
CAGE: Continuity-Aware edGE Network Unlocks
Robust Floorplan Reconstruction

Yiyi Liu1 Chunyang Liu1 Bohan Wang1 Weiqin Jiao2
Bojian Wu3 Lubin Fan3 Yuwei Chen4 Fashuai Li5,∗ Biao Xiong1,∗

1Wuhan University of Technology 2University of Twente 3Independent Researcher
4Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences

5The Advanced Laser Technology Laboratory of Anhui Province
*Corresponding Authors: lifashuai@gmail.com, b.xiong@whut.edu.cn

Abstract
We present CAGE (Continuity-Aware edGE) network, a robust framework for
reconstructing vector floorplans directly from point-cloud density maps. Tra-
ditional corner-based polygon representations are highly sensitive to noise and
incomplete observations, often resulting in fragmented or implausible layouts.
Recent line grouping methods leverage structural cues to improve robustness
but still struggle to recover fine geometric details. To address these limitations,
we propose a native edge-centric formulation, modeling each wall segment as a
directed, geometrically continuous edge. This representation enables inference
of coherent floorplan structures, ensuring watertight, topologically valid room
boundaries while improving robustness and reducing artifacts. Towards this de-
sign, we develop a dual-query transformer decoder that integrates perturbed and
latent queries within a denoising framework, which not only stabilizes optimiza-
tion but also accelerates convergence. Extensive experiments on Structured3D
and SceneCAD show that CAGE achieves state-of-the-art performance, with F1
scores of 99.1% (rooms), 91.7% (corners), and 89.3% (angles). The method also
demonstrates strong cross-dataset generalization, underscoring the efficacy of our
architectural innovations. Code and pretrained models are available on our project
page: https://github.com/ee-Liu/CAGE.git.

1 Introduction
Reconstructing indoor scenes into compact, editable vector floorplans is a longstanding goal in
computer vision and robotics [1; 2]. A vector floorplan is a structured 2D representation of interior
geometry, composed of lines or polygons that delineate walls, room boundaries, and architectural
elements. Unlike raster maps, vector floorplans are resolution-independent, support precise geometric
reasoning, and integrate seamlessly with CAD tools and building information models (BIM). Their
joint encoding of spatial topology and geometry makes them ideal for downstream applications such
as building lifecycle management, AR/VR simulation, and autonomous navigation [3; 4; 5; 6].
Modern floorplan reconstruction uses diverse inputs including RGB images [7], panoramic views [8],
CAD drawings [9], and 3D point clouds [10]. Among these, projecting point clouds to 2D density
maps provides an optimal balance of geometric accuracy and computational efficiency [11; 12],
making it popular in learning-based approaches. However, real-world scans often suffer from severe
occlusions, clutter, and incompleteness that obscure critical structural elements. Additionally, the
discretization process in density map creation blurs corner features and wall segments. These
challenges significantly complicate accurate vector floorplan recovery. The resulting incomplete or
noisy representations demand robust algorithms capable of handling such imperfect data.
Notably, a critical factor affecting reconstruction quality lies in the choice of floorplan representation.
Recent work has explored a range of methods. For example, HEAT [13] detects discrete corners and

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/ee-Liu/CAGE.git

(a) Input Point
 Cloud

(b) Density Map
(d) Reconstructed

FloorPlan
(c)Predicted Edge

Sequences
(e) Ground Truth

Figure 1: Floorplan reconstruction using our CAGE network. Given an input point cloud (a), we
project it into a 2D density map (b), predict two-level edge sequences (c), and reconstruct a vector
floorplan by intersecting the predicted edges (d). Note that, our edge-based formulation enables the
recovery of regular, topologically valid polygons even in severely occluded regions (highlighted with
red circles). See Figure 6 for comparisons with corner-based and other SOTA methods.

connects them into edges and polygons, yet it often suffers from gaps caused by missed detections.
RoomFormer [12] models floorplans as sequences of corners using a two-level query transformer, yet
a single missing corner can distort the entire layout. As a result, corner-based methods are highly
sensitive to noise. SLIBO-Net [14] introduces a slicing-box representation but relies heavily on the
Manhattan-world assumption. FRI-Net [15] reconstructs rooms by compositional line grouping, its
implicit neural representations often lead to over-smoothing of fine structures. It is clear that current
forms still struggle to capture global structure while keeping local precision.
To address these challenges, we propose CAGE (Continuity-Aware edGE) network, a robust frame-
work for reconstructing vector floorplans from density maps. Our CAGE adopts an edge-centric
formulation, modeling each wall as a directed, geometrically continuous edge. This design improves
robustness to incomplete or noisy data by removing reliance on precise corner localization, while
enabling global reasoning. To complement this representation, we introduce a dual-query transformer
decoder that integrates perturbed and latent edge queries within a denoising framework, enhanc-
ing training stability and accelerating convergence. As decoding progresses, edge predictions are
iteratively refined, yielding clean and watertight polygons. Evaluations on Structured3D [16] and
SceneCAD [17] demonstrate that CAGE achieves state-of-the-art performance and generalizes well
across datasets. Our main contributions are as follows:

• Continuity-Aware Edge Representation: We introduce an edge-based polygon formulation
that enhances robustness to incomplete and noisy data, while preserving directional and
structural consistency.

• Dual-Query Transformer Decoder: Our approach leverages perturbed and latent queries
within a denoising framework to stabilize training, refine predictions, and accelerate conver-
gence.

• Strong Performance and Generalization: We achieve state-of-the-art performance on
multiple benchmarks and generalize effectively across datasets, validating the effectiveness
of our continuity-aware edge-based formulation.

2 Related Work
Approaches to floorplan reconstruction can be broadly categorized into three groups: traditional
methods based on classical geometric or machine learning techniques, stage-wise learning-based
pipelines that combine hand-crafted and learned components, and fully end-to-end learning methods.

2.1 Traditional Methods
Early work in floor- and room-layout recovery relied on low-level vision cues or geometric heuris-
tics. Some methods extract planes from point clouds and optimize line placements to assemble
floorplans [18; 19], while others infer structure from panoramic images [20; 8] or CAD draw-
ings [9; 21; 22]. Techniques such as RANSAC-based plane fitting and piecewise merging have been
used to generate compact surface meshes that are later flattened into floorplans [23]. Graph-based
formulations often cast the reconstruction as shortest-path or global optimization problems, producing
watertight layouts but requiring hand-designed potentials [24; 25]. More recent pipelines focus on han-
dling cluttered LiDAR scans via global optimization over curved surfaces [26] or decomposing scenes
into walls and objects for lightweight BIM generation [27]. From a single panorama, Pano2CAD
estimates Manhattan room geometry and object pose [28], while successors like PanoFormer [29]

2

support curved wall recovery via tessellated spherical surfaces. Recent work also explores LoD4
building modeling by fusing interior and exterior cues from SfM images [30]. Traditional methods
require small amounts of training data while heavily relying on the design of handcrafted features.

2.2 Stage-wise Learning-based Methods
Several methods adopt a hybrid pipeline where learning components are combined with post-
processing optimization. FloorNet [31] detects corners in a top-view raster and assembles them via
integer programming, while HEAT [13] replaces the solver with a transformer-based corner-pair
classifier. Floor-SP [11] and MonteFloor [32] segment rooms using Mask-RCNN [33], refine initial
contours through shortest path or Monte Carlo Tree Search [34; 35], and encourage geometric con-
sistency by sharing corners and walls. PolyGraph [36] generates wall points using a cross-guided
neural network, forms initial triangles, and applies post-processing to refine polygonal layouts.
FloorUSG [19] integrates 2D plane instances with 3D geometry to lift RGB features into structured
floorplans. ArrangementNet [10] detects walls and partitions space using wall lines, then leverages
an extended GCN to model collinearity and coplanarity among surface patches, improving segmen-
tation in complex scenes. SLIBO-Net [14] introduces a slicing box representation with geometric
regularization and post-processing for capturing fine local details. While these stage-wise systems
achieve strong performance, they are often sensitive to missing primitives and rely on extensive
post-optimization.

2.3 End-to-End Learning-based Methods
Recent advances favor end-to-end pipelines that directly predict vector floorplan using transformer-
based decoders. RoomFormer [12] introduces a transformer architecture with hierarchical queries to
jointly predict multiple corner sequences. Although effective, it suffers from unordered predictions
due to random query initialization and incomplete polygons caused by missed corners. PolyRoom [37]
enhances this framework by segmenting rooms with Mask-RCNN [33] and initializing RoomFormer-
style queries from detected contours. PolyDiffuse [38] formulates floorplan generation as a conditional
task and introduces a guided set diffusion model for room representation optimization. These corner-
based methods treat floorplan reconstruction as discrete corner regression, often neglecting global
shape coherence. FRI-Net [15] addresses this by learning room-wise latent codes and decoding them
into lines, which are grouped into polygons using a BSP-Net-inspired [39] grouping strategy. Recent
methods have progressed from corner-based to line-grouping approaches, highlighting the importance
of structural information. However, they still fail to balance robustness with geometric precision. We
address this with edge-centric representation that fundamentally reformulates the problem, enabling
accurate, topologically valid reconstructions in an end-to-end trainable framework.

(a) Corner-based
Representation (d) Density Map (e) GT Floorplan

(b) Edge-based
Representation

(c) Two-level
Edge Tokens

Ø

Ø Ø

Ø Ø

ØØ ØØ ØØ ØØ ØØ ØØ

Ø

Ø Ø

Ø Ø

Ø Ø Ø Ø Ø Ø

Figure 2: Edge-based Floorplan Representation. (a) Corner-based: polygons defined by sequential
vertices; (b) Edge-based: walls represented as directed edges with geometric continuity; (c) Tokeniza-
tion: polygons represented as sequences of edge tokens at two levels; (d) Density map generated from
point cloud; (e) Ground-truth floorplan. While edge and corner representations are mathematically
dual, the edge-based formulation offers greater robustness to noise and occlusion (highlighted in red).

3 Edge-based Floorplan Representation
We propose an explicit edge-based representation for modeling floorplan, addressing the key limita-
tions of prior methods, see Figure 2(a)(b). We represent each room polygon as an ordered sequence
of directed edges, where each edge is defined by a pair of endpoints in normalized 2D space, as
illustrated in Figure 2(b). Let a floorplan contain at most M rooms, and each room contain at most N

3

edges. We represent the m-th room as:

Rm = {enm}Nm
n=1, where enm = (pn

m1,p
n
m2) (1)

Each edge enm ∈ R4 connects two points pn
m1,p

n
m2 ∈ [0, 1]2. The edge order encodes the polygon’s

directional traversal. To support batched training and variable-length polygons, we augment each
edge with a binary validity label:

tnm = (pn
m1,p

n
m2, c

n
m), cnm ∈ {0, 1} (2)

Here, cnm = 0 denotes an invalid (padded) edge, and each tnm serves as an edge token, as illustrated in
Figure 2(c). If all edges in a polygon are invalid, the entire room is treated as padding. While edge and
corner representations are dual, edges are empirically more stable in sparse or noisy conditions, since
they encode directionality explicitly, promoting angular regularity and structural coherence. Unlike
corner-based methods that require precise vertex localization, edge-based design allows endpoints
to lie along wall segments. The flexibility simplifies spatial queries and enables the model to infer
global structure even from partial observation.
We aggregate edge tokens into a fixed-length set:

Tm = {tnm}Nn=1, where max
m

Nm ≤ N (3)

and define the full floorplan as:
F = {Tm}Mm=1 (4)

This edge-based representation models room layouts as fixed-length sequences of spatially grounded
edge tokens, which align well with transformer architectures, facilitate spatial attention over relevant
image regions, and support stable training through bipartite matching.

(a) Input edge sequence (b) Four intersection types (c) Output polygon

IV I

II

II

III

IV I

II

II

III

Figure 3: Illustration of edge-to-polygon conversion. (a) Input edge sequence; (b) Four types of edge
intersections based on geometric proximity; (c) Final reconstructed polygon.

To convert edge sequences into closed polygons, we resolve edge intersections into vertices. As
illustrated in Figure 3, we identify four types of pairwise edge intersections. Types I–III involve
intersection points that lie on or near the edges and are retained as valid polygon vertices. In Type IV,
where the intersection is far from any endpoints, we instead connect the nearest edge endpoints to
preserve continuity. As all edges are ordered and directed, this conversion remains deterministic and
robust even under noisy predictions.

4 Method
4.1 Overview
Figure 4 illustrates the overall architecture of our proposed CAGE framework for floorplan recon-
struction from 3D point clouds. The input point cloud is first projected onto the XY-plane to generate
a 2D density map, which is processed by a convolutional image backbone to extract multi-scale visual
features. The output feature maps are flattened and augmented with positional encodings to form a
unified token sequence, which is passed to a transformer encoder. We employ multi-scale deformable
attention [40] in the encoder to efficiently aggregate both local and global spatial context across all
feature levels.
The encoded features are processed by our novel transformer decoder composed of stacked attention
layers. The decoder operates on a set of learnable edge queries, which are refined across layers
through self-/cross-attention mechanisms. Each query predicts a directed edge denoted by two
endpoints and is assigned a binary label indicating whether it constitutes a valid segment, as described
in Sec. 3. To improve the robustness and training stability, we incorporate a dual-query design that
includes latent queries for final predictions and perturbed queries for denoising supervision. The
following subsections will illustrate our novel dual-query decoding mechanism and loss formulation.

4

(b)Transformer Decoder (c) Polygon Matching(a) Density Map and Encoder (d) ith Layer in the Decoder

Encoder
Output

Def. Cross-Attn.

MLP

Di+1 (x1,y1,x2,y2)i+1

MLP Δx1Δy1
Δx2Δy2

Di (x1,y1,x2,y2)i

Layer i

Layer i+1

Ref

Decoder
Embeddings

Perturbed &
Latent Queries

Self-Attn.

ØSe
lf-A

ttn
.

D
ef. Se

lf-A
ttn

.

FFN

Perturbed
Queries

Latent
Queries

Reconstruct
ed Polygons

Denoised
Polygons

Im
age

B
ackb

o
n

e

Tran
sfo

rm
e

r
En

co
d

e
r

Figure 4: Architecture of the CAGE network. (a) The input point cloud is projected into a density
map and processed by an image backbone and transformer encoder. (b) The transformer decoder
receives two types of queries (perturbed and latent) and predicts edges defined by two endpoints,
which may not correspond to polygon vertices. (c) A feed-forward network assigns class labels, with
polygon matching for supervision. (d) Detailed architecture of decoder, showing the progressive
refinement of edge queries with the incorporation of the novel designs of perturbation and denoising.

itera�on1 itera�on2 itera�on3 itera�on4 itera�on5 itera�on6

Figure 5: Polygon evolution during decoding. Top: edge query predictions refined over six decoder
layers. Bottom: corresponding polygon reconstruction becomes more accurate and complete.

4.2 Iterative Polygon Refinement by Dual Query

To enable precise and stable polygon prediction, we design a dual-query transformer decoder that
refines edge representations over multiple decoding layers. As shown in Figure 4(d), the decoder
jointly operates on two sets of edge queries: perturbed queries used for denoising-based supervision,
and latent queries responsible for final polygon prediction. The denoising strategy encourages the
model to recover clean edge structures from deliberately corrupted inputs, improving its robustness to
noise and accelerating convergence. This dual-query design strengthens learning stability, enhances
generalization, and maintains full end-to-end differentiability.
As described in Sec. 3, we represent each room as a sequence of edges and flatten all edges into
query tensor as Q ∈ RM×N×2, where M is the maximum number of polygons and N is the
maximum number of edges per polygon. Each query predicts an edge defined by two endpoints. The
decoder layers refine these queries iteratively, as illustrated in Figure 5, where edge geometry and
corresponding polygons become increasingly accurate across decoding steps.
Each layer receives positional queries derived from polygon coordinates via sinusoidal encoding,
along with content queries attending to multi-scale encoder features. Self-attention allows intra-
polygon edge refinement and inter-polygon context exchange. Cross-attention modules associate each
edge query with spatially grounded encoder features, guided by its predicted endpoint coordinates.
This supports effective reasoning over both local structure and global context. A binary classifier
identifies edge validity, allowing the model to handle variable polygon structures.
Following Deformable DETR [40], we refine edge coordinates through iterative offset prediction.
Each decoder layer outputs coordinate offsets that adjust the endpoints of every edge query, improving
geometric precision across layers. Latent queries are randomly initialized and optimized for prediction,
while perturbed queries are derived by adding controlled noise to ground-truth edge coordinates.
These two query types are processed jointly in the decoder.

5

To support denoising supervision, we adopt a training objective inspired by DN-DETR [41]. The
decoder receives perturbed queries generated by adding controlled noise to ground-truth edges and
optionally flipping their class labels. Let the perturbed query set be q = {q0, . . . , qMN−1}, and the
latent query set be Q = {Q0, . . . , QMN−1}. The decoder operates on both sets under an attention
mask A that prevents leakage between perturbed instances:

o = D(q,Q,F | A) (5)

where F denotes encoder features.
Each perturbed edge query is generated by applying controlled noise to a ground-truth edge during
training. Specifically, for each edge, its two endpoints are randomly displaced to simulate input
uncertainty. The displacements are constrained relative to the spatial extent of the density map: the
horizontal shift ∆x and vertical shift ∆y are bounded by |∆x| < λw/2 and |∆y| < λh/2, where w
and h denote the width and height of the input density image, respectively. If a perturbed endpoint
falls outside the image boundary, it is clamped to remain within the valid range. The scalar λ is a
hyperparameter that determines the magnitude of perturbation. Additionally, to introduce label noise,
the binary class label of each edge is randomly flipped with probability γ. This denoising strategy
encourages the decoder to recover clean edge structures from noisy inputs. During inference, only
the latent queries are used to generate final polygons.

4.3 Loss Functions
To train the CAGE network in an end-to-end manner, we formulate a loss that supervises both
the structure and geometry of predicted polygons. The decoder outputs a fixed number M of
polygons, each consisting of up to N directed edges. Since the number and order of edges vary across
ground-truth annotations, we adopt a two-level matching strategy that aligns predictions with targets.
Polygon Matching. Let the predicted edge set be Ŝ = {Êm = (ê1m, ..., êNm)}Mm=1, where each edge
ênm = (ĉnm, p̂nm1, p̂

n
m2) includes a binary confidence score and two endpoint coordinates. Ground-

truth polygons are denoted as S = {Em}Mgt
m=1, each padded to length N and further extended with

mock polygons for matching. We compute a bipartite matching between predicted and ground-truth
polygons using the Hungarian algorithm, minimizing the following assignment cost:

σ̂ = argmin
σ

M∑
m=1

D(Em, Êσ(m)) (6)

where the matching cost D includes both classification error and edge regression:

D(Em, Êσ(m)) = 1{m≤Mgt}

[
λcls

N∑
n=1

∣∣∣cnm − ĉnσ(m)

∣∣∣+ N∑
n=1

2∑
k=1

∥∥∥pnmk − p̂nσ(mk)

∥∥∥
1

]
(7)

To account for the cyclic nature of polygons, we evaluate distances over all valid rotations of the
ground-truth sequence and choose the minimal one.
Loss Components. After matching, we supervise the predicted polygons using three terms: classi-
fication, edge regression, and rasterization. For latent queries, losses are applied only to matched
predictions. For perturbed queries, losses are directly applied without the matching step, as their
correspondence to ground-truth edges is already known.
The classification loss uses binary cross-entropy:

Lm
cls = − 1

N

N∑
n=1

[
cmn log(ĉσ̂(m)

n) + (1− cmn) log(1− ĉσ̂(m)
n)

]
(8)

The edge regression loss is the ℓ1 distance between predicted and ground-truth endpoints:

Lm
edge =

1

Nm
1{m≤Mgt}

Nm∑
n=1

2∑
k=1

∥∥∥pnmk − p̂nσ̂(mk)

∥∥∥
1

(9)

The rasterization loss measures the overlap between polygon masks using the Dice loss [42]:

Lm
ras = 1{m≤Mgt} · Dice

(
R(Pm), R(P̂σ̂(m))

)
(10)

6

where R(·) denotes a differentiable polygon rasterizer [43]
For perturbed queries, we apply denoising losses without matching. These include binary cross-
entropy for classification and ℓ1 regression for edge localization, denoted as Lcls_DN and Ledge_DN.
The total training loss is the weighted sum of all components:

L =

M∑
m=1

(
λclsLm

cls + λedgeLm
edge + λrasLm

ras + λcls_DNLm
cls_DN + λedge_DNLm

edge_DN

)
(11)

5 Experiments
5.1 Experiments Setting
Dataset and Evaluation Metrics. We evaluate our method on two large-scale indoor datasets,
including Structured3D [16] and SceneCAD [17]. Structured3D is a photo-realistic synthetic dataset
comprising 3,500 houses with diverse Manhattan and non-Manhattan layouts. SceneCAD provides
3D room layout annotations for real-world RGB-D scans from ScanNet [44], with each sample
containing a single room. Following previous work [13; 12], we split Structured3D into 3,000
training, 250 validation, and 250 test samples. For SceneCAD, we use the provided splits of 828
training and 127 validation samples. Following [32; 13], we process registered multi-view RGB-D
panoramas into point clouds, and project them vertically into 256× 256 pixel density images. Each
pixel value is normalized to [0, 1] by dividing the number of projected points by the maximum count
per image. In line with prior work [13; 12; 36], we evaluate performance using Precision, Recall, and
F1 scores at the Room, Corner, and Angle levels.
Baselines. We compare our method with eight state-of-the-art approaches: Floor-SP [11], HEAT [13],
RoomFormer [12], SLIBO-Net [14], FRI-Net [15], PolyRoom [37], PolyGraph [36], and PolyDif-
fuse [38]. Floor-SP [11] uses Mask-RCNN for room segmentation followed by classical optimization
for vectorization. HEAT [13] detects corners and infers connectivity with a neural network. Room-
Former [12] employs a transformer to jointly predict multiple corner sequences. SLIBO-Net [14]
generates slicing boxes and room centroids via transformer decoding, refined through post-processing.
FRI-Net [15] encodes room-wise latent features, decodes them into lines, and assembles polygons
using a BSP-Net-inspired [39] grouping strategy. PolyRoom [37] combines Mask-RCNN-based seg-
mentation with RoomFormer-style reconstruction initialized from detected contours. PolyGraph [36]
predicts wall points and triangulations and then refines results by postprocessing. PolyDiffuse [38]
formulates reconstruction as a conditional generation task, using a diffusion model to refine floorplans
from initial proposals iteratively.

Implementation Details. Our model is implemented in PyTorch and trained on a single NVIDIA
RTX 4090 GPU. We use Swin Transformer V2 [45] as the default image backbone, while ResNet-
50 [46] and Swin Transformer V1 [47] are used in ablation studies. The transformer architecture
follows a standard 6-layer encoder-decoder configuration. We apply denoising training with dual-
query supervision and optimize using Adam [48]. Further model configurations, training schedules,
and hyperparameters are provided in supplementary material A.

5.2 Comparisons to State-of-the-Art Methods

Table 1: Quantitative comparison on the Structured3D [16] test set. The running time is averaged
over the whole test set. PD denotes PolyDiffuse [38] post-optimization. *: Params are calculated
from the officially released models.

Method Venue Backbone Params(M)* t (s) Room Corner Angle

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

HEAT [13] CVPR22 ResNet-50 48.9 0.11 96.9 94.0 95.4 81.7 83.2 82.5 77.6 79.0 78.3
RoomFormer [12] CVPR23 ResNet-50 40.6 0.01 97.9 96.7 97.3 89.2 85.3 87.2 83.0 79.6 81.3

SLIBO-Net [14] NeurIPS23 ResNet-50 – 0.17 99.1 97.8 98.4 88.9 82.1 85.4 87.8 81.2 84.4
PolyRoom [37] ECCV24 ResNet-50 42.2 0.02 98.9 97.7 98.3 94.6 86.1 90.2 89.3 81.4 85.2

FRI-Net [15] ECCV24 ResNet-50 58.6 0.09 99.5 98.7 99.1 90.8 84.9 87.8 89.6 84.3 86.9
PolyGraph [36] TVCG25 ResNet-50 – 0.04 95.7 97.9 96.7 92.4 82.2 88.3 89.2 79.4 85.4

CAGE(Our) – SwinV2-L 211.3 0.01 99.6 98.7 99.1 95.0 88.6 91.7 92.5 86.4 89.3
RoomFormer+PD [38] NeurIPS23 ResNet-50 – – 98.7 98.1 98.4 92.8 89.3 91.0 90.8 87.4 89.1

FRI-Net+PD [15] ECCV24 ResNet-50 – – 99.6 98.6 99.1 94.2 88.2 91.1 91.9 86.7 89.2
Ours+PD – SwinV2-L – – 99.7 98.7 99.1 95.1 89.9 91.7 91.6 87.5 89.2

7

3
4
9
3

3
3
5
6

3
4
8
4

3
2
9
2

Density Map GT RoomFormer OurFRI-NetHEAT PolyGraph PolyRoom

Figure 6: Qualitative comparisons on Structured3D [16]. Scene IDs are shown on the left. Red circles
highlight challenging regions.

Quantitative Evaluation. Quantitative comparisons against state-of-the-art floorplan reconstruction
methods on the Structured3D [16] dataset are presented in Table 1. We compare our method with
HEAT [13], SLIBO-Net [14], PolyRoom [37], FRI-Net [15], and PolyGraph [36]. For completeness,
we also include post-optimization results using PolyDiffuse [38]. Without any post-processing, our
method achieves the best performance across all geometric levels, reaching 99.1% Room F1, 91.7%
Corner F1, and 89.3% Angle F1. Although FRI-Net attains comparable performance in Room Recall
and Room F1, CAGE surpasses it by a notable margin of +3.9 points in Corner F1 and +2.4 points in
Angle F1, demonstrating superior accuracy in fine-grained corner localization and angular estimation.
After applying PolyDiffuse for post-optimization, our method further consolidates its leading position
across all three evaluation levels, outperforming both RoomFormer and FRI-Net. Interestingly, the
post-optimization with PolyDiffuse brings only marginal improvements to our model, indicating that
CAGE already captures the scene structure effectively without reliance on heavy post-processing.
In contrast, PolyDiffuse, as a diffusion-based model, requires substantial additional training time.
Furthermore, despite not explicitly optimizing for corner predictions, our method maintains competi-
tive performance in Corner Recall. Regarding efficiency, CAGE achieves the fastest inference speed,
along with RoomFormer (both 0.01 second per image), benefiting from its lightweight architecture
without the need for additional refinement stages. Overall, these results demonstrate that CAGE
strikes an excellent balance between reconstruction accuracy and computational efficiency.

GTDensity Map RoomFormer FRI-Net OurPolyRoom

3
3

8
0

1
6

9
5

0
3

5
5

2
0

0
43502

Figure 7: Qualitative evaluations on
SceneCAD [17].

OurGT RoomFormer

1
5

3
0

1
3

8
9

0
0

4
3

5
0

3
6

7
0

0
1

Density Map PolyRoom FRI-Net

Figure 8: Cross-dataset evaluation (train-
ing on Structured3D [16] and testing on
SceneCAD [17]).

8

On the SceneCAD [17] dataset, we further evaluate our method against Floor-SP [11], HEAT [13],
RoomFormer [12], FRI-Net [15], and PolyRoom [37]. Given that SceneCAD primarily consists
of single-room layouts, we assess reconstruction quality using IoU for room shape. As shown in
Table 2, CAGE consistently achieves either the best or second-best performance across nearly all
evaluation metrics. Specifically, our method attains the highest scores in Room IoU, Corner Recall,
Angle Recall, and Angle F1, while securing second-best results in other metrics. In comparison,
PolyRoom achieves the highest Corner Precision and Corner F1 but performs slightly lower on
remaining metrics. Overall, CAGE demonstrates strong and balanced performance across all aspects
of room layout reconstruction on the SceneCAD dataset.

Qualitative Evaluation. Visual comparisons on Structured3D [16] are shown in Figure 6, with
red circles highlighting challenging regions for reconstruction. Most state-of-the-art methods fail to
recover severely occluded or blocked areas, while our method successfully infers structures using
weak wall cues (e.g., scene 3292). HEAT [13] and PolyGraph [36] reconstruct wall centerlines,
whereas other methods produce double-wall representations, with each polygon denoting room interior
boundaries. HEAT follows a two-stage process—detecting corners and inferring connectivity—which
often leads to missing corners and incorrect edge associations (e.g., scene 3493), resulting in open
polygons. PolyRoom [37] generates simple, closed polygons but struggles in occluded regions
(e.g., 3292, 3356). RoomFormer [12] predicts polygonal layouts via sequences of corners, ensuring
closure but often producing irregular shapes due to weak constraints on edge relationships (e.g.,
3292, 3493, 3484). While FRI-Net [15] and PolyRoom demonstrate better regularity and partial
robustness to occlusion, they still fail under heavy blockage (e.g., 3292, 3356). In contrast, our
method explicitly models global structure through edge-aware representation and denoising-based
training, leading to more regular room geometries and robust reconstruction in occluded scenarios.
Figure 7 further confirms this trend, with our model consistently producing more plausible results
compared to corner-based optimization methods.

Cross-Dataset Generalization. In cross-dataset evaluation (training on Structured3D [16] and
testing on SceneCAD [17]), PolyRoom and CAGE achieve the top results across Room IoU and
fine-level corner/angle metrics (Table 3). PolyRoom’s segmentation-based pipeline aligns well
with SceneCAD’s single-room layouts, yielding strong room-level performance, but its multi-stage
design struggles with the complex multi-room structures in Structured3D (Table 1). In contrast,
CAGE’s end-to-end trainable, edge-based modeling consistently maintains high accuracy (85.6%
Room IoU, 87.5% Corner Recall, 70.6% Angle Recall, 61.6% Angle F1) without post-processing.
These results validate that combining edge-based representations with global shape modeling and
denoising strategies enables CAGE to achieve robust and balanced floorplan reconstruction under
domain shifts and varying scene complexities.

Table 2: Quantitative comparison on the
SceneCAD validation set [17]. Results for prior
methods are reported from [12; 15; 38].

Method Room Corner Angle

IOU Prec. Rec. F1 Prec. Rec. F1

Floor-SP [11] 91.6 89.4 85.8 87.6 74.3 71.9 73.1
HEAT [13] 84.9 87.8 79.1 83.2 73.2 67.8 70.4

RoomFormer [12] 91.7 92.5 85.3 88.8 78.0 73.7 75.8
FRI-Net [15] 92.3 92.8 85.9 89.2 78.3 73.6 75.9

PolyRoom [37] 92.8 96.8 86.1 91.2 81.7 74.5 78.0
CAGE(Ours) 93.7 93.7 87.7 90.6 81.2 77.3 79.2

Table 3: Cross-data generalization. Models are
trained on Structured3D train set but evaluated on
SceneCAD val set.

Method Room Corner Angle

IOU Prec. Rec. F1 Prec. Rec. F1

HEAT [13] 52.5 50.9 51.1 51.0 42.2 42.0 41.6
RoomFormer [12] 74.0 56.2 65.0 60.3 44.2 48.4 46.2

FRI-Net [15] 80.6 66.4 79.5 72.4 56.3 67.2 61.3
PolyRoom [37] 85.2 77.8 79.9 78.9 59.4 61.7 60.6

CAGE (Ours) 85.6 68.2 87.5 76.7 54.6 70.6 61.6

5.3 Ablation Study
We evaluate the impact of three core components: the edge-based polygon representation, the
denoising (DN) training strategy, and the image backbone. As shown in Table 4, both the Edge and
DN modules yield consistent improvements individually, and their combination results in further
performance gains. By contrast, incorporating SwinTransformer-V2 as the backbone provides only
marginal benefits beyond the combined Edge and DN configuration. Further analysis and visual
examples are provided in Supplementary Material B.5.

Polygon Representation via Edge. We first examine the effect of the proposed Edge module,
as shown in the third row of Table 4. In this variant, the original corner-based representation in
RoomFormer is replaced with an edge-based formulation, while keeping all other settings unchanged.

9

Table 4: Ablation study on Structured3D. Edge and DN modules significantly improve performance.
SwinT backbones provide limited or reduced gains compared to ResNet50. RoomFormer [12] results
are reproduced using our training setup for fair comparison.

Method Edge DN Backbone Room Corner Angle

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

RoomFormer – – ResNet50[46] 96.9 95.9 96.4 87.3 83.8 85.5 81.2 77.9 79.5
Ours ✓ – ResNet50[46] 98.7 97.6 98.2 91.2 87.0 89.0 85.1 81.3 83.2
Ours – ✓ ResNet50[46] 98.0 96.2 97.1 90.4 84.4 87.3 85.0 79.5 82.2
Ours – – SwinT_V2[45] 97.0 95.7 96.3 87.3 83.4 85.3 80.5 76.9 78.6
Ours ✓ ✓ ResNet50[46] 99.6 98.7 99.2 93.9 88.8 91.3 89.7 84.9 87.2
Ours ✓ ✓ SwinT_V1[47] 99.4 98.5 98.9 94.5 89.1 91.7 91.1 85.9 88.4
Ours ✓ ✓ SwinT_V2[45] 99.6 98.7 99.1 95.0 88.6 91.7 92.5 86.4 89.3

The Edge module consistently improves performance across all evaluation metrics, increasing Room
F1 from 96.4% to 98.2%, Corner F1 from 85.5% to 89.0%, and Angle F1 from 79.5% to 83.2%.
These results demonstrate that representing polygons by edges enables the model to more effectively
capture structural geometry and enhances its ability to localize wall boundaries.

Training Strategy via Denoising. To further improve learning stability and geometric reasoning,
we incorporate a denoising strategy in which ground-truth data with noise are introduced alongside
random queries during training. This approach supports convergence in the early stages of prediction
and stablize the Hungarian Matching process. As illustrated in the third row of Table 4, the addition
of the DN module alone leads to moderate gains. While the DN module is less impactful than the
Edge module in isolation, its value becomes more evident in combination.
When both Edge and DN modules are integrated (fifth row of Table 4), we observe substantial
performance gains across all metrics, with Room F1 rising to 99.2%, Corner F1 to 91.3%, and Angle
F1 to 87.2%. Notably, the most significant gains are observed in the Corner and Angle metrics,
indicating improved precision in local geometric structures. This synergy suggests that the Edge and
DN modules complement each other by jointly enhancing both global room layout understanding
and fine-grained structural details.

Image Backbone. We evaluate the impact of different image backbones—ResNet-50 [46],
SwinTransformer-V1 [47], and SwinTransformer-V2 [45]—while keeping the proposed Edge and
DN modules fixed. All configurations utilize four image scales and a token dimension of 256. As
shown in the last three rows of Table 4, integrating Swin Transformer backbones yields mixed results.
While SwinTransformer-V2 achieves the highest Angle F1 score (89.3%) and slightly improves
Corner F1 (91.7%), these gains are relatively modest compared to the improvements brought by the
Edge and DN modules. Notably, ResNet-50 combined with both modules attains the highest Room
F1 score (99.2%), underscoring its effectiveness in capturing global structural context.
These results suggest that the primary performance improvements stem from the proposed architec-
tural enhancements rather than the choice of backbone. SwinTransformer variants offer benefits in
modeling local geometric relationships through shifted windowing and cross-boundary attention,
particularly enhancing the Corner and Angle metrics. However, the convolutional features of ResNet-
50 remain highly effective for global layout prediction. Overall, SwinTransformer-V2 provides a
balanced trade-off between local and global representation capabilities. Therefore, unless otherwise
stated, we adopt the configuration with Edge, DN, and SwinTransformer-V2 as the default model for
subsequent experiments.

6 Conclusion
We present CAGE, an end-to-end floorplan reconstruction framework that models rooms as sequences
of edges using a dual-query transformer architecture. By predicting edges instead of corners, our
method captures global geometric structure and directional priors, enabling robust inference of room
layouts even from partially observed wall segments through edge-based attention. This significantly
improves resilience to occlusion and layout noise. A denoising-based training strategy with perturbed
and latent queries facilitates stable and efficient iterative refinement. Extensive experiments on
Structured3D and SceneCAD demonstrate state-of-the-art performance. Our method still puzzles
over reconstructing scenes with dense occlusions or fine structural elements. Future work includes
integrating semantic priors, extending to full architectural elements, and scaling to outdoor scenarios.

10

References
[1] Fayolle, P.-A., M. Friedrich. A survey of methods for converting unstructured data to csg

models. Computer-Aided Design, 168:103655, 2024.

[2] Zhu, Q., L. Fan, N. Weng. Advancements in point cloud data augmentation for deep learning:
A survey. Pattern Recognition, page 110532, 2024.

[3] Li, J., C. L. Chan, J. Le Chan, et al. Cognitive navigation for indoor environment using floorplan.
In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
9030–9037. IEEE, 2021.

[4] Ma, Z., Y. Liu, J. Li. Review on automated quality inspection of precast concrete components.
Automation in Construction, 150:104828, 2023.

[5] Liu, H., C. Cao, H. Ye, et al. Lightweight structured line map based visual localization. IEEE
Robotics and Automation Letters, 9(6):5182–5189, 2024.

[6] Chen, C., R. Wang, C. Vogel, et al. F3Loc: Fusion and filtering for floorplan localization. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 18029–18038. 2024.

[7] Ibrahem, H., A. Salem, H.-S. Kang. ST-RoomNet: Learning room layout estimation from single
image through unsupervised spatial transformations. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3376–3384. 2023.

[8] Jiang, Z., Z. Xiang, J. Xu, et al. LGT-Net: Indoor panoramic room layout estimation with
geometry-aware Transformer network. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1644–1653. 2022.

[9] Zheng, Z., J. Li, L. Zhu, et al. GAT-CADNet: Graph attention network for panoptic symbol spot-
ting in CAD drawings. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 11737–11746. 2022.

[10] Huang, J., S. Zhang, B. Duan, et al. Arrangementnet: learning scene arrangements for vectorized
indoor scene modeling. ACM Transactions on Graphics (TOG), 42(4):1–15, 2023.

[11] Chen, J., C. Liu, J. Wu, et al. Floor-sp: Inverse cad for floorplans by sequential room-wise
shortest path. In IEEE International Conference on Computer Vision (ICCV), pages 2661–2670.
2019.

[12] Yue, Y., T. Kontogianni, K. Schindler, et al. Connecting the dots: Floorplan reconstruction
using two-level queries. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 845–854. 2023.

[13] Chen, J., Y. Qian, Y. Furukawa. Heat: Holistic edge attention transformer for structured
reconstruction. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 16448–16457. 2022.

[14] Su, J.-W., K.-Y. Tung, C.-H. Peng, et al. Slibo-net: Floorplan reconstruction via slicing box
representation with local geometry regularization. Advances in Neural Information Processing
Systems, 36:48781–48792, 2023.

[15] Xu, H., J. Xu, Z. Huang, et al. Fri-net: Floorplan reconstruction via room-wise implicit
representation. In European Conference on Computer Vision, pages 1–17. Springer, 2024.

[16] Zheng, J., J. Zhang, J. Li, et al. Structured3d: A large photo-realistic dataset for structured 3d
modeling. In Proceedings of the European Conference on Computer Vision (ECCV), pages
283–299. 2020.

[17] Avetisyan, A., T. Khanova, C. Choy, et al. Scenecad: Predicting object alignments and layouts
in rgb-d scans. In European Conference on Computer Vision (ECCV), pages 596–612. 2020.

[18] Ochmann, S., R. Vock, R. Wessel, et al. Automatic reconstruction of parametric building models
from indoor point clouds. Computers & Graphics, 54:94–103, 2016.

11

[19] Han, J., Y. Liu, M. Rong, et al. FloorUSG: Indoor floorplan reconstruction by unifying 2D
semantics and 3D geometry. ISPRS Journal of Photogrammetry and Remote Sensing, 196:490–
501, 2023.

[20] Sun, C., C.-W. Hsiao, M. Sun, et al. HorizonNet: Learning room layout with 1D representation
and pano stretch data augmentation. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1047–1056. 2019.

[21] Liu, W., T. Yang, Y. Wang, et al. Symbol as points: Panoptic symbol spotting via point-based
representation. International Conference on Learning Representations, 2024.

[22] Ganon, K., M. Alper, R. Mikulinsky, et al. Waffle: Multimodal floorplan understanding in
the wild. In 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),
pages 1488–1497. IEEE, 2025.

[23] Fang, H., F. Lafarge, C. Pan, et al. Floorplan generation from 3d point clouds: A space
partitioning approach. ISPRS Journal of Photogrammetry and Remote Sensing, 175:44–55,
2021.

[24] Ikehata, S., H. Yang, Y. Furukawa. Structured indoor modeling. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), pages 1323–1331. 2015.

[25] Cai, R., H. Li, J. Xie, et al. Accurate floorplan reconstruction using geometric priors. Computers
& Graphics, 102:360–369, 2022.

[26] Jiang, J., M. Zhao, S. Xin, et al. Structure-aware surface reconstruction via primitive assembly.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 14171–
14180. 2023.

[27] Xiong, B., Y. Jin, F. Li, et al. Knowledge-driven inference for automatic reconstruction of indoor
detailed as-built bims from laser scanning data. Automation in Construction, 156:105097, 2023.

[28] Xu, J., B. Stenger, T. Kerola, et al. Pano2cad: Room layout from a single panorama image.
In 2017 IEEE winter conference on applications of computer vision (WACV), pages 354–362.
IEEE, 2017.

[29] Shen, Z., C. Lin, K. Liao, et al. Panoformer: panorama transformer for indoor 360◦ depth
estimation. In European Conference on Computer Vision, pages 195–211. Springer, 2022.

[30] Pantoja-Rosero, B. G., A. Rusnak, F. Kaplan, et al. Generation of lod4 models for buildings
towards the automated 3d modeling of bims and digital twins. Automation in Construction,
168:105822, 2024.

[31] Liu, C., J. Wu, Y. Furukawa. Floornet: A unified framework for floorplan reconstruction from
3d scans. In Proceedings of the European Conference on Computer Vision (ECCV), pages
203–219. 2018.

[32] Stekovic, S., M. Rad, F. Fraundorfer, et al. Montefloor: Extending mcts for reconstructing
accurate large-scale floor plans. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 16014–16023. 2021.

[33] He, K., G. Gkioxari, P. Dollár, et al. Mask r-cnn. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pages 2961–2969. 2017.

[34] Coulom, R. Efficient selectivity and backup operators in monte-carlo tree search. In Interna-
tional conference on computers and games, pages 72–83. Springer, 2006.

[35] Browne, C. B., E. Powley, D. Whitehouse, et al. A survey of monte carlo tree search methods.
IEEE Transactions on Computational Intelligence and AI in games, 4(1):1–43, 2012.

[36] Sun, Q., C. Fang, S. Liu, et al. Polygraph: a graph-based method for floorplan reconstruction
from 3d scans. IEEE Transactions on Visualization and Computer Graphics, 2025.

[37] Liu, Y., L. Zhu, X. Ma, et al. Polyroom: Room-aware transformer for floorplan reconstruction.
In European Conference on Computer Vision, pages 322–339. Springer, 2024.

12

[38] Chen, J., R. Deng, Y. Furukawa. Polydiffuse: Polygonal shape reconstruction via guided set
diffusion models. Advances in Neural Information Processing Systems, 36:1863–1888, 2023.

[39] Chen, Z., A. Tagliasacchi, H. Zhang. Bsp-net: Generating compact meshes via binary space
partitioning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 45–54. 2020.

[40] Zhu, X., W. Su, L. Lu, et al. Deformable detr: Deformable transformers for end-to-end object
detection. In International Conference on Learning Representations (ICLR). 2021.

[41] Li, F., H. Zhang, S. Liu, et al. Dn-detr: Accelerate detr training by introducing query denoising.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
13619–13627. 2022.

[42] Milletari, F., N. Navab, S.-A. Ahmadi. V-net: Fully convolutional neural networks for volumetric
medical image segmentation. In 2016 fourth international conference on 3D vision (3DV),
pages 565–571. Ieee, 2016.

[43] Lazarow, J., W. Xu, Z. Tu. Instance segmentation with mask-supervised polygonal boundary
transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 11823–11832. 2022.

[44] Dai, A., A. X. Chang, M. Savva, et al. Scannet: Richly-annotated 3d reconstructions of indoor
scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2432–2443. 2017.

[45] Liu, Z., H. Hu, Y. Lin, et al. Swin transformer v2: Scaling up capacity and resolution. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
12009–12019. 2022.

[46] He, K., X. Zhang, S. Ren, et al. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770–778. 2016.

[47] Liu, Z., Y. Lin, Y. Cao, et al. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the IEEE/CVF international conference on computer vision, pages
10012–10022. 2021.

[48] Kingma, D. P., J. Ba. Adam: A method for stochastic optimization. In Proceedings of the
International Conference on Learning Representations (ICLR). 2015.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claims are summarized in Figure 1, Section 3 and Section 4 offer
detailed explanations. All claims are supported by extensive experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our work are stated in Supplementary Material B.3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper does not include theoretical results.

14

Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The model settings and training details of our experiments are discussed in
Supplementary Material A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [No]
Justification: Our code and pre-trained models will be released upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have explained the experimental settings in Section 5.1 and Supplementary
Material A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have reported our quantitative results in Section 5.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The configurations our computer resources for each experiment have been
reported in Section 5.1. The runtimes are given in Section 5.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: In every respect, we have tried our best to conform with the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our paper have proposed a novel neural network for robust floorplan recon-
struction. And there is no societal impact of our work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate

17

https://neurips.cc/public/EthicsGuidelines

to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work only focuses on floorplan reconstruction with benchmark datasets,
which poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: When using code from a third party, we report the source of the code directly
with the block of code used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

18

paperswithcode.com/datasets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will release our code and pre-trained models with included README files.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]

19

Justification: The LLM is used only for writing, editing, or formatting purposes and does
not impact the core methodology, scientific rigorousness, or originality of our research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Supplementary Materials
A Implementation Details
Model Settings. Our primary image backbone is Swin Transformer V2 [45], while ResNet-50 [46]
and Swin Transformer V1 [47] are used for comparison in the ablation study. Following Room-
Former [12], for ResNet-50, we extract multi-scale feature maps from the last three stages without
using a feature pyramid network (FPN). For Swin Transformers, we adopt the official large-variant
configurations: SwinV1 uses Swin-L pretrained weights, and SwinV2 uses SwinV2-L pretrained
weights, both with a base dimension of C = 192 and stage depths of [2, 2, 18, 2]. The window sizes
differ, with SwinV1 using a window size of 12 and SwinV2 using 16. For both ResNet-50 and Swin
Transformer backbones, the fourth-scale feature map is obtained via a 3× 3 convolution with stride 2
applied to the final-stage output. All feature maps are projected to 256 channels before being fed
into the transformer. Pretrained weights from [46; 47; 45] are used for all backbone layers and are
fine-tuned during training. Our transformer architecture comprises 6 encoder layers and 6 decoder
layers, each with a hidden dimension of 256. We set the number of room feature codes m to 20 and
the number of edge queries n to 40.
Training. We train our model using the Adam optimizer [48] with a weight decay of 1e−4. Depending
on the dataset size, we train the model on Structured3D for 650 epochs with an initial learning rate
of 2e−4, and on SceneCAD for 400 epochs with an initial learning rate of 5e−5. In both cases, the
learning rate is decayed by a factor of 0.1 during the final 20% of epochs. The loss weights are set
as λcls = 0.6, λedge = 6, λras = 1, λDN_cls = 0.6, and λDN_edge = 6. For perturbed queries, the noise
scale is set to 0.2 for class and 0.4 for edge. We implement our model in PyTorch and conduct all
experiments on an NVIDIA GeForce RTX 4090 GPU with 24 GB of memory.

1

B Additional Results and Visualizations
B.1 Evolution of Edge Queries
To further examine the decoding process, we visulize a layer-wise edge query refinement as illustrated
in Figure 9. As decoding progresses, the predicted edge structures become increasingly coherent
and better aligned with the underlying point density map, even in regions with limited or missing
wall evidence. Correspondingly, the reconstructed polygons evolve from coarse outlines to precise,
watertight layouts. This illustrates the effectiveness of our progressive decoding strategy in improving
both geometric accuracy and topological consistency.

itera�on1 itera�on2 itera�on3 itera�on4 itera�on5 itera�on6

O
u

r Ed
ge

R
o

o
m

Fo
rm

er
O

u
r Ed

ge

3
2

9
2

O
u

r Po
lygo

n
R

o
o

m
Fo

rm
er

3
4

5
6

O
u

r Po
lygo

n

Figure 9: Additional results for edge query evolution and polygon formation. Each example shows
a density map from Structure3D [16] (scene ID on the left), with edge query predictions over six
decoding layers (top row), the corresponding polygon reconstructions (second row), and the polygon
evolution of Roomformer [12] (third row).

2

B.2 More Reconstruction result on Structured3D

3
4
4
3

3
4
4
2

3
4
1
9

Density Map GT RoomFormer OurFRI-NetHEAT PolyGraph PolyRoom

3
4
8
6

3
2
9
5

3
4
1
0

3
3
4
5

3
4
0
9

Figure 10: Additional results for Qualitative evaluations on Structured3D [17].

3

B.3 Failure cases on Structure3D

Our proposed CAGE model demonstrates strong performance on both the Structure3D and SceneCAD
datasets. However, several typical failure cases remain, as illustrated in Fig. 11. In some cases,
ambiguity in corner completion arises: certain ground truth layouts require polygonal closure at
missing corners, while others do not, leading to inconsistencies in prediction (Fig. 11(a)). Additionally,
small architectural elements such as interior rooms or columns may be absent from the input density
map, resulting in missed detections (Fig. 11(b)). Severe occlusions caused by missing scan stations
can further result in incomplete reconstructions (Fig. 11(c)). Lastly, we observe variability in
prediction quality across different checkpoints within the same training run—some checkpoints
yield strong results, while others perform poorly—likely due to sensitivity to parameter initialization
or optimization instability (Fig. 11(d)). Addressing these challenges may involve incorporating
more robust data augmentation techniques, exploring reinforcement learning-based refinement, or
leveraging checkpoint ensembles to enhance model stability and consistency.

D
ensity M

ap
G

T
O

ur

3255 3335 3312 3325

(a) (b) (d)

3313 3260

(c)

3454 3252

Figure 11: Failure cases on Structure3D [16], including polygon ambiguity(a), missing structures(b),
incomplete scans(c), and checkpoint instability(d).

B.4 More Reconstruction result on SceneCAD

22201 5520070401 38201 7700 8802 13900 16400Po
in

t C
lo

u
d

D
en

sity M
ap

G
T

O
u

r

Figure 12: Additional results for Qualitative evaluations on SceneCAD [17].

4

Table 5: Sensitivity of reconstruction accuracy to threshold values. †: the threshold we used in our
experiments.

Eps Room Corner Angle

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

0.2 99.59 98.69 99.14 95.04 88.57 91.70 92.57 86.40 89.39
0.1† 99.59 98.69 99.14 94.99 88.55 91.66 92.51 86.37 89.34

0.05 99.59 98.69 99.14 94.96 88.55 91.65 92.46 86.34 89.30
0.01 99.59 98.69 99.14 94.95 88.58 91.66 92.40 86.34 89.27

0.0001 99.59 98.69 99.14 94.94 88.60 91.67 92.38 86.34 89.26

0

10

20

30

40

50

60

70

80

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2

NUMBER OF TOKENS (K)

Params (M) FLOPs (G) Inference �me (ms) GPU Mem (GB ×10)

Figure 13: Impact of the number of tokens on model complexity and efficiency. As the token count
increases, the number of parameters, FLOPs, inference time, and GPU memory usage grow nearly
quadratically, reflecting the scalability characteristics of transformer-based architectures.

B.5 Extended Evaluation
Sensitivity to threshold in edge-to-polygon conversion. The edge-to-polygon conversion’s sensi-
tivity to the threshold (epsilon) is minimal as shown in Table 5, varying epsilon from 0.0001 to 0.2×
edge length changes Room metrics by <0.01% and other metrics by less than 0.05%, confirming
stability and negligible impact on accuracy. This threshold-based approach offers a practical trade-off
between theoretical rigor and engineering feasibility.

Computational cost analysis. We analyze the computational cost of our model with respect to the
number of tokens used in the decoder. The metrics include the number of parameters, floating-point
operations (FLOPs), inference time per image, and GPU memory usage for a batch of 10. Figure 13
summarizes these metrics for different token counts. Increasing the number of tokens leads to a higher
number of parameters and FLOPs, longer inference time, and increased GPU memory consumption.
Our method is inherently scalable and built on a general framework. The primary constraint is
token length, which is bounded by GPU memory. Scaling is feasible by increasing the token count,
though it come with quadratic complexity (O(n²) in both runtime and memory), as is typical for
transformer-based models.

Visual Analysis. Figure 14 (main paper) and Figure 15 (appendix) illustrate qualitative differences
across ablation settings. Models with edge-based representation and denoising exhibit better closure,
alignment, and regularity, even under occlusion or missing data.

5

3
3
4
8

3
4
1
1

3
2
7
2

3
4
3
7

Density Map RoomFormer Edge DN Edge+DN Edge+DN+SwinTGT

Figure 14: The ablation study on key components. RoomFormer serves as the baseline model. We
progressively introduce the Edge module, the Denoising (DN) strategy, and the SwinTransformer-V2
(SwinT) backbone to assess their individual and combined effects.

3
2
9
2

3
3
6
6

Density Map GT RoomFormer Edge DN Edge+DN Edge+DN+SwinT

3
2
6
2

3
2
7
0

3
4
5
2

3
2
5
2

Figure 15: Additional results for The ablation study on key components. RoomFormer serves as the
baseline model. We progressively introduce the Edge module, the Denoising (DN) strategy, and the
SwinTransformer-V2 (SwinT) backbone to assess their individual and combined effects.

6

	Introduction
	Related Work
	Traditional Methods
	Stage-wise Learning-based Methods
	End-to-End Learning-based Methods

	Edge-based Floorplan Representation
	Method
	Overview
	Iterative Polygon Refinement by Dual Query
	Loss Functions

	Experiments
	Experiments Setting
	Comparisons to State-of-the-Art Methods
	Ablation Study

	Conclusion
	Implementation Details
	Additional Results and Visualizations
	Evolution of Edge Queries
	More Reconstruction result on Structured3D
	Failure cases on Structure3D
	More Reconstruction result on SceneCAD
	Extended Evaluation

