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Abstract

The performance of Retrieval Augmented Gen-
eration (RAG) systems relies heavily on the
retriever quality and the size of the retrieved
context. A large enough context ensures that
the relevant information is present in the input
context for the LLM, but also incorporates ir-
relevant content that has been shown to confuse
the models. On the other hand, a smaller con-
text reduces the irrelevant information, but it
often comes at the risk of losing important infor-
mation necessary to answer the input question.
This duality is especially challenging to man-
age for complex queries that contain little infor-
mation to retrieve the relevant chunks from the
full context. To address this, we present a novel
framework, called FB-RAG, which enhances
the RAG pipeline by relying on a combination
of backward lookup (overlap with the query)
and forward lookup (overlap with candidate rea-
sons and answers) to retrieve specific context
chunks that are the most relevant for answering
the input query. Our evaluations on 9 datasets
from two leading benchmarks (LongBench and
ooBench) show that FB-RAG consistently out-
performs RAG and Long Context baselines de-
veloped recently for these benchmarks. We
further show that FB-RAG can improve per-
formance while reducing latency. We perform
qualitative analysis of the strengths and short-
comings of our approach, providing specific
insights to guide future work. We will release
our code on acceptance.

1 Introduction

Augmenting Large Language Models (LLMs) with
external knowledge as context within the prompt
shows immense promise in reducing hallucinations
and improving generation performance (Fan et al.,
2024; Gao et al., 2023). One popular paradigm in
query-based tasks is Retrieval Augmented Gener-
ation (RAG), which typically involves two steps:
1) Retrieve the chunks that are most relevant to the
input query, 2) Feed the retrieved chunks as context

along with the query to an LLM, which generates
the output answer. RAG achieves strong results on
diverse Question Answering (QA) tasks (Borgeaud
et al., 2022; Guu et al., 2020; Asai et al., 2024),
general language tasks (He et al., 2021; Khandel-
wal et al., 2019), and across numerous downstream
applications (Liu et al., 2023; Wu et al., 2024).

Alongside, recent efforts have pushed the lim-
its of the amount of context that can be ingested
by LLMs, allowing increasingly large context win-
dows, reaching 10 million tokens for some recent
LLMs (Team et al., 2024; Meta, 2025). This chal-
lenges the RAG paradigm — with Long Context
(LC) LLMs, one can simply feed in the entire given
context for most use cases without any retrieval.

From a performance point of view, however,
prior efforts have observed tasks on which LC out-
performs RAG methods (Li et al., 2024) as well
as vice versa (Yu et al., 2024). This trend can
depend heavily on the retrieval quality and the con-
text length being considered for RAG. At small
context lengths, there is less irrelevant information
to confuse the LLMs but also less likelihood that
the relevant context chunks are picked up by the
retriever. On the other hand, long context lengths
lead to the needle-in-a-haystack problem, where
the high amount of irrelevant information makes it
challenging for the LLM to find the answer in the
input context. In line with this understanding, Yu
et al. (2024) in fact observed an inverted U shape
when supplying LLMs for RAG with an increasing
context size, where the performance first increases
and later goes down. These observations highlight
the fundamental job of the retrieval step in RAG:
rank the context chunks that are relevant for an-
swering the input question higher relative to the
irrelevant chunks that do not provide useful infor-
mation. Improving this step holds great potential
for supplying a precise context to the LLM for
achieving superior generation performance.

To this end, we propose a new framework called



Forward-Backward RAG (FB-RAG) for improv-
ing RAG performance across diverse generation
tasks. Typical RAG pipelines that focus on the in-
put query to retrieve relevant context chunks fall
short in cases with complex general queries, which
provide little information to perform effective re-
trieval. Instead, a core module of FB-RAG is a
Forward-Backward Retriever that relies on a look-
ahead approach to retrieve the most relevant chunks
from the context. FB-RAG generates the response
in 3 stages: I) Recall-focused Retrieval, which uses
an off-the-shelf retriever to retrieve a smaller, yet
sufficiently large context, I) Precision-focused Re-
trieval, which looks at both the input query along
with candidate reasons and answers from a light-
weight LLM to evaluate the importance of every
context chunk, and III) Generation, which uses a
more powerful LLM to generate the final answer.
Based on our evaluations across diverse generation
tasks, we find that FB-RAG shows consistent per-
formance gains over other Long Context and RAG
baselines, while also reducing latency. We present
our key contributions in this paper below:

1. We propose a novel framework to improve RAG
with LLMs called Forward-Backward RAG
(FB-RAG), which relies on the input query
(looks backward) as well as model-generated
reasons and answers (looks forward) to evaluate
context chunks before selecting them for final
response generation (Section 2).

2. We comprehensively evaluate FB-RAG against
recent RAG and Long Context baselines on
9 datasets from two long context bench-
marks - LongBench (Bai et al., 2024) and
ooBench (Zhang et al., 2024), finding that FB-
RAG shows consistent performance improve-
ments. We further analyze key design choices
in FB-RAG, such as the number of chunks re-
trieved and the number of samples used for for-
ward lookup. (Sections 3 and 4).

3. We show that FB-RAG provides the knobs to
improve performance while also reducing the
latency. We additionally perform qualitative
analysis discussing the strengths and limitations
of our approach, and provide insights for future
progress in this area (Section 5).

2 Methodology

We focus on the task of answering questions based
on an already-provided context. Given an in-
put query ) and a context C', FB-RAG relies

on an off-the-shelf retriever and instruction-tuned
LLMs (without finetuning) to generate the output
M(Q,C)"'. We assume that context C' is sufficient
to answer the query @, differentiating from some
prior formulations that assume runtime access to
web search engines (Yan et al., 2024). At its core,
FB-RAG relies on a look-ahead method to retrieve
the most relevant context chunks from C' before
performing the final response generation. We start
by describing this method and later connect it to
the overall three-stage process of FB-RAG.

2.1 Forward-Backward Retriever

We are given a query () and context C' = {C;} =
{C4,C4,Cs,...Cy, }, with n chunks in total. We
use A* to denote the ideal output response (ground-
truth answer), and C; € C' to denote the context
chunk which contains the information needed to
generate the ideal answer A*. Further, we use
S(c;; q) to represent the importance score of a con-
text chunk c¢; given a query ¢ using an off-the-shelf
retriever S. We use Sgp(c;; g, ¢) to denote the im-
portance score of chunk ¢; under FB-RAG given a
query ¢ and the full associated context c. Asin a
typical RAG pipeline, once the importance scores
are computed, we can select the highest-scoring
chunks for final output generation using an LLM.
Hence, our goal in this section is simply to provide
a formulation for Srp(c;; g, c).

Prior work has reported that LLMs often get
confused with the irrelevant information present
in the context (Xu et al., 2024; Asai et al., 2024).
The inverted U shape for the performance observed
by Yu et al. (2024) as the context size increases
demonstrates this in action. Hence, one obvious
objective for the retrievers is to assign high impor-
tance scores to the most relevant chunks so that one
can use a small context for generation and reduce
irrelevant content. This is challenging for retrievers
relying solely on the information in the input query,
especially when the query is non-specific and com-
plex (Li et al., 2024). To address this gap, our key
idea is to look forward at the potential answer to
retrieve the relevant contexts. If we had access to
the oracle generation model L*, we could compute
Srp(Ci; Q, C) in the following manner:

Sre(Ci;Q,C) = S(C;; L*(Q, C)) = S(Cj; A).
ey
'This general formulation encompasses several QA, sum-

marization, and Multiple Choice Questions (MCQ) tasks - see
Section 3 for the datasets considered in this work.
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Figure 1: Overview of FB-RAG - our proposed framework for generating answers for an input query and context.
To compute the importance scores for context chunks, FB-RAG looks at similarities with both the input query and
sampled answers and rationales. Refer to Section 2 for a comprehensive description of our approach.

Unfortunately, even though we are using the oracle
generator L*, this formulation is still not sufficient.
Oftentimes in QA, the answers are concise entities
or even binary (yes or no), meaning that even the
ideal answer A* might be insufficient to identify the
most relevant context chunk C;. Hence, we also
enable the oracle to generate the ideal reasoning
R* before generating the final answer A*:

Srp(Ci;Q,C) = S(Ci; L*(Q,C))
= S(Ci; [R*, A7) (D

For a reasonable retriever S, we now hypothesize:
7

meaning that one can reasonably expect to reach
C} if given access to the ideal reasoning R* and
ideal answer A*. Note that our assumption that
there is a single chunk C* which contains all the
relevant information to generate A* is not limiting;
one can trivially extend the same argument to the
case where the relevant information is split across
multiple chunks. In such a case, we reasonably
expect the most relevant chunks to be ranked higher
than irrelevant chunks based on S(C;; [R*, A¥]).

We now approximate the oracle L* with an
instruction-tuned LLM L:

SFB(CI'; Q7 C) = S(Cza L(Qa C))
= S(Ci; [R, A]), )

where R and A are the reasoning and answer gen-
erated by the LLM L. To capture the uncertainty

of the imperfect LLM L, we further propose to
consider the maximum over K samples generated
from the model:

Sre(Ci;Q,C) = I?E{(S(Cﬁ (R, Ax]), (9

where Rj and Aj are reasoning and answer in
the k*" sample respectively. Taking the maximum
ensures that even if a chunk Cj is used only in
one sample, it will still receive a high score un-
der Spp(Cy; Q,C). This is useful to capture the
relevant chunks in cases where the LLM L is not
confident, resulting in high variance in the samples.

Equation 5 presents the complete forward-
looking component used by FB-RAG. Finally, we
note that in case of an extremely noisy LLM L, the
generated reasoning sequences and corresponding
answers can be misleading and hence, unfairly pe-
nalize the true relevant chunk C7'. Hence, as a form
of regularization, we propose a backward-looking
component which looks at the original input query
(2 to compute importance scores:

Sre(Ci;Q,C) = np.Sp +nr.Sp =
13-S(Ci5 Q) + i 1o S(Ci [Ri, Arl), (6)

where Sp and Sg denote the backward and for-
ward components respectively, while g and ng
refer to their corresponding weights.

The forward component Sr relies on (reason-
ing, answer) samples generated by the LLM, which
can be time-consuming as is. One can, of course,



generate the samples in parallel, but we propose
two additional simple solutions to manage this cost.
First, the LLM used for this look-ahead can be
selected independently from the LLM that is used
to perform the final generation. In fact, our experi-
ments presented in Section 4 use a relatively light-
weight LLM (8B parameters) for forward-lookup
and a much more powerful LLM (70B parameters)
for the final response generation. We also present
results with other light-weight LLM choices later
in Section 5. Second, one can use a fast retriever to
reduce the context size before utilizing the Forward-
Backward procedure laid out in this Section. These
remedies motivate the three-step process of FB-
RAG, which we describe below.

2.2 FB-RAG Overview

We present our approach in Figure 1. FB-RAG
follows a three-stage process to compute the output
response M (Q, C): 1) Recall-focused Retrieval, 2)
Precision-Focused Retrieval, and 3) Generation.
Recall-focused Retrieval: In Stage I, we employ
an off-the-shelf retriever to reduce the context size
from C to (. This is recall-focused, meaning
one can select a relatively large context while still
reducing the size significantly compared to C'. The
goal here is not to perform generation with C', but
rather to use it for Stage II.
Precision-Focused Retrieval: In Stage II, we fol-
low the procedure laid out in Section 2.1 using a
light-weight LLM L to compute Spp(C;; Q, C1).
Importantly, C; still comes from the full input con-
text C'. We use these scores to precisely select the
relevant context chunks, reducing C' to C', which
is our target context to be used for generation.
Generation: Lastly, we prompt another instruction-
tuned LLM G(Q, C2) to generate the final answer.
We make two observations about the overall per-
formance achievable by FB-RAG. First, the perfor-
mance is not limited by L((, C) since the outputs
from the LLM L are only being used softly to score
the chunks coming from the full context C, and
the final generation is still performed by a more
powerful LLM G. Second, the performance is also
not limited by G(Q, C1) since Stage II works (like
a typical reranker) to improve the position of C,
increasing the likelihood that C? is picked up in
the smaller context Co, and hence, making it easier
for the LLM to generate an accurate answer. We
provide a deeper probabilistic interpretation of our
approach in Appendix A and validate these obser-
vations empirically in Section 4.

3 Experiment Design

We address the following four research questions:
RQ 1) Performance: How does FB-RAG perform
compared to RAG and Long Context baselines? —
We evaluate FB-RAG on 9 datasets spanning QA,
Summarization, and Multiple Choice Questions
(MCQ) tasks. RQ 2) Design Considerations: What
is the impact of key design choices on the perfor-
mance of FB-RAG? - We study the performance by
varying the number of retrieved chunks, the number
of samples used in Stage II, and the LLM used for
forward lookup. RQ 3) Impact on Latency: How
does the three-stage process of FB-RAG impact the
overall latency? - We plot the performance against
latency by varying the chunks and comparing our
approach to a baseline. RQ 4) Qualitative Analysis:
In what specific scenarios does FB-RAG improve
performance and what kind of errors does the ap-
proach make? - We perform error analysis and
discuss our insights for future work.

Datasets: Following prior work (Li et al., 2024),
we focus on tasks that are a) in English, b) real, and
c¢) query-based. This leads to 7 datasets from Long-
Bench (Bai et al., 2024): NarrativeQA (Kocisky
et al., 2018), Qasper (Dasigi et al., 2021), Mul-
tiFieldQA (Bai et al., 2024), HotpotQA (Yang
et al.,, 2018), 2WikiMultihopQA (Ho et al.,
2020), MuSiQue (Trivedi et al., 2022), and
QMSum (Zhong et al., 2021). We also pick
two datasets from coBench (Zhang et al., 2024),
namely, En.QA and EN.MC. These datasets cover
diverse domains, including Wikipedia articles,
meetings, narratives, and research papers, involv-
ing single and multi-hop questions. The average
context lengths range from a few thousand to 150k
words. Refer to Appendix B for more details.
Metrics: We use F1 score for QA datasets, Rouge-
L F1 for summarization, and classification accuracy
for the MCQ task. Our implementation is based on
the code released with LongBench?.

Methods: Long Context (L.C) refers to directly
feeding the full context to the LLM without ex-
plicit retrieval. Vanilla denotes the typical RAG
approach, which performs retrieval based on an
off-the-shelf retriever before feeding the context to
the LLM. We implemented two recent approaches
evaluated on the considered datasets. In Order-
Preserving (OP) RAG (Yu et al., 2024), the se-
lected chunks from the retriever are first sorted in
their original ordering before feeding them to the

2https://github.com/THUDM/LongBench/tree/main
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LLM. Self-Route (Li et al., 2024) is a look-ahead
approach that relies on LLM’s ability to understand
if the question is answerable from the retrieved con-
text. It involves 3 steps: 1) Retrieval: Based on an
off-the-shelf retriever, 2) Generation: A modified
generation based on the retrieved context where
the LLM can choose to output ‘unanswerable’ if
it finds that the retrieved context is insufficient to
answer the question, and 3) Generation: Based on
the full input context if the LLM outputs ‘unan-
swerable’ in the previous step. For our approach,
we consider two variants. Ours-FB refers to using
both 7 and nr as 0.5 in Equation 6, averaging out
the contributions from the forward and backward
components. Qurs-F only looks forward by using
np = 0 and nr = 1. Both methods use 5 samples
in Stage II obtained by combining top-p (p=0.9)
and top-k (k=50) sampling.

The final response generation for all methods
uses Llama3.1-70b-Instruct (Meta, 2024). Self-
Route uses the same model for both generation
steps. For our approach, we use Llama3.1-8b-
Instruct (Meta, 2024) for generating samples in
Stage II. Refer to Appendix C for the prompts
used, hardware details, and token limits. We eval-
uated 4 retrievers: BM25 (Trotman et al., 2014),
M3Flag (Chen et al., 2024), BGEFlag (Xiao et al.,
2024), and MPNet>. We chose BM25 for our ex-
periments due to its strong relative performance,
simplicity, and versatility, making it suitable for our
approach, which relies on LLM-generated outputs
to retrieve relevant context chunks (see Appendix
D.1 for a performance comparison). For chunking,
we use a chunk size of 300 words throughout.

4 Results

FB-RAG outperforms Long Context and other
RAG baselines on both LongBench and coBench
datasets. We present the main results on Long-
Bench datasets in Table 1. Across diverse do-
mains and context size settings, we find that our
approach exhibits consistent performance improve-
ments over other implemented methods. Our
approach achieves the best score on 5 out of 7
datasets, and our method OQurs-F (6k — 6k), which
uses a 6k context output in both Stage I and II,
achieves the best average performance of 50.51.
We present the results for coBench datasets in Ta-
ble 2. We find performance improvements on both

3https://huggingface.co/sentence—transformers/
multi-ga-mpnet-base-cos-v1

datasets. Our approach F (24k — 16Kk) achieves
52.24 on EN.QA outperforming both the top re-
ported results in the OP RAG paper (47.25) and the
best OP RAG result found in our own implemen-
tation (48.27). On EN.MC, our approach achieves
86.46, which beats the best achieved in our imple-
mentation of OP-RAG (85.59) but does not beat
the reported best result of 88.65, potentially due to
differences in the experiment design, such as the
retriever and chunking methods.

Only looking forward in Stage II of FB-RAG
generally performs better than averaging out
Forward and Backward components. In general,
we observe that setting 77 = 0 in Equation 6 (nul-
lifying the backward-looking component in Stage
II) performs better than giving equal weightage to
both forward and backward looking components.
This indicates that when LLM-generated reason-
ing and answer samples are incorporated, the input
query does not seem to provide any new useful
information to retrieve the most relevant context
chunks, and rather hurts the ranking. This also re-
lates to the effectiveness of the underlying LLM
used for forward lookup (Llama3.1-8b for these
reported results). When the underlying LLM is less
effective, the sampled reasoning and answers can
be noisy and misleading. In these situations, we ex-
pect Ours-FB approach to perform better than Ours-
F. In general, the 8b model is much worse than the
70b variant used for final generation (~ 15% lower
average performance in our initial experiments).
Often, the former even fails to follow our format-
ting instructions to generate the ‘Rationale:” and
‘Answer:’ prefixes correctly. Further, we often see
the answer being absent or cut off due to the model
generating a long reasoning statement, leaving no
room for the answer within our hard decoding to-
ken limit. However, as long as the model outputs
the appropriate language relevant to answering the
input question, it helps to retrieve the most rele-
vant chunks for the final generation step by a more
powerful LLM. We experimented with different
prompts for Stage II and found that some sort of
reasoning or explanation provides slight gains over
only using answers (Appendix D.2).
Forward-looking improves the ranking of rele-
vant context chunks. In Figure 2 (top), we directly
compare OP-RAG with our approach on EN.QA
by varying the number of chunks used for final gen-
eration*. We find that our approach at 20 chunks

*We exclude Self-Route here since it relies on LC as a
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Method | Avg | Narr Qasp Mult Hotp 2Wiki Musi  QMSum
Long Context
Llama3.1-70b ‘ 49.28 ‘ 3342 5096 5563 644 67.18 48.68 24.68
Self-Route (Li et al., 2024)
Gemini-1.5-Pro 4333 | 2832 4523 5147 5518 62.68 40.66 19.77
GPT-40 46.83 | 31.36 47.99 53.17 62.14 70.14 41.69 21.31
Llama3.1-70b; RAG - Our Impl. (1.5k)
Vanilla 44.19 | 25.01 49.31 5341 6091 58.84 37.32 24.51
OP (Yu et al., 2024) 4434 | 23.89 4931 548 61.11 59.06 37.94 24.26
Self-Route (Li et al., 2024) | 47.23 | 24.04 48.77 5434 6442 68.23 46.68 24.14
Ours-FB (6k — 1.5k) 49.36 | 30.29 51.38 5622 68.76 6327 50.92 24.68
Ours-F (6k — 1.5k) 49.36 | 28.62 51.29 5553 6699 651 5293 25.07
Llama3.1-70b; RAG - Our Impl. (3k)
Vanilla 47.09 | 26.99 50.55 54.67 6533 61.06 46.55 24.48
OP (Yu et al., 2024) 48.03 | 26.62 50.71 56.78 66.28 64.8 4591 25.11
Self-Route (Li et al., 2024) | 48.29 | 27.54 50.09 56.1 65.64 66.02 47.75 24.9
Ours-FB (6k — 3k) 50.23 | 33.22 5099 5599 6629 6742 53.13 24.56
Ours-F (6k — 3k) 50.31 | 32.41 51.05 56.12 66.79 6795 53.7 24.17
Llama3.1-70b; RAG - Our Impl. (6k)
Vanilla 48.59 | 31.09 50.12 55.17 6639 659 46.72 24.72
OP (Li et al., 2024) 48.75 1 29.85 5135 556 6553 655 48.85 24.59
Self-Route (Li et al., 2024) | 48.71 | 30.52 50.74 54.67 66.5 64.12 49.29 25.13
Ours-FB (6k — 6k) 50.05 | 33.24 50.87 56.57 6525 67.76 51.94 24.75
Ours-F (6k — 6k) 50.51 | 34.36 50.84 57.26 6536 67.63 534 24.69

Table 1: Results on LongBench datasets. We report Rouge-L F1 for QMSum, and F1 score for the rest. X — Y
refers to our approach outputting the context size X in Stage I and Y in Stage II. Our approach uses Llama3.1-8b-
instruct model for Stage I, and all methods use Llama3.1-70b-instruct for final response generation.

(6k context) outperforms OP RAG at 80 chunks
(24k context). On EN.MC (Appendix D.3), this
happens at 53 chunks (16k context). This goes
back to the discussion in Section 2.2. With for-
ward lookup in Stage II (albeit with a less powerful
LLM), our approach essentially improves the rank-
ing of relevant context chunks, and thus, allows one
to use a smaller context for final response genera-
tion. This makes it easier for the LLM to find the
correct answer, leading to improved performance.
Performance improves even with one forward
sample in Stage II of FB-RAG. Finally, we ana-
lyze the impact of the number of samples used in
Stage II of FB-RAG on the overall performance
(Appendix D.4.). We find that the performance
improves greatly with only one forward sample,
with maximum performance at 5. We also note that
the trend is not strictly increasing, indicating that
more samples may not always add value and this
parameter must be tuned empirically.

5 Discussion

Latency Considerations: FB-RAG improves per-
formance with lower latency. The latency of FB-
RAG is governed by the two LLM calls in Stage
II and III (Figure 1). We approximate the over-

fallback which already performs poorer than RAG in this case.

all latency by the sum of the average time taken
by Llama3.1-8b to generate a reason and answer
(assuming parallelization across samples), and the
average time taken by Llama3.1-70b to generate
the final answer. In Figure 2 (bottom), we plot per-
formance against latency for EN.QA, varying the
number of chunks used in Stage III and comparing
to OP-RAG. This is complementary to the perfor-
mance curves in Figure 2 (top). As evident, we find
that FB-RAG improves performance while reduc-
ing latency. Specifically, FB-RAG outperforms the
best baseline performance (48.27 F1 at 29s), with
nearly half the time (48.85 F1 at 14.89s). This can
be attributed to using a lightweight 8b model for
forward-lookup with a large context, and the final
generation with a 70b model using a much smaller
context size, and is in line with previously reported
inference speedups in 8b vs. 70b variants®.

Varying the LLM used for forward lookup: We
can go even more light-weight. The latency anal-
ysis above is based on an 8b model for forward-
lookup in Stage II of FB-RAG. Even though the
8b model fails to follow instructions properly oc-
casionally and performs much worse compared to
the 70b model, it still brings performance improve-
ments. A natural question is — ‘Can we push this

Shttps://openllmbenchmarks.com/index.html
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Method EN.QA EN.MC
Long Context
Llama3.1-70b 34.26

Self-Route (Li et al., 2024)

71.62

Gemini-1.5-Pro 37.51 76.86
GPT-40 34.95 77.29

Llama3.1-70b; OP RAG (Yu et al., 2024)
16k 44.43 84.72
24k 45.45 88.65
48k 47.25 85.59

Llama3.1-70b; OP RAG (Our Impl.)

16k 47.87 81.22
24k 48.27 85.59

Llama3.1-70b; FB-RAG (Ours)

Ours-FB (24k — 12k)  49.93  84.28
Ours-FB 24k — 16k)  51.68  85.59
Ours-F 24k — 12k)  50.38  85.59
Ours-F 24k — 16k) 5224  86.46

Table 2: Results on coBench datasets. We report the
F1 score for EN.QA and accuracy for ENMC. X — Y
means our approach which outputs the context size X in
Stage [ and Y in Stage II. Our approach uses Llama3.1-
8b-instruct model for Stage II, and all methods use
Llama3.1-70b-instruct for final response generation.

further?” In Figure 3, we compare performance by
varying the LLM used for Stage II, experimenting
with Llama3.2 3b and 1b instruction-tuned vari-
ants®. As evident, we find that even the 3b model
shows visible improvements in performance, while
the 1b performs similar to the baseline. This finding
attests to the strength of FB-RAG — no matter that
the 3b variant is nearly half as accurate as the 8b
model, as long as it provides the relevant language
in the generated reasons and answers, it helps to
retrieve the relevant context chunks for the 70b
model to generate accurate answers. From these
observations, we argue that FB-RAG provides the
knobs to improve performance while controlling
latency with reasonable design choices — this in-
cludes the number of chunks for Stage II and Stage
III, and the size of the forward-lookup model.

Qualitative Analysis: Analyzing complex queries
where FB-RAG decisively outperforms the base-
lines, we make two observations. First (which
is more straightforward), there are cases where
Llama3.1-8b answers the query correctly in at least
one of the Stage Il samples, along with giving a
reasonable rationale. This directly helps to pick the
relevant chunks for Stage III following Equation
5. The second situation is more interesting, where
the 8b model fails to answer a multihop query in

6https://ai.meta.com/blog/
1lama-3-2-connect-2024-vision-edge-mobile-devices/
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Figure 2: Top: Results on EN.QA obtained by varying
the number of chunks used by both methods for final re-
sponse generation. Across all data points, our approach
uses an Llama3.1-8b model for forward lookup in Stage
II with 80 context chunks as input and setting np = 1
and nnp = 0. Bottom: Plotting Performance vs. Latency
on EN.QA for the same points as in the Top Figure ob-
tained by varying the number of chunks used for final
response generation. Refer to Appendix C for details on
the hardware used to compute these numbers.

all samples. However, it answers one hop correctly
in at least one of the samples, which proves to be
sufficient to retrieve the correct chunks for the 70b
model to handle the multiple hops correctly. Take
a query from MuSiQue as an example — ‘Who is
the spouse of the actor who played Hannibal Smith
in the A team?’, the 8b model correctly guesses
‘George Peppard’ as the actor who played Hanni-
bal Smith, but is unable to get to the final answer
‘Sherry Boucher‘. However, simply generating the
relevant language and ‘George Peppard’ helps to
retrieve the right context chunks for the 70b model
to produce the correct answer — This gives insight
into how even a light-weight LLM in Stage II can
systematically help to improve the performance,
aligned with the overall results discussed earlier.
Looking at the fewer cases where FB-RAG per-
forms worse, we find that first, some of the errors
can be traced back to the evaluation metrics. When
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Figure 3: Varying the model used for Forward lookup in
Stage II of our approach. Results are on EN.QA dataset.

FB-RAG predicts ‘Sebastian’ instead of ‘Sebastian
Cabot’ or ‘Qatari Stars League’ instead of ‘Qatar
Stars League’, it hurts the F1 score it receives. —
Investing in improved metrics (potentially se-
mantic) will be valuable in the future. Second, in
some cases, the error can be attributed to the ambi-
guity in the input query. The answer to the question
‘The Live Life Loud album’s band signed to which
label?’ is temporally dependent, and FB-RAG gets
penalized since it answers correctly but from a dif-
ferent year than what is unfairly assumed in the
ground truth answer — Incorporating the tempo-
ral dimension to curate unambiguous queries
will improve the dataset quality in the future.
Finally, we find cases where the 70b model fails to
resolve multihop queries even with a precise input
context, for instance, confusing the ‘spouse’ with
the ‘mother’ of an artist — Enabling LLMs to re-
solve complex multihop queries is still an open,
challenging problem, demanding additional ded-
icated efforts in this area.

6 Related Work

Long Context (LC) LLMs: LLM context lengths
have drastically increased recently, with Gem-
ini 1.5 Pro (Team et al., 2024) and Meta Llama
4 (Meta, 2025) boasting sizes of even 10 million
tokens. Although this makes inference straight-
forward, from a performance perspective, LLMs
are prone to being confused by the irrelevant parts
of the context, leading to several scenarios where
RAG significantly outperforms LC (Xu et al., 2023;
Yu et al., 2024). In terms of latency, LC is expen-
sive owing to the quadratically increasing compute
costs with input size. Our work follows the RAG
paradigm by first retrieving the most relevant con-
text chunks and then feeding them to an LLM with

the input query for answer generation.
Retrieval Augmented Generation (RAG): RAG
has emerged as a popular paradigm competing with
LC, improving performance across diverse tasks
with significantly lower compute costs (Fan et al.,
2024). Traditional RAG is backward-looking — the
context chunks are scored based on the input query
using a combination of retrievers and rerankers,
which further refine the selected context (Gao et al.,
2023). Instead, FB-RAG uses forward-looking
with samples generated from an LLM to select
the relevant context chunks for the final answer
generation. Unlike a typical reranker, Stage II of
FB-RAG selects the chunks from the full context
C instead of C1 (the output of Stage 1).
Numerous efforts augment RAG with trained fil-
ters (Yoran et al., 2023), trained compressors (Xu
et al., 2024), and web search engines (Yan et al.,
2024) to improve retrieval quality and generation.
Self-RAG (Asai et al., 2024) trains an LLM us-
ing special reflection tokens to retrieve on demand.
Li et al. (2023) and Jiang et al. (2023) perform
retrieval from the web based on the LLM’s look-
ahead confidence scores. Speculative RAG (Wang
et al., 2024) uses a smaller trained LLM to gener-
ate answer candidates, which are then verified by
another LLM. Our setting differs in several ways:
1) We aim to push the performance of instruction-
tuned LLMs without any further training, 2) We
assume no access to external web sources, and 3)
We only use forward lookup in a soff manner for
selecting relevant context chunks from the entire
context, with the final generation still being per-
formed by a more powerful LLM. Two recent pa-
pers closest to our formulation are Self-Route (Li
et al., 2024) and Order Preserving (OP) RAG (Yu
et al., 2024), which we implemented ourselves and
used as baselines in this work.

7 Conclusion

We proposed and evaluated FB-RAG — a new frame-
work for RAG with LLMs. Instead of solely relying
on the input query to retrieve the relevant chunks,
we employed a look-ahead mechanism tightly in-
tegrated with the task at hand. This retrieves the
most relevant chunks while reducing the irrelevant
information in the context, resulting in superior per-
formance. We found that FB-RAG has the potential
to improve performance while simultaneously re-
ducing latency. We performed a qualitative analysis
and discussed insights to guide future work.



Limitations

First, note that our focus in this work has been on
closed-form generation, meaning that we assumed
access to an input context that is sufficient for the
model to generate the answer. While out of scope
from our current investigation, it can be useful to
extend our method to formulations that allow ac-
cess to external knowledge sources and web search
engines. This can potentially handle a broader set
of input queries, alleviating the need to curate an
input context ahead of time.

Furthermore, while our objective was to improve
the performance of instruction-tuned LLMs with-
out any additional fine-tuning, this can be explored
to further improve performance in the presence of
relevant domain-specific training data.

Ethical Considerations

Our work was approved by the established internal
review procedure. We carefully verified the licens-
ing information associated with all the datasets and
instruction-tuned LLMs used in this work, ensuring
that their use was within their intended scope. All
the datasets were properly anonymized before be-
ing used. We provide dataset statistics in Appendix
B and refer the readers to the original dataset pa-
pers for details regarding pre-processing steps as
well as the demographics of human annotators.

All datasets considered in this work were in En-
glish. Hence, it is unclear whether our findings
directly translate to other languages and cultures.
However, our approach is free of any such assump-
tions, and we encourage future work to extend it to
these other scenarios.

We further note that LLMs have been known to
exhibit different kinds of gender or cultural biases
that can lead to discriminatory language in the gen-
erated outputs. Hence, we call for rigorous testing
before any LLM-based systems are deployed. We
also recommend regular monitoring after deploy-
ment to ensure that the models’ behaviors remain
within their planned scope.

References

Akari Asai, Zeqiu Wu, Yizhong Wang, Avi Sil, and
Hannaneh Hajishirzi. 2024. Self-rag: Learning to re-
trieve, generate, and critique through self-reflection.
In International Conference on Learning Representa-
tions.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao

Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2024. LongBench: A bilingual, multi-
task benchmark for long context understanding. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 3119-3137, Bangkok, Thailand.
Association for Computational Linguistics.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-
mann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste
Lespiau, Bogdan Damoc, Aidan Clark, and 1 others.
2022. Improving language models by retrieving from
trillions of tokens. In International conference on

machine learning, pages 2206-2240. PMLR.

Jianlyu Chen, Shitao Xiao, Peitian Zhang, Kun
Luo, Defu Lian, and Zheng Liu. 2024. M3-
embedding: Multi-linguality, multi-functionality,
multi-granularity text embeddings through self-
knowledge distillation. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2024,
pages 2318-2335, Bangkok, Thailand. Association
for Computational Linguistics.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan,
Noah A. Smith, and Matt Gardner. 2021. A dataset
of information-seeking questions and answers an-
chored in research papers. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 4599—4610, On-
line. Association for Computational Linguistics.

Wengi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang,
Hengyun Li, Dawei Yin, Tat-Seng Chua, and Qing
Li. 2024. A survey on rag meeting llms: Towards
retrieval-augmented large language models. In Pro-
ceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 6491—
6501.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jin-
liu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Haofen Wang,
and Haofen Wang. 2023. Retrieval-augmented gen-
eration for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Mingwei Chang. 2020. Retrieval augmented
language model pre-training. In International confer-
ence on machine learning, pages 3929-3938. PMLR.

Qiuxiang He, Guoping Huang, Qu Cui, Li Li, and
Lemao Liu. 2021. Fast and accurate neural machine
translation with translation memory. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 3170-3180.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing a multi-hop
ga dataset for comprehensive evaluation of reasoning


https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.findings-acl.137
https://doi.org/10.18653/v1/2024.findings-acl.137
https://doi.org/10.18653/v1/2024.findings-acl.137
https://doi.org/10.18653/v1/2024.findings-acl.137
https://doi.org/10.18653/v1/2024.findings-acl.137
https://doi.org/10.18653/v1/2024.findings-acl.137
https://doi.org/10.18653/v1/2024.findings-acl.137
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2021.naacl-main.365

steps. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 6609—
6625.

Zhengbao Jiang, Frank Xu, Luyu Gao, Zhiqing Sun,
Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie
Callan, and Graham Neubig. 2023. Active retrieval
augmented generation. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 7969-7992, Singapore. As-
sociation for Computational Linguistics.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2019. Generalization
through memorization: Nearest neighbor language
models. In International Conference on Learning
Representations.

Tomas Kocisky, Jonathan Schwarz, Phil Blunsom, Chris
Dyer, Karl Moritz Hermann, Gabor Melis, and Ed-
ward Grefenstette. 2018. The NarrativeQA reading
comprehension challenge. Transactions of the Asso-
ciation for Computational Linguistics, 6:317-328.

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jingyuan Wang,
Jian-Yun Nie, and Ji-Rong Wen. 2023. The web can
be your oyster for improving large language models.
arXiv preprint arXiv:2305.10998.

Zhuowan Li, Cheng Li, Mingyang Zhang, Qiaozhu Mei,
and Michael Bendersky. 2024. Retrieval augmented
generation or long-context LLMs? a comprehensive
study and hybrid approach. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing: Industry Track, pages 881—
893, Miami, Florida, US. Association for Computa-
tional Linguistics.

Shengchao Liu, Weili Nie, Chengpeng Wang, Jiarui
Lu, Zhuoran Qiao, Ling Liu, Jian Tang, Chaowei
Xiao, and Animashree Anandkumar. 2023. Multi-
modal molecule structure—text model for text-based
retrieval and editing. Nature Machine Intelligence,
5(12):1447-1457.

Meta. 2024. [link].
Meta. 2025. [link].

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, and 1
others. 2024. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context.
arXiv preprint arXiv:2403.05530.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2022. Musique: Multi-
hop questions via single-hop question composition.
Transactions of the Association for Computational
Linguistics, 10:539-554.

Andrew Trotman, Antti Puurula, and Blake Burgess.
2014. Improvements to bm25 and language models
examined. In Proceedings of the 19th Australasian
Document Computing Symposium, pages 58—63.

10

Zilong Wang, Zifeng Wang, Long Le, Huaixiu Steven
Zheng, Swaroop Mishra, Vincent Perot, Yuwei
Zhang, Anush Mattapalli, Ankur Taly, Jingbo Shang,
and 1 others. 2024. Speculative rag: Enhancing re-
trieval augmented generation through drafting. arXiv
preprint arXiv:2407.08223.

Junda Wu, Cheng-Chun Chang, Tong Yu, Zhankui He,
Jianing Wang, Yupeng Hou, and Julian McAuley.
2024. Coral: Collaborative retrieval-augmented large
language models improve long-tail recommendation.
In Proceedings of the 30th ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining,
pages 3391-3401.

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muen-
nighoff, Defu Lian, and Jian-Yun Nie. 2024. C-pack:
Packed resources for general chinese embeddings. In
Proceedings of the 47th international ACM SIGIR
conference on research and development in informa-
tion retrieval, pages 641-649.

Fangyuan Xu, Weijia Shi, and Eunsol Choi. 2024. Re-
comp: Improving retrieval-augmented Ims with com-
pression and selective augmentation. In /2th Inter-
national Conference on Learning Representations,

ICLR 2024.

Peng Xu, Wei Ping, Xianchao Wu, Lawrence McAfee,
Chen Zhu, Zihan Liu, Sandeep Subramanian, Evelina
Bakhturina, Mohammad Shoeybi, and Bryan Catan-
zaro. 2023. Retrieval meets long context large lan-
guage models. In The Twelfth International Confer-
ence on Learning Representations.

Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua Ling.
2024. Corrective retrieval augmented generation.
arXiv preprint arXiv:2401.15884.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369-2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan
Berant. 2023. Making retrieval-augmented language
models robust to irrelevant context. arXiv preprint
arXiv:2310.01558.

Tan Yu, Anbang Xu, and Rama Akkiraju. 2024. In
defense of rag in the era of long-context language
models. arXiv preprint arXiv:2409.01666.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang
Xu, Junhao Chen, Moo Hao, Xu Han, Zhen Thai,
Shuo Wang, Zhiyuan Liu, and Maosong Sun. 2024.
ooBench: Extending long context evaluation beyond
100K tokens. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 15262—
15277, Bangkok, Thailand. Association for Compu-
tational Linguistics.


https://doi.org/10.18653/v1/2023.emnlp-main.495
https://doi.org/10.18653/v1/2023.emnlp-main.495
https://doi.org/10.18653/v1/2023.emnlp-main.495
https://doi.org/10.1162/tacl_a_00023
https://doi.org/10.1162/tacl_a_00023
https://doi.org/10.1162/tacl_a_00023
https://doi.org/10.18653/v1/2024.emnlp-industry.66
https://doi.org/10.18653/v1/2024.emnlp-industry.66
https://doi.org/10.18653/v1/2024.emnlp-industry.66
https://doi.org/10.18653/v1/2024.emnlp-industry.66
https://doi.org/10.18653/v1/2024.emnlp-industry.66
https://www.llama.com/llama3_1/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/2024.acl-long.814
https://doi.org/10.18653/v1/2024.acl-long.814
https://doi.org/10.18653/v1/2024.acl-long.814

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia
Mutuma, Rahul Jha, Ahmed Hassan Awadallah, Asli
Celikyilmaz, Yang Liu, Xipeng Qiu, and Dragomir
Radev. 2021. QMSum: A new benchmark for query-
based multi-domain meeting summarization. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
5905-5921, Online. Association for Computational
Linguistics.

A Methodology

In this Section, we provide a deeper insight into
how FB-RAG works to improve the overall RAG
performance. This interpretation is complementary
to the discussion in Section 2.2. We lay out a prob-
abilistic formulation of the RAG process below
(extending the notation used in the main paper):

P(A%|Q,C) = > P(r|Q)- P(A*|Q,r), (7)
VrCC
where r denotes all possible contexts that can be
selected in the retriever stage of RAG.

The first component, P(r|Q), captures the re-
triever’s role - a conditional probability distribution
over all possible contexts that can be selected from
the full context C' conditioned on the query ). A
higher probability of a specific r corresponds to a
higher score from the retriever and a higher likeli-
hood of it being picked up for generation.

The second component, P(A*|Q, ), captures
the job of the generator - the probability of gen-
erating the answer A* from the query () and the
selected context r. Note that P(A*|Q,r) will be
high for a better quality  which contains the rele-
vant context chunks and minimizes irrelevant infor-
mation, and will be low for a poor quality » which
misses out key relevant chunks or contains a high
amount of irrelevant content.

Under this formulation, when supplied with a
reasonable forward-looking LLLM, the procedure
laid out in Section 2.1 simply works to shift the
probability mass in P(r|Q) to better quality con-
texts. Combined with the better performance from
the generator P(A*|Q, r) for these better quality
contexts, this holds the potential to improve the
overall probability P(A*|Q, C) of generating the
accurate answer.

B Datasets

Our experiments are based on 9 datasets from
two popular benchmarks consisting long con-
text lengths - LongBench (Bai et al., 2024) and
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Dataset No. of Queries Avg Length
LongBench (Bai et al., 2024)
NarrativeQA 200 18,395
Qasper 200 3,599
MultiFieldQA 150 4,539
HotpotQA 200 9,133
2WikiMultihopQA 200 4,873
MusSiQue 200 11,196
QMSum 200 10,533
ooBench (Zhang et al., 2024)
EN.QA 351 150,374
EN.MC 229 142,622

Table 3: Statistics for all the datasets considered in our
experiments in this paper.

ooBench (Zhang et al., 2024). QA tasks (Narra-
tiveQA, Qasper, MultifieldQA, HotpotQA, 2Wiki-
MultihopQA, MuSiQue, and EN.QA) take a query
and a context as input, with the goal of generating a
concise answer. The summarization task (QMSumt)
requires generating a free-form summary based on
the given query and context. For the MCQ task
(EN.MC), the input additionally includes a set of
choices, and the task is to choose the correct choice
that answers the input query based on the provided
context. We present key statistics for these datasets
in Table 3.

C Experiment Design

We provide additional experimental design details
in this section to promote reproducibility. We fur-
ther plan to release our code on acceptance.

C.1 Prompts

We release all the prompts used in our experiments.
Tables 4 and 5 list the prompts for LongBench
datasets, while Table 6 presents the prompts for the
two datasets from coBench. Note that for QMSum,
we use the same prompt for FB-RAG Stage II as
the one used for Vanilla RAG. This is because the
output summary is already descriptive, unlike other
datasets where answers tend to be very concise (a
few words or a phrase).

C.2 Hardware Used

All the experiments presented in this paper were
performed on 8 NVIDIA A100 GPUs. We used the
default inference configuration provided by Hug-
gingface, which uses ‘device_map=auto’. We did
not use any additional optimizations.
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Figure 4: Performance comparison between our ap-
proach and OP RAG on EN.MC dataset. Y-Axis: The
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sponse generation. Across all data points, our approach
uses an Llama3.1-8b model for forward lookup in Stage
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and np = 0.

50.0 1

I
©
o

Avg Performance
s
&
o>

I
el
o

1 2 3 4 5
Number of Forward Samples

o4

Figure 5: Studying the impact on the average perfor-
mance of FB-RAG on LongBench datasets by varying
the number of samples used in Stage II. Model used:
Ours-FB (6k — 3k).

C.3 Decoding Token Limits

We set maximum limits for the number of tokens
that can be generated per LLM call. For Long-
Bench datasets, we use the limits from the code
released with the benchmark’. For EN.QA and
EN.MC datasets from coBench benchmark, we set
the limit to 64, based on the ground truth distribu-
tions. When generating both reasoning and answer
in Stage II of our approach, we add 64 to the origi-
nal token limit for all datasets.
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D Results

D.1 Retriever comparisons

We compared the performance of several off-the-
shelf retrievers in our initial experiments, as pre-
sented in Table 7. All methods use OP RAG at 3k
context size. We find that BM25 performs reason-
ably well on average in comparison to numerous
top-performing semantic retrievers. In addition,
BM25 is a versatile approach without any under-
lying assumptions about the query, making it well-
suited for our forward-looking approach in this
paper. Hence, we fixed BM25 as the retriever for
the rest of our experiments discussed in Section 4
in the main paper.

D.2 FB-RAG Stage II Prompt comparisons

We experimented with a few prompt variations for
Stage II of FB-RAG. Table 8 presents these com-
parisons on LongBench datasets. We observe that
only using the answers sampled from the LLM
shows improvements over other RAG baselines
presented in the main paper, although this can be
further improved slightly by using some form of
reasoning along with the answer. This helps to han-
dle scenarios where the answers are entity names or
binary that contain little information for retrieving
the most relevant context chunks.

D.3 Varying the number of chunks used for
final generation

In Figure 4, we compare the performance of our ap-
proach with OP-RAG on EN.MC dataset by vary-
ing the number of chunks used for final generation.
We find that FB-RAG at 53 chunks (16k context)
beats the best performance of the baseline at 80
chunks (24k context).

D.4 Varying the number of samples used in
Stage II of FB-RAG

We present the plot for analysis in Figure 5. The
X-axis denotes the number of samples used. The
Y-axis denotes the average performance on Long-
Bench datasets. The results are shown for the Ours-
FB (6k — 3Kk) configuration. As evident from the
figure, we find that the performance improves visi-
bly with just one forward sample, while attaining
the maximum at 5 samples.

"https://github.com/THUDM/LongBench/tree/main
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Dataset

LC, Vanilla/ OP RAG

Self-Route: Stage I

FB-RAG: Stage 11

NarrativeQA

You are given a story, which
can be either a novel or a movie
script, and a question. Answer
the question as concisely as you
can, using a single phrase if pos-
sible. Do not provide any expla-
nation. Story: {context} Now,
answer the question based on
the story as concisely as you can,
using a single phrase if possible.
Do not provide any explanation.
Question: {input} Answer:

You are given a story, which can be ei-
ther a novel or a movie script, and a ques-
tion. Answer the question as concisely
as you can, using a single phrase if possi-
ble. Do not provide any explanation. If
the question cannot be answered based
on the information in the article, write
“unanswerable”. Story: {context} Now,
answer the question based on the story
as concisely as you can, using a single
phrase if possible. Do not provide any
explanation. If the question cannot be
answered based on the information in
the article, write “unanswerable”. Ques-
tion: {input} Answer:

You are given a story, which
can be either a novel or a movie
script, and a question. An-
swer the question as concisely
as you can, using a single phrase
if possible. Story: {context}
Now, first provide your reason-
ing briefly in 2-3 sentences start-
ing with Rationale:’. Then, an-
swer the question starting with
’Answer:’ as concisely as you
can, using a single phrase if pos-
sible. Question: {input} Ratio-
nale:

Qasper

You are given a scientific arti-
cle and a question. Answer the
question as concisely as you can,
using a single phrase or sentence
if possible. If the question can-
not be answered based on the
information in the article, write
tinanswerable- If the question is
a yes/no question, answer yes;
floy or tinanswerable: Do not
provide any explanation. Arti-
cle: {context} Answer the ques-
tion based on the above article
as concisely as you can, using a
single phrase or sentence if pos-
sible. If the question cannot be
answered based on the informa-
tion in the article, write iinan-
swerable: If the question is a
yes/no question, answer yesy fioy
or iinanswerable: Do not pro-
vide any explanation. Question:
{input} Answer:

You are given a scientific article and a
question. Answer the question as con-
cisely as you can, using a single phrase
or sentence if possible. If the question
cannot be answered based on the infor-
mation in the article, write iinanswer-
able- If the question is a yes/no question,
answer yesy fio; or iinanswerable: Do not
provide any explanation. Article: {con-
text} Answer the question based on the
above article as concisely as you can,
using a single phrase or sentence if pos-
sible. If the question cannot be answered
based on the information in the article,
write {inanswerable: If the question is
a yes/no question, answer yesy iioy or
iinanswerable: Do not provide any ex-
planation. Question: {input} Answer:

You are given a scientific ar-
ticle and a question. Answer
the question as concisely as you
can, using a single phrase or sen-
tence if possible. If the ques-
tion cannot be answered based
on the information in the arti-
cle, write iinanswerable. If the
question is a yes/no question, an-
swer yesy iloy or iinanswerable:
Atrticle: {context} Now, first
provide your reasoning briefly
in 2-3 sentences starting with
’Rationale:’. Then, answer the
question starting with ’Answer:’
based on the above article as
concisely as you can, using a
single phrase or sentence if pos-
sible. If the question cannot be
answered based on the informa-
tion in the article, write iinan-
swerable- If the question is a
yes/no question, answer yes; fioy
or tinanswerable: Question: {in-
put} Rationale:

MultiFieldQA

Read the following text and an-
swer briefly. {context} Now,
answer the following question
based on the above text, only
give me the answer and do not
output any other words. Ques-
tion: {input} Answer:

Read the following text and answer
briefly. {context} Now, answer the fol-
lowing question based on the above text,
only give me the answer and do not out-
put any other words. If the question can-
not be answered based on the informa-
tion in the article, write “unanswerable”.
Question: {input} Answer:

Read the following text and an-
swer briefly. {context} Now,
first provide your reasoning
briefly in 2-3 sentences starting
with ’Rationale:’. Then, answer
the question starting with *An-
swer:’ based on the above text.
Question: {input} Rationale:

HotpotQA

Answer the question based on
the given passages. Only give
me the answer and do not output
any other words. The following
are given passages. {context}
Answer the question based on
the given passages. Only give
me the answer and do not output
any other words. Question: {in-
put} Answer:

Answer the question based on the given
passages. Only give me the answer
and do not output any other words. If
the question cannot be answered based
on the information in the article, write
“unanswerable”. The following are
given passages. {context} Answer the
question based on the given passages.
Only give me the answer and do not out-
put any other words. If the question can-
not be answered based on the informa-
tion in the article, write “unanswerable”.
Question: {input} Answer:

Answer the question based on
the given passages. {context}
Now, first provide your reason-
ing briefly in 2-3 sentences start-
ing with Rationale:’. Then, an-
swer the question starting with
’Answer:” based on the given
passages. Question: {input} Ra-
tionale:

Table 4: (Part 1/ 2) Prompts used in our experiments for LongBench datasets.
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Dataset

LC, Vanilla/ OP RAG

Self-Route: Stage I

FB-RAG: Stage I1

2WikiMultihopQA

Answer the question based on
the given passages. Only give
me the answer and do not output
any other words. The following
are given passages. {context}
Answer the question based on
the given passages. Only give
me the answer and do not output
any other words. Question: {in-
put} Answer:

Answer the question based on the given
passages. Only give me the answer
and do not output any other words. If
the question cannot be answered based
on the information in the article, write
“unanswerable”.  The following are
given passages. {context} Answer the
question based on the given passages.
Only give me the answer and do not out-
put any other words. If the question can-
not be answered based on the informa-
tion in the article, write “unanswerable”.
Question: {input} Answer:

Answer the question based on
the given passages. The follow-
ing are given passages. {con-
text} Now, first provide your
reasoning briefly in 2-3 sen-
tences starting with 'Rationale:’.
Then, answer the question start-
ing with *Answer:” based on the
given passages. Question: {in-
put} Rationale:

MuSiQue

Answer the question based on
the given passages. Only give
me the answer and do not output
any other words. The following
are given passages. {context}
Answer the question based on
the given passages. Only give
me the answer and do not output
any other words. Question: {in-
put} Answer:

Answer the question based on the given
passages. Only give me the answer
and do not output any other words. If
the question cannot be answered based
on the information in the article, write
“unanswerable”.  The following are
given passages. {context} Answer the
question based on the given passages.
Only give me the answer and do not out-
put any other words. If the question can-
not be answered based on the informa-
tion in the article, write “unanswerable”.
Question: {input} Answer:

Answer the question based on
the given passages. The follow-
ing are given passages. {con-
text} Now, first provide your
reasoning briefly in 2-3 sen-
tences starting with 'Rationale:’.
Then, answer the question start-
ing with *Answer:” based on the
given passages. Question: {in-
put} Rationale:

QMSum

You are given a meeting tran-
script and a query containing
a question or instruction. An-
swer the query in one or more
sentences. Transcript: {context}
Now, answer the query based on
the above meeting transcript in
one or more sentences. Query:
{input} Answer:

You are given a meeting transcript and
a query containing a question or instruc-
tion. Answer the query in one or more
sentences. If the question cannot be
answered based on the information in
the article, write “unanswerable”. Tran-
script: {context} Now, answer the query
based on the above meeting transcript
in one or more sentences. If the ques-
tion cannot be answered based on the
information in the article, write “unan-
swerable”. Query: {input} Answer:

You are given a meeting tran-
script and a query containing
a question or instruction. An-
swer the query in one or more
sentences. Transcript: {context}
Now, answer the query based on
the above meeting transcript in
one or more sentences. Query:
{input} Answer:

Table 5:

(Part 2 / 2) Prompts used in our experiments for LongBench datasets.

Dataset

LC, Vanilla / OP RAG

Self-Route: Stage I

FB-RAG: Stage 11

EN.QA

Read the book and answer the
question. Be very concise in
your answer. Book: {context}
Now, answer the question based
on the book. Only give me the
answer and do not output any
other words. Question: {input}
Answer:

Read the book and answer the ques-
tion. Be very concise in your answer. If
the question cannot be answered based
on the information in the article, write
“unanswerable”. Book: context Now,
answer the question based on the book.
Only give me the answer and do not out-
put any other words. If the question can-
not be answered based on the informa-
tion in the article, write “unanswerable”.
Question: {input} Answer:

Read the book and answer the
question. Be very concise in
your answer. Book: {context}
Now, first provide your reason-
ing briefly in 2-3 sentences start-
ing with 'Rationale:’. Then, an-
swer the question starting with
’Answer:’ as concisely as you
can. Question: {input} Ratio-
nale:

EN.MC

Read the book and answer the
question. Book: {context} Now,
answer the question based on
the book. Only output the an-
swer and do not output any
other words. Question: {input}
{all_classes} Answer:

Read the book and answer the question.
If the question cannot be answered based
on the information in the article, write
“unanswerable”. Book: {context} Now,
answer the question based on the book.
Only output the answer and do not out-
put any other words. If the question
cannot be answered based on the infor-
mation in the article, write “unanswer-
able”. Question: {input} {all_classes}
Answer:

Read the book and answer the
question. Book: {context} Now,
first provide your reasoning
briefly in 2-3 sentences starting
with *Rationale:’. Then, answer
the question starting with *An-
swer:” as concisely as you can.
Question: {input} {all_classes}
Rationale:

Table 6: Prompts used in our experiments for coBench datasets.
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Method Avg | Narr Qasp Mult Hotp 2Wiki Musi QMSum
BM25 48.03 | 26.62 50.71 56.78 66.28 64.8 4591 25.11
M3Flag (1, 0, 0) 483 | 294 5036 5599 63.76 6647 47.87 @ 24.23
M3Flag (1,0.3,0) | 48.58 | 29.79 50.14 5586 64.83 66.78 48.33 24.36
BGEFlag 48.05 | 27.79 51.24 5399 66.64 6646 4574  24.49
MPNet 46.92 | 2597 50.72 5433 6295 6555 447 24.25

Table 7: Performance comparisons of off-the-shelf retrievers on LongBench datasets. All results are based on OP
RAG at 3k context with Llama3.1-70b-instruct model. We compared two weight configurations for M3Flag, taking
recommendations from the authors to set the weights - refer to the original paper for details (Chen et al., 2024).

Method Avg | Narr Qasp Mult Hotp 2Wiki Musi QMSum
Only answers 50.09 | 30.63 52.11 56.17 66.16 68.97 51.49 25.07
Thought process | 50.09 | 32.33 51.6 55.63 6542 68.09 528 24.76
Explanation 50.33 | 30.83 51.84 55.88 6692 68.62 53.67 24.54
Reasoning 50.23 | 33.22 50.99 5599 6629 67.42 53.13 24.56

Table 8: Performance comparisons of our approach on LongBench datasets by varying the prompt used for sampling
in Stage II. Model Used: Ours-FB (6k — 3k). Thought process: Generate the thought process before the final
answer, Reasoning: Generate a reasoning sequence before the final answer, Explanation: Generate an explanation
after generating the answer. While the performance improves over the baselines by only considering the final
answers as samples, we find that using reasoning or explanation performs slightly better on average.

15



	Introduction
	Methodology
	Forward-Backward Retriever
	FB-RAG Overview

	Experiment Design
	Results
	Discussion
	Related Work
	Conclusion
	Methodology
	Datasets
	Experiment Design
	Prompts
	Hardware Used
	Decoding Token Limits

	Results
	Retriever comparisons
	FB-RAG Stage II Prompt comparisons
	Varying the number of chunks used for final generation
	Varying the number of samples used in Stage II of FB-RAG


