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Abstract—In this work, we posit that a user’s head pose can
serve as a proxy for gaze in a VR object selection task. We
describe a study in which participants were asked to describe a
series of objects in a known order, providing approximate labels
for the focus of attention. The participants’ head pose was then
evaluated as a function of the position and orientation of the
headset, and how closely that pose matched the location of known
objects was calculated. The object that most closely matched the
gaze was then evaluated using a mean reciprocal ranking. We
demonstrate that using a concept of gaze derived from head pose
can be used to effectively narrow the set of objects that are the
target of participants’ attention.

Index Terms—sim2real, gaze tracking, data generation, virtual
reality

I. INTRODUCTION

Predicting the target of human attention is a complex
problem, incorporating gesture, language, and gaze, among
other signals. Gaze tracking, while valuable, generally requires
specialized hardware and often negatively affected by external
features such as eye color. Since most commodity virtual
reality (VR) hardware does not incorporate gaze-tracking
capabilities, using gaze to help understand what a user is
referring to in a virtual setting has generally not been widely
studied. However, embodied agents that interact with people
need to understand and display appropriate responses to hu-
man interactions, which depend on a variety of modalities,
including speech, gesture, and gaze.

One approach to engaging in such interactions is to commu-
nicate via natural language; when language refers specifically
to the physical environment in which the robot operates, it
may be grounded in the context provided by sensors and
actuators [7]. When grounded language is used to teach robots
about objects in the environment, it is necessary to understand
the specific target in the environment to which a person is
referring, which can be accomplished or assisted, in part, by
tracking gaze [24, 17] to identify the objects that are being
described.

Robotic learning is often in the form of machine learning,
which requires large amounts of data to properly weight neural
connections between the machine learning model’s layers [25].
Generating test instances in human-robot interactions can take
significant time. One way to optimize data collection in robotic
learning is to create a simulation of robot operation, increasing
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the radius of possible participants, minimizing travel, and
reducing machine breakdowns. A further optimization is to
use attributes of the human-robot interaction to label the data
points as they are collected.

In this work, we hypothesize that a VR participant’s head
pose can serve as a proxy for gaze to label data. These
instances can then be used for training a machine learning
model, building an unsupervised learning pipeline for object
descriptions. We describe the approach to evaluating head
pose in simulation and present the results of mean reciprocal
ranking of selected objects to determine the effectiveness of
this approach.

II. RELATED WORK

We build directly on previous work on using vision, lan-
guage, and gesture to select objects in a scene [16], which
found that a combined approach was more effective than any
single modality. We use the simulator architecture of [10],
which incorporates ROS, Unity, the human, and the learning
model, as well as the robot and virtual reality technology
utilized. Learning models in simulation and then transferring
them to a physical system is in the broad area of simulation-
to-reality, or sim2real, studies; sim2real approaches have had
limited applicability to human-robot interaction (HRI) because
of the difficulty of simulating the complexities of human
interaction [11]. We address this difficulty by using VR to
incorporate people in the simulation environment.

Robots that have a method to express gaze are perceived
more favorably and perform better during interactions with
humans [18, 22, 1]. It has also been shown to be a useful tool
to measure a person’s engagement [6] during an interaction
and as a measure of the person’s perception of the robot [12].
Gaze has been used as a tool to improve robotic manipulation
and handoff tasks, where gaze provides insight to the human
participant’s intent [4, 3]. It has also been used to establish
and maintain a common ground during interactions [17, 19].

The performance of eye tracking in VR has been com-
pared to eye tracking in the real world under ideal circum-
stances [21]. The accuracy did not differ when gazing as
static targets, and only showed small differences at targets at
varied distances, but did show larger differences when tracking
moving target, and showed that the precision in VR was
much worse when focusing on static targets. This work only
investigated the performance of eye tracking, fixing the head
in place in both conditions.



There has been work that has shown that head pose by itself
cannot replace eye gaze, consistent with intuition [20, 13].
However as not all VR headsets support eye tracking, and as
gaze tracking in human-robot interactions is not always viable,
we hope to compare how well head pose works as a proxy for
gaze in VR on the specific task of object selection when a
person is teaching a robot about aspects of the environment.

Work has shown that head pose can be used as a method of
control for user interfaces in both virtual [9] and augmented [8]
reality. The use of bidirectional gaze in interactions with a
virtual agent can improve task performance, and it has been
shown that using head pose as a proxy for gaze in a system
utilizing bidirectional gaze performs similarly to using full eye
tracking [2].

III. METHODS

In this work, gaze via head pose tracking is evaluated as a
source of labels for objects, with the goal of allowing the robot
to determine on which object a participant’s attention is fixed.
We briefly describe the simulation environment RIVR [10],
then discuss the data collection performed and give details for
how the gaze vector is calculated.

A. Simulator

This experiment was conducted using RIVR [10], a virtual
reality robotics simulator. RIVR is constructed out of three
components: a VR client, a render server, and a server running
ROS. The VR Client provides the virtual reality representation
of an environment for the human and robot to interact in.
For this experiment a kitchen environment from AI2Thor [14]
was used as a base. The virtual reality client is the only part
of the system that is run on a participant’s local machine. It
streams audio captured by the headset, the positions of the
headset and controllers along with all the interactive objects
in the scene, and button inputs to the ROS node for the robot.
Only the participants’ view is rendered and streamed to the
participant’s headset, while the Unity Render Server models
the robot’s more complex sensors on a remote server.

The render server uses Unity to render the environment and
the effects of actions. This server takes as input the robot state
from the ROS node, as well as the positions and orientation
of the VR headset, controllers, and interactive objects. The
positions of all the objects in the scene are updated by this
component, and the pose of the headset and controller are
used to animate a human avatar using the Final IK Unity
package [23], to give the robot a realistic view of the human
(see figs. 1 and 2). The final component is the ROS server,
which uses ROS bridge [15] to connect the separate nodes,
and is responsible for controlling the robot in the simulation.

B. Data Collection

Participants were brought into a lab, and the simulation was
explained by telling the user how the robot would prompt
their response by asking for a description of the object. They
were instructed to respond in a way that they would describe
the object to someone that had never scene the object before.

People described objects in a variety of ways, giving verbal
reports of of physical attributes, ideal usages, and origins of
the object. There were fifteen participants in the study. They
were between the age of 21 and 36 with a mean age of 25.
Nine were male, six were female and one did not respond.
Eight identified as Asian and seven as white.

After a familiarization period with the headset, the user was
given two controllers. The right controller’s trigger was to be
held for the duration of an object’s description, serving as
a signal to start and stop a data collection instance. The data
collected on head pose was recorded by Unity and transformed
into the robot’s frame of reference in Robot Operating System
(ROS) Melodic. After hearing the instructions with an oppor-
tunity for questions, the users were given the virtual reality
headset, and taught how to adjust the interpupillary distance
of the screens, height of the headset while resting on the head,
cranial length, and fold-down headphones.

The objects described by the user were captured as point
cloud data from a simulated Xbox Kinect. The point clouds
were segmented and clustered in order to detect where objects
on the kitchen countertop were positioned. Following the final
description, the users were thanked by the robot for completing
the study and then filled out a post-study survey. Prior to
exiting the lab, participants were informed that the study was
not fully autonomous, as the robot had a conductor for a
wizard of oz operation. Conductors were present with the
participants for the duration for the experiment, and while
the headset includes headphones, they do not cancel sound,
so noise in the lab was audible.

C. Gaze Calculation

During experiments the entire interaction was captured in
ROS, including the audio from the user, simulated RGB and
depth from the robot’s perspective, point clouds, the position

Fig. 1. The robot’s perspective when prompting the user for a description of
the bread. The gaze line (not visible to participants) is overlaid on the image
as transformed from the virtual reality headset’s tracking to demonstrate the
gaze-to-object proximity visible from the robot’s sensors.



and orientation of all the interactive objects in the scene,
and all the ROS transform messages. The point clouds were
segmented using PCL to get point clouds for each object on
the table that the robot can see. The position and orientation of
all interactive objects and headset are captured in the bagfile in
the Unity coordinate system. The origin of the odometry frame
of the robot in ROS matches the origin of the global coordinate
system in Unity, but Unity uses the z axis as forward/backward,
x as left/right and y as up/down. Transforming the Unity
positions and orientations to the robot’s odometry frame of
reference can be done by swapping axes and can be further
transformed into the frame of reference of the point clouds
captured by the robot using ROS transform libraries.

Once the head pose is in the same frame of reference as the
point clouds, the position and orientation of the headset is used
to determine the gaze direction by using a point one meter in
front of the headset position in the direction the headset is
facing. The vector defined by these two points is assumed to
be the gaze vector. Each point in the point cloud is assigned
a label by checking for the closest Unity object. The cosine
similarity between the gaze vector and the vector between the
head and the point is computed. Figure 4 shows this distance
for each object on the countertop. The object containing the
point with the smallest distance is the object that is assumed
the person is looking at. Figure 3 shows the ground truth of
the object the robot is indicating (blue bars) versus the object
which the gaze vector intersects (other colors).

A ROS message is published that contains the raw audio
that was recorded while the user is describing objects. In a
few cases, the participants did not realize they should provide
descriptions for the object the robot was indicating; in these
cases the audio recording was used to manually annotate which
object they were describing.

Fig. 2. The user’s perspective of the robot moving its arm over the bread
to ask the user for a description. The robot’s audio informs the user of the
robot’s desire to know about the object and the movement of the arm indicates
which object is of interest.

IV. RESULTS

In order to determine how accurately our head pose-induced
system identified the target object, we calculated the mean
reciprocal rank of the distance calculation. Here we predict
the rank of all objects based on their distance from the gaze
vector, and then the inverse rank of the desired objects in all
queries are averaged. For example, if the model predicts that
the person is looking at the correct object according to ground
truth, MRR = 1

1 = 1, a perfect score. This metric is suitable
for capturing the intuition that some incorrect predictions are
‘closer’ than others. Table I shows how often the correct object
was in the top 1, top 2, top 3, and the mean reciprocal rank
(MRR) for all the participants. The mean percentage of time
in which the object was correctly identified (top 1) was 51%,
top 3 was 86%, and the mean MRR was 0.70.

A different perspective with a similar analysis format is
shown in table II, where the ranks of interest are from the
objects rather than the participant. From this it is clear that
some objects, typically the larger or closer ones, were easier
to correctly identify as gaze targets. This is intuitive given
the distance metric we have chosen. For example, considering
only the top prediction, lettuce was correctly identified in 98%
of trials, while the mug—which was small and surrounded by
larger objects—was correctly predicted only 2% of the time.

The closest object to the participants’ gaze vector does tend
to match the object they are describing. However, it matches
better for larger objects and objects that are not clustered
tightly together. One of the potentially confounding issues is
the water bottle. Since the body of the bottle is transparent,
there is a tendency to estimate that the user is looking through
it to objects behind it. (Unity does not produce depth points
for transparent objects, which is consistent with the real-world
behavior of the depth sensors we intend to transfer learned
models to; as a result, the point cloud of the water bottle
contains few points and mostly consists of the cap.)

These results are consistent with previous physical gaze-
tracking work, which show that looking at object separated by
over 20◦ results in a viewer moving their head, and for objects

Participant Top 1 Top 2 Top 3 MRR

1 0.54 0.83 0.88 0.73
2 0.32 0.57 0.60 0.55
3 0.64 0.86 0.89 0.78
4 0.73 0.87 0.91 0.83
5 0.72 0.87 0.99 0.84
6 0.43 0.82 0.96 0.68
7 0.50 0.76 0.92 0.70
8 0.53 0.73 0.87 0.70
9 0.58 0.85 0.92 0.76
10 0.35 0.68 0.74 0.59
11 0.50 0.64 0.85 0.67
12 0.52 0.77 0.85 0.71
13 0.52 0.78 0.83 0.70
14 0.43 0.65 0.80 0.63
15 0.58 0.84 0.98 0.76
Mean 0.51± 0.12 0.76± 0.1 0.86± 0.1 0.70± 0.08

TABLE I
TOP 1, 2, 3 AND MRR RESULTS FOR ALL PARTICIPANTS



Fig. 3. For each object described by the user, the solid blue block indicates the ground truth of what is being described, starting at the timestamp when the
user began their description of the object. Concurrent with the blue blocks are various colors, signifying the objects in which the user was looking as observed
by head pose tracking. The breaks in the colors show how the user in this instance was looking from object to object even while describing a single object.
The y axis is the objects that are being described, and the x-axis is time. This graph does not include ‘distraction’ objects not described by participants, which
included a water bottle, drill, hammer, and first aid kit.

Fig. 4. The distance of the calculated gaze from each object over time, measured as cosine distance between the head pose vector and the vector between
the participant’s head and the objects. Different colors represent different objects; when the gaze coincides with an object, the distance drops to zero.

closer that 20◦ just moving their eyes while keeping their head
steady [5]. This does demonstrate that the approach described
in this work is faithful to the real-world gaze tracking we are
attempting to simulate.

A. Discussion

The results of the study are promising in that they show the
extraction of object labels in real time based on a head-pose as
a proxy for gaze is feasible. Anecdotally, we discovered that
participants looked at some objects more often than others,
likely accounted for by varying object size and visibility;
understanding this effect is one target of future work. One
hypothesis is that certain objects require more visual or cog-
nitive processing, e.g., based on the complexity of the object in

Object Top 1 Top 2 Top 3 MRR

Tomato 0.77 0.88 0.94 0.84
Lettuce 0.98 0.99 0.99 0.99
Apple 0.30 0.77 0.98 0.60
Mug 0.002 0.06 0.33 0.12
Bowl 0.60 0.85 0.92 0.75
Bread 0.44 0.96 0.98 0.71
Mean 0.51± 0.35 0.75± 0.35 0.86± 0.26 0.67± 0.3

TABLE II
MRR RESULTS FOR ALL OBJECTS

shape, origin, or usage. Another possibility is the vibrancy of
the colors in the objects that drive the vision to the object as a
matter of immediate interest and attention captivation. Overall,
while work remains, this approach to simulating gaze tracking
in simulation shows promise as one of several modalities for
human-robot interaction and particularly object selection.

V. CONCLUSION AND FUTURE WORK

The results show promise in using head pose in VR as a
proxy for gaze tracking when understanding what object is
the focus of a person’s attention. In future, we will integrate
our approach with work on learning to understand language
about objects based on descriptions and physical interactions
with those objects. Future work also includes comparing the
results of using head pose to determine gaze direction in virtual
reality with results from the same experiment done in the real
world with a physical robot, using identical head pose/gaze
vector models.

A further refinement for future work is to consider the
same concept of gaze as determined by head pose but use
a hidden Markov model to determine what object is being
targeted based on the gaze vector. This would allow for more
sophisticated understanding of the probable focus of the gaze,
and reduce artifacts such as favoring larger, closer objects as
predicted targets.
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[22] André Pereira et al. “Effects of Different Interaction
Contexts When Evaluating Gaze Models in HRI”. In:
Proceedings of the 2020 ACM/IEEE International Con-
ference on Human-Robot Interaction. New York, NY,
USA: Association for Computing Machinery, 2020,
pp. 131–139. ISBN: 9781450367462. URL: https://doi.
org/10.1145/3319502.3374810.

[23] RootMotion. Final IK. Feb. 17, 2022. URL: http://www.
root-motion.com/final-ik.html.

[24] David Rozado et al. “Gliding and Saccadic Gaze Ges-
ture Recognition in Real Time”. In: ACM Trans. Inter-
act. Intell. Syst. 1.2 (Jan. 2012). ISSN: 2160-6455. DOI:
10.1145/2070719.2070723. URL: https: / /doi .org/10.
1145/2070719.2070723.

[25] Gabriel R Schleder et al. “From DFT to machine learn-
ing: recent approaches to materials science–a review”.
In: Journal of Physics: Materials 2.3 (May 2019),
p. 032001. DOI: 10 . 1088 / 2515 - 7639 / ab084b. URL:
https://doi.org/10.1088/2515-7639/ab084b.


