesser. In particular, for each ensemble, we report the average time (in hours
and minutes) of the training of one of its guessers.
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Super-category

MS-COCO Category

person

person (30.23%)

bicycle (0.7%), car (4.75%), motorcycle (0.85%), airplane (0.77%), bus (0.92%),

vehicle train (0.63%), truck (1.37%), boat (1.25%)

outdoor traffic light (1.07%), fire hydrant (0.25%), street sign (<0.01%), stop sign (0.24%),
parking meter (0.19%), bench (1.17%)

animal bird (1.06%), cat (0.89%), dog (1.04%), horse (1.02%), sheep (1.08%), cow (1.11%),
elephant (0.92%), bear (0.09%), zebra (0.89%), giraffe (0.88%)

accessory hat (<0.01%), backpack (1.0%), umbrella (0.89%), shoe (<0.01%), eye glasses (<0.01%),
handbag (1.13%), tie (0.74%), suitcase (0.74%)
frisbee (0.5%), skis (0.7%), snowboard (0.31%), sports ball (0.96%), kite (0.74%),

sports baseball bat (0.48%), baseball glove (0.55%), skateboard (0.76%),
surfboard (0.74%), tennis racket (0.87%)

Kitchen bottle (2.39%), plate (<0.01%), wine glass (0.55%), cup (2.13%), fork (0.64%),
knife (0.79%), spoon (0.57%), bowl (1.63%)
banana (0.76%), apple (0.55%), sandwich (0.65%), orange (0.57%),

food broccoli (0.75%), carrot (0.67%), hot dog (0.41%), pizza (0.82%),
donut (0.79%), cake (0.78%)

furniture chair (3.23%), couch (1.02%), potted plant (0.97%), bed (0.75%), mirror (<0.01%),
dining table (2.06%), window (<0.01%), desk (<0.01%), toilet (0.56%), door (<0.01%)

. tv (1.0%), laptop (0.82%), mouse (0.43%), remote (0.87%),

electronic
keyboard (0.46%), cell phone (1.0%)

appliance microwave (0.25%), oven (0.48%), toaster (0.04%), sink (0.89%),
refrigerator (0.44%), blender (<0.01%)

indoor book (1.99%), clock (0.71%), vase (0.85%), scissors (0.17%),

teddy bear (0.69%), hair drier (0.04%), toothbrush (0.33%), hair brush (<0.01%)

Table 7: Mapping between MS-COCO categories (and their relative frequency in the whole dataset) and super-

categories.
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Figure 6: Mean data vs model uncertainty for games with different numbers of candidate objects (3—15), separated
for failed and successful games. Entropy base is equal to number of candidate objects; entropies across different
bases should not be compared directly. Each colour represents a different model.
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Figure 7: Data vs model uncertainty of individual five-candidate games, separated by success (failed:top, success-
ful:bottom). Models using glove instead of cat features present very similar patterns (not shown). Increasing
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games.
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Figure 9: Total, data, and model uncertainty for different ensembles considering games with 5 candidate objects.
We compare V-LSTM and LXMERT.

15



	Introduction
	Related Work
	GuessWhat?! Guesser
	Deep Ensembles and Uncertainties

	Guesser Model
	Candidate representation
	Grounded Dialogue Encoder
	Training procedure
	Guesser ensembles

	Measuring Uncertainties
	Experiments
	Experiment 1
	Experiment 2
	Experiment 3

	Conclusion
	Appendix
	Training procedure
	Candidate Objects Details


