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Abstract

Rare event sampling in dynamical systems is a fundamental problem arising in
the natural sciences, which poses significant computational challenges due to an
exponentially large space of trajectories. For settings where the dynamical system
of interest follows a Brownian motion with known drift, the question of condi-
tioning the process to reach a given endpoint or desired rare event is definitively
answered by Doob’s h-transform. However, the naive estimation of this transform
is infeasible, as it requires simulating sufficiently many forward trajectories to
estimate rare event probabilities. In this work, we propose a variational formulation
of Doob’s h-transform as an optimization problem over trajectories between a
given initial point and the desired ending point. To solve this optimization, we
propose a simulation-free training objective with a model parameterization that
imposes the desired boundary conditions by design. Our approach significantly
reduces the search space over trajectories and avoids expensive trajectory simula-
tion and inefficient importance sampling estimators which are required in existing
methods. We demonstrate the ability of our method to find feasible transition paths
on real-world molecular simulation and protein folding tasks.

1 Introduction
Conditioning a stochastic process to obey a particular endpoint distribution, satisfy desired terminal
conditions, or observe a rare event is a problem with a long history (Schrödinger, 1932; Doob, 1957)
and wide-ranging applications from generative modeling (De Bortoli et al., 2021; Chen et al., 2021a;
Liu et al., 2022, 2023c; Somnath et al., 2023) to molecular simulation (Anderson, 2007; Wu et al.,
2022; Plainer et al., 2023; Holdijk et al., 2023), drug discovery (Kirmizialtin et al., 2012, 2015;
Dickson, 2018), and materials science (Xi et al., 2013; Selli et al., 2016; Sharma et al., 2016).

Transition Path Sampling. In this work, we take a particular interest in the problem of transition path
sampling (TPS) in computational chemistry (Dellago et al., 2002; Weinan and Vanden-Eijnden, 2010),
which attempts to describe how molecules transition between local energy minima or metastable
states under random fluctuations or the influence of external forces. Understanding such transitions
has numerous applications for combustion, catalysis, battery, material design, and protein folding
(Zeng et al., 2020; Klucznik et al., 2024; Blau et al., 2021; Noé et al., 2009; Escobedo et al., 2009).
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Figure 1: Given reference dynamics, transition path sampling seeks to capture the conditional or posterior
distribution over paths which reach a terminal set xT ∈ B. However, simulating the reference dynamics (blue)
can be wasteful since we rarely obtain paths (orange) which reach (the vicinity of) the terminal set B. This is a
major challenge for techniques based on importance sampling or Monte Carlo estimation, even when adding a
control term to the reference dynamics. By contrast, our approach optimizes a tractable variational distribution
over transition paths with a parameterization which satisfies the initial and terminal conditions by design.

While the TPS problem is often framed as finding the ‘most probable path’ transitioning between
states (Dürr and Bach, 1978; Vanden-Eijnden and Heymann, 2008), we build upon connections
between TPS and Doob’s h-transform (Das et al., 2019, 2021, 2022; Koehl and Orland, 2022; Singh
and Limmer, 2023) and seek to match the full posterior distribution over conditioned processes.

Doob’s h-Transform. For Brownian motion diffusion processes, conditioning is known to be
achieved by Doob’s h-transform (Doob, 1957; Särkkä and Solin, 2019). However, solving this
problem amounts to estimating rare event probabilities or matching a complex target distribution.
Approaches which involve simulation of trajectories to construct Monte Carlo expectations or
importance sampling estimators (Papaspiliopoulos and Roberts, 2012; Schauer et al., 2017; Yan
et al., 2022; Holdijk et al., 2023) can be extremely inefficient if the target event is rare or endpoint
distribution is difficult to match. Recent methods based on score matching (Heng et al., 2021) or
nonlinear Feynman-Kac formula (Chopin et al., 2023) still require simulation during optimization.

Variational Formulation of Doob’s h-Transform. In this work, we propose a variational formulation
of Doob’s h-transform as the solution to an optimization on the space of paths of probability
distributions. We focus on solving for the Doob transform conditioning on a particular terminal point,
which is natural in the TPS setting (see Fig. 1). Taking inspiration from recent bridge matching
methods (Peluchetti, 2021, 2023; Liu et al., 2022; Lipman et al., 2022; Shi et al., 2023; Liu et al.,
2023a), we propose a parameterization with the following attractive features.

1. Every Sample Matters. In contrast to most existing approaches, our training method is
simulation-free, thereby avoiding computationally wasteful simulation methods to estimate
rare-event probabilities and inefficient importance or rejection sampling. We thus refer to
our approach as being sample-efficient.

2. Optimization over Sampling. We propose an expressive variational family of approxima-
tions to the conditioned process, which are tractable to sample and can be optimized using
neural networks with end-to-end backpropagation.

3. Problem-Informed Parameterization. Our parameterization enforces the boundary condi-
tions by design, thereby reducing the search space for optimization and efficiently making
use of the conditioning information.

We begin by linking the problem of transition path sampling to the Doob’s h-transform and recalling
background results in Sec. 2. We present our variational formulation in Sec. 3.1 and detail our
optimization algorithm throughout Sec. 3.2. We demonstrate the ability of our approach to achieve
comparable performance to Markov Chain Monte Carlo (MCMC) methods with notably improved
efficiency on synthetic, and real-world molecular simulation tasks in Sec. 5.

2 Background
2.1 Transition Path Sampling
Consider a forward or reference stochastic process with states xt and the density of transition
probability ρt+dt(y|xt = x) := ρ(xt+dt = y |xt = x). Starting from an initial point x0 = A, the
probability density of a discrete-time path is given as

ρ(xT , . . . , xdt |x0 = A) =

T−dt∏
t=dt

ρ(xt+dt |xt) · ρ(xdt |x0 = A). (1)

The problem of rare event sampling aims to condition this reference stochastic process on some event
at time T , for example, that the final state belongs to a particular set xT ∈ B. We are interested in
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sampling from the entire transition path, namely the posterior distribution over intermediate states

ρ(xT−dt, . . . , xdt |x0 = A, xT ∈ B) = ρ(xT ∈ B, xT−dt . . . , xdt |x0 = A)

ρ(xT ∈ B |x0 = A)
. (2)

Moving to continuous time, we focus on the transition path sampling problem in the case where the
reference process is given by a Brownian motion. In particular, we are motivated by applications
in computational chemistry (Dellago et al., 2002; Weinan and Vanden-Eijnden, 2010), where the
reference process is given by molecular dynamics following either overdamped Langevin dynamics,

dxt = −(γM)−1∇xU(xt) · dt+ (γM)−
1/2

√
2kBT · dWt , (3)

or the second-order Langevin dynamics with spatial coordinates x̄t and velocities v̄t,

dx̄t = v̄t · dt , dv̄t =
(
−M−1∇xU(x̄t)− γv̄t

)
· dt+M−1/2

√
2γkBT · dWt . (4)

for a potential energy function U , where Wt denotes the Wiener process. Note that kBT is the
Boltzman constant times temperature, M is the mass matrix, and γ is the friction coefficient.

2.2 Doob’s h-transform
Doob’s h-transform addresses the question of conditioning a reference Brownian motion to satisfy a
terminal condition such as xT ∈ B, thereby providing an avenue to solve the transition path sampling
problem described above. Without loss of generality, and to provide a unified treatment of the
dynamics in (3)–(4), we consider the forward or reference stochastic differential equation (SDE),

Pref
0:T : dxt = bt(xt) · dt+ Ξt dWt , x0 ∼ ρ0 , (5)

with drift vector field bt : RN → RN and diffusion coefficient matrix Ξt ∈ RN×N such that Gt :=
1
2ΞtΞ

T
t is positive definite.2 We denote the induced path measure as Pref

0:T ∈ P(C([0, T ]→ RN )), i.e.
a measure over continuous functions from time to RN .

Remarkably, Doob’s h-transform (Doob, 1957; Särkkä and Solin, 2019, Sec. 7.5) shows that
conditioning the reference process (5) on xT ∈ B results in another Brownian motion process.
Proposition 1. [Jamison (1975, Thm. 2)] Let hB(x, t) := ρT (xT ∈ B |xt = x) denote the
conditional transition probability of the reference process in (5). Then,

P∗
0:T : dxt|T =

(
bt(xt|T ) + 2Gt∇x log hB(xt|T , t)

)
· dt+ Ξt dWt x0 ∼ ρ0 (6)

where we use xt|T to denote a conditional process. The SDE in (6) is associated with the following
transition probabilities for s < t < T ,

ρt(y |xs = x, xT ∈ B) =
hB(y, t)

hB(x, s)
ρt(y |xs = x), (7)

Note that all of our subsequent results hold for the case when B is a point-mass, with the only change
being that the h-function becomes a density, hB(x, t) = ρT (B |xt = x).

See App. A.1 for proof, and note that (7) is simply an application of Bayes rule ρt(y |xs = x, xT ∈
B) = ρT (xT ∈ B|xt = y)ρt(y |xs = x)/ρT (xT ∈ B|xs = x) with the unconditioned or reference
transition probability as the prior. Furthermore, the conditioned transition probabilities in (7) allow
us to directly construct the transition path (2). Using Bayes rule, we have

ρ(xT−dt, . . . , xdt |x0 = A, xT ∈ B) = hB(xT−dt, T − dt)

hB(A, 0)
ρ(xT−dt . . . , xdt |x0 = A)

after telescoping cancellation of h-functions and rewriting the denominator in (2) as hB(A, 0) Thus,
we can solve the TPS problem by exactly solving for the h-function and simulating the SDE in (6).

Finally, the h-process and temporal marginals ρt(x|x0 = A, xT ∈ B) of the conditioned process
satisfy the following forward and backward Kolmogorov equations, which will be useful in deriving
our variational objectives in the next section. Note, we use ⟨∇x, •⟩ = div(•) for the divergence
operator, and we use ρt|0,T to indicate the dependence on both x0 = A (via the initial condition of
(8a)) and xT ∈ B (via the h-transform hB). See App. A.1 for the proof.

2Note that the second-order dynamics in (4) can be represented using

xt =

[
x̄t
v̄t

]
, bt(xt) =

[
v̄t

−M−1∇xU(x̄t)− γv̄t

]
, Gt =

[
0 0

0 M−1/2√2γkBT

]
.
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Proposition 2. The following PDEs are obeyed by (a) the density of the conditioned process
ρt|0,T (x) := ρt(x |x0 = A, xT ∈ B) and (b) the h-function hB(x, t),

∂ρt|0,T (x)

∂t
+

〈
∇x, ρt|0,T (x)

(
bt(x) + 2Gt∇x log hB(x, t)

)〉
−
∑
ij

(Gt)ij
∂2

∂xi∂xj
ρt|0,T (x) = 0 , (8a)

∂hB(x, t)

∂t
+
〈
∇xhB(x, t), bt(x)

〉
+
∑
ij

(Gt)ij
∂2

∂xi∂xj
hB(x, t) = 0 . (8b)

Reparameterizing (8b) in terms of sB(x, t) := log hB(x, t), we can also write

∂sB(x, t)

∂t
+

〈
∇sB(x, t), Gt∇sB(x, t)

〉
+
〈
∇sB(x, t), bt(x)

〉
+

∑
ij

(Gt)ij
∂2

∂xi∂xj
sB(x, t) = 0. (8c)

3 Method
We first present a novel variational objective whose minimum corresponds to the Doob h-transform
in Sec. 3.1, and then propose an efficient parameterization to solve for the h-transform in Sec. 3.2.

3.1 Doob’s Lagrangian
Consider reference dynamics given in the form of either (3) or (4), with known drift bt or energy U .
We will restrict our attention to conditioning on a terminal rare event of reaching a given endpoint
xT = B, along with an initial point x0 = A. We approach solving for Doob’s h-transform via a least
action principle where, in the following theorem, we define a Lagrangian action whose minimization
yields the optimal q∗t|0,T (x) = ρt|0,T (x) and v∗t|0,T (x) = ∇x log hB(x, t) from Prop. 1 and 2.

Theorem 1. The following Lagrangian action functional has a unique solution which matches the
Doob h-transform in Prop. 2,

S = min
q

t|0,T

,v
t|0,T

∫ T

0

dt

∫
dx qt|0,T (x)

〈
vt|0,T (x), Gt vt|0,T (x)

〉
, (9a)

s.t.
∂qt|0,T (x)

∂t
= −

〈
∇x, qt|0,T (x)

(
bt(x) + 2Gt vt|0,T (x)

)〉
+
∑
ij

(Gt)ij
∂2

∂xi∂xj
qt|0,T (x), (9b)

q0(x) = δ(x−A), qT (x) = δ(x−B) . (9c)

The optimal q∗t|0,T (x) obeys (8a), and v∗t|0,T (x) = ∇x log hB(x, t) = ∇xsB(x, t) obeys (8b)-(8c).

This objective will form the basis for our computational approach, with proof of Thm. 1 deferred
to App. A.2. We proceed briefly to contextualize our variational objective and highlight several
optimization challenges which will be solved by our proposed parameterization in Sec. 3.2.

Unconstrained Dual Objective. Introducing Lagrange multipliers to enforce the constraints in
(9b)–(9c) and eliminating vt|0,T , we obtain an alternative, unconstrained version of (9a).

Corollary 1. The Lagrangian objective in Thm. 1 which solves Doob’s h-transform is equivalent to

S = min
qt|0,T

max
s

sB(B, T )− sB(A, 0)−
∫ T

0

dt

∫
dx qt|0,T

(
∂sB
∂t

+
〈
∇sB , Gt∇sB

〉
+

〈
∇sB , bt

〉
+

〈
∇, Gt∇sB

〉)
if qt|0,T satisfies (9c). Note vt|0,T (x) = ∇xsB(x, t), with s∗B(x, t) = log hB(x, t) at optimality. 3

This objective is similar to the objectives optimized by Action Matching methods (Neklyudov et al.,
2023, 2024). Notably, the objective in Cor. 1 is expressed directly in terms of the (log) of the
h-function for fixed conditioning information xT = B. We also note that the Hamilton Jacobi-style
quantity, whose expectation appears in the final term, is zero at optimality in (8c) of Prop. 2.

3Compared to (8c), we write
∑

ij(Gt)ij
∂2

∂xi∂xj
sB(x, t) = ⟨∇, Gt∇sB(x, t)⟩ for simplicity of notation.

4



Path Measure Perspective. We next relate our variational objective in Thm. 1 to a KL divergence
optimization over path measures. Let Pref

0:T denote the law of the reference SDE in (5) with fixed
Pref
0 = δ(x0−A). Let Qv

0:T denote the law of a controlled process similar to (6), but with a variational
vt|0,T in place of∇x log hB,

Qv
0:T : dxt =

(
bt(xt|T ) + 2Gt vt|0,T (xt|T )

)
· dt+ Ξt dWt , x0 = A. (10)

Note that the density qt|0,T of Qv
0:T evolve according to the Fokker-Planck equation in (9b) (Särkkä

and Solin, 2019, Sec. 5.2) . Using the Girsanov Theorem, the objective in (9a) can then be viewed as
a KL divergence minimization over path measures Qv

0:T which satisfy the boundary constraints.
Corollary 2. The following Schrödinger Bridge (SB) problem

S := min
Qv

0:T s.t. Qv
0=δA,Qv

T=δB
DKL[Qv

0:T : Pref
0:T ] (11)

yields the path measure P∗
0:T associated with the SDE in (6) as its unique minimizing argument. The

temporal marginals of P∗
0:T are equal to those which optimize the Lagrangian objective in Thm. 1.

Our Lagrangian action minimization thus corresponds to the solution of an SB problem (Schrödinger,
1932; Léonard, 2014) with Dirac delta functions as the endpoint measures. Our objective in (9a)
particularly resembles optimal control formulations of SB (Chen et al., 2016, 2021b, Prob. 4.4, 5.3).
While it is well-known that the Doob h-transform (and large deviation theory more generally) plays a
role in the solution to SB problems (Jamison, 1975; Léonard, 2014), our interest in the transition path
sampling problem leads to specific computational decisions below. See Sec. 4 for further discussion.

Challenges of Optimizing (9a). We highlight several distinctive features of our problem
which inform the development of new computational methods in Sec. 3.2.

1. First, we perform optimization over the first argument of the KL divergence in (11),
indicating that we need to be able to efficiently sample from the conditioned process
in (10) or qt|0,T in (9). This appears challenging due to the nonlinearity of both the
reference and variational drifts, bt and vt|0,T .

2. For a given qt|0,T , it can be difficult to solve for vt|0,T which satisfies the Fokker-
Planck equation in (9b) or ∇s which solves the inner optimization in Cor. 1.

3. Finally, we would like to strictly enforce the boundary constraints on qt|0,T or Qv
0:T

to avoid simulating or wasting computation on trajectories for which xT ̸= B.

In fact, our parameterization of qt|0,T in Sec. 3.2 will completely avoid simulation of the SDE in (10)
during training (Challenge 1), provide analytic solutions for vt|0,T satisfying (9b) with a given qt|0,T
(Challenge 2), and exactly enforce the boundary constraints (Challenge 3).

3.2 Computational Approach
We now propose a family of Gaussian (mixture) path parameterizations qt|0,T which overcome the
computational challenges posed in the previous section, while still maintaining expressivity. We
present all aspects of our proposed method in the context of the first-order dynamics (3) in Sec. 3.2.1,
before presenting extensions to mixture paths and the second-order setting (4) in Sec. 3.2.2–3.2.3.

3.2.1 First-Order Dynamics and General Approach

Tractable Drift vt|0,T for Variational Doob Objective. We begin by considering a modification of
the Fokker-Planck constraint in (9b), with all drift terms absorbed into a single vector field ut|0,T ,

∂qt|0,T (x)

∂t
= −

〈
∇x, qt|0,T (x) ut|0,T (x)

〉
+

∑
ij

(Gt)ij
∂2

∂xi∂xj
qt|0,T (x). (12)

For arbitrary qt|0,T , solving for any ut|0,T (x) satisfying (12) can be a difficult optimization problem,
whose solution is not unique without some cost-minimizing assumption (Neklyudov et al., 2023).

To sidestep this optimization, and address Challenge 2, we restrict attention to variational families
of qt|0,T ∈ Q where it is analytically tractable to calculate a vector field u(q,θ)t|0,T which satisfies (12).
We first consider the family of Gaussian paths QG, in similar fashion to (conditional) flow matching
methods (Lipman et al., 2022; Tong et al., 2023; Liu et al., 2023a), with proof in App. B.
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Algorithm 1: Training (Single Gaussian)
Input: Reference drift bt, diffusion matrix Gt

Conditioning endpoints
while not converged do

Sample t ∼ U(0, T )
Sample xt ∼ q(θ)t|0,T using (15)

Calculate u(q,θ)t|0,T (xt) using (13)

Calculate v(q,θ)t|0,T (xt) using u(q,θ)t|0,T (xt), bt(xt), (14)

Calculate L = ⟨v(q,θ)t|0,T (xt), Gt v
(q,θ)
t|0,T (xt)⟩ (Thm. 1)

Update θ ← optimizer(θ,∇θL)
end while
return θ

Algorithm 2: Sampling Trajectories
def get_drift(xt, t):

Evaluate µ(θ)
t|0,T , Σ(θ)

t|0,T at t

return drift u(q,θ)t|0,T (xt) using (13)

Sample initial state x0 ∼ N (A, σ2
min)

return SDESolve(x0, get_drift, T )

Algorithms for training with a single
Gaussian path (Alg. 1) and sampling or
generating transition paths at test time
(Alg. 2). Note that we sample from the
marginals qt|0,T during training, but gen-
erate paths by simulating the SDE (10).

Proposition 3. For the family of endpoint-conditioned marginals qt|0,T (x) = N (x |µt|0,T ,Σt|0,T ),

u
(q,θ)
t|0,T (x) :=

∂µt|0,T

∂t
+

[
1

2

∂Σt|0,T

∂t
Σ−1

t|0,T −Gt Σ
−1
t|0,T

](
x− µt|0,T

)
(13)

satisfies the Fokker-Planck equation (12) for qt|0,T and diffusion coefficients Gt =
1
2ΞtΞ

T
t .

Given u(q,θ)t|0,T corresponding to qt|0,T , we can simply solve for the vt|0,T satisfying the Fokker-Planck
equation in (9b) in our variational Doob objective (Thm. 1). Since Gt was assumed to be invertible
and the base drift bt is known, we have

v
(q,θ)
t|0,T (x) =

1

2
(Gt)

−1
(
u
(q,θ)
t|0,T (x)− bt(x)

)
. (14)

We may now evaluate terms involving vt|0,T in our Lagrangian objective in (9) using (14) directly,
without spending effort to solve an inner minimization over vt|0,T (thus addressing Challenge 2).

Optimization over qt|0,T satisfying Boundary Constraints. Given the ability to evaluate v(q,θ)t|0,T for
a given qt|0,T ∈ QG as above, our variational Doob objective in (9a) reduces to a single optimization
over the marginals qt|0,T of a conditioned process which satisfies the boundary conditions (9c).

We consider parameterizing the mean µt|0,T and covariance Σt|0,T of our Gaussian path qt|0,T
using a neural network. For simplicity, we consider a diagonal parameterization Σt|0,T =

diag({σ2
t|0,T ,d}

D
d=1). We parameterize a neural network NNETθ : [0, T ]× RD × RD → RD × RD

which inputs time t and boundary conditions x0 = A, xT = B, and outputs vectors of mean perturba-
tions and per-dimension variances. Finally, using index notation to separate the output, we construct

xt|0,T = µ
(θ)
t|0,T +Σ

(θ)
t|0,T ϵ, where ϵ ∼ N (0, ID). (15a)

µ
(θ)
t|0,T =

(
1− t

T

)
A+

t

T
B +

t

T

(
1− t

T

)
NNETθ(t, A,B)[:D] (15b)

Σ
(θ)
t|0,T =

t

T

(
1− t

T

)
diag

(
NNETθ(t, A,B)[D:]

)
+ σ2

minID. (15c)

Crucially, our Gaussian parameterization addresses Challenge 1, in that we can easily draw sam-
ples xt|0,T ∼ qt|0,T from our variational conditioned process (9b) without simulating the corre-
sponding SDE with nonlinear drift (10). Further, the coefficients in (15b) and (15c) ensure that,
as t → 0 or t → T , our parameterization satisfies the (smoothed) boundary conditions by de-
sign (Challenge 3). Although we add σ2

min to ensure invertibilty of Σt|0,T (see (13)), we preserve
q0(x0) = N (x0 |A, σ2

minID) ≈ δ(x0 −A) and qT (xT ) = N (xT |B, σ2
minID) ≈ δ(xT −B).

Reparameterization Gradients. Having shown that our parameterization satisfies the constraints
(9b)-(9c) by design, we can finally optimize our variational Doob objective with respect to qt|0,T ∈
QG using the reparameterization trick (Kingma and Welling, 2013; Rezende et al., 2014). In particular,
for the expectation at each t in (9a), we rewrite

∇θE
q
(θ)
t|0,T (x)

[〈
v
(q,θ)
t|0,T (x), Gt v

(q,θ)
t|0,T (x)

〉]
= EN (ϵ|0,ID)

[
∇θ

〈
v
(q,θ)
t|0,T

(
g(t, ϵ; θ)

)
, Gt v

(q,θ)
t|0,T

(
g(t, ϵ; θ)

)〉]
,

where x = g(t, ϵ; θ) is the mapping in (15) and v(q,θ)t|0,T depends on θ via µ(θ)
t|0,T , Σ(θ)

t|0,T in (13)–(14).
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Full Training Algorithm. In practice, we sample a batch of times {ti}Mi=1 uniformly from the
interval t ∈ [0, T ]. For each time point, we approximate the gradient using a single-sample estimate
of the expectation above (or (9)), which yields a simulation-free training procedure. The full training
algorithm is outlined in Alg. 1.

Sampling of Trajectories. While we sample directly from q
(θ)
t|0,T during training, we can sample full

trajectories which obey this sequence of marginals at test time (Alg. 2). In particular, we simulate
SDE trajectories with drift u(q,θ)t|0,T (x) and diffusion coefficient Gt using an appropriate solver. Note
that this generation scheme sidesteps computationally expensive evaluation of the force field or base
drift bt(xt). We visualize example sampling trajectories in Fig. 2.

3.2.2 Second-Order Dynamics
To handle the case of the second-order dynamics in (4), we can adapt our recipe from the previous
section with minimal modifications by extending the state space x ∈ RD to include velocities v̄, with
x = (x̄, v̄) ∈ R2D. However, note that the dynamics in (4) are no longer stochastic in the spatial
coordinates x̄. To ensure invertibility of Gt and existence of the h-transform, we add a small nonzero
diffusion coefficient in the coordinate space x̄, so that the reference process in Eq. (5) is given by

xt =

[
x̄t
v̄t

]
, bt(xt) =

[
v̄t

−M−1∇xU(x̄t)− γv̄t

]
, Ξt =

[
ξminID 0

0 M−1/2√2γkBT

]
. (16)

All steps in our algorithm proceed in similar fashion to Sec. 3.2.1. We now parameterize qt|0,T (x̄, v̄)
using NNETθ : [0, T ] × R2D × R2D → R2D × R2D, which outputs mean perturbations and per-
dimension variances to calculate µx̄

t|0,T , µ
v̄
t|0,T and Σx̄

t|0,T ,Σ
v̄
t|0,T and sample (x̄, v̄), as in (15). Note

that we parameterize Σx̄
t|0,T ,Σ

v̄
t|0,T separately, matching the block diagonal form of (16). We

calculate v(q)t|0,T (x̄, v̄) := [v
x̄(q)
t|0,T , v

v̄(q)
t|0,T ] from u

(q)
t|0,T (x̄, v̄) = [u

x̄(q)
t|0,T , u

v̄(q)
t|0,T ] as in (13)–(14), with

G−1
t = ( 12ΞtΞ

T
t )

−1 given by (16). The Lagrangian objective in (9) minimizes the norm of the
concatenated vector v(q)t|0,T (x̄, v̄), which depends on the reference drift bt(x̄, v̄) in (16).

3.2.3 Gaussian Mixture Paths
Note that the true Doob h-transform may not yield marginal distributions which are unimodal
Gaussians as in the previous section. To increase the expressivity of our variational family of
conditioned processes, we now extend our parameterization to mixtures of Gaussians, qt|0,T ∈ QK

MoG.
Given a set of K mixture weights w := {wk}Kk=1 and component Gaussian paths {qkt|0,T }

K
k=1, the

following identity allows us to obtain the drift u(q,θ)t|0,T of the corresponding mixture distribution qt|0,T .

Proposition 4. Given a set of processes qkt|0,T (x) and mixtures weights wk, the vector field satisfying
the Fokker-Planck equation in (12) for the mixture qt|0,T (x) =

∑
k w

kqkt|0,T (x) is given by

u
(q,θ)
t|0,T (x) =

K∑
k=1

wkqkt|0,T (x)∑K
j=1 w

jqjt|0,T (x)
u
(q,k)
t|0,T (x) , (17)

where u(q,k)t|0,T (x) satisfies the Fokker-Planck equation in (12) for qkt|0,T (x). This identity holds for
both first-order dynamics in spatial coordinates only or second-order dynamics in x = (x̄, v̄).

Finally, we can calculate v(q,θ)t|0,T (x) by comparing u(q,θ)t|0,T (x) for the mixture of Gaussian path qt|0,T ∈
QK

MoG to the reference drift bt(x) as in (14), and proceed to minimize its norm as in (9). In practice,
we use Gumbel softmax reparamerization gradients (Maddison et al., 2016; Jang et al., 2017) to
optimize the mixture weights {wk}Kk=1 alongside the neural network parameters {θk}Kk=1 for each
Gaussian component {µ(θ k)

t|0,T ,Σ
(θ k)
t|0,T }

K
k=1 and either first- or second-order dynamics.

4 Related Work
(Aligned) Schrödinger Bridge Matching Methods. Many existing ‘bridge matching’ approaches
(Shi et al., 2023; Peluchetti, 2021, 2023; Liu et al., 2022; Lipman et al., 2022; Liu et al., 2023b)
for SB and generative modeling rely on convenient properties of Brownian bridges and would
require calculating h-transforms to simulate bridges for general reference processes. Our conditional
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Gaussian path parameterization is similar to Liu et al. (2023a); Neklyudov et al. (2024), where
analytic bridges are not available for SB problems with nonlinear reference drift or general costs.

Somnath et al. (2023); Liu et al. (2023b) attempt to solve the SB problem given access to aligned data
x0, xT ∼ qdata

0,T assumed to be drawn from an optimal coupling. While the method in Somnath et al.
(2023) involves approximating an h-transform, their goal is to obtain an unconditioned vector field vt
to simulate a Markov process. However, De Bortoli et al. (2023) use Doob’s h-transform to argue the
learned Markov process will not preserve the empirical coupling unless qdata

0,T is the optimal coupling
for the SB problem, and show that an ‘augmented’ v0,t which conditions on x0 can correct this issue.

After training on a dataset of x0, xT ∼ qdata
0,T pairs using our method, we could consider using an

(augmented) bridge matching objective (Shi et al., 2023; De Bortoli et al., 2023) to distill our learned
v
(q)
t|0,T into a vector field vt or v0,t which does not condition on the endpoint. Our use of a Gaussian

path parameterization with samples from a fixed endpoint coupling and no Markovization step
corresponds to a simplified version of the conditional optimal control step in Liu et al. (2023a).

Transition Path Sampling. We refer to the surveys of Dellago et al. (2002); Weinan and Vanden-
Eijnden (2010); Bolhuis and Swenson (2021) for an overview of the TPS problem. Least action
principles for TPS have a long history, building upon the Freidlin-Wentzell (Freidlin and Wentzell,
1998) and Onsager-Machlup (Onsager and Machlup, 1953; Dürr and Bach, 1978) Lagrangian func-
tionals in the zero-noise limit and finite-noise cases. In particular, the Onsager-Machlup functional
relates maximum a posteriori estimators or ‘most probable (conditioned) paths’ to the minimizers
of an action functional similar to Thm. 1, where example algorithms include (Vanden-Eijnden and
Heymann, 2008; Sheppard et al., 2008). By contrast, our approach targets the entire posterior over
transition paths using an expressive variational family. While Lu et al. (2017) provide analysis for the
Gaussian family, we draw connections with Doob’s h-transform and extend to mixtures of Gaussians.

Shooting methods are among the most popular for sampling the posterior of transition paths. From
a path that satisfies the boundary conditions (obtained, e.g., using high-temperature simulations),
shooting picks points and directions to propose alterations, then simulates new trajectories and
accepts or rejects using Metropolis-Hastings (MH) (Juraszek and Bolhuis, 2008; Borrero and Dellago,
2016; Jung et al., 2017; Falkner et al., 2023; Jung et al., 2023). While the MCMC corrections yield
theoretical guarantees, shooting methods involve expensive molecular dynamics (MD) simulations
and need to balance high rejection rates with large changes in trajectories. One-way shooting methods
sample paths efficiently but yield highly correlated samples. Two-way shooting methods, which we
compare to in Sec. 5, are more expensive but typically sample diverse paths faster. Recent machine
learning approaches (e.g. Plainer et al. (2023); Lelièvre et al. (2023)) aim to reduce the need for MD.

Finally, various related methods rely on iterative simulation of SDE in (10) during training to learn
the control drift term. Yan et al. (2022); Holdijk et al. (2023) are motivated from the perspective of
stochastic optimal control, while Das et al. (2021); Rose et al. (2021) develop actor-critic methods
using closely-related ideas from soft reinforcement learning. The variational method in Das et al.
(2019) optimizes the rate function quantifying the probability of the rare events, while Singh and
Limmer (2023) solves the Kolmogorov backward equation to learn the Doob’s h-transform. However,
all of these methods may be inefficient if the desired terminal state is sampled infrequently.

5 Experiments
We investigate the capabilities of our approach across a variety of different settings. We first
illustrate features of our method on toy potentials before continuing to real-world molecular systems,
including a commonly-used benchmark system, alanine dipeptide, and a small protein, Chignolin. The
code behind our method is available at https://github.com/plainerman/variational-doob.
Before diving into the experiments, we introduce the evaluation procedure and baseline methods.

Evaluation metrics. In our evaluation, we emphasize two key quantities: accuracy and efficiency.
Efficiency is evaluated by the number of calls to the potential energy function, which requires
extensive computation and dominates the runtime of larger molecules. For accuracy, we evaluate the
log-likelihood of each sampled path and the maximum energy point (saddle point/transition state)
along each sampled path. A good method samples many probable paths (i.e., high log-likelihood)
and an accurate transition state (i.e., small maximum energy). See App. D for further details.

Baselines. We compare our approach against the MCMC-based two-way shooting method with
uniform point selection with variable or fixed length trajectories. We found that two-way shooting
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Figure 2: Comparing path histograms and trajectories
of TPS using fixed-length two-way shooting and com-
paring it with our variational approach.

(a) Single Gaussian (b) Mixture of Gaussians

Figure 3: Illustration of the expressivity of unimodal
Gaussian versus mixture of Gaussian paths on a sym-
metric potential with two transition path modes.

Method # Evaluations (↓) Max Energy (↓) MinMax Energy (↓) Log-Likelihood (↑) Max Log-Likelihood (↑)
MCMC (variable) 3.53M -13.77 ± 16.43 -40.75 - -
MCMC 1.03B -17.80 ± 14.77 -40.21 866.56 ± 17.00 907.15
Ours 1.28M -14.81 ± 13.73 -40.56 858.50 ± 17.61 909.74

Table 1: Transition path sampling experiment for Müller-Brown potential. We report the number of potential
evaluations needed to sample 1,000 paths, as well as the maximum energy and the likelihood of each path
(including mean and standard deviation). The methods marked with ‘variable’ use a variable length setting.
MinMax energy reports the lowest maximum energy across all paths (i.e., energy of lowest transition state).

produced the most diverse path ensembles among possible baselines, although the acceptance
probability can be relatively low for systems dominated by diffusive dynamics (Brotzakis and Bolhuis,
2016) and might be improved by better shooting point selection. This baseline gives theoretical
guarantees about the ensemble and thus can be considered as a proxy for the ground truth. In that
sense, our goal is not to beat two-way shooting but to approximate it with fewer potential evaluations.

5.1 Synthetic Datasets
Müller-Brown Potential. The Müller-Brown potential is a popular benchmark to study transition
path sampling between metastable states. It consists of three local minima, and we aim to sample
transition paths connecting state A and state B with a circular state definition. In Fig. 2, we visualize
the potential and the sampled paths and can see that the same ensemble is sampled for both our method
and two-way shooting. Our method exhibits a slightly reduced variance for unlikely transitions. In
Table 1, we can observe that MCMC-based methods require many potential evaluations to achieve
a good result, which comes from the low acceptance rate (especially when fixing the lengths of
trajectories). Our method requires fewer energy evaluations (1 million vs. 1 billion) while finding
paths with similar energy and likelihood. Note that the likelihood for variable approaches has been
omitted, as it is governed by the number of steps in the trajectory and cannot be compared directly.

Gaussian Mixture. We further consider a potential in which the states are separated by a symmetric
high-energy barrier that allows for two distinct reaction channels. In Fig. 3, we observe that a single
Gaussian path cannot model a system with multiple modes of transition paths. Nevertheless, this
issue can be resolved using a mixture of Gaussian paths, with slightly increased computational cost.

The Case for Neural Networks. According to our empirical study, the neural network parameteriza-
tion of the Gaussian distribution statistics µt

m

|0,T ,Σt
m

|0,T is an invaluable part of our framework. As
an ablation, we consider parameterizing µt

m

|0,T ,Σt
m

|0,T as piecewise linear splines whose intermediate
points are updated using the same gradient-based optimizer as used for neural network training. In
App. D.3, we report results comparing the W1 distance of learned marginals using neural network
versus spline parameterizations, observing that splines yield inferior results even after an order of
magnitude more potential function evaluations. We thus conclude that spline parameterizations are
not competitive for learning transition paths and continue to focus on our neural-network approach.

5.2 Second-order Dynamics and Molecular Systems
Experiment Setup. We evaluate our methods on real-world high-dimensional molecular systems
governed by the second-order dynamics (4): alanine dipeptide and Chignolin. Alanine dipeptide is a
well-studied system of 22 atoms (66 total degrees of freedom), where the molecule can be described
by two collective variables (CV): the dihedral angles ϕ, ψ. Chignolin is a larger system consisting of
10 residues with 138 atoms (414 total degrees of freedom) that cannot be summarized as easily. We
use an AMBER14 force field (Maier et al., 2015) implemented in OpenMM (Eastman et al., 2017)
but use DMFF (Wang et al., 2023) to backpropagate through the energy evaluations.
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Method States # Evaluations (↓) Max Energy (↓) MinMax Energy (↓)
MCMC (variable length) CV 21.02M 740.70 ± 695.79 52.37
MCMC* CV 1.29B* 288.46 ± 128.31 60.52

MCMC (variable length) relaxed 187.54M 412.65 ± 334.70 26.97
MCMC relaxed > 10B N/A N/A

MCMC (variable length) exact > 10B N/A N/A
MCMC exact > 10B N/A N/A
Ours (Cartesian) exact 38.40M 726.40 ± 0.07 726.18
Ours (Cartesian, 2 Mixtures) exact 51.20M 709.38 ± 162.37 513.72
Ours (Cartesian, 5 Mixtures) exact 51.20M 541.26 ± 278.20 247.96
Ours (Internal) exact 38.40M -14.62 ± 0.02 -14.67
Ours (Internal, 2 Mixtures) exact 51.20M -15.38 ± 0.14 -15.54
Ours (Internal, 5 Mixtures) exact 51.20M -15.50 ± 0.31 -15.95

Table 2: Transition path sampling for alanine dipeptide. For MCMC methods, we compare different state
definitions of A,B: ‘CV’ uses ϕ, ψ angles. ‘Exact’ uses a very small threshold of aligned root-mean-square
deviation (RMSD) around reference states A,B (as in Ours). ‘Relaxed’ uses a larger threshold of RMSD around
A,B. The method marked with a * only samples 100 paths due to computational limitations, while others sample
1,000. Fields with N/A are intractable as a single trajectory requires more than 1 billion potential evaluations.

U(x)

T

Figure 4: Transition path for the protein Chignolin. The energy plot a transition path in which the protein folds
in T = 1, 000 fs, and passes a high energy barrier at 460fs with about 3, 000 kJ/mol.

Alanine Dipeptide. In Table 2, we report results for four variants of our models, which either
predict Cartesian coordinates or internal coordinates in the form of bond lengths and dihedral angles
(compare App. D.4), either with or without Gaussian mixture. For our method, operating in internal
coordinates yields better results compared to Cartesian coordinates, where the internal coordinates
are distributed similarly to Gaussians and our network does need not learn equivariances (Du et al.,
2022). Similarly, Gaussian mixture paths perform slightly better than a single Gaussian path due to
the additional expressiveness. We note that paths sampled with Gaussian mixture exhibit a larger
variance in max energy as they represent multiple reaction channels.

We find that prior-informed definitions of the desired initial and target states (i.e., CV) are necessary
for MCMC to work efficiently with fixed-length trajectories. Finding these CVs in practice is
challenging and only possible in this instance because the molecule is small and well-studied. For
the larger system size in Table 2, it becomes intractable to use MCMC to connect precise states
A,B (‘exact’) instead of larger regions (‘relaxed’), even with a single trajectory. Variable length
MCMC with relaxed endpoint conditions with CV perform well on this task, but our method is
competitive using fewer evaluations and more strict boundary conditions. Fixed-length MCMC, even
with prior-informed knowledge, can only find 100 trajectories while needing 50 times more potential
evaluations compared to variable length.

Chignolin. The folding dynamics of Chignolin already pose a challenge and have not yet been
well-studied compared to alanine dipeptide. We illustrate the qualitative experimental results for this
system in Fig. 4. Operating in Cartesian space, our model samples a feasible transition within 25.6M
potential energy evaluation calls and a transition with a duration of T = 1ps.

6 Conclusion, Limitations and Future Work
In this paper, we propose an efficient computational framework for transition path sampling with
Brownian dynamics. We formulate the transition path sampling problem by using Doob’s h-transform
to condition a reference stochastic process, and propose a variational formulation for efficient
optimization. Specifically, we propose a simulation-free training objective and model parameterization
that imposes boundary conditions as hard constraints. We compare our method with MCMC-based
baselines and show comparable accuracy with lower computational costs on both synthetic datasets
and real-world molecular systems. Our method is currently limited by rigidly defining states A and B
to be a point mass with Gaussian noise instead of any arbitrary set. Finally, our method might be
improved by accommodating variable length paths.
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A Proofs

A.1 Proofs from Sec. 2.2 (Doob’s h-Transform Background)

Proposition 1. [Jamison (1975, Thm. 2)] Let hB(x, t) := ρT (xT ∈ B |xt = x) denote the
conditional transition probability of the reference process in (5). Then,

P∗
0:T : dxt|T =

(
bt(xt|T ) + 2Gt∇x log hB(xt|T , t)

)
· dt+ Ξt dWt x0 ∼ ρ0 (6)

where we use xt|T to denote a conditional process. The SDE in (6) is associated with the following
transition probabilities for s < t < T ,

ρt(y |xs = x, xT ∈ B) =
hB(y, t)

hB(x, s)
ρt(y |xs = x), (7)

Note that all of our subsequent results hold for the case when B is a point-mass, with the only change
being that the h-function becomes a density, hB(x, t) = ρT (B |xt = x).

Proof. See Jamison (1975) for a simple proof based on Ito’s Lemma, assuming smoothness and strict
positivity of h.

Proposition 2. The following PDEs are obeyed by (a) the density of the conditioned process
ρt|0,T (x) := ρt(x |x0 = A, xT ∈ B) and (b) the h-function hB(x, t),

∂ρt|0,T (x)

∂t
+

〈
∇x, ρt|0,T (x)

(
bt(x) + 2Gt∇x log hB(x, t)

)〉
−
∑
ij

(Gt)ij
∂2

∂xi∂xj
ρt|0,T (x) = 0 , (8a)

∂hB(x, t)

∂t
+
〈
∇xhB(x, t), bt(x)

〉
+
∑
ij

(Gt)ij
∂2

∂xi∂xj
hB(x, t) = 0 . (8b)

Reparameterizing (8b) in terms of sB(x, t) := log hB(x, t), we can also write

∂sB(x, t)

∂t
+

〈
∇sB(x, t), Gt∇sB(x, t)

〉
+
〈
∇sB(x, t), bt(x)

〉
+

∑
ij

(Gt)ij
∂2

∂xi∂xj
sB(x, t) = 0. (8c)

Proof. Let p(xt+s = y |xt = x) denote the transition probability of a reference diffusion process

∂

∂s
p(xt+s = y |xt = x) = −

〈
∇y, p(xt+s = y |xt = x)bt+s(y)

〉
+
∑
ij

(Gt)ij
∂2

∂yi∂yj
p(xt+s = y |xt = x),

(18)
where (Gt)ij =

1
2Ξt+sΞ

T
t+s.

Now we condition the process on the end-point value xT ∈ B, and we get another kernel, i.e.

p(xt+s = y |xt = x, xT ∈ B) =
p(xT ∈ B |xt+s = y)

p(xT ∈ B |xt = x)
p(xt+s = y |xt = x) . (19)

We let hB(x, t) = p(xT ∈ B |xt = x) denote the conditional probability over the desired endpoint
condition given xt = x. According to laws of conditional probability, we can describe how hB(x, t)
changes in time using the unconditioned transition probability

p(xT ∈ B |xt = x)︸ ︷︷ ︸
h

B
(x,t)

=

∫
dy p(xT ∈ B |xt+s = y)︸ ︷︷ ︸

h
B
(y,t+s)

p(xt+s = y |xt = x) , (20)

we take the derivative ∂
∂s on both sides, and we get

0 =

∫
dy

[
p(xt+s = y |xt = x)

∂hB(y, t+ s)

∂s
+
∂p(xt+s = y |xt = x)

∂s
hB(y, t+ s)

]
. (21)
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Using the FP equation for the transition probability and integrating by parts, we have

0 =

∫
dy p(xt+s = y |xt = x)

∂hB(y, t+ s)

∂s
+

〈
∇yhB(y, t+ s), bt(y)

〉
+

∑
ij

(Gt)ij
∂2

∂yi∂yj
hB(y, t+ s)

 .
Note that this holds ∀x, hence, we have

∂hB(y, t+ s)

∂s
+
〈
∇yhB(y, t+ s), bt+s(y)

〉
+

∑
ij

(Gt)ij
∂2

∂yi∂yj
hB(y, t+ s) = 0 ,

without any loss of generality we can set t = 0

∂hB(y, s)

∂s
+
〈
∇yhB(y, s), bs(y)

〉
+

∑
ij

(Gt)ij
∂2

∂yi∂yj
hB(y, s) = 0 . (22)

as desired to prove the optimality condition in (8b).

To prove (8a), denote p(y, s) = p(xs = y |x0 = x) and differentiate p(xs = y |x0 = x, xT ∈ B) =
h

B
(y,s)

h
B
(x,0)p(y, s) as

∂

∂s
p(xs = y |x0 = x, xT ∈ B)

=
1

hB(x, 0)

[
p(y, s)

∂hB(y, s)

∂s
+ hB(y, s)

∂p(y, s)

∂s

]
=

1

hB(x, 0)

[
−
〈
∇yhB(y, s), p(y, s)bs(y)

〉
− p(y, s)

∑
ij

(Gt)ij
∂2

∂yi∂yj
hB(y, s)

− hB(y, s)
〈
∇y, p(y, s)bs(y)

〉
+ hB(y, s)

∑
ij

(Gt)ij
∂2

∂yi∂yj
p(y, s)

]

= −
〈
∇y,

hB(y, s)

hB(x, 0)
p(y, s)bs(y)

〉
− p(y, s)

〈
∇y, 2D∇y

hB(y, s)

hB(x, 0)

〉
±
〈
∇yp(y, s), 2D∇y

hB(y, s)

hB(x, 0)

〉
+

∑
ij

(Gt)ij
∂2

∂yi∂yj

(
hB(y, s)

hB(x, 0)
p(y, s)

)
,

Note that hB(x, 0) can be pulled outside the differential operator because it is a function of x. The
PDE for the new kernel p(y, s | B) = p(xs = y |x0 = x, xT ∈ B) (conditioned on the end-point)
becomes
∂

∂s
p(y, s | B) = −

〈
∇y, p(y, s | B)(bs(y) + 2D∇y log hB(y, s))

〉
+

∑
ij

(Gt)ij
∂2

∂yi∂yj
p(y, s | B) .

(23)

which matches the desired PDE in (8a) thereby proving the first two parts of Prop. 2.

Finally, to show (8c), we index time using t in Eq. (22) and change variables hB(x, t) = es(x,t),

∂es(x,t)

∂t
+
〈
∇xe

s(x,t), bt(x)
〉
+

∑
ij

(Gt)ij
∂2

∂xi∂xj
es(x,t) = 0 .

es(x,t)
∂s(x, t)

∂t
+ es(x,t)

〈
∇xs(x, t), bt(x)

〉
+

〈
∇, Gt∇es(x,t)

〉
= 0

Next, we simplify
〈
∇, Gt∇es(x,t)

〉
=

〈
∇, Gte

s(x,t)∇s(x, t)
〉

=
〈
∇es(x,t), Gt∇s(x, t)

〉
+

es(x,t)
〈
∇, Gt∇s(x, t)

〉
= es(x,t)

〈
∇s(x, t), Gt∇s(x, t)

〉
+ es(x,t)

〈
∇, Gt∇s(x, t)

〉
to finally write

es(x,t)

∂s(x, t)

∂t
+
〈
∇xs(x, t), bt(x)

〉
+

〈
∇s(x, t), Gt∇s(x, t)

〉
+
∑
ij

(Gt)ij
∂2

∂xi∂xj
s(x, t)

 = 0

which demonstrates (8c) since the inner term must be zero.
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A.2 Proofs from Sec. 3.1 (Lagrangian Action Minimization for Doob’s h-Transform)

We begin by proving Cor. 1, whose proof actually contains the initial steps needed to prove our main
theorem Thm. 1. In both proofs, we omit conditioning notation qt ← qt|0,T for simplicity and assume
qt(x)st(x)→ 0 vanishes at the boundary x→ ±∞, which is used when integrating by parts in x.
Corollary 1. The Lagrangian objective in Thm. 1 which solves Doob’s h-transform is equivalent to

S = min
q

t|0,T

max
s

sB(B, T )− sB(A, 0)−
∫ T

0

dt

∫
dx qt|0,T

(
∂sB
∂t

+
〈
∇sB , Gt∇sB

〉
+

〈
∇sB , bt

〉
+

〈
∇, Gt∇sB

〉)
if qt|0,T satisfies (9c). Note vt|0,T (x) = ∇xsB(x, t), with s∗B(x, t) = log hB(x, t) at optimality. 4

Proof. Consider the following action functional

S = min
q

t

,v
t

∫
dt

∫
dx qt(x)

〈
vt(x), Gtvt(x)

〉
,

s.t.
∂qt(x)

∂t
= −

〈
∇x, qt(x)(bt(x) + 2Gtvt(x))

〉
+
∑
ij

(Gt)ij
∂2

∂xi∂xj
qt(x) ,

q0(x) = δ(x−A), q1(x) = δ(x−B) .

The Lagrangian of this optimization problem is

L =

∫ T

0

dt

∫
dx

qt〈vt, Gtvt
〉
+ st

∂qt
∂t

+
〈
∇, qt(bt + 2Gtvt)

〉
−
∑
ij

(Gt)ij
∂2

∂xi∂xj
qt

 ,
where st is the dual variable and we omit the optimization arguments, with S = minq

t

,v
t

maxs
t

L.
Swapping the order of optimizations under strong duality, we take the variation with respect to vt in
an arbitrary direction ht. Using Gt = GT

t , we obtain
δL
δvt

[ht] = qt
〈
(Gt +GT

t )vt, ht
〉
− qt

〈
2GT

t ∇st, ht
〉
= 0

=⇒ vt = ∇st , (24)
Substituting into the above, we have

L =

∫ T

0

dt

∫
dx

[
st
∂qt
∂t
− qt

〈
∇st, Gt∇st

〉
+ st

〈
∇, qtbt

〉
− st

〈
∇, Gt∇qt

〉]
. (25)

Integrating by parts in t and in x, assuming that qt(x)st(x)→ 0 as x→ ±∞, yields

L =

∫
dx qT sT −

∫
dx q0s0 +

∫ T

0

dt

∫
dx

[
−qt

∂st
∂t

− qt
〈
∇st, Gt∇st

〉
− qt

〈
∇st, bt

〉
+

〈
∇st, Gt∇qt

〉]
=

∫
dx qT sT −

∫
dx q0s0 +

∫ T

0

dt

∫
dx

[
−qt

∂st
∂t

− qt
〈
∇st, Gt∇st

〉
− qt

〈
∇st, bt

〉
− qt

〈
∇, Gt∇st

〉]
=

∫
dx qT sT −

∫
dx q0s0 −

∫ T

0

dt

∫
dx qt

[
∂st
∂t

+
〈
∇st, Gt∇st

〉
+

〈
∇st, bt

〉
+

〈
∇, Gt∇st

〉]
(26)

where in the second line, we integrate by parts in x again. Enforcing qT (x) = δ(x − B) and
q0(x) = δ(x−A) and recalling S = minq

t

maxs
t

L after eliminating vt, we recover the optimization
in the statement of the corollary.

Theorem. 1. The following Lagrangian action functional has a unique solution which matches the
Doob h-transform in Prop. 2,

S = min
q

t|0,T
,v

t|0,T

∫ T

0

dt

∫
dx qt|0,T (x)

〈
vt|0,T (x), Gt vt|0,T (x)

〉
, (27a)

s.t.
∂qt|0,T (x)

∂t
= −

〈
∇x, qt|0,T (x)

(
bt(x) + 2Gt vt|0,T (x)

)〉
+

∑
ij

(Gt)ij
∂2

∂xi∂xj
qt|0,T (x), (27b)

q0(x) = δ(x−A), qT (x) = δ(x−B) . (27c)

4Compared to (8c), we write
∑

ij(Gt)ij
∂ 2

∂x
i

∂x
j

sB(x, t) = ⟨∇, Gt∇sB(x, t)⟩ for simplicity of notation.
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Namely, the optimal q∗t|0,T (x) obeys (8a) and the optimal v∗t|0,T (x) = ∇x log hB(x, t) = ∇xs(x, t)

follows (8b) or (8c).

Proof. The proof proceeds from (25) above,

S = min
q

t

max
s

t

L = min
q

t

max
s

t

∫ T

0
dt

∫
dx

[
st

∂q
t

∂t − qt
〈
∇st, Gt∇st

〉
+ st

〈
∇, qtbt

〉
− st

〈
∇, Gt∇qt

〉]
. (28)

We first show that the optimality condition with respect to st yields the Fokker-Planck equation for qt
in Prop. 2 (8a), before deriving the PDE in (8b) as the optimality condition with respect to qt.

Optimality Condition for (27) recovers Prop. 2 (8a): The variation with respect to st of (28) is simple,
apart from the intermediate term. For a perturbation direction ht, we seek∫

dx
δ(•)

δst
ht =

d

dε

[
−
∫
dx qt

〈
∇(st + εht), Gt∇(st + εht)

〉]∣∣∣
ε=0

,

where • indicates the functional on the right hand side. Proceeding to differentiate with respect to ε,
we use linearity to pull d

dε inside the integral and apply it first to obtain d
dε (st + εht) = ht. Using the

product rule, recognizing the symmetry of terms, and evaluating at ε = 0, we are left with∫
dx

δ(•)

δst
ht =

[
−2

∫
dx qt

〈
∇ht, Gt∇st

〉] (i)
=

[∫
dx ht

(
2
〈
∇, qtGt∇st

〉)]
(29)

where in (i) we integrate by parts x.

We are now ready to set the variation of (28) with respect to st (in an arbitrary direction ht) equal to
zero. Using (29), we have

δL
δst

[ht] = 0 =
∂qt
∂t

+ 2
〈
∇, qtGt∇st

〉
+

〈
∇, qtbt

〉
−

〈
∇, Gt∇qt

〉
=⇒ 0 =

∂qt
∂t

+
〈
∇, qt

(
bt + 2Gt∇st

)〉
−

〈
∇, Gt∇qt

〉
(30)

which matches the desired optimality condition for the conditioned process in Prop. 2 (8a).

Optimality Condition for (27) recovers Prop. 2 (8b): Starting again from (28), we take the variation
with respect to qt. First, we repeat identical steps (integrate by parts in both x and t) to reach (26),

L =

∫
dx qT sT −

∫
dx q0s0 −

∫ T

0

dt

∫
dx qt

[
∂st
∂t

+
〈
∇st, Gt∇st

〉
+

〈
∇st, bt

〉
+
〈
∇, Gt∇st

〉]
where it is now clear that taking the variation with respect to qt and setting equal to zero yields

δL
δqt

[ht] = 0 =
∂st
∂t

+
〈
∇st, Gt∇st

〉
+

〈
∇st, bt

〉
+

〈
∇, Gt∇st

〉
(31)

which is the desired PDE for s(x, t) = log hB(x, t) in (8c). To obtain (8b), we note an identity used
to simplify the last term∑
ij

(Gt)ij
∂2

∂xi∂xj
log ht =

〈
∇, Gt∇ log ht

〉
=

〈
∇, 1

ht
Gt∇ht

〉
= − 1

h2t

〈
∇ht, Gt∇ht

〉
+

1

ht

〈
∇, Gt∇ht

〉
.

Now, substituting s(x, t) = log hB(x, t) into Eq. (31) and abbreviating log hB(•, t) = log ht(•), we
obtain

1

ht

∂ht
∂t

+
1

h2t

〈
∇ht, Gt∇ht

〉
+

1

ht

〈
∇ht, bt

〉
− 1

h2t

〈
∇ht, Gt∇ht

〉
+

1

ht

〈
∇, Gt∇ht

〉
= 0 ,

=⇒ ∂ht(x)

∂t
+
〈
∇ht(x), bt(x)

〉
+
〈
∇, Gt∇ht

〉
= 0, (32)

which matches (8b) as desired.

The last equation defines the backward Kolmogorov equation for the diffusion process with the drift
bt(x) and covariance matrix Gt, i.e. the function ht(x) defines the conditional density ht(x) =
p(xT ∈ B′ |xt = x) for some set B′, which agrees with the forward process with the same drift and
covariance. The boundary condition qT (x) = δ(x−B) together with the backward equation define
the unique solution to this PDE. Since the PDEs and the boundary conditions are the same as in
Doob’s h-transform, we have ht(x) = p(xT = B |xt = x).
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Corollary 2. The following SB problem

S := min
Qv

0:T

s.t. Qv

0

=δ
A

,Qv

T

=δ
B

DKL[Qv
0:T : Pref

0:T ] (11)

yields the path measure P∗
0:T associated with the SDE in (6) as its unique minimizing argument. The

temporal marginals of P∗
0:T are equal to those which optimize the Lagrangian objective in Thm. 1.

Proof. We use the Girsanov theorem (Särkkä and Solin, 2019, Sec. 7.3) to calculate the KL divergence
between the following two Brownian diffusions with fixed initial condition x0 = A,

Pref
0:T : dxt = bt(xt) · dt+ Ξt dWt , (33)

Qv
0:T : dxt =

(
bt(xt) + 2Gt vt|0,T (xt|0,T )

)
· dt+ Ξt dWt , (34)

In particular, noting the difference of drifts is bt(xt) + 2Gt vt|0,T (xt) − bt(xt) = 2Gt vt|0,T (xt),
the likelihood ratio is given by

dQv
0:T

dPref
0:T

=
qt|0,T (x0, ...xT )

ρ(x0, ...xT )
= exp

{
− 1

2

∫ T

0

〈
2Gt vt|0,T (xt), (Gt)

−1 2Gt vt|0,T (xt)
〉
dt (35)

−
∫

2
(
Gt vt|0,T (xt)

)T
G−1

t dWt

}
We finally calculate the KL divergence, noting that, after taking the log, the expectation of the integral∫
(•)dWt in the final term vanishes,

DKL[Qv
0:T : Pref

0:T ] = 2

∫ T

0

dt

∫
dxt qt|0,T (xt)

〈
vt|0,T (xt), Gt vt|0,T (xt)

〉
, (36)

which matches (9a) up to a constant factor of 2 does not change the optimum. We finally compare to
the constraints in Thm. 1. First, it is clear that the diffusion in (34) satisfies the Fokker-Planck equation
in (9b) (Särkkä and Solin, 2019, Sec. 5.2). We respect (9c) by optimizing over endpoint-constrained
path measures, which yields

S = min
Qv

0:T

s.t. Qv

0

=δ
A

,Qv

T

=δ
B

DKL[Qv
0:T : Pref

0:T ] (37)

as desired.

B Gaussian Path Parameterizations

Proposition 3. For the family of endpoint-conditioned marginals qt|0,T (x) = N (x |µt|0,T ,Σt|0,T ),

u
(q,θ)
t|0,T (x) :=

∂µt|0,T

∂t
+

[
1

2

∂Σt|0,T

∂t
Σ−1

t|0,T −Gt Σ
−1
t|0,T

](
x− µt|0,T

)
(13)

satisfies the Fokker-Planck equation (12) for qt|0,T and diffusion coefficients Gt =
1
2ΞtΞ

T
t .

Proof. Consider the following identities for the Gaussian family of marginals qt(x) = N (x|µt,Σt),
where we omit conditioning qt ← qt|0,T for simplicity of notation,

log qt(x) = −
1

2
(x− µt)

TΣ−1
t (x− µt)−

d

2
log(2π)− 1

2
log detΣt , (38a)

∇x log qt(x) = −Σ−1
t (x− µt) , (38b)

∂

∂t
log qt(x) = (x− µt)

TΣ−1
t

∂µt

∂t
+

1

2
(x− µt)

TΣ−1
t

∂Σt

∂t
Σ−1

t (x− µt)−
1

2
tr
(
Σ−1

t

∂Σt

∂t

)
(38c)

We begin by solving for a vector field uo
t(x) that satisfies the continuity equation (where uo

t denotes
the drift of an ODE)

∂qt
∂t

= −
〈
∇x, qtu

o
t

〉
= −qt

〈
∇x, u

o
t

〉
+

〈
∇xqt,∇xu

o
t

〉
=⇒ ∂

∂t
log qt = −

〈
∇x, u

o
t

〉
−

〈
∇x log qt, u

o
t

〉
(39)
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The vector field satisfying this equation is

uo
t(x) =

∂µt

∂t
+

1

2

∂Σt

∂t
Σ−1

t (x− µt) (40)

which we can confirm using the identities in (38). Indeed, for the terms on the RHS of Eq. (39),

−
〈
∇x, u

o
t

〉
= − 1

2
tr
(
Σ−1

t

∂Σt

∂t

)
,

−
〈
∇x log qt, u

o
t

〉
=

〈
Σ−1

t (x− µt),
∂µt

∂t

〉
+

1

2
(x− µt)

TΣ−1
t

∂Σt

∂t
Σ−1

t (x− µt) .

Putting these terms and the time derivative from (38c) into Eq. (39) we conclude the proof.

However, we are eventually interested in finding the formula for the drift ut that satisfies the Fokker-
Planck equation in (12). That is, to describe the same evolution of density ∂q

t

(x)
∂t , the relationship

between ut and uo
t is as follows

∂qt(x)

∂t
= −

〈
∇x, qtu

o
t

〉
= −

〈
∇x, qt ut

〉
+

〈
∇x, Gt∇xqt

〉
= −

〈
∇x, qt ut

〉
+

〈
∇x, Gtqt∇x log qt

〉
= −

〈
∇x, qt (ut −Gt∇x log qt)︸ ︷︷ ︸

uo
t

〉

Finally, we use the identities in (38) to obtain

ut = uo
t +Gt∇x log qt =

∂µt

∂t
+

1

2

∂Σt

∂t
Σ−1

t (x− µt)−GtΣ
−1
t (x− µt)

=⇒ ut =
∂µt

∂t
+

[
1

2

∂Σt

∂t
Σ−1

t −GtΣ
−1
t

]
(x− µt)

Proposition 4. Given a set of processes qkt|0,T (x) and mixtures weights wk, the vector field satisfying
the Fokker-Planck equation in (12) for the mixture qt|0,T (x) =

∑
k w

kqkt|0,T (x) is given by

u
(q,θ)
t|0,T (x) =

K∑
k=1

wkqkt|0,T (x)∑K
j=1 w

jqjt|0,T (x)
u
(q,k)
t|0,T (x) , (17)

where u(q,k)t|0,T (x) satisfies the Fokker-Planck equation in (12) for qkt|0,T (x). This identity holds for
both first-order dynamics in spatial coordinates only or second-order dynamics in x = (x̄, v̄).

Proof. See Peluchetti (2023) Theorem 1 and its proof in their App. A.

C Extended Related Work

C.1 Machine Learning for Molecular Simulation

The main dilemma of molecular dynamics comes from the accuracy and efficiency trade-off—accurate
simulation requires solving the Schrödinger equation which is computationally intractable for large
systems, while efficient simulation relies on empirical force fields which is inaccurate. Recently,
there has been a surge of work in applying machine learning approaches to accelerate molecular
simulation. One successful paradigm is machine learning force field (MLFF) which leverages the
transferability and efficiency of machine learning methods to fit force/energy prediction models on
quantum mechanical data and transfer across different atomic systems Smith et al. (2017); Wang et al.
(2018). More recently, increasing attention has been focused on building atomic foundation models
to encompass all types of molecular structures Batatia et al. (2023); Shoghi et al. (2023); Zhang et al.
(2022).
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Sampling is a classical problem in molecular dynamics to draw samples from the Boltzmann distribu-
tion of molecular systems. Classical methods mainly rely on Markov chain Monte Carlo (MCMC) or
MD which requires long mixing time for multimodal distributions with high energy barriers Rotskoff
(2024). Generative models in machine learning demonstrate promises in alleviating this problem
by learning to draw independent samples from the Boltzmann distribution of molecular systems
(known as Boltzmann generator) Noé et al. (2019). Numerous methods have been developed to
utilize generative models as a proposal distribution for escaping local minima in running MCMC
methods Gabrié et al. (2022). However, one critical issue is that generative models rely on training
from samples. Although recent advances have been developed to learn from unnormalized density
(i.e., energy) function, the training inefficiency limits their applicability to solve high-dimensional
molecular dynamics problems. To circumvent the curse of dimensionality for the sampling problem,
another branch of work study to learn coarse-grained representation with neural networks Sidky et al.
(2020). For broader literature of applying machine learning to enhanced sampling, we refer the reader
to Mehdi et al. (2024).

D Further Experimental Details

D.1 Evaluation Metrics

To assess the quality of our approach in terms of performance and physicalness of paths, we compare
them under different metrics to well-established TPS techniques. One important describing factor of
a trajectory is the molecule’s highest energy during the transition. These high-energy states are often
referred as transition states and less likely to occur but they determine importance factors during
chemical reaction such as reaction rate. As such, we will look at the maximum energy along the
transition path and use it to compare the ensemble of trajectories more efficiently. The main goal is to
show that lower energy of the transition states can be sampled by the methods.

However, the maximum energy does not account for the fact that the transition path needs to be
sequential, and each step needs to be coherent based on the previous position and momentum. For
this, we also compare the likelihood of the paths (i.e., unnormalized density) by computing the
probably of being in the start state ρ(x0) and multiplying it with the step probability such that

L(x0, x1, . . . , xN−1) = ρ(x0) ·
N−2∏
i=0

π(xi+1 |xi) . (41)

For the step probability π, we solve the Langevin leap-frog implementation as implemented in
OpenMM to solve N (xi+1 |xi + dt · bt

i

(x), dtσ2
i ). As for the starting probability, we compute the

unnormalized density of the Boltzmann distribution for our start state z and assume that the velocity
v can be sampled independently (Castellan, 1983, Sec. 4.6)

ρ(z, v) ∝ exp

(
−U(z)

kBT

)
· N

(
v | 0, kBT ·M−1

)
, (42)

with the Boltzmann constant kB and the diagonal matrix M containing the mass of each atom.

As for the performance, the number of energy evaluations will be the main determining factor of
the runtime for larger molecular systems, especially for proteins. We hence compare the use of the
number of energy computations as a proxy for hardware-independent relative measurements. In our
tests, this number aligned with the relative runtime of these approaches.

D.2 Toy Potentials

The toy systems move according to the following integration scheme (first-order Euler)

xt+1 = xt − dt · ∇xU(xt) +
√
dt · diag(ξ) · ε, ε ∼ N (0, 1) , (43)

following the definition of our stochastic system in Sec. 2.2 with a time-independent Wiener process,
where ξ is a constant time-independent standard deviation for all dimensions.
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Müller-Brown. The underlying Müller-Brown potential that has been used for our experiments can
be written as

U(x, y) =− 200 · exp
(
−(x− 1)2 − 10y2

)
− 100 · exp

(
−x2 − 10 · (y − 0.5)2

)
− 170 · exp

(
−6.5 · (0.5 + x)2 + 11 · (x+ 0.5) · (y − 1.5)− 6.5 · (y − 1.5)2

)
+ 15 · exp

(
0.7 · (1 + x)2 + 0.6 · (x+ 1) · (y − 1) + 0.7 · (y − 1)2

)
.

(44)

We used a first-order Euler integration scheme to simulate transition paths with 275 steps and a dt of
10−4s. ξ was chosen to be 5 and 1,000 transition paths were simulated. We have used an MLP with
four layers and a hidden dimension of 128 each, with swish activations. It has been trained for 2,500
steps with a batch size of 512 and a single Gaussian.

In Fig. 5a, we compare the likelihood of the sampled paths. We can see that one-way shooting takes
time until the path is decorrelated from the initial trajectory, which is shorter and thus has a higher
likelihood. All MCMC methods exhibit this behavior, which is typically alleviated by using a warmup
period in which all paths are discarded. After that, all methods exhibit similar likelihood, with our
method having a slightly lower likelihood. Looking at the transition state (i.e., maximum energy on
the trajectory) in Fig. 5b reveals that all methods have a similar quality of paths.
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(a) Log Path Likelihood
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Figure 5: In a, we compare the log likelihood of sampled trajectories, where a higher likelihood is generally
more favorable. The plot in b shows the maximum energy of each individual trajectory. A high maximum energy
means that the molecule needs to be in an excited state during the transition, making it less likely to occur under
lower temperatures.

We can further analyze the quality of our method by investigating the difference between the “ground
truth” marginal ρt|0,T (x) and the learned marginal qt|0,T (x). For this, we compute the Wasserstein
W1 distance (Flamary et al., 2021) between the marginal observed by fixed-length two-way shooting
(which we assume to be close to the ground truth) and our variational approach. We observe a mean
W1 distance of 0.130± 0.026 and visualize it along the time coordinate t (in steps) in Fig. 6.
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Figure 6: In this figure, we compare the Wasserstein W1 distance between the marginals. The densities are
almost identical at the beginning and end state. Note that at the third local minimum of the Müller-Brown
potential along the trajectory (i.e., reached at about 200 steps), the marginals align more closely as well.

Dual-Channel Double-Well. To demonstrate the advantage of mixtures, we have used the two-
dimensional potential

U(x, y) = + 2 · exp
(
−(12x2 + 12y2)

)
− 1 · exp

(
−(12 · (x+ 0.5)2 + 12y2)

)
− 1 · exp

(
−(12 · (x− 0.5)2 + 12y2)

)
+ x6 + y6 .

(45)
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In this case, we have used dt = 5 ∗ 10−4s with a transition time of T = 1s and ξ = 0.1. As for
the MLP, we have used the same structure as in the Müller-Brown example but trained it for 20,000
iterations. The corresponding weights to Prop. 4 are w = [ 12 ,

1
2 ] and are fixed for this experiment and

hence w ̸∈ θ.

D.3 Neural Network Ablation Study

In Fig. 7 we compare how different parameterizations of µ(θ)
t|0,T , and Σ

(θ)
t|0,T impact the quality of

trajectories on the Müller-Brown potential. For this, we compare linear and cubic splines (with 20
knots) with neural networks. As a metric to estimate the quality, we compare the Wasserstein W1
distance between the learned marginal qt|0,T (x) and the marginal observed by fixed-length two-way
shooting (i.e., baseline). We notice that using linear splines results in the highest W1 distance, while
cubic splines improve the quality. Using neural networks, however, yields the best approximation.

We have fixed the computational budget for all systems, which means that we have trained splines for
more epochs than the neural network (since they are slower to train). For high-dimensional systems,
the runtime is mostly determined by the number of potential evaluations and not the complexity of
the architecture. We thus conclude that the additional expressivity provided by neural networks is
necessary for more complicated (molecular) systems and does not introduce much computational
overhead.
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Figure 7: We compare the Wasserstein W1 distance between the marginals with different parameterization
techniques of µ(θ)

t|0,T , and Σ
(θ)
t|0,T .

D.4 Molecular Systems

To simulate molecular dynamics, we rely on the AMBER14 force field
(amber14/protein.ff14SB Maier et al. (2015)) without a solvent, as implemented in OpenMM
(Eastman et al., 2017). As OpenMM does not support auto-differentiation, we do not use OpenMM
for the simulations themselves, but utilize DMFF (Wang et al., 2023) which is a differentiable
framework implemented in JAX (Bradbury et al., 2018) for molecular simulation. This is needed
because during training we compute ∇θU

(
xt|0,T ∼ N (µ

(θ)
t|0,T ,Σ

(θ)
t|0,T )

)
, where the concrete xt|0,T

is sampled based on the parameters of the neural network.

For the concrete simulations, we ran them with the timestep dt = 1fs, with T = 1ps, γ = 1ps, and
Temp = 300K. To compute the MCMC two-way shooting baselines, we use the same settings and
consider trajectories as failed, if they exceed 2,000 steps without reaching the target.

Neural Network Parameterization. We parameterize our model with neural networks, a 5-layer
MLP with ReLU activation function and 256/512 hidden units for alanine dipeptide and Chignolin,
respectively. The neural networks are trained using an Adam optimizer with learning rate 10−4.

We represent the molecular system in two ways: (1) in Cartesian coordinates, which are the 3D
coordinates of each atoms, and with (2) internal coordinate which instead uses bond length, angle and
dihedral angle along the molecule, where we use the same parameterization as in (Noé et al., 2019).

Our state definition includes a variance parameter for the initial and target marginal distributions at
t = 0 and t = T , we choose the variance to be 10−8 which almost does not change the energy of the
perturbed system.

Visualization of Transition for Alanine Dipeptide. In Fig. 8, we show a transition sampled without
any noise from the model with internal coordinates and 2 Gaussian mixtures.
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Figure 8: Transition path for the alanine dipeptide.

Comparison of Sampled Paths During Training. In our training procedure, the marginal starts with
a linear interpolation between A and B, which produces very unlikely paths with potentially high
energy states. In Fig. 9, we compare how the quality of paths changes depending on the number of
training iterations (i.e., the number of potential evaluations). We show the curve for a single Gaussian
mixture with Cartesian coordinates. Similar trends can be observed in other settings.
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Figure 9: In this figure, we compare the quality of paths based on the current training step (i.e., potential
evaluations). We observe that with increasing training time, paths with higher likelihood are sampled.

Loss Curves. In this section, we would like to investigate the training losses of different configura-
tions. For this, we plot the exponential moving average of the loss (α = 0.001) to better highlight the
trends of the noisy variational loss. Fig. 10 compares the results of different training settings. We can
observe that mixtures can decrease the overall loss, but all model variations converge to a similar loss
value.
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Figure 10: Visualization of the loss for different training setups. These setups are identical to what has been
reported in Table 2.

D.5 Computational Resources

All our experiments involving training were conducted on a single NVIDIA A100 80GB. The
baselines themselves were computed on a M3 Pro 12-core CPU.

E Societal Impact

Our research concerns the efficient sampling of transition paths which are crucial for a variety of
tasks in biology, chemistry, materials science and engineering. Our research could potentially benefit
research areas from combustion, catalysis, protein design to battery design. Nevertheless, we do not
foresee special potential negative impacts to be discussed here.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The major claims made in the abstract and introduction are backed up by the
theoretical and empirical results in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Sec. 6, we discuss potential limitations and future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: A detailed set of assumptions is presented in Sec. 3 and further proofs for
theoretical results are included in App. A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclose all the information needed to repro-
duce the main experimental results and make our code available at
https://github.com/plainerman/variational-doob.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The data we use are synthetic datasets that can be gener-
ated by publicly available codes and real-world molecular systems taken from
previous literature cited in the paper. Our code is publicly available at
https://github.com/plainerman/variational-doob.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines

(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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