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Abstract

In this short (work-in-progress) paper, we focus on the crit-
ical task of predicting student engagement. We introduce an
innovative framelet transform, designed to proficiently con-
vert students’ visual features into sets of low-pass and high-
pass coefficients. By placing specific emphasis on these co-
efficients, we create diverse hypergraphs that capture high-
order relationships among students at varying scales. Sub-
sequently, we develop dual hypergraph neural networks to
effectively learn these hypergraphs, discerning the unique
contributions of low-pass and high-pass components. Pre-
liminary experimental findings on a real-world educational
dataset highlight the promising potential of our framework in
advancing student engagement prediction models.

Proposed Method
Framework Overview
As shown in Figure 1, our framework comprises four
key modules. Initially, the constructed undecimated dis-
crete framelet transforms (UDFmT) process students’ fa-
cial features to obtain frequency-based feature representa-
tions. Next, the KNN-based hypergraph generator module
constructs hypergraphs that capture complex, higher-order
relationships between these features. The hypergraph rep-
resentation learning module then employs dual hypergraph
neural networks to learn from these hypergraphs. Finally, the
engagement level classification module uses these represen-
tations to classify the engagement level of students into cat-
egories such as high or low engagement.

Framelet Transform
Given X ∈ RN×d, we next detail the 2D-HaarFrame that
converts efficiently X to frequency domain with low-pass
and high-pass framelet coefficients, X a,X bi , i = 1, . . . , 6,
each of which is also a 2D coefficient matrix in RN×d,
where the 2D-HaarFrame is determined by a filter bank
DHF2 = {a, b1, . . . , b6} of 2D filters. The filter a is the Haar
low-pass filter while the other 6 filters are high-pass filters.

A 2D filter (mask) h = {h(k)}k∈Z2 : Z2 → R is a se-
quence of filter taps (real/complex numbers) on Z2. By δ we
denote the Dirac sequence such that δ(0) = 1 and δ(k) = 0
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for all k = (k1, k2) ∈ Z2\{0}. For γ = (γ1, γ2) ∈ Z2, we
also use the notation δγ to stand for the sequence δ(· − γ),
i.e., δγ(γ) = 1 and δγ(k) = 0 for all k ∈ Z2\{γ}. For
filters a, b1, . . . , bL, we say that a filter bank {a; b1, . . . , bL}
is a (2-dimensional dyadic) framelet filter bank if∑

k∈Z3 a(γ + 2k)a(n+ γ + 2k) +∑L
i=1

∑
k∈Z2 bi(γ + 2k)bi(n+ γ + 2k) = 1

4δ(n), (1)

For all γ ∈ {0, 1}2 and for all n ∈ Z2. Note that

{0, 1}2 = {(0, 0), (1, 0), (0, 1), (1, 1)} = [0, 1]2 ∩ Z2

is the set of 8 vertex points in the unit cube [0, 1]2. The filter
a is typically a lowpass filter satisfying

∑
k a(k) = 1 while

bi’s are the highpass filters satisfying
∑
k bi(k) = 0. Such a

filter bank {a; b1, . . . , bL} corresponds to a framelet system
{ϕ;ψ1, . . . , ψL} through refinement relations.

Now we construct a 2D directional Haar filter bank
DHF2 = {a, b1, . . . , b6} that satisfies Eq. (1). Consider

aH :=
1

4

(
δ(0,0) + δ(0,1) + δ(1,0) + δ(1,1)

)
to be the 2-dimensional Haar low-pass filter. Now, for any
two different vertex points γ1, γ2 in the unit cube [0, 1]2, we
place + 1

4 ,−
1
4 at each of these two vertices, respectively, and

the corresponding high-pass filter is given by 1
4 (δγ1 − δγ2).

Collecting all such filters, we have the set {b1, . . . , b6} :=
{ 18 (δγ1 − δγ2) : γ1, γ2 ∈ {0, 1}2 and γ1 < γ2} of highpass
filters. Here γ1 < γ2 is understood in the sense of lexico-
graphical order. Then we have in total L =

(
22

2

)
= 6 high-

pass filters. DHF2 = {aH , b1, . . . , b6} is a tight framelet filter
bank such that all the highpass filters b1, . . . , b6 have only t-
wo taps and exhibit 4 directions in dimension 2. We remark
that such types of filter banks exist any dimension d ≥ 1.
In particular, for d = 1, the tight framelet filter bank is just
the standard Haar orthogonal wavelet filter bank DHF1 :=
{aH , b} with aH = 1

2 (δ0 + δ1) and b = 1
2 (δ0 − δ1).

In practice, we employ the UDFmT (undecimated dis-
crete framelet transforms) for the decomposition and re-
construction of a 2D matrix. Now we discuss the decom-
position and reconstruction of the 2D-matrix X using our
2D-HaarFrame. For a 2D filter h, we denote X h the (cir-
cular) convolution of X with the 2D filter h, i.e., X h :=
X ? h with (k = (k1, k2), k′ = (k′1, k

′
2) ∈ Z2) X h(k) :=



Figure 1: Schematic of the proposed framework.

∑
k′∈Z2 X̃ (k′ − k) · h(k′), where the above X̃ is consid-

ered as the periodic extension of X . Note that X h ∈ RN×d
is a 2D matrix. Consequently, using the filter bank DHF2,
we can decompose X to 1 low-pass framelet coefficien-
t matrix X a and 6 high-pass framelet coefficient matrices
X bi , i = 1, . . . , 6. The decomposition set {X a,X bi , i =
1, . . . , 6} of 2D matrices can be used to reconstruct X per-
fectly through X a ? ā +

∑6
i=1 X bi ? b̄i = X , where for a

filter h, the filter h̄ is defined as h̄(k) = h(−k), k ∈ Z2. The
set {X a,X bi , i = 1, . . . , 6} is the one-level decomposition
of X . For multi-level decomposition, the input X is then re-
placed by X a and the filter bank are upsampled, iteratively.

Dual Hypergraph Neural Networks
Leveraging the low-pass coefficients X a and the set of
high-pass coefficients X bi , i = 1, . . . , 6, we construct sev-
en hypergraphs Gt, t = 1, 2, . . . , 7 utilizing the K-nearest
neighbor (KNN) methodology. This involves arranging the
coefficient-based distances between students in ascending
order and selecting the nearest k nodes as neighbors to form
a hyperedge.

For each hypergraph Gt, we deploy a two-layer hyper-
graph neural network, as described by (Feng et al. 2019), to
extract node-level representations, meaning individual stu-
dent embeddings. Notably, to optimize the number of train-
able parameters, we implement a weight-sharing scheme
during the hypergraph learning phase for Gt, t = 2, 3, . . . , 7.
In the final step, we aggregate the embeddings from each hy-
pergraph Gt and apply a series of fully-connected networks
to yield the engagement level predictions.

Experiments
Dataset
To evaluate the effectiveness of our proposed method, we
employ the RoomReader 1 dataset (Reverdy et al. 2022)
as a benchmark including over 8 hours of video and au-
dio recordings, capturing the interactions of 118 participants
across 30 sessions that take place in the online environment
of Zoom.

1https://sigmedia.tcd.ie/

Data Preprocessing and Baselines
In our experiments, similar to (Ma et al. 2021), we utilize the
normalized eye gaze direction, location of the head, location
of 3D landmarks, and facial action units extracted via Open-
Face (Baltrusaitis et al. 2018) as the input features. Building
upon the work presented in (Reverdy et al. 2022), which pro-
vides all the Open-Face features across all sessions in con-
junction with multimodal data sources, we conduct experi-
ments on ConvLSTM (Del Duchetto, Baxter, and Hanheide
2020), TEMMA (Chen, Jiang, and Sahli 2020), EnsMod-
el (Thong Huynh et al. 2019), and Bootstrap (Wang et al.
2019) using these features as inputs. We use k = 3 in our
experiments.

Initial Results
Table 1 presents the results of the performance comparison,
which shows clearly that our proposed method outperforms
all the baselines in classification accuracy. The mean and s-
tandard deviation are obtained based on 5 independent trials.

Table 1: The performance comparison of student engage-
ment prediction accuracy.

Method ACC. (%)
ConvLSTM 76.50 ± 1.85
TEMMA 80.90 ± 2.47
EnsModel 75.30 ± 3.50
Bootstrap 73.80 ± 3.35
Ours 85.38 ± 1.41

Further Study on Robustness
To evaluate the robustness of our proposed framework, we
have conducted a series of experiments wherein additive
white Gaussian noise M ∼ N (0, σ2) is introduced to the
feature matrix X ∈ RN×d. The standard deviation of the
noise, σ, is determined by p(max(X ) − min(X )), where
p is selected from {0.01, 0.03, 0.05, 0.08, 0.1}. Our results
demonstrate the models resilience to these varying levels of
noise. In follow-up studies, we will delve into the theoreti-
cal underpinnings and conduct further experimental investi-
gations to substantiate the benefits of our framework.
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