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Abstract001

The performance of Retrieval Augmented Gen-002
eration (RAG) systems relies heavily on the003
retriever quality and the size of the retrieved004
context. A large enough context ensures that005
the relevant information is present in the input006
context for the LLM, but also incorporates ir-007
relevant content that has been shown to confuse008
the models. On the other hand, a smaller con-009
text reduces the irrelevant information, but it010
often comes at the risk of losing important infor-011
mation necessary to answer the input question.012
This duality is especially challenging to man-013
age for complex queries that contain little infor-014
mation to retrieve the relevant chunks from the015
full context. To address this, we present a novel016
framework, called FB-RAG, which enhances017
the RAG pipeline by relying on a combination018
of backward lookup (overlap with the query)019
and forward lookup (overlap with candidate rea-020
sons and answers) to retrieve specific context021
chunks that are the most relevant for answering022
the input query. Our evaluations on 9 datasets023
from two leading benchmarks (LongBench and024
∞Bench) show that FB-RAG consistently out-025
performs RAG and Long Context baselines de-026
veloped recently for these benchmarks. We027
further show that FB-RAG can improve per-028
formance while reducing latency. We perform029
qualitative analysis of the strengths and short-030
comings of our approach, providing specific031
insights to guide future work. We will release032
our code on acceptance.033

1 Introduction034

Augmenting Large Language Models (LLMs) with035

external knowledge as context within the prompt036

shows immense promise in reducing hallucinations037

and improving generation performance (Fan et al.,038

2024; Gao et al., 2023). One popular paradigm in039

query-based tasks is Retrieval Augmented Gener-040

ation (RAG), which typically involves two steps:041

1) Retrieve the chunks that are most relevant to the042

input query, 2) Feed the retrieved chunks as context043

along with the query to an LLM, which generates 044

the output answer. RAG achieves strong results on 045

diverse Question Answering (QA) tasks (Borgeaud 046

et al., 2022; Guu et al., 2020; Asai et al., 2024), 047

general language tasks (He et al., 2021; Khandel- 048

wal et al., 2019), and across numerous downstream 049

applications (Liu et al., 2023; Wu et al., 2024). 050

Alongside, recent efforts have pushed the lim- 051

its of the amount of context that can be ingested 052

by LLMs, allowing increasingly large context win- 053

dows, reaching 10 million tokens for some recent 054

LLMs (Team et al., 2024; Meta, 2025). This chal- 055

lenges the RAG paradigm – with Long Context 056

(LC) LLMs, one can simply feed in the entire given 057

context for most use cases without any retrieval. 058

From a performance point of view, however, 059

prior efforts have observed tasks on which LC out- 060

performs RAG methods (Li et al., 2024) as well 061

as vice versa (Yu et al., 2024). This trend can 062

depend heavily on the retrieval quality and the con- 063

text length being considered for RAG. At small 064

context lengths, there is less irrelevant information 065

to confuse the LLMs but also less likelihood that 066

the relevant context chunks are picked up by the 067

retriever. On the other hand, long context lengths 068

lead to the needle-in-a-haystack problem, where 069

the high amount of irrelevant information makes it 070

challenging for the LLM to find the answer in the 071

input context. In line with this understanding, Yu 072

et al. (2024) in fact observed an inverted U shape 073

when supplying LLMs for RAG with an increasing 074

context size, where the performance first increases 075

and later goes down. These observations highlight 076

the fundamental job of the retrieval step in RAG: 077

rank the context chunks that are relevant for an- 078

swering the input question higher relative to the 079

irrelevant chunks that do not provide useful infor- 080

mation. Improving this step holds great potential 081

for supplying a precise context to the LLM for 082

achieving superior generation performance. 083

To this end, we propose a new framework called 084
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Forward-Backward RAG (FB-RAG) for improv-085

ing RAG performance across diverse generation086

tasks. Typical RAG pipelines that focus on the in-087

put query to retrieve relevant context chunks fall088

short in cases with complex general queries, which089

provide little information to perform effective re-090

trieval. Instead, a core module of FB-RAG is a091

Forward-Backward Retriever that relies on a look-092

ahead approach to retrieve the most relevant chunks093

from the context. FB-RAG generates the response094

in 3 stages: I) Recall-focused Retrieval, which uses095

an off-the-shelf retriever to retrieve a smaller, yet096

sufficiently large context, II) Precision-focused Re-097

trieval, which looks at both the input query along098

with candidate reasons and answers from a light-099

weight LLM to evaluate the importance of every100

context chunk, and III) Generation, which uses a101

more powerful LLM to generate the final answer.102

Based on our evaluations across diverse generation103

tasks, we find that FB-RAG shows consistent per-104

formance gains over other Long Context and RAG105

baselines, while also reducing latency. We present106

our key contributions in this paper below:107

1. We propose a novel framework to improve RAG108

with LLMs called Forward-Backward RAG109

(FB-RAG), which relies on the input query110

(looks backward) as well as model-generated111

reasons and answers (looks forward) to evaluate112

context chunks before selecting them for final113

response generation (Section 2).114

2. We comprehensively evaluate FB-RAG against115

recent RAG and Long Context baselines on116

9 datasets from two long context bench-117

marks - LongBench (Bai et al., 2024) and118

∞Bench (Zhang et al., 2024), finding that FB-119

RAG shows consistent performance improve-120

ments. We further analyze key design choices121

in FB-RAG, such as the number of chunks re-122

trieved and the number of samples used for for-123

ward lookup. (Sections 3 and 4).124

3. We show that FB-RAG provides the knobs to125

improve performance while also reducing the126

latency. We additionally perform qualitative127

analysis discussing the strengths and limitations128

of our approach, and provide insights for future129

progress in this area (Section 5).130

2 Methodology131

We focus on the task of answering questions based132

on an already-provided context. Given an in-133

put query Q and a context C, FB-RAG relies134

on an off-the-shelf retriever and instruction-tuned 135

LLMs (without finetuning) to generate the output 136

M(Q,C)1. We assume that context C is sufficient 137

to answer the query Q, differentiating from some 138

prior formulations that assume runtime access to 139

web search engines (Yan et al., 2024). At its core, 140

FB-RAG relies on a look-ahead method to retrieve 141

the most relevant context chunks from C before 142

performing the final response generation. We start 143

by describing this method and later connect it to 144

the overall three-stage process of FB-RAG. 145

2.1 Forward-Backward Retriever 146

We are given a query Q and context C = {Ci} = 147

{C1, C2, C3, ...Cn}, with n chunks in total. We 148

use A∗ to denote the ideal output response (ground- 149

truth answer), and C∗
i ∈ C to denote the context 150

chunk which contains the information needed to 151

generate the ideal answer A∗. Further, we use 152

S(ci; q) to represent the importance score of a con- 153

text chunk ci given a query q using an off-the-shelf 154

retriever S. We use SFB(ci; q, c) to denote the im- 155

portance score of chunk ci under FB-RAG given a 156

query q and the full associated context c. As in a 157

typical RAG pipeline, once the importance scores 158

are computed, we can select the highest-scoring 159

chunks for final output generation using an LLM. 160

Hence, our goal in this section is simply to provide 161

a formulation for SFB(ci; q, c). 162

Prior work has reported that LLMs often get 163

confused with the irrelevant information present 164

in the context (Xu et al., 2024; Asai et al., 2024). 165

The inverted U shape for the performance observed 166

by Yu et al. (2024) as the context size increases 167

demonstrates this in action. Hence, one obvious 168

objective for the retrievers is to assign high impor- 169

tance scores to the most relevant chunks so that one 170

can use a small context for generation and reduce 171

irrelevant content. This is challenging for retrievers 172

relying solely on the information in the input query, 173

especially when the query is non-specific and com- 174

plex (Li et al., 2024). To address this gap, our key 175

idea is to look forward at the potential answer to 176

retrieve the relevant contexts. If we had access to 177

the oracle generation model L∗, we could compute 178

SFB(Ci;Q,C) in the following manner: 179

SFB(Ci;Q,C) = S(Ci;L
∗(Q,C)) = S(Ci;A

∗).
(1) 180

1This general formulation encompasses several QA, sum-
marization, and Multiple Choice Questions (MCQ) tasks - see
Section 3 for the datasets considered in this work.
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Figure 1: Overview of FB-RAG - our proposed framework for generating answers for an input query and context.
To compute the importance scores for context chunks, FB-RAG looks at similarities with both the input query and
sampled answers and rationales. Refer to Section 2 for a comprehensive description of our approach.

Unfortunately, even though we are using the oracle181

generator L∗, this formulation is still not sufficient.182

Oftentimes in QA, the answers are concise entities183

or even binary (yes or no), meaning that even the184

ideal answer A∗ might be insufficient to identify the185

most relevant context chunk C∗
i . Hence, we also186

enable the oracle to generate the ideal reasoning187

R∗ before generating the final answer A∗:188

SFB(Ci;Q,C) = S(Ci;L
∗(Q,C))189

= S(Ci; [R
∗, A∗]). (2)190

For a reasonable retriever S, we now hypothesize:191

argmax
i

S(Ci; [R
∗, A∗]) = C∗

i , (3)192

meaning that one can reasonably expect to reach193

C∗
i if given access to the ideal reasoning R∗ and194

ideal answer A∗. Note that our assumption that195

there is a single chunk C∗
i which contains all the196

relevant information to generate A∗ is not limiting;197

one can trivially extend the same argument to the198

case where the relevant information is split across199

multiple chunks. In such a case, we reasonably200

expect the most relevant chunks to be ranked higher201

than irrelevant chunks based on S(Ci; [R
∗, A∗]).202

We now approximate the oracle L∗ with an203

instruction-tuned LLM L:204

SFB(Ci;Q,C) = S(Ci;L(Q,C))205

= S(Ci; [R,A]), (4)206

where R and A are the reasoning and answer gen-207

erated by the LLM L. To capture the uncertainty208

of the imperfect LLM L, we further propose to 209

consider the maximum over K samples generated 210

from the model: 211

SFB(Ci;Q,C) =
K

max
k=1

S(Ci; [Rk, Ak]), (5) 212

where Rk and Ak are reasoning and answer in 213

the kth sample respectively. Taking the maximum 214

ensures that even if a chunk Ci is used only in 215

one sample, it will still receive a high score un- 216

der SFB(Ci;Q,C). This is useful to capture the 217

relevant chunks in cases where the LLM L is not 218

confident, resulting in high variance in the samples. 219

Equation 5 presents the complete forward- 220

looking component used by FB-RAG. Finally, we 221

note that in case of an extremely noisy LLM L, the 222

generated reasoning sequences and corresponding 223

answers can be misleading and hence, unfairly pe- 224

nalize the true relevant chunk C∗
i . Hence, as a form 225

of regularization, we propose a backward-looking 226

component which looks at the original input query 227

Q to compute importance scores: 228

SFB(Ci;Q,C) = ηB.SB + ηF .SF = 229

ηB.S(Ci;Q) + ηF .
K

max
k=1

S(Ci; [Rk, Ak]), (6) 230

where SB and SF denote the backward and for- 231

ward components respectively, while ηB and ηF 232

refer to their corresponding weights. 233

The forward component SF relies on (reason- 234

ing, answer) samples generated by the LLM, which 235

can be time-consuming as is. One can, of course, 236
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generate the samples in parallel, but we propose237

two additional simple solutions to manage this cost.238

First, the LLM used for this look-ahead can be239

selected independently from the LLM that is used240

to perform the final generation. In fact, our experi-241

ments presented in Section 4 use a relatively light-242

weight LLM (8B parameters) for forward-lookup243

and a much more powerful LLM (70B parameters)244

for the final response generation. We also present245

results with other light-weight LLM choices later246

in Section 5. Second, one can use a fast retriever to247

reduce the context size before utilizing the Forward-248

Backward procedure laid out in this Section. These249

remedies motivate the three-step process of FB-250

RAG, which we describe below.251

2.2 FB-RAG Overview252

We present our approach in Figure 1. FB-RAG253

follows a three-stage process to compute the output254

response M(Q,C): 1) Recall-focused Retrieval, 2)255

Precision-Focused Retrieval, and 3) Generation.256

Recall-focused Retrieval: In Stage I, we employ257

an off-the-shelf retriever to reduce the context size258

from C to C1. This is recall-focused, meaning259

one can select a relatively large context while still260

reducing the size significantly compared to C. The261

goal here is not to perform generation with C1, but262

rather to use it for Stage II.263

Precision-Focused Retrieval: In Stage II, we fol-264

low the procedure laid out in Section 2.1 using a265

light-weight LLM L to compute SFB(Ci;Q,C1).266

Importantly, Ci still comes from the full input con-267

text C. We use these scores to precisely select the268

relevant context chunks, reducing C to C2, which269

is our target context to be used for generation.270

Generation: Lastly, we prompt another instruction-271

tuned LLM G(Q,C2) to generate the final answer.272

We make two observations about the overall per-273

formance achievable by FB-RAG. First, the perfor-274

mance is not limited by L(Q,C1) since the outputs275

from the LLM L are only being used softly to score276

the chunks coming from the full context C, and277

the final generation is still performed by a more278

powerful LLM G. Second, the performance is also279

not limited by G(Q,C1) since Stage II works (like280

a typical reranker) to improve the position of C∗
i ,281

increasing the likelihood that C∗
i is picked up in282

the smaller context C2, and hence, making it easier283

for the LLM to generate an accurate answer. We284

provide a deeper probabilistic interpretation of our285

approach in Appendix A and validate these obser-286

vations empirically in Section 4.287

3 Experiment Design 288

We address the following four research questions: 289

RQ 1) Performance: How does FB-RAG perform 290

compared to RAG and Long Context baselines? – 291

We evaluate FB-RAG on 9 datasets spanning QA, 292

Summarization, and Multiple Choice Questions 293

(MCQ) tasks. RQ 2) Design Considerations: What 294

is the impact of key design choices on the perfor- 295

mance of FB-RAG? - We study the performance by 296

varying the number of retrieved chunks, the number 297

of samples used in Stage II, and the LLM used for 298

forward lookup. RQ 3) Impact on Latency: How 299

does the three-stage process of FB-RAG impact the 300

overall latency? - We plot the performance against 301

latency by varying the chunks and comparing our 302

approach to a baseline. RQ 4) Qualitative Analysis: 303

In what specific scenarios does FB-RAG improve 304

performance and what kind of errors does the ap- 305

proach make? - We perform error analysis and 306

discuss our insights for future work. 307

Datasets: Following prior work (Li et al., 2024), 308

we focus on tasks that are a) in English, b) real, and 309

c) query-based. This leads to 7 datasets from Long- 310

Bench (Bai et al., 2024): NarrativeQA (Kočiský 311

et al., 2018), Qasper (Dasigi et al., 2021), Mul- 312

tiFieldQA (Bai et al., 2024), HotpotQA (Yang 313

et al., 2018), 2WikiMultihopQA (Ho et al., 314

2020), MuSiQue (Trivedi et al., 2022), and 315

QMSum (Zhong et al., 2021). We also pick 316

two datasets from ∞Bench (Zhang et al., 2024), 317

namely, En.QA and EN.MC. These datasets cover 318

diverse domains, including Wikipedia articles, 319

meetings, narratives, and research papers, involv- 320

ing single and multi-hop questions. The average 321

context lengths range from a few thousand to 150k 322

words. Refer to Appendix B for more details. 323

Metrics: We use F1 score for QA datasets, Rouge- 324

L F1 for summarization, and classification accuracy 325

for the MCQ task. Our implementation is based on 326

the code released with LongBench2. 327

Methods: Long Context (LC) refers to directly 328

feeding the full context to the LLM without ex- 329

plicit retrieval. Vanilla denotes the typical RAG 330

approach, which performs retrieval based on an 331

off-the-shelf retriever before feeding the context to 332

the LLM. We implemented two recent approaches 333

evaluated on the considered datasets. In Order- 334

Preserving (OP) RAG (Yu et al., 2024), the se- 335

lected chunks from the retriever are first sorted in 336

their original ordering before feeding them to the 337

2https://github.com/THUDM/LongBench/tree/main
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LLM. Self-Route (Li et al., 2024) is a look-ahead338

approach that relies on LLM’s ability to understand339

if the question is answerable from the retrieved con-340

text. It involves 3 steps: 1) Retrieval: Based on an341

off-the-shelf retriever, 2) Generation: A modified342

generation based on the retrieved context where343

the LLM can choose to output ‘unanswerable’ if344

it finds that the retrieved context is insufficient to345

answer the question, and 3) Generation: Based on346

the full input context if the LLM outputs ‘unan-347

swerable’ in the previous step. For our approach,348

we consider two variants. Ours-FB refers to using349

both ηB and ηF as 0.5 in Equation 6, averaging out350

the contributions from the forward and backward351

components. Ours-F only looks forward by using352

ηB = 0 and ηF = 1. Both methods use 5 samples353

in Stage II obtained by combining top-p (p=0.9)354

and top-k (k=50) sampling.355

The final response generation for all methods356

uses Llama3.1-70b-Instruct (Meta, 2024). Self-357

Route uses the same model for both generation358

steps. For our approach, we use Llama3.1-8b-359

Instruct (Meta, 2024) for generating samples in360

Stage II. Refer to Appendix C for the prompts361

used, hardware details, and token limits. We eval-362

uated 4 retrievers: BM25 (Trotman et al., 2014),363

M3Flag (Chen et al., 2024), BGEFlag (Xiao et al.,364

2024), and MPNet3. We chose BM25 for our ex-365

periments due to its strong relative performance,366

simplicity, and versatility, making it suitable for our367

approach, which relies on LLM-generated outputs368

to retrieve relevant context chunks (see Appendix369

D.1 for a performance comparison). For chunking,370

we use a chunk size of 300 words throughout.371

4 Results372

FB-RAG outperforms Long Context and other373

RAG baselines on both LongBench and ∞Bench374

datasets. We present the main results on Long-375

Bench datasets in Table 1. Across diverse do-376

mains and context size settings, we find that our377

approach exhibits consistent performance improve-378

ments over other implemented methods. Our379

approach achieves the best score on 5 out of 7380

datasets, and our method Ours-F (6k → 6k), which381

uses a 6k context output in both Stage I and II,382

achieves the best average performance of 50.51.383

We present the results for ∞Bench datasets in Ta-384

ble 2. We find performance improvements on both385

3https://huggingface.co/sentence-transformers/
multi-qa-mpnet-base-cos-v1

datasets. Our approach F (24k → 16k) achieves 386

52.24 on EN.QA outperforming both the top re- 387

ported results in the OP RAG paper (47.25) and the 388

best OP RAG result found in our own implemen- 389

tation (48.27). On EN.MC, our approach achieves 390

86.46, which beats the best achieved in our imple- 391

mentation of OP-RAG (85.59) but does not beat 392

the reported best result of 88.65, potentially due to 393

differences in the experiment design, such as the 394

retriever and chunking methods. 395

Only looking forward in Stage II of FB-RAG 396

generally performs better than averaging out 397

Forward and Backward components. In general, 398

we observe that setting ηB = 0 in Equation 6 (nul- 399

lifying the backward-looking component in Stage 400

II) performs better than giving equal weightage to 401

both forward and backward looking components. 402

This indicates that when LLM-generated reason- 403

ing and answer samples are incorporated, the input 404

query does not seem to provide any new useful 405

information to retrieve the most relevant context 406

chunks, and rather hurts the ranking. This also re- 407

lates to the effectiveness of the underlying LLM 408

used for forward lookup (Llama3.1-8b for these 409

reported results). When the underlying LLM is less 410

effective, the sampled reasoning and answers can 411

be noisy and misleading. In these situations, we ex- 412

pect Ours-FB approach to perform better than Ours- 413

F. In general, the 8b model is much worse than the 414

70b variant used for final generation (∼ 15% lower 415

average performance in our initial experiments). 416

Often, the former even fails to follow our format- 417

ting instructions to generate the ‘Rationale:’ and 418

‘Answer:’ prefixes correctly. Further, we often see 419

the answer being absent or cut off due to the model 420

generating a long reasoning statement, leaving no 421

room for the answer within our hard decoding to- 422

ken limit. However, as long as the model outputs 423

the appropriate language relevant to answering the 424

input question, it helps to retrieve the most rele- 425

vant chunks for the final generation step by a more 426

powerful LLM. We experimented with different 427

prompts for Stage II and found that some sort of 428

reasoning or explanation provides slight gains over 429

only using answers (Appendix D.2). 430

Forward-looking improves the ranking of rele- 431

vant context chunks. In Figure 2 (top), we directly 432

compare OP-RAG with our approach on EN.QA 433

by varying the number of chunks used for final gen- 434

eration4. We find that our approach at 20 chunks 435

4We exclude Self-Route here since it relies on LC as a
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Method Avg Narr Qasp Mult Hotp 2Wiki Musi QMSum
Long Context

Llama3.1-70b 49.28 33.42 50.96 55.63 64.4 67.18 48.68 24.68
Self-Route (Li et al., 2024)

Gemini-1.5-Pro 43.33 28.32 45.23 51.47 55.18 62.68 40.66 19.77
GPT-4O 46.83 31.36 47.99 53.17 62.14 70.14 41.69 21.31

Llama3.1-70b; RAG - Our Impl. (1.5k)
Vanilla 44.19 25.01 49.31 53.41 60.91 58.84 37.32 24.51
OP (Yu et al., 2024) 44.34 23.89 49.31 54.8 61.11 59.06 37.94 24.26
Self-Route (Li et al., 2024) 47.23 24.04 48.77 54.34 64.42 68.23 46.68 24.14
Ours-FB (6k → 1.5k) 49.36 30.29 51.38 56.22 68.76 63.27 50.92 24.68
Ours-F (6k → 1.5k) 49.36 28.62 51.29 55.53 66.99 65.1 52.93 25.07

Llama3.1-70b; RAG - Our Impl. (3k)
Vanilla 47.09 26.99 50.55 54.67 65.33 61.06 46.55 24.48
OP (Yu et al., 2024) 48.03 26.62 50.71 56.78 66.28 64.8 45.91 25.11
Self-Route (Li et al., 2024) 48.29 27.54 50.09 56.1 65.64 66.02 47.75 24.9
Ours-FB (6k → 3k) 50.23 33.22 50.99 55.99 66.29 67.42 53.13 24.56
Ours-F (6k → 3k) 50.31 32.41 51.05 56.12 66.79 67.95 53.7 24.17

Llama3.1-70b; RAG - Our Impl. (6k)
Vanilla 48.59 31.09 50.12 55.17 66.39 65.9 46.72 24.72
OP (Li et al., 2024) 48.75 29.85 51.35 55.6 65.53 65.5 48.85 24.59
Self-Route (Li et al., 2024) 48.71 30.52 50.74 54.67 66.5 64.12 49.29 25.13
Ours-FB (6k → 6k) 50.05 33.24 50.87 56.57 65.25 67.76 51.94 24.75
Ours-F (6k → 6k) 50.51 34.36 50.84 57.26 65.36 67.63 53.4 24.69

Table 1: Results on LongBench datasets. We report Rouge-L F1 for QMSum, and F1 score for the rest. X → Y
refers to our approach outputting the context size X in Stage I and Y in Stage II. Our approach uses Llama3.1-8b-
instruct model for Stage II, and all methods use Llama3.1-70b-instruct for final response generation.

(6k context) outperforms OP RAG at 80 chunks436

(24k context). On EN.MC (Appendix D.3), this437

happens at 53 chunks (16k context). This goes438

back to the discussion in Section 2.2. With for-439

ward lookup in Stage II (albeit with a less powerful440

LLM), our approach essentially improves the rank-441

ing of relevant context chunks, and thus, allows one442

to use a smaller context for final response genera-443

tion. This makes it easier for the LLM to find the444

correct answer, leading to improved performance.445

Performance improves even with one forward446

sample in Stage II of FB-RAG. Finally, we ana-447

lyze the impact of the number of samples used in448

Stage II of FB-RAG on the overall performance449

(Appendix D.4.). We find that the performance450

improves greatly with only one forward sample,451

with maximum performance at 5. We also note that452

the trend is not strictly increasing, indicating that453

more samples may not always add value and this454

parameter must be tuned empirically.455

5 Discussion456

Latency Considerations: FB-RAG improves per-457

formance with lower latency. The latency of FB-458

RAG is governed by the two LLM calls in Stage459

II and III (Figure 1). We approximate the over-460

fallback which already performs poorer than RAG in this case.

all latency by the sum of the average time taken 461

by Llama3.1-8b to generate a reason and answer 462

(assuming parallelization across samples), and the 463

average time taken by Llama3.1-70b to generate 464

the final answer. In Figure 2 (bottom), we plot per- 465

formance against latency for EN.QA, varying the 466

number of chunks used in Stage III and comparing 467

to OP-RAG. This is complementary to the perfor- 468

mance curves in Figure 2 (top). As evident, we find 469

that FB-RAG improves performance while reduc- 470

ing latency. Specifically, FB-RAG outperforms the 471

best baseline performance (48.27 F1 at 29s), with 472

nearly half the time (48.85 F1 at 14.89s). This can 473

be attributed to using a lightweight 8b model for 474

forward-lookup with a large context, and the final 475

generation with a 70b model using a much smaller 476

context size, and is in line with previously reported 477

inference speedups in 8b vs. 70b variants5. 478

Varying the LLM used for forward lookup: We 479

can go even more light-weight. The latency anal- 480

ysis above is based on an 8b model for forward- 481

lookup in Stage II of FB-RAG. Even though the 482

8b model fails to follow instructions properly oc- 483

casionally and performs much worse compared to 484

the 70b model, it still brings performance improve- 485

ments. A natural question is – ‘Can we push this 486

5https://openllmbenchmarks.com/index.html
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Method EN.QA EN.MC
Long Context

Llama3.1-70b 34.26 71.62
Self-Route (Li et al., 2024)

Gemini-1.5-Pro 37.51 76.86
GPT-4O 34.95 77.29

Llama3.1-70b; OP RAG (Yu et al., 2024)
16k 44.43 84.72
24k 45.45 88.65
48k 47.25 85.59

Llama3.1-70b; OP RAG (Our Impl.)
16k 47.87 81.22
24k 48.27 85.59

Llama3.1-70b; FB-RAG (Ours)
Ours-FB (24k → 12k) 49.93 84.28
Ours-FB (24k → 16k) 51.68 85.59
Ours-F (24k → 12k) 50.38 85.59
Ours-F (24k → 16k) 52.24 86.46

Table 2: Results on ∞Bench datasets. We report the
F1 score for EN.QA and accuracy for EN.MC. X → Y
means our approach which outputs the context size X in
Stage I and Y in Stage II. Our approach uses Llama3.1-
8b-instruct model for Stage II, and all methods use
Llama3.1-70b-instruct for final response generation.

further?’ In Figure 3, we compare performance by487

varying the LLM used for Stage II, experimenting488

with Llama3.2 3b and 1b instruction-tuned vari-489

ants6. As evident, we find that even the 3b model490

shows visible improvements in performance, while491

the 1b performs similar to the baseline. This finding492

attests to the strength of FB-RAG – no matter that493

the 3b variant is nearly half as accurate as the 8b494

model, as long as it provides the relevant language495

in the generated reasons and answers, it helps to496

retrieve the relevant context chunks for the 70b497

model to generate accurate answers. From these498

observations, we argue that FB-RAG provides the499

knobs to improve performance while controlling500

latency with reasonable design choices – this in-501

cludes the number of chunks for Stage II and Stage502

III, and the size of the forward-lookup model.503

Qualitative Analysis: Analyzing complex queries504

where FB-RAG decisively outperforms the base-505

lines, we make two observations. First (which506

is more straightforward), there are cases where507

Llama3.1-8b answers the query correctly in at least508

one of the Stage II samples, along with giving a509

reasonable rationale. This directly helps to pick the510

relevant chunks for Stage III following Equation511

5. The second situation is more interesting, where512

the 8b model fails to answer a multihop query in513

6https://ai.meta.com/blog/
llama-3-2-connect-2024-vision-edge-mobile-devices/
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Figure 2: Top: Results on EN.QA obtained by varying
the number of chunks used by both methods for final re-
sponse generation. Across all data points, our approach
uses an Llama3.1-8b model for forward lookup in Stage
II with 80 context chunks as input and setting ηF = 1
and ηB = 0. Bottom: Plotting Performance vs. Latency
on EN.QA for the same points as in the Top Figure ob-
tained by varying the number of chunks used for final
response generation. Refer to Appendix C for details on
the hardware used to compute these numbers.

all samples. However, it answers one hop correctly 514

in at least one of the samples, which proves to be 515

sufficient to retrieve the correct chunks for the 70b 516

model to handle the multiple hops correctly. Take 517

a query from MuSiQue as an example – ‘Who is 518

the spouse of the actor who played Hannibal Smith 519

in the A team?’, the 8b model correctly guesses 520

‘George Peppard’ as the actor who played Hanni- 521

bal Smith, but is unable to get to the final answer 522

‘Sherry Boucher‘. However, simply generating the 523

relevant language and ‘George Peppard’ helps to 524

retrieve the right context chunks for the 70b model 525

to produce the correct answer – This gives insight 526

into how even a light-weight LLM in Stage II can 527

systematically help to improve the performance, 528

aligned with the overall results discussed earlier. 529

Looking at the fewer cases where FB-RAG per- 530

forms worse, we find that first, some of the errors 531

can be traced back to the evaluation metrics. When 532
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Figure 3: Varying the model used for Forward lookup in
Stage II of our approach. Results are on EN.QA dataset.

FB-RAG predicts ‘Sebastian’ instead of ‘Sebastian533

Cabot’ or ‘Qatari Stars League’ instead of ‘Qatar534

Stars League’, it hurts the F1 score it receives. –535

Investing in improved metrics (potentially se-536

mantic) will be valuable in the future. Second, in537

some cases, the error can be attributed to the ambi-538

guity in the input query. The answer to the question539

‘The Live Life Loud album’s band signed to which540

label?’ is temporally dependent, and FB-RAG gets541

penalized since it answers correctly but from a dif-542

ferent year than what is unfairly assumed in the543

ground truth answer – Incorporating the tempo-544

ral dimension to curate unambiguous queries545

will improve the dataset quality in the future.546

Finally, we find cases where the 70b model fails to547

resolve multihop queries even with a precise input548

context, for instance, confusing the ‘spouse’ with549

the ‘mother’ of an artist – Enabling LLMs to re-550

solve complex multihop queries is still an open,551

challenging problem, demanding additional ded-552

icated efforts in this area.553

6 Related Work554

Long Context (LC) LLMs: LLM context lengths555

have drastically increased recently, with Gem-556

ini 1.5 Pro (Team et al., 2024) and Meta Llama557

4 (Meta, 2025) boasting sizes of even 10 million558

tokens. Although this makes inference straight-559

forward, from a performance perspective, LLMs560

are prone to being confused by the irrelevant parts561

of the context, leading to several scenarios where562

RAG significantly outperforms LC (Xu et al., 2023;563

Yu et al., 2024). In terms of latency, LC is expen-564

sive owing to the quadratically increasing compute565

costs with input size. Our work follows the RAG566

paradigm by first retrieving the most relevant con-567

text chunks and then feeding them to an LLM with568

the input query for answer generation. 569

Retrieval Augmented Generation (RAG): RAG 570

has emerged as a popular paradigm competing with 571

LC, improving performance across diverse tasks 572

with significantly lower compute costs (Fan et al., 573

2024). Traditional RAG is backward-looking – the 574

context chunks are scored based on the input query 575

using a combination of retrievers and rerankers, 576

which further refine the selected context (Gao et al., 577

2023). Instead, FB-RAG uses forward-looking 578

with samples generated from an LLM to select 579

the relevant context chunks for the final answer 580

generation. Unlike a typical reranker, Stage II of 581

FB-RAG selects the chunks from the full context 582

C instead of C1 (the output of Stage 1). 583

Numerous efforts augment RAG with trained fil- 584

ters (Yoran et al., 2023), trained compressors (Xu 585

et al., 2024), and web search engines (Yan et al., 586

2024) to improve retrieval quality and generation. 587

Self-RAG (Asai et al., 2024) trains an LLM us- 588

ing special reflection tokens to retrieve on demand. 589

Li et al. (2023) and Jiang et al. (2023) perform 590

retrieval from the web based on the LLM’s look- 591

ahead confidence scores. Speculative RAG (Wang 592

et al., 2024) uses a smaller trained LLM to gener- 593

ate answer candidates, which are then verified by 594

another LLM. Our setting differs in several ways: 595

1) We aim to push the performance of instruction- 596

tuned LLMs without any further training, 2) We 597

assume no access to external web sources, and 3) 598

We only use forward lookup in a soft manner for 599

selecting relevant context chunks from the entire 600

context, with the final generation still being per- 601

formed by a more powerful LLM. Two recent pa- 602

pers closest to our formulation are Self-Route (Li 603

et al., 2024) and Order Preserving (OP) RAG (Yu 604

et al., 2024), which we implemented ourselves and 605

used as baselines in this work. 606

7 Conclusion 607

We proposed and evaluated FB-RAG – a new frame- 608

work for RAG with LLMs. Instead of solely relying 609

on the input query to retrieve the relevant chunks, 610

we employed a look-ahead mechanism tightly in- 611

tegrated with the task at hand. This retrieves the 612

most relevant chunks while reducing the irrelevant 613

information in the context, resulting in superior per- 614

formance. We found that FB-RAG has the potential 615

to improve performance while simultaneously re- 616

ducing latency. We performed a qualitative analysis 617

and discussed insights to guide future work. 618
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Limitations619

First, note that our focus in this work has been on620

closed-form generation, meaning that we assumed621

access to an input context that is sufficient for the622

model to generate the answer. While out of scope623

from our current investigation, it can be useful to624

extend our method to formulations that allow ac-625

cess to external knowledge sources and web search626

engines. This can potentially handle a broader set627

of input queries, alleviating the need to curate an628

input context ahead of time.629

Furthermore, while our objective was to improve630

the performance of instruction-tuned LLMs with-631

out any additional fine-tuning, this can be explored632

to further improve performance in the presence of633

relevant domain-specific training data.634

Ethical Considerations635

Our work was approved by the established internal636

review procedure. We carefully verified the licens-637

ing information associated with all the datasets and638

instruction-tuned LLMs used in this work, ensuring639

that their use was within their intended scope. All640

the datasets were properly anonymized before be-641

ing used. We provide dataset statistics in Appendix642

B and refer the readers to the original dataset pa-643

pers for details regarding pre-processing steps as644

well as the demographics of human annotators.645

All datasets considered in this work were in En-646

glish. Hence, it is unclear whether our findings647

directly translate to other languages and cultures.648

However, our approach is free of any such assump-649

tions, and we encourage future work to extend it to650

these other scenarios.651

We further note that LLMs have been known to652

exhibit different kinds of gender or cultural biases653

that can lead to discriminatory language in the gen-654

erated outputs. Hence, we call for rigorous testing655

before any LLM-based systems are deployed. We656

also recommend regular monitoring after deploy-657

ment to ensure that the models’ behaviors remain658

within their planned scope.659
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A Methodology846

In this Section, we provide a deeper insight into847

how FB-RAG works to improve the overall RAG848

performance. This interpretation is complementary849

to the discussion in Section 2.2. We lay out a prob-850

abilistic formulation of the RAG process below851

(extending the notation used in the main paper):852

P (A∗|Q,C) =
∑
∀r⊆C

P (r|Q) · P (A∗|Q, r), (7)853

where r denotes all possible contexts that can be854

selected in the retriever stage of RAG.855

The first component, P (r|Q), captures the re-856

triever’s role - a conditional probability distribution857

over all possible contexts that can be selected from858

the full context C conditioned on the query Q. A859

higher probability of a specific r corresponds to a860

higher score from the retriever and a higher likeli-861

hood of it being picked up for generation.862

The second component, P (A∗|Q, r), captures863

the job of the generator - the probability of gen-864

erating the answer A∗ from the query Q and the865

selected context r. Note that P (A∗|Q, r) will be866

high for a better quality r which contains the rele-867

vant context chunks and minimizes irrelevant infor-868

mation, and will be low for a poor quality r which869

misses out key relevant chunks or contains a high870

amount of irrelevant content.871

Under this formulation, when supplied with a872

reasonable forward-looking LLM, the procedure873

laid out in Section 2.1 simply works to shift the874

probability mass in P (r|Q) to better quality con-875

texts. Combined with the better performance from876

the generator P (A∗|Q, r) for these better quality877

contexts, this holds the potential to improve the878

overall probability P (A∗|Q,C) of generating the879

accurate answer.880

B Datasets881

Our experiments are based on 9 datasets from882

two popular benchmarks consisting long con-883

text lengths - LongBench (Bai et al., 2024) and884

Dataset No. of Queries Avg Length
LongBench (Bai et al., 2024)

NarrativeQA 200 18,395
Qasper 200 3,599
MultiFieldQA 150 4,539
HotpotQA 200 9,133
2WikiMultihopQA 200 4,873
MuSiQue 200 11,196
QMSum 200 10,533

∞Bench (Zhang et al., 2024)
EN.QA 351 150,374
EN.MC 229 142,622

Table 3: Statistics for all the datasets considered in our
experiments in this paper.

∞Bench (Zhang et al., 2024). QA tasks (Narra- 885

tiveQA, Qasper, MultifieldQA, HotpotQA, 2Wiki- 886

MultihopQA, MuSiQue, and EN.QA) take a query 887

and a context as input, with the goal of generating a 888

concise answer. The summarization task (QMSum) 889

requires generating a free-form summary based on 890

the given query and context. For the MCQ task 891

(EN.MC), the input additionally includes a set of 892

choices, and the task is to choose the correct choice 893

that answers the input query based on the provided 894

context. We present key statistics for these datasets 895

in Table 3. 896

C Experiment Design 897

We provide additional experimental design details 898

in this section to promote reproducibility. We fur- 899

ther plan to release our code on acceptance. 900

C.1 Prompts 901

We release all the prompts used in our experiments. 902

Tables 4 and 5 list the prompts for LongBench 903

datasets, while Table 6 presents the prompts for the 904

two datasets from ∞Bench. Note that for QMSum, 905

we use the same prompt for FB-RAG Stage II as 906

the one used for Vanilla RAG. This is because the 907

output summary is already descriptive, unlike other 908

datasets where answers tend to be very concise (a 909

few words or a phrase). 910

C.2 Hardware Used 911

All the experiments presented in this paper were 912

performed on 8 NVIDIA A100 GPUs. We used the 913

default inference configuration provided by Hug- 914

gingface, which uses ‘device_map=auto’. We did 915

not use any additional optimizations. 916

11

https://doi.org/10.18653/v1/2021.naacl-main.472
https://doi.org/10.18653/v1/2021.naacl-main.472
https://doi.org/10.18653/v1/2021.naacl-main.472


10 20 30 40 50 60 70 80
Number of chunks

76

78

80

82

84

86
Ac

cu
ra

cy
EN.MC

OP-RAG
Ours

Figure 4: Performance comparison between our ap-
proach and OP RAG on EN.MC dataset. Y-Axis: The
performance on the corresponding metric. X-Axis: The
number of chunks used by both methods for final re-
sponse generation. Across all data points, our approach
uses an Llama3.1-8b model for forward lookup in Stage
2 with 80 context chunks as input and setting ηF = 1
and ηB = 0.
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Figure 5: Studying the impact on the average perfor-
mance of FB-RAG on LongBench datasets by varying
the number of samples used in Stage II. Model used:
Ours-FB (6k → 3k).

C.3 Decoding Token Limits917

We set maximum limits for the number of tokens918

that can be generated per LLM call. For Long-919

Bench datasets, we use the limits from the code920

released with the benchmark7. For EN.QA and921

EN.MC datasets from ∞Bench benchmark, we set922

the limit to 64, based on the ground truth distribu-923

tions. When generating both reasoning and answer924

in Stage II of our approach, we add 64 to the origi-925

nal token limit for all datasets.926

D Results 927

D.1 Retriever comparisons 928

We compared the performance of several off-the- 929

shelf retrievers in our initial experiments, as pre- 930

sented in Table 7. All methods use OP RAG at 3k 931

context size. We find that BM25 performs reason- 932

ably well on average in comparison to numerous 933

top-performing semantic retrievers. In addition, 934

BM25 is a versatile approach without any under- 935

lying assumptions about the query, making it well- 936

suited for our forward-looking approach in this 937

paper. Hence, we fixed BM25 as the retriever for 938

the rest of our experiments discussed in Section 4 939

in the main paper. 940

D.2 FB-RAG Stage II Prompt comparisons 941

We experimented with a few prompt variations for 942

Stage II of FB-RAG. Table 8 presents these com- 943

parisons on LongBench datasets. We observe that 944

only using the answers sampled from the LLM 945

shows improvements over other RAG baselines 946

presented in the main paper, although this can be 947

further improved slightly by using some form of 948

reasoning along with the answer. This helps to han- 949

dle scenarios where the answers are entity names or 950

binary that contain little information for retrieving 951

the most relevant context chunks. 952

D.3 Varying the number of chunks used for 953

final generation 954

In Figure 4, we compare the performance of our ap- 955

proach with OP-RAG on EN.MC dataset by vary- 956

ing the number of chunks used for final generation. 957

We find that FB-RAG at 53 chunks (16k context) 958

beats the best performance of the baseline at 80 959

chunks (24k context). 960

D.4 Varying the number of samples used in 961

Stage II of FB-RAG 962

We present the plot for analysis in Figure 5. The 963

X-axis denotes the number of samples used. The 964

Y-axis denotes the average performance on Long- 965

Bench datasets. The results are shown for the Ours- 966

FB (6k → 3k) configuration. As evident from the 967

figure, we find that the performance improves visi- 968

bly with just one forward sample, while attaining 969

the maximum at 5 samples. 970

7https://github.com/THUDM/LongBench/tree/main
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Dataset LC, Vanilla / OP RAG Self-Route: Stage I FB-RAG: Stage II
NarrativeQA You are given a story, which

can be either a novel or a movie
script, and a question. Answer
the question as concisely as you
can, using a single phrase if pos-
sible. Do not provide any expla-
nation. Story: {context} Now,
answer the question based on
the story as concisely as you can,
using a single phrase if possible.
Do not provide any explanation.
Question: {input} Answer:

You are given a story, which can be ei-
ther a novel or a movie script, and a ques-
tion. Answer the question as concisely
as you can, using a single phrase if possi-
ble. Do not provide any explanation. If
the question cannot be answered based
on the information in the article, write
“unanswerable”. Story: {context} Now,
answer the question based on the story
as concisely as you can, using a single
phrase if possible. Do not provide any
explanation. If the question cannot be
answered based on the information in
the article, write “unanswerable”. Ques-
tion: {input} Answer:

You are given a story, which
can be either a novel or a movie
script, and a question. An-
swer the question as concisely
as you can, using a single phrase
if possible. Story: {context}
Now, first provide your reason-
ing briefly in 2-3 sentences start-
ing with ’Rationale:’. Then, an-
swer the question starting with
’Answer:’ as concisely as you
can, using a single phrase if pos-
sible. Question: {input} Ratio-
nale:

Qasper You are given a scientific arti-
cle and a question. Answer the
question as concisely as you can,
using a single phrase or sentence
if possible. If the question can-
not be answered based on the
information in the article, write
ünanswerable.̈ If the question is
a yes/no question, answer ÿes,̈
n̈o,̈ or ünanswerable.̈ Do not
provide any explanation. Arti-
cle: {context} Answer the ques-
tion based on the above article
as concisely as you can, using a
single phrase or sentence if pos-
sible. If the question cannot be
answered based on the informa-
tion in the article, write ünan-
swerable.̈ If the question is a
yes/no question, answer ÿes,̈ n̈o,̈
or ünanswerable.̈ Do not pro-
vide any explanation. Question:
{input} Answer:

You are given a scientific article and a
question. Answer the question as con-
cisely as you can, using a single phrase
or sentence if possible. If the question
cannot be answered based on the infor-
mation in the article, write ünanswer-
able.̈ If the question is a yes/no question,
answer ÿes,̈ n̈o,̈ or ünanswerable.̈ Do not
provide any explanation. Article: {con-
text} Answer the question based on the
above article as concisely as you can,
using a single phrase or sentence if pos-
sible. If the question cannot be answered
based on the information in the article,
write ünanswerable.̈ If the question is
a yes/no question, answer ÿes,̈ n̈o,̈ or
ünanswerable.̈ Do not provide any ex-
planation. Question: {input} Answer:

You are given a scientific ar-
ticle and a question. Answer
the question as concisely as you
can, using a single phrase or sen-
tence if possible. If the ques-
tion cannot be answered based
on the information in the arti-
cle, write ünanswerable.̈ If the
question is a yes/no question, an-
swer ÿes,̈ n̈o,̈ or ünanswerable.̈
Article: {context} Now, first
provide your reasoning briefly
in 2-3 sentences starting with
’Rationale:’. Then, answer the
question starting with ’Answer:’
based on the above article as
concisely as you can, using a
single phrase or sentence if pos-
sible. If the question cannot be
answered based on the informa-
tion in the article, write ünan-
swerable.̈ If the question is a
yes/no question, answer ÿes,̈ n̈o,̈
or ünanswerable.̈ Question: {in-
put} Rationale:

MultiFieldQA Read the following text and an-
swer briefly. {context} Now,
answer the following question
based on the above text, only
give me the answer and do not
output any other words. Ques-
tion: {input} Answer:

Read the following text and answer
briefly. {context} Now, answer the fol-
lowing question based on the above text,
only give me the answer and do not out-
put any other words. If the question can-
not be answered based on the informa-
tion in the article, write “unanswerable”.
Question: {input} Answer:

Read the following text and an-
swer briefly. {context} Now,
first provide your reasoning
briefly in 2-3 sentences starting
with ’Rationale:’. Then, answer
the question starting with ’An-
swer:’ based on the above text.
Question: {input} Rationale:

HotpotQA Answer the question based on
the given passages. Only give
me the answer and do not output
any other words. The following
are given passages. {context}
Answer the question based on
the given passages. Only give
me the answer and do not output
any other words. Question: {in-
put} Answer:

Answer the question based on the given
passages. Only give me the answer
and do not output any other words. If
the question cannot be answered based
on the information in the article, write
“unanswerable”. The following are
given passages. {context} Answer the
question based on the given passages.
Only give me the answer and do not out-
put any other words. If the question can-
not be answered based on the informa-
tion in the article, write “unanswerable”.
Question: {input} Answer:

Answer the question based on
the given passages. {context}
Now, first provide your reason-
ing briefly in 2-3 sentences start-
ing with ’Rationale:’. Then, an-
swer the question starting with
’Answer:’ based on the given
passages. Question: {input} Ra-
tionale:

Table 4: (Part 1 / 2) Prompts used in our experiments for LongBench datasets.
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Dataset LC, Vanilla / OP RAG Self-Route: Stage I FB-RAG: Stage II
2WikiMultihopQA Answer the question based on

the given passages. Only give
me the answer and do not output
any other words. The following
are given passages. {context}
Answer the question based on
the given passages. Only give
me the answer and do not output
any other words. Question: {in-
put} Answer:

Answer the question based on the given
passages. Only give me the answer
and do not output any other words. If
the question cannot be answered based
on the information in the article, write
“unanswerable”. The following are
given passages. {context} Answer the
question based on the given passages.
Only give me the answer and do not out-
put any other words. If the question can-
not be answered based on the informa-
tion in the article, write “unanswerable”.
Question: {input} Answer:

Answer the question based on
the given passages. The follow-
ing are given passages. {con-
text} Now, first provide your
reasoning briefly in 2-3 sen-
tences starting with ’Rationale:’.
Then, answer the question start-
ing with ’Answer:’ based on the
given passages. Question: {in-
put} Rationale:

MuSiQue Answer the question based on
the given passages. Only give
me the answer and do not output
any other words. The following
are given passages. {context}
Answer the question based on
the given passages. Only give
me the answer and do not output
any other words. Question: {in-
put} Answer:

Answer the question based on the given
passages. Only give me the answer
and do not output any other words. If
the question cannot be answered based
on the information in the article, write
“unanswerable”. The following are
given passages. {context} Answer the
question based on the given passages.
Only give me the answer and do not out-
put any other words. If the question can-
not be answered based on the informa-
tion in the article, write “unanswerable”.
Question: {input} Answer:

Answer the question based on
the given passages. The follow-
ing are given passages. {con-
text} Now, first provide your
reasoning briefly in 2-3 sen-
tences starting with ’Rationale:’.
Then, answer the question start-
ing with ’Answer:’ based on the
given passages. Question: {in-
put} Rationale:

QMSum You are given a meeting tran-
script and a query containing
a question or instruction. An-
swer the query in one or more
sentences. Transcript: {context}
Now, answer the query based on
the above meeting transcript in
one or more sentences. Query:
{input} Answer:

You are given a meeting transcript and
a query containing a question or instruc-
tion. Answer the query in one or more
sentences. If the question cannot be
answered based on the information in
the article, write “unanswerable”. Tran-
script: {context} Now, answer the query
based on the above meeting transcript
in one or more sentences. If the ques-
tion cannot be answered based on the
information in the article, write “unan-
swerable”. Query: {input} Answer:

You are given a meeting tran-
script and a query containing
a question or instruction. An-
swer the query in one or more
sentences. Transcript: {context}
Now, answer the query based on
the above meeting transcript in
one or more sentences. Query:
{input} Answer:

Table 5: (Part 2 / 2) Prompts used in our experiments for LongBench datasets.

Dataset LC, Vanilla / OP RAG Self-Route: Stage I FB-RAG: Stage II
EN.QA Read the book and answer the

question. Be very concise in
your answer. Book: {context}
Now, answer the question based
on the book. Only give me the
answer and do not output any
other words. Question: {input}
Answer:

Read the book and answer the ques-
tion. Be very concise in your answer. If
the question cannot be answered based
on the information in the article, write
“unanswerable”. Book: context Now,
answer the question based on the book.
Only give me the answer and do not out-
put any other words. If the question can-
not be answered based on the informa-
tion in the article, write “unanswerable”.
Question: {input} Answer:

Read the book and answer the
question. Be very concise in
your answer. Book: {context}
Now, first provide your reason-
ing briefly in 2-3 sentences start-
ing with ’Rationale:’. Then, an-
swer the question starting with
’Answer:’ as concisely as you
can. Question: {input} Ratio-
nale:

EN.MC Read the book and answer the
question. Book: {context} Now,
answer the question based on
the book. Only output the an-
swer and do not output any
other words. Question: {input}
{all_classes} Answer:

Read the book and answer the question.
If the question cannot be answered based
on the information in the article, write
“unanswerable”. Book: {context} Now,
answer the question based on the book.
Only output the answer and do not out-
put any other words. If the question
cannot be answered based on the infor-
mation in the article, write “unanswer-
able”. Question: {input} {all_classes}
Answer:

Read the book and answer the
question. Book: {context} Now,
first provide your reasoning
briefly in 2-3 sentences starting
with ’Rationale:’. Then, answer
the question starting with ’An-
swer:’ as concisely as you can.
Question: {input} {all_classes}
Rationale:

Table 6: Prompts used in our experiments for ∞Bench datasets.
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Method Avg Narr Qasp Mult Hotp 2Wiki Musi QMSum
BM25 48.03 26.62 50.71 56.78 66.28 64.8 45.91 25.11
M3Flag (1, 0, 0) 48.3 29.4 50.36 55.99 63.76 66.47 47.87 24.23
M3Flag (1, 0.3, 0) 48.58 29.79 50.14 55.86 64.83 66.78 48.33 24.36
BGEFlag 48.05 27.79 51.24 53.99 66.64 66.46 45.74 24.49
MPNet 46.92 25.97 50.72 54.33 62.95 65.55 44.7 24.25

Table 7: Performance comparisons of off-the-shelf retrievers on LongBench datasets. All results are based on OP
RAG at 3k context with Llama3.1-70b-instruct model. We compared two weight configurations for M3Flag, taking
recommendations from the authors to set the weights - refer to the original paper for details (Chen et al., 2024).

Method Avg Narr Qasp Mult Hotp 2Wiki Musi QMSum
Only answers 50.09 30.63 52.11 56.17 66.16 68.97 51.49 25.07
Thought process 50.09 32.33 51.6 55.63 65.42 68.09 52.8 24.76
Explanation 50.33 30.83 51.84 55.88 66.92 68.62 53.67 24.54
Reasoning 50.23 33.22 50.99 55.99 66.29 67.42 53.13 24.56

Table 8: Performance comparisons of our approach on LongBench datasets by varying the prompt used for sampling
in Stage II. Model Used: Ours-FB (6k → 3k). Thought process: Generate the thought process before the final
answer, Reasoning: Generate a reasoning sequence before the final answer, Explanation: Generate an explanation
after generating the answer. While the performance improves over the baselines by only considering the final
answers as samples, we find that using reasoning or explanation performs slightly better on average.
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