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Abstract—Terrain awareness, i.e., the ability to sufficiently
represent key differences in terrain, is a critical ability that
robots must have in order to be able to succeed at autonomous
off-road navigation. Current approaches that provide robots
with this awareness are prohibitively expensive, requiring
curated datasets with extensive human labeling effort or
vast amounts of data gathered during expert-level driving.
Towards endowing robots with terrain awareness without these
expenses, we introduce Self-supervised TErrain Representation
LearnING (STERLING), a novel approach for learning terrain
representations that relies solely on easy-to-collect, unconstrained
(e.g., non-expert), and unlabelled robot experience. STERLING
employs a novel multi-modal self-supervision objective through
non-contrastive representation learning to learn relevant terrain
representations for terrain-aware navigation. Through physical
robot experiments in off-road environments, we evaluate
STERLING features on the task of operator-preference-aligned
visual navigation and find that STERLING features perform
on par with fully-supervised approaches and outperform
other state-of-the-art methods with respect to preference
alignment. Additionally, we perform a large-scale experiment
of autonomously hiking a 3-mile long trail which STERLING
completes successfully with only two manual interventions,
demonstrating its robustness to real-world off-road conditions.

Index Terms—Vision-Based Navigation, Representation Learn-
ing, Learning from Experience.

I. INTRODUCTION

FF-ROAD navigation is emerging as a crucial aspect
of autonomous mobile robots, as they are utilized in a
growing number of outdoor applications such as autonomous
package delivery, search and rescue, and agricultural opera-
tions [1]. To enable off-road autonomy while ensuring robot
safety and mission success, it is necessary for robots to be able
to visually identify distinct terrain features that are relevant to
the navigation task, also known as terrain awareness.
Endowing robots with terrain awareness is a challenging
problem in autonomous off-road navigation [2} 3]]. Prior work
has typically relied on large curated datasets [4} 5, |6l (7],
vast amounts of expert driving data collected in diverse en-
vironments [8} 9} [10]], or task demonstrations collected with
the supervision of an expert driver in the field [L1} [12} [13].
While these approaches are effective, they rely on data that is
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expensive and labor-intensive to collect. It is typically cheaper
and easier to collect unconstrained, unlabelled robot experi-
ence with minimal or no expert supervision, and algorithms
that can learn from such easy-to-collect data can help scale
robot learning in a self-supervised way. More recently, self-
supervised approaches that can learn from such unconstrained
robot experience [3} [14} [15] have shown promising results in
off-road navigation. However, most self-supervised methods
focus on learning specific behaviors, such as improving ride
comfort [[14] or collision avoidance [15], and as a result, the
terrain features learned are relevant only for that specific task
and may need to be retrained if the downstream task objectives
change. To enable off-road autonomy at scale, new approaches
are needed that address the perception problem of learning
relevant terrain representations in a self-supervised way from
easy-to-collect unconstrained robot experiences gathered with-
out requiring an expert agent in the field. Learning such
rich visual features of the terrain through self-supervision by
leveraging multi-modal sensor data collected onboard a mobile
robot can help tackle many off-road navigation problems such
as high-speed navigation [2, [16]], traversing challenging terrain
[17, [18], and preference-aligned planning [12, [7].

Towards robot terrain awareness from unconstrained and
unlabelled robot experience, we introduce Self-supervised TEr-
rain Representation LearnING (STERLING), a novel approach
to learning terrain representations for off-road navigation.
STERLING utilizes easy-to-collect unconstrained robot expe-
riences and employs a novel multi-modal self-supervision ob-
jective through non-contrastive, non-reconstructive represen-
tation learning to learn relevant terrain representations useful
for visual terrain-aware navigation. We evaluate STERLING
against baseline methods on the task of operator preference-
aligned off-road navigation and find that STERLING performs
on par with or better than existing methods with respect to
preference alignment. We additionally perform a large-scale
qualitative experiment of autonomously hiking a 3-mile long
traif'] demonstrating the effectiveness of STERLING-features.

II. RELATED WORK

In this section, we review related work on self-supervised
learning for terrain-aware navigation. To alleviate the need
for extensive human labeling, self-supervised learning methods
have been proposed to either learn terrain representations or
costs from data gathered onboard a mobile robot.

Brooks et al. [[19] utilize contact vibrations and visual
sensors to classify terrains via self-supervision. Ziirn et al.
[3] introduce SE-R which utilizes acoustic and visual sensors
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on the robot to segment terrains using a self-supervised triplet-
contrastive learning framework. Using triplet-based contrastive
learning methods requires negative samples which may not be
available when learning using unlabeled data. In STERLING,
we use recently proposed non-contrastive unsupervised learn-
ing approaches such as VICReg [20] that do not require any
negative samples and instead rely on correlations between data
modalities to learn terrain representations.

Several methods have applied self-supervision to assign
traversability costs for the downstream off-road navigation
task [14, 21, [15, 22]. Specifically, these methods rely on
inertial spectral features [14], future predictive models [15],
inertial-odometry errors [21]], or foothold positions [22] as self-
supervision signals to learn a traversability cost map, used
to evaluate candidate actions. Instead of inferring costs or
rewards using self-supervision for a fixed task, in this work, we
focus on learning relevant visual features from unconstrained
robot experiences that could be used in downstream tasks. This
framework allows a designer to reuse features across tasks
without retraining entirely from scratch.

The approach closest to ours is VRL-PAP [12] which requires
human expert teleoperated demonstrations of a particular tra-
jectory pattern to both explicitly learn visual terrain represen-
tations as well as to infer terrain preference costs. However,
in this work, we focus on learning terrain features from
unconstrained robot experiences without requiring a human
expert in the field for demonstrations, which is a more general
problem than the one considered by VRL-PAP [12].

III. APPROACH

In this section, we introduce the self-supervised terrain
representation learning approach, STERLING, proposed in this
work. The offline pre-processing performed on the recorded
data is detailed in Appendix [VI-C| The mathematical formula-
tion for preference-aligned off-road navigation, and integrating
STERLING within a planner is explained in Appendix [VI-A]

Terrain Representation Learning: It is desired for learned
representations of terrains to be such that representations of
similar terrain are close together and of different terrains are
distinctly separated. Although we do not possess privileged
information such as semantic labels of terrains for training
since the data is unlabelled, the visual and kinodynamic
observations experienced by the robot reflect similarities and
differences between terrain samples. For instance, traversing
a smooth terrain such as cement sidewalk may require
relatively less effort on the robot’s joints, whereas a rough
terrain such as marbled rocks may require additional
effort, measured as joint torque by the proprioceptive sensors.
STERLING leverages this multi-modal experience observed by
the robot and computes a correlation objective between visual
and inertial-proprio-tactile signals to learn desired terrain
representations. Additionally, STERLING uses viewpoint in-
variance as an objective unique to the visual component of the
experience to learn viewpoint-invariant terrain representations.

Fig. [1] provides an overview of the self-supervised repre-
sentation learning framework adopted in STERLING. A pa-
rameterized visual encoder (4-layer CNN with 0.25 million
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Fig. 1. Overview of the self-supervised training architecture used in STER-
LING. Two terrain patches v1 and v2 of the same location from different
viewpoints are encoded as ¢, and ¢, respectively, and mapped into em-
beddings v, and v, . Similarly, inertial, proprio, tactile signals are encoded
as ¢;, and mapped into ;. Self-supervision objectives Ly 1 (¢v, , Yo, ) for
viewpoint-invariance and Lz s (1vy 5,%i) for multi-modal correlation are
computed across a mini-batch of samples, and parameters of the two encoders
and the shared projector network are updated together.

parameters) encodes terrain image patches of the same location
v1 and vy into visual representations ¢,, and ¢,,, respec-
tively. Similarly, an inertial-proprio-tactile encoder (4-layer
MLP with 0.25 million parameters) encodes frequency domain
IPT observations of the robot at that location to an inertial-
proprio-tactile representation ¢;. We follow the framework of
prior self-supervised representation learning algorithms from
the computer vision community such as VICReg [20], and
utilize a parameterized projector network (2-layer MLP with
0.25 million parameters) that maps encoded visual and non-
visual representations independently to a higher-dimensional
feature space 1), , and 1); respectively, over which the self-
supervision objectives are computed. The STERLING objective
composed of the multi-modal correlation £, M(ibvl,z, ;) and
viewpoint-invariance Ly 1(1)y,, %y, ) objectives are defined as:

‘CSTERL[NG = EVI (%1 ) 1/)1)2) + ﬁMM (7/]111,23 d’z)
ﬁVI (¢u1 5 wvg) = ‘CVICReg (%1 5 %2)
£MM (’(/Jvl,g P ’(/Jz) = [EVICReg ('(/Jvl ) wz) + EVICREg (%Z ) ¢l>]/(2l)

Lyicreg i the VICReg loss that is composed of variance-
invariance-covariance representation learning objectives, as
proposed by Bardes et al. [20]]. Given two alternate projected
representations Z and Z’ of a data sample (in STERLING,
Z and Z' are projected representations of the visual and
non-visual sensor modalities), the VICReg loss is defined as
Lucneg(Z,Z') = Ns(Z,2") + plo(Z) + o(2)] + v[e(Z) +
c(Z)]. A, u, and v are hyper-parameters and the functions
v, s, and ¢ are the variance, invariance, and covariance terms
computed on a mini-batch of projected features. We refer the
reader to Bardes et al. [20] for more details regarding the
individual terms in the loss function. On a mini-batch of data
containing paired terrain image patches and IPT observations,
we compute the Lgrering 10ss and update parameters of
the two encoder networks and the shared projector network



together using Adam optimizer.

IV. EXPERIMENTS

In this section, we describe the experiments performed to
evaluate STERLING. Specifically, the experiments presented in
this section are tailored to address the following questions:

(Q1) How effective are STERLING features in comparison to
baseline approaches at enabling terrain awareness in off-
road navigation?

(Q2) In a large-scale real-world off-road setting, how reliable
is STERLING at autonomous off-road navigation?

Question ; is evaluated through physical robot exper-
iments on the task of operator-preference-aligned off-road
navigation. We then investigate ()5 by conducting a large-scale
qualitative evaluation by autonomously hiking a 3-mile long
off-road trail in Austin, Texas, USA using preference costs
learned using STERLING features. In Appendix Sec we
present an additional quantitative study comparing STERLING
with other unsupervised representation learning methods and
perform an ablation on the proposed self-supervision objec-
tives. To quantitatively compare various methods, we use the
success rate of preference alignment as the metric. A trial is
considered preference aligned if the robot follows the shortest
path with the most preferred terrain. However, if there are other
shorter trajectories with even more preferred terrains, the trial
is deemed a failure in achieving preference alignment. Details
on the data collection procedure are provided in Appendix Sec.
VI-Bl

Baselines: To perform quantitative evaluations for ()5, we
compare STERLING with SE-R [3], RCA [14], GANav [T7],
geometric-only planning [23]], and a fully-supervised baseline.
SE-R and RCA perform self-supervised learning from uncon-
strained robot experience to learn terrain representations and
traversability costs respectively. The geometric-only approach
ignores terrain costs (Lierrqin) and plans with geometric cost
(Lg4eom) only. GANav is an image segmentation-based navi-
gation framework trained on the RUGD [4] dataset. We use
the open-source author-provided implementation of GANavﬂ
Since an open-source implementation of RCA is unavailable,
we replicate it to the best of our efforts. We additionally train
the fully-supervised baseline in which the terrain cost function
is learned end-to-end using supervised learning from linear
extrapolation of operator preferences.

A. Evaluating Terrain-Awareness via Robot Experiments

In this subsection, we report on experiments to investigate
the effectiveness of STERLING features in enabling terrain
awareness during off-road navigation. We quantitatively com-
pare the performance of STERLING with baselines RCA [14],
GANav [7], SE-R [3] and the fully-supervised baseline, on
the task of operator-preference-aligned navigation. We identify
six environments within the UT Austin campus, with eight
different terrain types, as shown in Fig. 2| For this study, we
use the same data collected on the robot to train RCA, SE-
R, fully-supervised baseline, and STERLING, and the operator
provides the same rankings for all methods during training.

Zhttps://github.com/rayguan97/GANav-offroad

Fig. [2] shows the operator’s (first author) terrain prefer-
ences for all Envs. 1 to 5, and the performance of base-
line approaches, including a human operator demonstrated
trajectory for reference. In all environments, we see that
STERLING navigates in a terrain-aware manner while adhering
to operator-provided preferences. Note that although Fully-
Supervised also completes the task successfully, it requires
privileged information such as terrain labels during training,
whereas STERLING does not require such supervision, and can
potentially be used on large datasets containing unlabelled,
unconstrained robot experiences. RCA uses inertial spectral
features to learn terrain traversability costs and hence does not
adhere to operator preference. SE-R does not address viewpoint
invariance which is a significant problem in vision-based off-
road navigation and hence performs poorly in Envs. 1 and 2.
We additionally study adhering to operator preferences when
the preference changes in the same environment (Env. 6). The
results of this study are detailed in Sec. Table[[]shows the
success rate of preference alignment for all approaches in all
environments, over five different trials. We see that STERLING
outperforms other self-supervised baselines and performs on
par with the fully-supervised approach.

B. Large-Scale Qualitative Evaluation

In this subsection, we address ()2 by performing a large-
scale evaluation of STERLING by autonomously hiking a 3-
mile-long off-road traiﬂ We train STERLING using uncon-
strained robot experience collected within the UT Austin
campus and train the preference utility function using operator-
provided preferences: marble rocks < grass < dirt
= cement. The task is to navigate the trail without a global
map, adhering to operator preferences at all times. Since we do
not use a global map, visual terrain awareness is necessary to
navigate within the trail and avoid catastrophic events such as
falling into the river next to the trail. While the robot navigates
autonomously, the operator walks behind the robot and takes
manual control only to correct the robot’s path during forks,
or to yield to incoming pedestrians and pets. The attached
video E] shows the robot navigating the trail successfully while
avoiding less preferred terrains. The robot needed two manual
interventions while traversing along the trail. Fig. [3| shows the
3-mile trajectory traced by the robot and the two failure cases
that required manual intervention. This large-scale qualitative
experiment addresses ()2 by demonstrating the reliability of
STERLING during real-world off-road deployments.

V. CONCLUSION

In this paper, we introduce Self-supervised TErrain Rep-
resentation LearnING (STERLING), a novel framework for
learning terrain representations that relies solely on easy-to-
collect, unconstrained (e.g., non-expert), and unlabelled robot
experience. STERLING utilizes non-contrastive multi-modal
self-supervised learning through two objectives—viewpoint
invariance and multi-modal correlation—to learn relevant rep-
resentations for terrain-aware visual navigation. We show how

3Ann and Roy Butler Hike and Bike Trail, Austin, TX, USA
4https://youtu.be/dQb1XzocdtE.
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Operator Preferences: bush < marble rocks < grass < mulch < pebble sidewalk = cement sidewalk = yellow bricks = red bricks
:' " H GANav

Human Demo

Fully-Supervised

STERLING

R

8.Yellow Bricks

1.Pebble sidewalk 2.Grass 5.Red Bricks 6.Cement sidewalk 7.Mulch

Fig. 2. Trajectories traced by different approaches in 5 environments within the UT Austin University campus, containing 8 different terrains. The
operator preferences for the terrains in all environments are shown above. We see that STERLING navigates in an operator-preference aligned manner,
by preferring cement sidewalk, red bricks, pebble sidewalk, and yellow bricks over mulch, grass, marble rocks, and

bush, outperforming other baselines and performing on-par with the Fully-Supervised approach.

Fig. 3. A large-scale qualitative evaluation of STERLING on the 3-mile Ann
and Roy Butler trail in Austin, Texas, USA. Without a global map, preference
cost learned using STERLING features complete the hike successfully with only
two manual interventions (shown in red).

features learned through STERLING can be utilized to learn
operator preferences over terrains and integrated within a plan-
ner for preference-aligned navigation. We evaluate STERLING
against state-of-the-art off-road navigation and unsupervised
representation learning methods on the task of operator-
preference-aligned visual navigation on a Spot robot and find
that STERLING outperforms other methods and performs on
par with a fully-supervised baseline. We additionally perform
a qualitative large-scale experiment by successfully hiking a 3-
mile-long trail using STERLING, demonstrating its robustness
to off-road conditions in the real world.

TABLE 1
SUCCESS RATES OF DIFFERENT ALGORITHMS ON THE TASK OF
OPERATOR-PREFERENCE-ALIGNED OFF-ROAD NAVIGATION

Approach Environment
1 2 3 4 5 6@ | 6(b)
Geometric-only 05| 0/5 | 0/5 ] 0/5] 0/5 0/5 5/5
RCA[14 5/5 | 4/5 | 2/5] 05| 1/5 5/5 0/5
GANav[7] 05| 0/5 | 0/5 ] 55 | 5/5 4/5 5/5
SE-R[3] 15| 0/5 | 5/5 | 5/5 | 3/5 5/5 4/5

Fully-Supervised | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 5/5 5/5
[ STERLING (Ours) [ 5/5 [ 5/5 [ 5/5 [ 55 [ 55 ] 55 | 55 ]
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VI. APPENDIX

A. Preference-Aligned Off-Road Navigation

In this subsection, we describe the problem formulation of terrain-
aware navigation and how STERLING features can be utilized within a
planner to navigate in an operator-preference-aligned manner. While
the main novelty of our work is on learning terrain representations
from unconstrained robot experience, we use operator-preference-
aligned terrain-aware navigation as a real-world task to evaluate
STERLING features.

Preliminaries: We formulate the task of operator-preference-
aligned terrain-aware navigation as a local path-planning problem,
where the robot operates within a state space S, action space A,
and a deterministic transition function 7 : & x A — S in the
environment. The state space consists of s = [z,y,0, ¢], where
[x,y, 0] denote the robot’s position in SE(2) space, and ¢, denotes
the visual features of the terrain at this location. Given a goal location
G, the preference-aligned navigation task is to reach this goal while
adhering to operator preferences over terrains.

Sampling-based planning: We assume access to a receding
horizon sampling-based motion planner with a fixed set of constant-
curvature arcs {I'o,T'1,...,[ns}, T' € SY which solves for the
optimal arc I'" = argmin[J(I',G)], minimizing the objective

r

function J(TI',G),J : (T, G) — R™". For the task of preference-
aligned off-road navigation, we assume the objective function is
composed of two components Jgeom (I, G) and Jierrain(I'), and
can be defined as J(I', G) = aJgeom (I, G) + (1 — &) Trerrain(I).
Jgeom (I, G) is the geometric cost that deals with progress towards
the goal G and avoiding geometric obstacles, whereas Jierrain(T)
is the terrain cost associated with preference-alignment. We utilize
the geometric cost as defined in AMRL’s graph navigation stack E}
The multiplier o € [0, 1] trades off relative contributions of the
geometric and terrain preference components of the path planning
objective. A 1D time-optimal controller translates the sequence of
states in the optimal trajectory I'* to a sequence of receding horizon
actions (ao, a1,...,an). For a given arc I' = {so, s1,...,$n}, such
that state so is closest to the robot, the terrain-preference cost can be
computed as follows.

N i .
t.ljte'r'rain (F) = Z W (2)
v;~I",1=0

The function f,(.) maps from RGB space of a visual patch of
terrain v; at a specific state s;, to its visual representation ¢, € .
For instance, f, can be the visual encoder learned using STERLING,
as described in Section The utility function u(.) maps the visual
representation ¢, of a patch of terrain to a real-valued utility of
preferences. We follow the utility function formulation of Zucker et
al. [24] and assume the terrain preference cost follows a multiplicative
formulation such that given a utility value = € R, the traversability
cost is C'(x) = e~ *. The discount factor v weighs the terrain cost
proportional to its proximity to the robot. We set v to 0.8, which we
find to work well in practice.

Learning the preference utility: Following Zucker et al. [24], we
learn the utility function u : ®, — R™ using human queries. From
the predicted terrain features on data samples in our training set,
we cluster the terrain representations using k-means with silhouette-
score elbow criterion, and sample candidate terrain patches from
each cluster, which is presented to the human operator using a GUL
The human operator then provides a full-order ranking of terrain
preferences over clusters, which is utilized to learn the utility function
u(.), represented by a 2-layer MLP. While this method cannot recover
absolute preferences between terrains and can only preserve their
preference rankings, we find that this approximation provided by
Zucker et al. [24] works well in practice.

Planning at deployment: Fig. [ provides an overview of the cost
inference process for local planning at deployment. To evaluate the
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Fig. 4. An overview of the cost inference process for local planning at
deployment. The constant-curvature arcs (yellow) are overlayed on the BEV
image, and the terrain cost Jierrain (L") is computed on patches extracted
along all arcs. White is high cost and black is low cost.

terrain cost Jierrain (L") for the constant-curvature arcs, we overlay
the arcs on the bird’s eye view image, extract terrain patches at states
along the arc, and compute the cost according to Eq. [2l We compute
the visual representation, utility value, and terrain cost of all images
at once as a single batch inference. Since the visual encoder and the
utility function are relatively lightweight neural networks with about
0.5 million parameters, we are able to achieve real-time planning
rates of 40 Hz using a laptop-grade Nvidia GPU.

B. Data Collection

In all experiments, we use a legged Boston Dynamics
Spot robot and collect robot experiences on eight different
terrains—mulch, pebble sidewalk, cement sidewalk,
grass, bushes, marbled rock, yellow bricks,
and red bricks—around the UT Austin University campus.
The data is collected through human teleoperation (by the first and
second authors) such that each trajectory contains a unique terrain
throughout, with random trajectory shapes. Note that STERLING
does not require a human expert to teleoperate the robot to collect
robot experience nor does it require the experience to be gathered
on a unique terrain per trajectory. We follow this data collection
approach since it is easier to label the terrain, for evaluation
purposes. STERLING can also work with random trajectory lengths,
with multiple terrains encountered along the same trajectory, without
any semantic labels such as terrain names, and any navigation policy
can be used for data collection. We record 8 trajectories per terrain,
each five minutes long, and use 4 trajectories for training and the
remaining for validation.

C. Data-Collection and Pre-Processing

STERLING learns terrain representations from unconstrained, un-
labeled robot experiences collected using any navigation policy, for
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Fig. 5. An illustration of the offline data preprocessing performed on uncon-
strained robot experience. Image patches of traversed terrain at location sg
are extracted from bird’s eye view observations at prior locations sx_1, Sg—2
along the trajectory. Note the visual artifacts in patches extracted further away
from the scene due to homography measurement errors. The corresponding
inertial, proprioception, and tactile observations at s are transformed from
time series to power spectral density signals.

instance, human teleoperation, curiosity-driven exploration, or point-
to-point navigation using any underlying planner. Collecting such
robot experience is cheap and easy, in comparison to requiring a
human expert to provide demonstrations and labels. We additionally
assume that the robot is equipped with multiple sensors such as an
egocentric RGB camera, odometry sensors, onboard IMU, proprio-
ceptive, and tactile sensors that together provide rich multi-modal
observations as the robot traverses over different terrains collecting
experience. STERLING leverages this multi-modal data, and correla-
tion between different modes of data to learn terrain representations.
In order to learn terrain representations using STERLING, we begin
by pre-processing the visual and non-visual observations, which are
explained in detail below.

Visual Patch Extraction: The egocentric camera observations
are homography-projected into a virtual bird’s eye view (BEV) frame
using the intrinsic and extrinsic camera matrices. As shown in Fig.
EL we project the robot’s trajectory onto the bird’s eye view frame
and extract 64-by-64 pixels (equivalent to the robot’s footprint of
0.5-by-0.5 meters) square visual patches of the terrain along with
the corresponding inertial, proprioceptive, and tactile measurements
at the same location, along the trajectory. To extract visual patches
of terrain at a particular location, say s, since the terrain underneath
is visually unobservable from s, we extract the terrain patches from
BEV observations of the robot at previous locations sx—1, Sk—2,. ..
along the trajectory. Fig. [ illustrates the offline patch extraction
process from two previous viewpoints, however, we extract patches
from up to 20 previous viewpoints within 2 meters. Although just
one viewpoint is sufficient to learn the correlation between visual
and other sensor observations, when planning to navigate, one may
need to visually evaluate terrains at future locations ahead of the
robot. As shown in Fig. |§L errors in homography transformation due
to noisy camera extrinsic measurements may cause visual artifacts
such as stretching and blur at locations farther away from the
robot in the BEV image, and may potentially affect planning. To
address this problem, in addition to the multi-modal correlation
objective on visual and non-visual data at a location, STERLING
utilizes a viewpoint invariance objective, which enforces invariance
to homography artifacts in the learned visual representations.

IPT Preprocessing: For the non-visual modes of data such as
inertial, proprioceptive, and tactile (IPT) observations, we retain up
to 2-second history and convert the time-series signals into power-
spectral density (PSD) representation in the frequency domain. This
ensures the IPT time-series data is phase independent, which is more
conducive to the architecture of our representation learning system.
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Fig. 6. Ablation study depicting unsupervised k-means-classification accuracy
(value closer to 1.0 is better) from terrain representations learned using
different approaches and objectives. We see that the combined objective (VI
+ MM) proposed in STERLING achieves the highest classification accuracy,
indicating that the learned representations are sufficiently discriminative of
terrains.

D. Evaluating Self-Supervision Objectives

In this subsection, we investigate the effectiveness of STERLING
at learning discriminative terrain features and compare with baseline
unsupervised terrain representation learning methods such as Reg-
ularized Auto-Encoder (RAE) and SE-R [3|]. STERLING uses multi-
modal correlation (£ ) and viewpoint invariance (L ) objectives
for self-supervised representation learning. SE-R and RAE use soft-
triplet-contrastive loss and pixel-wise reconstruction loss respectively
to learn visual representations of terrains. Additionally, we also
perform an ablation study on the two objectives in STERLING
to understand their contributions to learning discriminative terrain
features. To evaluate different visual representations, we perform
unsupervised classification using k-means clustering (using silhouette
score to compute the elbow) and compare their relative classification
accuracies with true terrain labels. For this experiment, we train
STERLING, SE-R, and RAE on our training set and evaluate on a
held-out validation set. Fig. [] shows the results of this study. We
see that STERLING features using both the self-supervision objectives
perform the best among all methods. Additionally, we see that using
a non-contrastive representation learning approach such as VICReg
[20] within STERLING performs better than contrastive learning
methods such as SE-R, and reconstruction-based methods such as
RAE. This study helps address (01 and shows that the proposed self-
supervision objectives in STERLING indeed help learn discriminative
terrain features.

E. Preference Alignment Evaluation

We utilize Env. 6 to further study adherence to operator pref-
erences. We hypothesize that the discriminative features learned
using STERLING is sufficient to learn the preference cost for local
planning. To test this hypothesis, in Env. 6 containing three terrains
as shown in Fig. [7} the operator provides two different preferences
6(a) and 6(b). While bush is the least preferred in both cases, in
6(a), sidewalk is more preferred than grass and in 6(b), both
grass and sidewalk are equally preferred. We see in Fig.
that using STERLING features, the planner is able to sufficiently
distinguish the terrains and reach the goal while adhering to operator
preferences. Although SE-R [3] adheres to operator preference in 6(b),
it incorrectly maps grass to bush, assigning a higher cost and
taking a longer route to reach the goal. Table[[|shows the success rate
of preference alignment for all approaches in all environments, over
five different trials. We see that STERLING outperforms other self-
supervised baselines and performs on par with the fully-supervised
approach.
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Fig. 7. Trajectories traced by different approaches for the task of operator-preference-aligned off-road navigation. Shown here are two different preferences
expressed by the operator in the same environment—in 6 (a), sidewalk is more preferred than grass which is more preferred that bush, and in 6 (b),
grass and sidewalk are equally preferred and bush is least preferred. We see that without retraining the terrain features, in both cases (a) and (b),
STERLING optimally navigates to the goal while adhering to operator preferences.
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