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ABSTRACT

Although humans live in an open-ended world and endlessly face new challenges,
they do not have to learn from scratch each time they face the next one. Rather,
they have access to a handful of previously learned skills, which they rapidly
adapt to new situations. In artificial intelligence, autotelic agents — which are
intrinsically motivated to represent and set their own goals — exhibit promising
skill adaptation capabilities. However, these capabilities are highly constrained
by their policy and goal space representations. In this paper, we propose to inves-
tigate the impact of these representations on the learning capabilities of autotelic
agents. We study different implementations of autotelic agents using four types
of Graph Neural Networks policy representations and two types of goal spaces,
either geometric or predicate-based. We show that combining object-centered ar-
chitectures that are expressive enough with semantic relational goals enables an
efficient transfer between skills and promotes behavioral diversity. We also release
our graph-based implementations to encourage further research in this direction.

1 INTRODUCTION

A central challenge in artificial intelligence (AI) consists in designing artificial agents capable of
solving an unrestricted set of tasks in a continual and open-ended skill learning process. In principle,
these processes should be domain-agnostic. Reinforcement learning (RL) seems to be an adequate
paradigm to solve a single sequential decision problem from a reward signal (Sutton et al., 1999).
Nevertheless, this signal is usually predetermined and highly grounded to its designer’s aspirations.
Thus, the extension of the RL framework to an open-ended sequences of unpredictable tasks raises
difficult questions.

Recently, a promising line of research has been interested in the design of autotelic agents, borrow-
ing older ideas from (Steels, 2004). These agents are intrinsically motivated to represent, set and
pursue their own goals. Usually, they do not depend on any external reinforcement signal, since
they autonomously reward themselves over the completion of their own goals. Autotelic agents are
known to be open-ended learners. Through RL, they manage to acquire goal-directed behaviors
which can transfer to domains sharing similar goal spaces. However, this transfer is deeply bound
to their representational capabilities.

From that perspective, a key challenge consists in endowing autotelic agents with appropriate induc-
tive biases to enhance their representational power. To enable efficient transfer, such biases should
express a set of general and structured features. On the one hand, the design of the autotelic agents’
goal spaces should depend on some abstract general rules rather than geometric properties specific to
a particular domain. Namely, recent works in AI (Akakzia et al., 2021; Alomari et al., 2017; Kulick
et al., 2013; Tellex et al., 2011) introduced symbolic high-level object-centered representations to
explicitly capture abstract spatial relations such as proximity and aboveness, which we used to refer
to the quality of being directly above. By contrast, other works use plain spatial target coordinates
specific to each of the available objects (Colas et al., 2019; Li et al., 2019; Lanier et al., 2019).
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On the other hand, although neural networks are flexible tools to learn latent representations, their
raw usage is insufficient to capture disentangled representations from high-dimensional structured
input. Recently, Graph Neural Networks (GNNs) have been introduced to implement relational in-
ductive biases in neural networks. They mainly rely on shared networks to transfer features among
the input components. Besides, they follow efficient computation schemes: through their neigh-
borhood aggregation and graph-level pooling schemes, they easily capture the existing relationships
between nodes.

Contributions. In this paper, we study the use of GNNs in autotelic learning within a multi-object
manipulation domain. More specifically, we investigate 4 variants of GNNs: full graph networks,
interaction networks, relation networks and deep sets. Furthermore, we consider two different types
of goal spaces: 1) semantic goals based on binary predicates describing spatial relations between
physical objects; 2) continuous goals corresponding to specific target positions for each object. For
multi-object manipulation domains, we show that:

• Compared to flat architectures which directly leverage entangled stream of input features,
graph-based neural networks are better suited.

• Full graph networks and interaction networks outperform the other GNN-based architec-
tures in learning actionable representations.

• Coupling graph-based architectures with semantic goals helps to efficiently transfer be-
tween goals and further improves the behavioral diversity.

Finally, we release our implementations of the considered GNN-based architectures in multi-object
manipulation domain to encourage further research in this direction1

2 RELATED WORK

This paper relies on several previous works from different areas of research within AI. Namely,
we consider recent findings in automatic curriculum learning, semantic goal representations, graph
neural networks and graph-based autotelic learning.

Automatic Curriculum Learning. Adaptability is a key characteristic enabling humans to dis-
play an exceptional capacity to learn (Elman, 1993) and works in AI attempted to leverage similar
automatic curriculum learning (ACL) schemes in artificial agents (Portelas et al., 2020). Most of
these approaches leverage forms of intrinsic motivations to power their exploration and learning
progress (LP) (Bellemare et al., 2016; Achiam & Sastry, 2017; Nair et al., 2018; Burda et al., 2018;
Pathak et al., 2019; Colas et al., 2019; Pong et al., 2019). In this paper, we borrow the LP-based
curriculum learning algorithm introduced in Colas et al. (2019).

Semantic Goal Representations. Studies in developmental psychology suggest that notions such
as proximity, animacy and containment are innately grounded in the perceptual world of the infant
(Mandler, 2012). Inspired by this line of thought, recent works in AI introduced symbolic high-level
representations to explicitly capture abstract spatial relations (Tellex et al., 2011; Kulick et al., 2013;
Alomari et al., 2017; Akakzia et al., 2021). We borrow the semantic goal representations used in
Akakzia et al. (2021) and based on the predicates close and above.

Graph Neural Networks. GNNs are powerful tools to implement strong inductive biases that fo-
cus on structured representations (Battaglia et al., 2018). At the price of more computations, they
efficiently foster combinatorial generalization and improve sample efficiency over standard archi-
tectures in different machine learning domains (Gilmer et al., 2017; Scarselli et al., 2005; Zaheer
et al., 2017; Li et al., 2019). GNNs parse the stream of input features into several objects, called
nodes. They also capture the relational features between pairs of these objects which they store
in the corresponding edges. They usually involve three computational schemes: 1) Edge updates
using the initial features of the edge and both features of the nodes involved within that edge; 2)
Node updates using the initial features of the node and the aggregated features of the edges that

1https://github.com/akakzia/rlgraph.
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enter that nodes; 3) Graph output using an aggregation of either all the nodes or the edges features.
The first two steps involve shared networks, which enable transfer between the different nodes and
edges. Depending on the order and the nature of the computational steps, there exist many variants
of GNNs. In this paper, we only consider 4 of these variants: full graph networks (Battaglia et al.,
2018), interaction networks (Battaglia et al., 2016), relation networks (Santoro et al., 2017) and
deep sets (Zaheer et al., 2017). Details about the implementations of these variants are provided in
Section 3.2.

Graph-based Autotelic RL. GNNs have been used to solve RL problems (Zambaldi et al., 2018;
Li et al., 2019; Colas et al., 2020; Akakzia et al., 2021). By contrast to Li et al. (2019); Colas
et al. (2020); Akakzia et al. (2021) — which explicitly associate a node to each object in an object
manipulation domain — the approach in Zambaldi et al. (2018) attempts to solve the StarCraft II
mini-games (Vinyals et al., 2017) without object-centered inductive bias. In the latter, the nodes do
not correspond to specific objects, but rather to randomly scattered boxes of pixels. In this paper, we
rather join the former group.

3 METHODS

In this section, we first introduce the object manipulation environment and the two goal spaces we
use in this paper (Section 3.1). Then, we present the graph-based implementations of our autotelic
agents (Section 3.2)

3.1 ENVIRONMENT AND GOAL SPACES

The Fetch Manipulate Environment. Agents evolve in the Fetch Manipulate domain from
Akakzia et al. (2020), which is a variant of the standard Fetch domains (Plappert et al., 2018). We
extend it to a 5-object setup: the agent is a 4-DoF robotic arm facing 5 colored objects on a table.
It perceives features of its body and of the surrounding objects. These features include geometric
positions, orientations and velocities.

Autotelic Learning with Semantic Goals. We consider high-level binary representations that as-
sert the presence (1) or absence (0) of the binary spatial relations above and close between objects.
As the latter is symmetric (close(A, B) = close(B, A)), we only consider 10 combinations of objects
for this predicate. However, we consider all the 20 ordered pairs of objects for the above predicate.
This yields semantic goal vectors of 30 dimensions. The resulting configuration space contains 230
elements, among which ∼ 75.000 are physically reachable. These semantic representations are in-
spired by the work of Mandler (2012) on a minimal set of spatial primitives children seem to be born
with, or to develop early in life. Initially empty, the set of discovered semantic goals gets gradually
filled each time an agent encounters new configurations. Accordingly, agents autonomously select
and attempt to master goals from this set. They reward themselves for each correctly placed object
(i.e. all the predicates involving that object are verified). An episode ends successfully if all objects
are placed correctly before a time limit. At the beginning of an episode, the blocks are procedurally
placed on the table so that they can never be initially stacked.

Figure 1: Illustration
of objects and targets.

Autotelic Learning with Continuous Goals. Continuous goals correspond
to precise target positions for each available object. To succeed, agents have
to place every object in its corresponding target position. See Figure 1 for
an illustration. These goal spaces are used in many works attempting to solve
multi-object manipulation problems (Colas et al., 2019; Li et al., 2019; Lanier
et al., 2019). We suppose that these agents are initially aware that they can
construct stacks using the available objects, and that the maximum number
of objects stacked corresponds to the number of available objects. At the be-
ginning of each episode, agents autonomously select how many objects they
want to stack (from 0 up to 5 in this paper). Accordingly, target positions are
generated for each object. Agents reward themselves for each object placed correctly within a range
of its corresponding target position. An episode ends successfully if all objects are placed correctly
before a time limit. To further accelerate the learning process, we consider biased initializations
as part of a way to adapt the difficulty of the task to the learner’s skills: at the beginning of each
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episode, and with a probability of 0.2, blocks are arranged into a stack of up to 5 objects. We can
view this ZPD management as this accounts for Vygotski’s notion of Zone of Proximal Development
Vygotsky (1978). To stabilize the learning process, we use an automatic LP-based curriculum (Colas
et al., 2019): based on their learning progress estimations, agents can choose to target goals with no
stacks, a stack of 2, 3, 4 or 5 objects where all target positions that are not involved in stacks are au-
tomatically generated directly on the table. See Appendix B.1 for more details about the importance
of ACL when using continuous goals.

3.2 GRAPH-BASED AUTOTELIC LEARNING

The agents we consider in this paper are autotelic. In this section, we describe the implementation
of the intrinsically motivated goal-conditioned RL module. It is powered by the Soft-Actor Critic
algorithm (SAC) (Haarnoja et al., 2018). We choose to model both the critic and the policy based
on GNNs. We use the Multi-criteria Hindsight Experience Replay algorithm (MC-HER) to facilitate
transfer between goals (Lanier et al., 2019). MC-HER extends the Hindsight Experience Replay
(HER) strategy to multi-object scenarios. As the latter focuses on the whole scene when assigning
fictive rewards to future achieved goals, the former makes use of the incremental property of per-
object rewards to enable further transfer between partial features of the goal vector.

3.2.1 GRAPH STRUCTURE

All our agents use a fully connected graph structure: every object corresponds to a node, and all
nodes are connected. First, each node holds the features of a particular object in the scene. Second,
each edge linking a source and a recipient node holds partial features of the goal. For semantic goals,
these features correspond to the predicates that involve both the source and the recipient node, while
for continuous goals, they correspond to the target position of the block corresponding to the source
node. Finally, the global features correspond either to the agent’s body state (in the case of the
policy) or to a concatenation of the agent’s body state and the action (in the case of the critic). We
respectively denote the node features, edges features and global features by X , E and U .

3.2.2 GRAPH COMPUTATIONS

Although all our agents rely on the same graph structure, they use different computation schemes. In
this paper, we focus on four particular types of GNNs: full graph networks (GN), interaction networks
(IN), relation networks (RN) and deep sets (DS). Figure 2 illustrates the different computation steps
for each architecture.

Figure 2: Illustration of the different computational schemes for (from left to right) GN, IN, RN and DS. E, X
and U respectively correspond to the edge features, node features and global features. Note that GN uses U to
update edges features (red arrow), while IN does not and RN only updates edges features, while DS only updates
nodes features.

Full Graph Network (GN). As its name suggests, this architecture uses the whole computation
scheme within a standard graph network block. See Figure 2 for an illustration. First, an edge
update step is performed. A shared network NNmp is used to compute the update features of each
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edge. It takes as input the concatenated input features of each edge (goal features), the involved
source and recipient nodes (object features) and the global features. Second, a node update step is
performed for each node using a second shared network NNnode. It takes as input the concatenated
input features of the considered node, the global features and an aggregation of the updated features
of the incoming edges. Third, the graph output step is performed, where the updated features of
the nodes are pooled, concatenated with the global features and fed to a readout network NNout.
The output quantity corresponds to either the action (in the case of the actor) or the q-value (in the
case of the critic). In this paper, we use self-attention to compute the weighing scores used in all the
aggregation steps (Vaswani et al., 2017; Veličković et al., 2017).

Interaction Network (IN). This architecture resembles the one described in the GN architecture.
The only difference is that, during the edge update step, the global features are not used as inputs to
the shared network NNmp.

Relation Network (RN). This architecture entirely bypasses the node update step. It only performs
the edge update step using the shared network NNmp, which takes as inputs the initial node, edge
and global features. The output vector is aggregated using a self-attention module, then fed to a
readout network NNout.

Deep Sets (DS). This architecture entirely bypasses the edge update step. It only performs node
updates using the shared network NNnode. The latter takes as input the node, edge and global
features, outputs a vector is later fed to a self-attention module to compute attention scores. Finally,
the aggregated vector is fed to a readout network NNout.

4 EXPERIMENTS AND RESULTS

We train 4 graph-based autotelic agents in the Fetch Manipulate domain with 5 objects using the
graph architectures described in Section 3.2. We consider both the semantic and continuous goal
spaces introduced in Section 3.1.

Evaluation Classes. To evaluate the agents, we define several evaluation classes for both semantic
and continuous goals. First, for semantic goals, we consider classes of configurations where exactly
i pairs of blocks are close (Ci), configurations containing stacks of size i (Si), configurations con-
taining pyramids of size 3 (P3) and combinations of these. These classes are disjoint and their union
does not cover the entire semantic configuration space, but they are representative enough and they
enable fair comparisons between the agents. Second, for continuous goals, we consider classes of
configurations where there are no stacks and where there is a stack of i objects (S̃i, where the symbol
∼ is for continuous).

Evaluation Metrics. Evaluations are performed each 50 cycles. During one cycle, the agents
perform 2 rollouts of 200 timesteps with 2 goals sampled autonomously. At test time, the per-class
performance of the agent is computed on 24 goals of each evaluation class (264 semantic goals and
120 continuous goals). The measure of the agent’s global success rate (SR) is the average of all the
per-class successes. Testing is conducted offline and with deterministic policies.

Baseline. For both semantic and continuous goals, we consider a flat baseline, where all the per-
ceived features are concatenated and directly fed to the neural networks. We call Semantic-Flat
(S-FLAT) and Continuous-Flat (C-FLAT) the flat baseline using respectively semantic and continu-
ous goals.

4.1 GLOBAL PERFORMANCE METRICS

In this section, we study the global performance of the different graph-based autotelic agents. Fig-
ure 3 presents the average SR across evaluation classes for both semantic goals (Figure 3a) and
continuous goals (Figure 3b).
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Figure 3: Global SR across training episodes with (a) Semantic (S) goals and (b) Continuous (C) goals for
the considered agents. Mean ± standard deviations are computed over 5 seeds. Stars highlight statistical
differences w.r.t S-GN agents (Welch’s t-test with null hypothesis H0: no difference in the means, α = 0.05).

Semantic Goals. On the one hand, we note that the Semantic-FLAT (S-FLAT) baseline fails to in-
crease its global SR during all training episodes. This suggests that using flat architectures is not
suitable for multi-object domains with semantic goals. In fact, neural networks are unable to disen-
tangle the learned features when the input is a raw concatenation of all the perceived states. This
most likely becomes intractable in high-dimensional scenarios when the number of objects involved
in the sensorimotor interactions increases. On the other hand, all the agents that use object-centered
architectures are able to increase their global SR. First, Semantic-DS (S-DS) agents — which bypass
the edge update during the edge update step — get stuck at 20% of the maximum global SR. This
suggests that, when using semantic relational goals, deep sets do not leverage enough representa-
tional power to learn object-centered representations, as they only rely on node updates. Second,
the Semantic-RN (S-RN) agents yield better performance. In fact, with semantic relational goals,
relation networks are able to pass information about the different predicates during the edge update
step. However, bypassing the node update prevents them from maximizing the global SR, as they
get stuck at around 50%. Third, both the Semantic-GN (S-GN) and Semantic-IN (S-IN) agents are
able to outperform all the other counterparts. In fact, using both the edge and the node updates
allows them to gain more representational power. Besides, their performance is similar across all
training episodes since the statistical differences only appear rarely (see red stars on Figure 3a). This
suggests that using the global features during the edge update step is not necessary.

Continuous Goals. Similar to semantic goals, the Continuous-FLAT (C-FLAT) baseline fails to
learn any interesting behavior. However, unlike with semantic goals, not all the graph-based agents
are able to increase their global SR across training episodes. In fact, the Continuous-RN (C-RN)
agents — which exclusively rely on edge updates during the edge update step — perform in par of the
C-FLAT baseline. This shows that, when dealing with geometric goals that do not exhibit relational
features, bypassing the node update step raises a red flag: aggregated pairwise node features do not
capture actionable information about the relational structure of the objects. Moving on, the global
SR of the Continuous-DS (C-DS) agents ,— which exclusively rely on node updates — increases but
gets stuck at 25% of the maximum global performance. This not only proves the importance of the
node update step, but also suggests that this step alone is not sufficient to maximize the global SR.
Furthermore, the Continuous-GN (C-GN) and Continuous-IN (C-IN) agents outperform all the other
agents. This further proves the importance of combining both the edge and the node update steps.
Besides, they both show similar performance, as statistical differences only occur rarely (see red
stars in Figure 3b). This implies that using the global features during the edge update step does not
seem to be necessary.

4.1.1 PER CLASS PERFORMANCE METRICS

The global performance metrics in Section 4.1 show that the average SR across evaluation classes
gets stuck at around 75% for both semantic and continuous agents. To investigate this, we zoom on
the per class performance metrics.

Semantic Goals. Figure 4 shows the per-class performance of S-GN, S-IN, S-RN and S-DS. First,
and as the global performance metrics suggest (Section 4.1), S-GN and S-IN show very similar local
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Figure 4: Local SR for each class across training episodes with continuous goals. Mean ± standard deviations
are computed over 5 seeds.

performance. They are both able to master all the classes except for S4 and S5. This failure occurs
because the learned policies are sub-optimal. In fact, when rewarding themselves for each object
placed correctly, the critics would most likely be greedy: incremental rewards should come fast,
even if this means not constructing stacks in the trivial order (from base upwards). As a result,
agents would start by constructing the upper part of a stack, then placing is on the base object. This
is not a problem for S3 since robotic arms can pick and place a stack of two blocks. However, in S4,
it’s impossible to pick and place a stack of three blocks. See Figure 5 for an illustrative example.
Second, the S-RN agents do not transfer between goals as well as the S-GN and S-IN agents. In fact,
the slopes of the curves in S-RN are smaller than the ones in S-GN and S-IN. It seems that S-RN in
unable to efficiently learn about many classes at the same time. Finally, as suggested by the global
performance metrics in Section 4.1, the deep sets architecture used in S-DS agents does not have
enough representational power to learn stacks.

Figure 5: Example of sub-optimal behavior with semantic goals when targeting a goal in S3 (up) and in S4

(down). The agent tries to pick and place a stack of three objects and fails (down).
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Figure 6: Local SR for each class across training episodes with continuous goals. Mean ± standard deviations
are computed over 5 seeds.

Continuous Goals. Figure 6 shows the per-class performance of C-GN, C-IN and C-DS. All the
agents first start mastering the easy classes, before moving up to the less easy ones. This results
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from these agents leveraging automatic curriculum learning, using their LP estimation as a proxy to
choose goals that are at an affordable level of complexity. However, as opposed to semantic goals,
there is less interference between classes and transfer is poorer (per-class SR increases sequentially).
On the one hand, C-DS agents are unable to go beyond the S̃2 class. This further supports the idea
that the node update step alone in deep sets does not provide enough representational power. On the
other hand, both C-GN and C-IN manage to reach goals in all the evaluation classes, from no stacks
at all to stacks of 5 objects. However, they are both unable to maximize their per-class performance.
This suggests that learning policies that can achieve all evaluation classes at the same time with
continuous goals is difficult and requires more training budget.

4.2 ABLATION STUDIES: HOW IMPORTANT IS THE ZPD MANAGEMENT SCHEME ?
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Figure 7: Performance metrics for C-GN, C-IN and their ZPD ablations. Mean ± standard deviations are
computed over 5 seeds.

To assess the importance of the ZPD management mechanism for continuous goals, we consider
the C-GN and C-IN agents — the best performing GNN-based architectures so far — and remove the
biased initialization scheme: blocks are placed without any initial stacks in the resulting ablations.
Figure 7 shows performance metrics for these agents. The global SR of both ablations increases
slower than that of C-GN and C-IN (Figure 7b). Besides, it gets stuck at around 50% of the maximal
performance while their corresponding full versions manage to reach 75%. Zooming on the per-class
performance metrics shows the considerable decrease in the behavioral diversity when removing the
ZPD management scheme (Figure 7b): the ablations struggle to transfer between easy goals (S̃2 and
S̃3) and harder ones (S̃4 and S̃5).

5 CONCLUSION AND FUTURE WORK

In this paper, we study several GNN-based goal-conditioned architectures for both the policy and
critic in multi-object manipulation domains. More specifically, we considered four different com-
putational schemes: full graph networks, interaction networks, relation networks and deep sets.
We evaluated our agents using two different goal space structures: 1) continuous geometric goal
spaces corresponding to per-object target positions; 2) semantic relational goal spaces based on the
binary predicates close and above. Our study exhibits three main results. First, object-centered
architectures induced with sufficiently strong representational capabilities are usually better suited
than flat architectures which usually struggle with entangled input features. Second, the behavior of
GNN-based architectures depends on the nature of the goal space. When the goal space already cap-
tures relational features between objects (semantic goals), interesting behaviors emerge even with
schemes using weak representational capabilities. However, when goals are specific to each ob-
ject independently (continuous goals), only architectures with more computations can increase the
behavioral diversity. Third, combining efficient object-centered architectures and relational goals
yields the best transfer between goals, as skills learned in easy goals can be better adapted to more
complex ones. However, when goals are not relational, the transfer from primitive to more complex
skills is weak and additional ingredients such as ZPD management are required.
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This study makes a step towards open-ended autotelic agents capable of efficient transfer between
abstract goals. However, the agents studied here only leverage their physical interactions with the
environment. This does not account for the extraordinary human capacities to learn from social
interactions (Vygotsky, 1978; Bruner, 1973; Tomasello, 2009). We believe adding social learning
mechanisms as suggested in (Sigaud et al., 2021) is a promising line of research towards more
capable open-ended agents.
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A APPENDIX

A.1 PSEUDO CODE

Algorithms 1 and 2 present the high-level pseudo-code for the autotelic learning mechanism with
respectively semantic and continuous goals.

Algorithm 1 Learning Semantic Goals

1: Require Env E,
2: Initialize policy Π, Uniform goal sampler
Gsunif , buffer B.

3: discovered goals = []
4: loop
5: g ← Gsunif .sample goal(discovered goals)
6: trajectory ← E.rollout(g)
7: Gsunif .update(trajectory)
8: B.update(trajectory)
9: Π.update(B)

10: return Π
11:
12:

Algorithm 2 Learning Continuous Goals

1: Require Env E, Goal classes Cg

2: Initialize policy Π, LP-based goal sampler
GsLP , buffer B.

3: loop
4: c← GsLP .sample class(Cg)
5: g ← generate positions(c)
6: trajectory ← E.rollout(g)
7: GsLP .update(trajectory)
8: B.update(trajectory)
9: Π.update(B)

10: return Π
11:
12:

A.2 IMPLEMENTATION DETAILS

In this part, we present details necessary to reproduce our results. We further open-source our code
at https://github.com/akakzia/rlgraph.

GNN-based networks. Our four graph-based architectures use at most two shared networks, NNedge
and NNnode, respectively for computing updated edge features and node features. Both are 1-hidden-
layer networks of hidden size 256. Taking the output dimension to be equal to 3× the input dimen-
sion for the shared networks showed better results. All networks use ReLU activation and the Xavier
initialization. For edge-wise and node-wise aggregation, we use a one-headed self-attention mod-
ule. Finally, to produce the output, all architecture use a readout network NNout. The latter is also
a 1-hidden-layer network of hidden size 256. For optimization, we use Adam with learning rates
10−3. The list of hyperparameters is provided in Table 1.

Parallel implementation of SAC-HER. All our experiments are based on a Message Passing Interface
(Dalcin et al., 2011) to exploit multiple processors. Each of the 24 parallel workers maintains its
own replay buffer of size 106 and performs its own updates. To synchronize experience between
different workers, updates are summed over the 24 actors and the updated actor and critic networks
are broadcast to all workers. Each worker alternates between 2 data collection episodes and 30
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updates with batch size 256. To form an epoch, this cycle is repeated 50 times and followed by the
offline evaluation of the agent.

Table 1: Hyperparameters used in this paper.

Hyperparam. Description Values.
nb mpis Number of workers 24
nb cycles Number of repeated cycles per epoch 50
nb rollouts per mpi Number of rollouts per worker 2
rollouts length Number of episode steps per rollout 200
nb updates Number of updates per cycle 30
replay strategy HER replay strategy future
k replay Ratio of HER data to data from normal experience 4
batch size Size of the batch during updates 256
γ Discount factor to model uncertainty about future decisions 0.99
τ Polyak coefficient for target critics smoothing 0.95
lr actor Actor learning rate 10−3

lr critic Critic learning rate 10−3

α Entropy coefficient used in SAC 0.2
biased init Probability of following ZPD management scheme 0.2
self eval curriculum Probability to perform self evaluations 0.1
curriculum queue length Window over which LP estimations are made 1000

B ADDITIONAL RESULTS

In this section, we present additional results which complement the ones presented in the main paper.
More specifically, we study the relative importance of curriculum learning when using continuous
goals (Appendix B.1) and of self-attention when using semantic goals (Appendix B.2).

B.1 CURRICULUM ABLATION

0 50 100 150 200 250 300 350 400
Episodes (x103)

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

C-GN C-IN C-GN w/o Curr C-IN w/o Curr

(a) Global SR. Stars highlight statistical differ-
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Figure 8: Performance metrics for C-GN, C-IN and their curriculum ablations. Mean ± standard deviations are
computed over 5 seeds.

To study the relative importance of the LP-based curriculum learning mechanism used with con-
tinuous goals, we introduce ablations of C-GN and C-IN which uniformly sample a class of goals
without any particular prioritization. We only consider architectures based on GN and IN in this ab-
lation study since they show the best results in Section 4.1. Figure 8 presents the global performance
metrics for C-GN, C-IN and their ablation counterparts. Autotelic agents using continuous goals but
no curriculum clearly show an increased variance in their global performance. Figure 8 zooms on
the local performance on each class for the considered agents. Compared to C-GN and C-IN, the
shaded areas in the ablations are larger, suggesting that the learning process of the latter agents is
not stable. Precisely, this is true in stacks of size 3 or higher. In fact, ablations face catastrophic
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forgetting as they engage with harder goals. The curriculum learning mechanism helps stabilize the
learning process by focusing on goals of moderate level of complexity, including the ones that the
agents are likely to forget during training. Note that this issue is specific to continuous goals, which
shows that they are not well suited to transfer between different goals.

B.2 SELF-ATTENTION ABLATION
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Figure 9: Global SR across training episodes for S-GN, S-IN and their self-attention ablations counterparts.
Mean ± standard deviations are computed over 5 seeds. Stars highlight statistical differences w.r.t S-GN agents
(Welch’s t-test with null hypothesis H0: no difference in the means, α = 0.05.

We propose to remove the self-attention aggregation schemes from S-GN and S-IN,– the two best
performing agents,– and introduce the corresponding ablations which use an unweighted sum when
performing the pooling over edges or nodes. Figure 9 presents the global SR for these agents across
training episodes. The differences only appear at the beginning of training. In fact, the global
performance metrics in the ablations increases slower than their corresponding full-versions (blue
vs green; red vs orange). However, all agents seem to behave similarly by the end of training. This
suggests that self-attention improves sample efficiency, yielding GNN-based agents that can faster
capture actionable relational features within their graphs.
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