

000 001 BUZZ, CHOOSE, FORGET: A META-BANDIT FRAME- 002 WORK FOR BEE-LIKE DECISION MAKING 003 004

005 **Anonymous authors**
006 Paper under double-blind review

007 008 ABSTRACT 009

010 We introduce a sequential reinforcement learning framework for imitation learning
011 designed to model heterogeneous cognitive strategies in pollinators. Focusing
012 on honeybees, our approach leverages trajectory similarity to capture and forecast
013 behavior across individuals that rely on distinct strategies: some exploiting nu-
014 matical cues, others drawing on memory, or being influenced by environmental
015 factors such as weather. Through empirical evaluation, we show that state-of-the-
016 art imitation learning methods often fail in this setting: when expert policies shift
017 across memory windows or deviate from optimality, these models overlook both
018 fast and slow learning behaviors and cannot faithfully reproduce key decision pat-
019 terns. Moreover, they offer limited interpretability, hindering biological insight.
020 Our contribution addresses these challenges by (i) introducing a model that min-
021 imizes predictive loss while identifying the effective memory horizon most con-
022 sistent with behavioral data, and (ii) ensuring full interpretability to enable biolo-
023 gists to analyze underlying decision-making strategies and finally (iii) providing
024 a mathematical framework linking bee policy search with bandit formulations un-
025 der varying exploration-exploitation dynamics, and releasing a novel dataset of 80
026 tracked bees observed under diverse weather conditions. This benchmark facili-
027 tates research on pollinator cognition and supports ecological governance by im-
028 proving simulations of insect behavior in agroecosystems. Our findings shed new
029 light on the learning strategies and memory interplay shaping pollinator decision-
030 making.

031 032 1 INTRODUCTION 033

034 Over the past decade, researchers have increasingly turned to artificial intelligence (AI) and
035 computational modeling to replicate or simulate animals' decision processes, referred to as imitation
036 learning (Cully et al., 2015). In this case, the goal is to train an agent to learn by observing and
037 reproducing the animal's behavior in the same way as if the animals were experts. In particular,
038 reinforcement learning (RL) frameworks have gained increasing attention as a way to describe how
039 animals learn from trial and error, as an alternative to statistical models or simple heuristic rules.
040 These RL models serve a dual purpose: they help biologists to understand how these animals learn
041 to facilitate rule discovery (Wason, 1960) (i.e. policy modelisation) from real animal data experi-
042 ments, and they make it possible to run virtual ecological interventions (for instance, simulating how
043 bees that switch between policies would respond to guidance toward pesticide-free zones). How-
044 ever, existing imitation-learning and RL-based models still face major limitations when applied to
045 bees for some reasons: (1) some of them exclude the balance between contextual and non-contextual
046 strategies in the decision process modeling. (2) They overlook the archetypal mechanism of limited-
047 memory learning ; we define here the *memory* of the animal by a parameter, S , that truncates the
048 observation history to the S most recent observations. This parameter needs to be optimized in the
049 imitation learning. (3) These models assume homogeneity among bees, although individuals may
050 exhibit distinct behaviors and no explainability is given for each individual. (4) They require access
051 to the full trial sequence and cannot operate online, making them unsuitable for sequential, real-time
052 prediction of behavior. Some bees are able to understand the context information to limit the regret
053 in their strategies, and some others do not (Giurfa et al., 2022). The overarching challenge is there-
fore to provide a model that can both explain and forecast the policy of each individual bee. This
paper proposes a new algorithm to model bees behaviors focusing on contextual binary foraging

054 tasks (scenarios with two alternatives in a Y-maze, with left vs. right choices, **where the reward is**
 055 **systematically located on the side presenting the highest stimulus number**, a cue the bee can perceive
 056 before making its choice. We summarize key methodologies and show (1) how to identify the best
 057 τ window size that estimates S , (2) how individuals vary according to their strategies, and (3) how
 058 can we forecast any individual’s policy regardless of their specific skills **in an online setting**. Our
 059 method is summarized in Fig. 1. Our code is open-source and our data are openly available.¹.
 060

061 **A new imitation learning framework** Imitation learning (IL) enables agents to acquire behav-
 062 ior from expert demonstrations in order to limit costly or unsafe exploration (Zhao et al., 2020).
 063 By grounding policy optimization in expert trajectories, IL offers a sample-efficient framework to
 064 capture adaptive strategies. However, **most IL methods are designed to imitate experts that behave**
 065 **near-optimally, and therefore struggle when the expert exhibits non-optimal, heterogeneous, or tem-**
 066 **porally shifting policies**. This is mostly explained by the fact that they prioritize policy optimization
 067 over expert imitation. Unlike classical IL, biological experts (such as bees) often follow non-optimal
 068 policies. In nature, several policies may coexist, and a single expert can change its strategy over time.
 069 This is largely due to the limited memory of insects, which restricts decisions to a short history of
 070 past actions and rewards. Therefore, attention must be paid to how the expert guides the agent, and
 071 how the agent adapts to multiple experts. It requires not only defining what should be imitated, but
 072 also handling this memory limitation. **When data are collected in real time, for instance via drone-**
 073 **based tracking, an online framework becomes indispensable to process and interpret bee behavior**
 074 **as observations arrive**. Our contribution is MAYA (Multi Agent Y-maze Allocation), which enables
 075 bee imitation learning on a sequential two-choice learning (Y-maze). MAYA combines several multi
 076 armed bandit (MAB) policies (including random and contextual variants) with a fixed memory set-
 077 ting τ for similarity evaluation. Similarity evaluation can be based on probability of success (with
 078 Kullback-Leibler or Wasserstein distance) or on trajectory (with Dynamic Time Warping DTW simi-
 079 larity). The best choice of similarity is made according to the ability to imitate the expert and limit
 080 the cumulative cost of wrongly replicated actions over trials. Then, our paper studies the similarity
 081 that should be used.
 082

083 **Understanding the learning skill** MAYA models bee policies as mixtures of multiple MAB
 084 agents, thus providing a quantitative framework for characterizing behavioral variability across in-
 085 dividuals. Since bees possess limited memory of past experiences, their decision policies may shift
 086 over time. **Such shifts are not random but reflect different effective strategies depending on the re-**
 087 **cent learning window S** . To capture this, MAYA decomposes the observed trajectories into segments
 088 that align with distinct agent models, each defined by a specific MAB. These MAB vary according
 089 to their strategies: pure exploration, deterministic or stochastic reward-based choice between left
 090 and right arms of the Y-maze, and context-dependent strategies where cues guide decisions (see
 091 App. 13). By structuring bee behavior as a combination of such MAB, MAYA not only reproduces
 092 expert trajectories but also yields an interpretable description of MAB policy shifts and memory
 093 constraints.
 094

095 **Window-size discovering** MAYA requires the specification of a sliding window $\tau \in \mathcal{T}$ **in order**
 096 **estimate S** and to select the importance of the past information used to align the behavior of the bee
 097 and the MAB. **Because memory is a biological constraint rather than a freely tunable parameter, it**
 098 **is essential to determine which τ best reflects the bee’s effective learning horizon S** . In our exper-
 099 iments, we assess how this setting influences the ability to imitate the bee. **We find, for example that**
 100 **the optimal window length decreases under adverse weather conditions, consistent with the idea that**
 101 **environmental noise reduces the usable amount of past information, but generally stabilizes around**
 102 **seven past trials across all datasets**. As a complementary analysis, we also include experiments
 103 with mice, where a similar optimal setting emerges. **We also include simulated data to validate the**
 104 **robustness of MAYA under controlled conditions, where the ground-truth strategy is known**.
 105

106 **Open dataset and ecological insights** We release to the community a new open dataset recording
 107 experiments on 80 bees (with [22 – 40] sequential trials per bee) across 5 diverse situations (favor-
 108 able and adverse weather, in Oceania and Europe). More details about the experiment are given in
 109 App 6.1. In each experiment, a bee enters a Y-maze where it is exposed to a number of visual stimuli
 110 presented on both the left and right arms. **The reward is consistently located on the side displaying**

¹<https://anonymous.4open.science/r/maya-4E30>

Figure 1: MAYA (Multi-Agent Y-maze Allocation) is an imitation learning framework for policy selection via windowed regret matching. Leveraging logged bee trajectories and three similarity metrics (Wasserstein, KL, DTW), MAYA maps learning dynamics onto 2-armed bandit strategies (UCB, Epsilon-greedy, LinUCB, Uniform). Beyond performance alignment, MAYA provides interpretability of bee behaviors by revealing differences in memory span and learning aptitude, thereby distinguishing “good learners” from “poor learners” in contextual experiments.

the greater number of stimuli. During a session, each bee performs between 22 (for one dataset) and 40 (for the other datasets) trials, where the number of stimuli (and therefore the rewarded side) is randomly assigned at each trial.

2 PRELIMINARIES

Problem formulation. We model the bee prediction task (forecast the decision left or right) as an RL problem. At each trial $t \in 1, \dots, T$ the environment reveals a state $s_t \in \mathcal{S}$ described by the number of trial t and available contextual information : $x_t \in \mathbb{R}^2$ with $x_t = (\text{stimuli on Left and Right side, weather, \dots})$. The bee selects an action (i.e. chose a side) : $a_t \in \mathcal{A} := \{L, R\}$, corresponding to Left and Right. Then, the bee receives a reward $r_t = r(s_t, a_t) \in \{0, 1\}$, which captures whether the choice is correct or incorrect (e.g., sugar or quinine). This model is actually a Markov Decision Process (MDP) (Sutton & Barto, 2018). It is defined as a tuple $(\mathcal{S}, \mathcal{A}, P, \mathcal{R})$ with a state space \mathcal{S} , an action space \mathcal{A} . In our setting, $S = |\mathcal{S}|$ and $A = |\mathcal{A}|$ are finite (i.e $S, A < \infty$). The quantity $P = (P_a : a \in \mathcal{A})$ is called the transition function with $P_a : \mathcal{S} \times \mathcal{S} \rightarrow [0, 1]$ and so $P_a(s, s')$ is the probability that the agent moves from state s in state s' according to action a . The set space \mathcal{R} is defined by all outputs of reward functions r_a according an action $a : \mathcal{R} = (r_a : a \in \mathcal{A})$. We are on a discrete-time series system such as the initial state is defined by S_1 . In each round t the agent observes the state $S_t \in \mathcal{S}$, chooses an action $A_t \in \mathcal{A}$ and receives the reward $r_{A_t}(S_t)$. The environment then samples S_{t+1} from the probability vector $P_{A_t}(S_t) \in P$. The **history** $H_t = (S_1, A_1, r(S_1, A_1), \dots, S_{t-1}, A_{t-1}, r(S_{t-1}, A_{t-1}), S_t)$ or more simply $H_t = (S_1, A_1, r_1, \dots, S_{t-1}, A_{t-1}, r_{t-1}, S_t)$, contains the information available before the action for the round t is to be chosen. A **policy** is a (possibly randomised) map from the set of possible histories to actions. The set of such policies is denoted by Π and its elements are identified with maps $\pi : \mathcal{A} \times \mathcal{S} \rightarrow [0, 1]$ with $\sum_{a \in \mathcal{A}} \pi(a|s) = 1$ for any $s \in \mathcal{S}$ so that $\pi(a|s)$ is interpreted as the probability that policy π takes action a in state s . We are on a finite-trial experiment i.e. $t \in \{1, \dots, T\}$ where T is the total number of trials. We consider here that all rewards are equivalent whatever the future, then an **optimal policy** π^* for a discrete time T system is a policy that satisfies, for any state $s : \pi^* = \arg \max_{\pi \in \Pi} \sum_{t=1}^T \gamma^t r(A_t, S_t)$ with $\gamma = 1$. Finally, let $N_t(a)$ denote the total number of times action a has been selected up to round t . We define $Q_t(a) = \frac{1}{N_t(a)} \sum_{j=1}^{t-1} r_j \mathbf{1}_{\{a_j=a\}}$ as the simple average of rewards which have been observed.

Regret. Let π^* denote the (unknown) optimal policy. The *instantaneous regret* at trial t is defined as $\Delta_t = r(s_t, a_t^*) - r(s_t, a_t)$, where $a_t^* := \pi^*(s_t) = \operatorname{argmax}_{a \in \mathcal{A}} r(s_t, a)$ is the optimal action

under the state s_t . The *cumulative simple regret* after T trials is the sum of instantaneous regrets $R(\pi, 1, T) = \sum_{t=1}^T \Delta_{\pi, t}$.

In the experiment, the reward given to the bee at each state s_t does not depend on the state s_{t-1} . Hence our model can be seen as a 2-armed bandit problem and not a classical reinforcement learning problem. Bees differ in solving such learning task. Based on biology literature (Capela et al., 2024), their different behaviors can be modeled by four different two-armed bandit strategies (MAB) :

1. **Epsilon Greedy** (Sutton & Barto, 1998) : exploits current action that maximize observed average reward (i.e. $\hat{\pi}_t(a)$) and explore the other action according a small probability (ϵ).

$$A_t = \begin{cases} \text{Argmax}_a [Q_t(a)] \text{ with probability } 1 - \epsilon \\ a \sim \text{Uniform}(\mathcal{A} \setminus \{\text{Argmax}_a [Q_t(a)]\}) \text{ with probability } \epsilon \end{cases}$$

2. **Optimistic strategy UCB style** (Auer et al., 2002) : construct an adaptative upper confidence bound around $Q_t(a)$. In this case UCB1 chose according :

$$A_t = \text{Argmax}_a [Q_t(a) + \sqrt{\frac{\ln t}{N_t(a)}}].$$

The number of trials on $N_a(t)$ and empirical observed reward on each arms are considered.

3. **Contextual-multi-armed bandits (CMAB) LINUCB style** (Li et al., 2010) : At the beginning of trial t , the agent observes a context x_t . It's redefine the choice of an action according the context information x_t . Let $G_a = \mathbf{X}_a^\top \mathbf{X}_a + \lambda \mathbf{I}$ where \mathbf{X}_a is the matrix with the context vectors of action a as rows, \mathbf{I} the identity matrix and $\lambda \in \mathbb{R}$ is a regularization parameter. LINUCB1 chose according :

$$A_t = \text{Argmax}_a [x_t^\top \hat{\Theta}_{a,t} + \sqrt{x_t^\top G_a^{-1} x_t}].$$

where $\hat{\Theta}_{a,t} \in \mathbb{R}^2$ are estimated parameter of action a at t .

4. **Random choice strategy UNIFORM style** : At each trial, the agent chooses an action uniformly at random, independently of past observations or contexts. This baseline strategy does not exploit reward or contextual informations, and serves as a comparison.

$$A_t \sim \text{Uniform}(\mathcal{A}).$$

Among the strategies considered above, LINUCB1 (ref as LINUCB) is the only bandit algorithm here that explicitly incorporates contextual information. Consequently, it is the sole approach capable of asymptotically converging to the optimal policy in our Y-maze experimental setting. Regardless of its ability to adopt the optimal strategy (i.e., to use contextual information), the bee selects an action A_t based on memory history. This memory reflects the history of past actions, rewards, and contexts. However, learning and memory of honeybees can be impacted by a large amount environmental conditions, like the weather variation (Gérard et al., 2022). Additionally, the learning process in itself may be reflected by the succession of sub-optimal strategies (based on $Q_a(t)$ or based on a random choice) to the optimal strategy (based on the contextual information) with potential transitive states. Therefore, comparing bee strategies with these four policies must be carried out in a **non-stationary** framework. Unfortunately, the effective history length is difficult to anticipate, as it may evolve in many ways (Fiandri et al., 2024).

Then, to incorporate this *bee's memory* concept, defined in psychology as the recency effect (Glanzer & Cunitz, 1966), we introduce the concept of a sliding window $\tau \in \mathcal{T}$ to lay the stress on recent history. The history is restricted to $H_{t,\tau} = (S_{t-\tau}, A_{t-\tau}, r_{t-\tau}, \dots, S_{t-1}, A_{t-1}, r_{t-1}, S_t)$ and the policy becomes $\pi : \mathcal{A} \times \mathcal{S} \times \mathcal{T} \rightarrow [0, 1]$ with $\sum_{a \in \mathcal{A}} \pi(a|s, \tau) = 1$. The simple regret according to τ is : $R(\pi, \tau, 1, T) = \sum_{t=\tau}^T \Delta_{\pi, t}$.

Imitation learning to approximate a bee's behaviour Our goal is to learn a policy π_{MAYA} which is close to π_{bee} . The selection of the best MAB algorithm that mimics a bee's behaviour is based on comparing at t the τ -last cumulative regret trajectories generated ($R(\pi, \tau, 1, t)$) by the bee and by each candidate MAB. For this, for a well-chosen similarity distance d . We define for two policies π_1 and π_2 , their distance according to τ and t trials: $\delta(\pi_1, \pi_2, \tau, t) := d(R(\pi_1, \tau, 1, t), R(\pi_2, \tau, 1, t))$.

216 In the following, we consider three choices for d , reflecting two complementary interpretations of the
 217 regret sequence. First, when regrets are viewed as random variables, we use distributional distances
 218 such as Kullback–Leibler (KL) divergence and Wasserstein distance, which measure similarity in
 219 probabilistic structure or geometric displacement. Second, when regrets are interpreted as a temporal
 220 trajectory, we use Dynamic Time Warping (DTW), which emphasizes temporal alignment and is
 221 robust to local timing fluctuations.

222 Finally, the success of the imitation learning algorithm will be quantified here using the following
 223 cost of a wrong **reproduced action**. Let :

$$c(s_t|a_t) = \begin{cases} 1 & \text{if } a_t \neq \pi_{\text{bee}}(s_t) \\ 0 & \text{otherwise} \end{cases}$$

227 Assume that $\pi_{\text{MAYA}}(a \neq \pi_{\text{bee}}(s)|s) \leq \varepsilon$, with $\varepsilon \in [0, 1]$ then (Ross et al., 2010) shows that
 228 $\mathbb{E}[\sum_{t=1}^T c(s_t, a_t)] \leq \varepsilon T$. If π_θ is learned by minimizing previous distances, success is measured by
 229 considering this cost. See App. 16 for additional details on this metric.

231 3 CONTRIBUTION

233 Our contribution, the MAYA algorithm, addresses the challenge of inverse reinforcement learning
 234 in biology when expert demonstrations are heterogeneous, **non-stationary** and not necessarily optimal.
 235 Instead of assuming a single coherent expert policy, MAYA explicitly treats bee trajectories as
 236 mixtures of potentially distinct and sometimes sub-optimal MAB strategies. By dynamically aligning
 237 the observed behaviour with a set of candidate MAB policies, MAYA captures both successful
 238 learning episodes and non-optimal or inconsistent actions, which are common in insect cognition.
 239 We present here a condensed version of the MAYA framework; the complete algorithmic description
 240 is provided in Appendix 11.

241 **Inputs.** The algorithm takes as input the logged regret trajectory of a bee policy $R(\pi_{\text{bee}}, 1, T)$, a
 242 finite set $\mathcal{P} = \{\pi_1, \dots, \pi_N\}$ of N candidate bandit policies, and a window size τ . The window size
 243 controls how much historical regret information is used at each step: for $t < \tau$ the algorithm uses
 244 all past data, while for $t \geq \tau$ it only considers the most recent τ steps.

246 **Initialization.** The algorithm initializes a placeholder policy π_θ and an agent buffer ξ .

248 **Warm-up Phase ($t < \tau$).** For each time step $t \in \{2, \dots, \tau - 1\}$:

- 250 1. We define $\tau = t - 1$ and the algorithm observes the bee regret $R(\pi_{\text{bee}}, \tau, 1, t - 1)$ with the
 251 context information x_t .
- 253 2. For each candidate policy $\pi_i \in \mathcal{P}$, the algorithm simulates its action distribution
 $\pi_i(s_{t-1}|x_t)$ and computes the cumulative regret $R(\pi_i, \tau, 1, t - 1)$.
- 255 3. A distance $d(\cdot, \cdot)$ is computed between the bee regret trajectory and the simulated regret of
 π_i , then we compute $\xi_t = \operatorname{argmin}_{\pi \in \mathcal{P}} \delta(\pi_{\text{bee}}, \pi, t)$ according to the choice of $d(\cdot)$. In case
 ξ_t of a tie, ξ_t is sampled from the set of best candidates.
- 257 4. The algorithm updates π_θ to imitate π_{ξ_t} , i.e. $\pi_\theta(a_t|s_{t-1}) \leftarrow \pi_{\xi_t}(a_t|s_{t-1})$, and we store
 $\xi[t] \leftarrow \xi_t$.

260 The chosen policy π_θ is then used to sample the next action A_t , a reward r_t is received, and all
 261 candidate policies are updated.

263 **Windowed Phase ($t \geq \tau$).** For subsequent steps $t \in \{\tau, \dots, T\}$, the procedure is analogous,
 264 except that **we fix τ as a hyperparameter**. Then, only the most recent observations τ are used when
 265 computing regret and $\xi_t = \operatorname{argmin}_{\pi \in \mathcal{P}} \delta(\pi_{\text{bee}}, \pi, \tau, t)$. Specifically, regret and policy regrets are
 266 evaluated over the interval $[t - \tau, t - 1]$ rather than the full trajectory. Again, the best match ξ_t is
 267 calculated between each policy $\pi \in \mathcal{P}$, and π_θ is updated according to the best match.

268 **Output.** After T steps, the algorithm returns the policy $\pi_{\text{MAYA}} = \pi_\theta$, which best matches the bee's
 269 regret profile, while adapting online to the context and rewards.

270
271

3.1 SIMILARITY EVALUATION

272
273
274

The algorithm depends on the choice of the distance d between the trajectories of the regrets. We will consider three distinct distances. For a review of different distances, see for instance in (Besse et al., 2015).

275

1. Dynamic Time Warping (DTW). One of the most used similarity measures between two paths is given by the so-called DTW. It is defined as follows. Given two temporal sequences $X = (x_1, \dots, x_{T_1})$ and $Y = (y_1, \dots, y_{T_2})$ over $E \subset \mathbb{R}^d$ with $d \in \mathbb{N}^*$. DTW aligns them by finding an admissible path $\psi = \{(i_k, j_k)\}_{k=1}^K$ that respects temporal ordering. Formally, the DTW is defined as $DTW(X, Y) = \min_{\psi} \sum_{k=1}^K \|x_{i_k} - y_{j_k}\|$, with $K \in \mathbb{N}^*$ where the minimization runs over all monotone alignment paths ψ between the indices of X and Y . This distance enables comparison of sequences with different lengths or temporal distortions, by optimally stretching or compressing the time axis.
2. KL-distance. In this case, the sequence of the regrets is considered as a realization at each step of a Bernoulli distribution. Hence we can define the Kullback-Leibler distance between each trajectory by a proper normalization. Set Q a probability measure on E . If P is another probability measure on $(E, \mathcal{B}(E))$, then the KL divergence is $D_{KL}(P\|Q) = \int_E \log \frac{dP}{dQ} dP$, if $P \ll Q$ and $\log \frac{dP}{dQ} \in L^1(P)$, and $+\infty$ otherwise.
3. Wasserstein-distance. We consider again the distributional point of view. The 1-Wasserstein distance is defined as follows. For two distributions π_1 and π_2 over $E \subset \mathbb{R}^d$ a compact subset, endowed with the norm $\|\cdot\|$, recall that their 1-Wasserstein distance is defined as $W_1(\pi_1, \pi_2) = \min_{\pi \in \Pi(\pi_1, \pi_2)} \int_{x \in E, y \in E} \|x - y\| d\pi(x, y)$, where $\Pi(\pi_1, \pi_2)$ denotes the set of distributions on $E \times E$ with marginals π_1 and π_2 .

295
296

3.2 THEORETICAL ANALYSIS

297

We provide in App 14 worst-case upper bounds on the cumulative regret gap between π_{MAYA} and π_{bee} across stationary and S cyclic regimes, expressed in terms of T, τ and S . We inform the choice of τ to control the error in non-stationary settings. In App 15, we extended our experimental protocol to include 42 simulated datasets, resulting in more than 100.800 synthetic trajectories. Overall, these analyses validate the theoretical justification of our τ -range and demonstrate its empirical robustness across diverse S switching regimes. We also added a small grid search over exploration parameters : $\epsilon \in \{0.1, 0.2, 0.3\}$, and $\alpha_{\text{ucb}}, \alpha_{\text{linucb}} \in \{0.5, 1, 1.5, 2, 4\}$.

304

305

4 EXPERIMENTAL EVALUATION

306

307

Our experiments aim to address the following questions: i/ What is the best window size (τ) to estimate S and similarity metric (DTW, KL, Wass) to approximate bee learning? ii/ What information can MAYA provide about the exploratory and contextual process of bees? iii/ How external information (here, the weather) can impact the window size parameter τ ?

311

312

Experiment description The datasets vary according to location (three from France and two from Australia) and weather conditions (two cold, one moderate, and two hot). Each dataset contains the trajectories of 16 bees with 22 or 40 trials (depending on the dataset, see App 6.1 for more details). We also include a complementary experiment in the App 12, adapted from (Ashwood et al., 2020b), using data from mice performing perceptual decision-making tasks. We complete our study with simulated data in App 15.

318

319

320

321

322

323

Metrics MAYA and comparative methods are evaluated based on their ability to minimize the cost of incorrectly reproduced actions over the sequence of trials. We then report, for our five datasets, the $MSE\left(\sum_{t=1}^T c(s_t | a_t)\right)$ and $MAE\left(\sum_{t=1}^T c(s_t | a_t)\right)$, computed across all bees within the same dataset. We first observe how these metrics evolve in Sec.4.1. We further include a variance-based residual statistical test comparing the bee’s cumulative regret with MAYA. We provide in App.16 more explanation with a numeric toy example. Then, in Sec. 4.2, we show how MAYA generates

324 trajectories that closely match those of bees across all datasets. Sec 4.3 provides an example of
 325 individual analysis. We also observe how trajectories are clustered in a similar manner in Sec.4.4.
 326 This can be considered as an additional performance metric: the ability to assign trajectories to the
 327 same cluster.
 328

329 4.1 BEST WINDOW SIZE AND DISTANCE METRICS 330

331 Figure 2 reports the average MSE and MAE results according to τ for the five datasets. When
 332 several MAB agents are the best candidates for ξ_t , the selection is random, which can introduce
 333 some variability. We report average MSE/MAE over $\tau \in [3, \min(T, 30)]$ and over the full-history
 334 value $\tau = T$. We also provide the standard deviation for several τ in the App 6.2. However,
 335 the MAYA MSE/MAE recorded standard deviations are small and nearly constant. This is easily
 336 explained: if agents follow the same action sequence, their costs are identical. Therefore, the effect
 337 of randomness is limited. This can be seen in Fig.3, for example, where UCB and UNIFORM act
 338 identically at the beginning of the experiment.

339 Across all datasets, the results confirm the trend that for $\tau \in [5, 10]$ the losses decrease. However,
 340 weather influences the optimal τ . **Weather conditions modulate this optimum**. Cold weather requires
 341 to choose $\tau \in [5, 7]$, moderate weather $\tau \in [6, 8]$, and hot weather $\tau \in [7, 10]$. **Based on this**
 342 **observation, we set $\tau = 7$ as a robust compromise across all conditions**. This observation is similar
 343 in complementary experiments with mice (App 12). Then, we fix $\tau = 7$ for the rest of the paper.
 344 **Whatever τ , MAYA–Wass provides the best results across all datasets.**

362 Figure 2: Comparative study of the best window size τ by average MSE and MAE; weather and
 363 location for each dataset are provided. The maximum window value corresponds to using the full
 364 sequence (i.e., no window). \star symbol refers as best performance according standard deviation and
 365 average reward (see Tab9. in App 10 for the full results)

366 4.1.1 STATISTICAL TEST: VARIANCE-BASED RESIDUAL ANALYSIS 367

368 To quantify how well a model reproduces the behaviour of an individual bee, we analyse the *residual*
 369 *trajectory* : $e_t = R(\pi_{\text{bee}}, 1, t) - R(\pi_{\text{model}}, 1, t)$, where $R(\pi, 1, t)$ denotes cumulative simple
 370 regret without τ restriction. Because regret trajectories are monotone and strongly autocorrelated,
 371 we focus on the *variance* of the residuals rather than their absolute level. Let $s_e^2 = \text{Var}(e_t)$, and
 372 $s_{\text{bee}}^2 = \text{Var}(R(\pi_{\text{bee}}, 1, t))$. Under the null hypothesis : $H_0 : s_e^2 \leq s_{\text{bee}}^2$, the model's deviations are no
 373 larger than the intrinsic variability of the animal. We compute the Fisher statistic : $F_{\text{obs}} = \frac{s_e^2}{s_{\text{bee}}^2}$, and
 374 obtain a one-sided p -value $p = \Pr(F \geq F_{\text{obs}} \mid H_0)$. Small p -values indicate that the model fails to
 375 capture the individual's dynamics; large values indicate a good match. Table 1 reports (mean, min,
 376 max) p -values per dataset.
 377

Overall, MAYA-based models (MAYA-KL, MAYA-Wass, MAYA-DTW) achieve the highest minimal p -values across all datasets, whereas baseline bandit algorithms (UCB, LinUCB, Uniform, ϵ -greedy) exhibit larger residual dispersion and more frequent rejection of H_0 . The results also show that, in Dataset 2, many bees display a clear LinUCB-like phase, whereas in the other datasets the dominant patterns are UCB-, EpsilonGreedy or Uniform-like. The reported minimum p -value for each dataset reflects whether *at least one* bee deviates significantly from the model; values below 0.05 lead to rejecting H_0 . MAYA-KL and MAYA-Wass consistently achieve near-perfect alignment, and MAYA-DTW performs similarly except for a single bee in Dataset 2, likely due to the sensitivity of DTW to constant cumulative regret trajectories, which are more frequent in this dataset. We also include a new **WORST** baseline that always selects the suboptimal arm; the opposite **BEST** baseline is equivalent to LinUCB and is therefore omitted.

Algorithm	dataset1			dataset2			dataset3			dataset4			dataset5		
	mean	min	max												
UCB	0.79	0.01	1	0.85	0.01	1	0.75	0.01	1	0.82	0.01	1	0.91	0.24	1
LINUCB	0.63	0.55	0.72	0.90	0.60	0.99	0.64	0.57	0.72	0.61	0.51	0.83	0.62	0.54	0.73
UNIFORM	0.91	0.01	1	0.82	0.04	1	0.89	0.01	1	0.91	0.01	1	0.94	0.65	1
E-GREEDY	0.91	0.01	1	0.74	0.01	1	0.91	0.01	1	0.93	0.01	1	0.95	0.80	1
WORST	0.34	0.01	0.99	0.28	0.01	0.99	0.29	0.01	0.99	0.33	0.01	0.99	0.28	0.01	0.97
MAYA-KL	0.99	0.99	1	0.92	0.65	1	0.99	0.99	1	1.00	0.99	1	0.99	0.94	1
MAYA-Wass	1.00	1.00	1	0.99	0.91	1	1.00	1.00	1	1.00	1.00	1	0.99	0.99	1
MAYA-DTW	0.93	0.01	1	0.90	0.01	1	0.97	0.80	1	0.99	0.87	1	0.99	0.97	1

Table 1: Performance of all algorithms across five real bee datasets (16 bees per dataset), reported in terms of (mean, min, max) Fisher-test (one side) p -values per dataset. Lower values indicate a worse match, while values near 1 indicate high similarity to the subject’s trajectory. MAYA consistently achieves the highest p -values across datasets, indicating superior trajectory alignment. The code is available on our GitHub repository.

4.2 COMPARATIVE STUDY OF REPRODUCTIVE BEHAVIOR

We compare the performance of MAYA-Wasserstein, MAYA-KL and MAYA-DTW with all IRL algorithms implemented in the imitation library of (Gleave et al., 2022). It includes implementations of Generative Adversarial Imitation Learning (GAIL), Behavioral Cloning (BC), Dataset Aggregation (DAgger), Adversarial Inverse Reinforcement Learning (AIRL), Density-based reward modeling (DBR), Reward Learning through Preference Comparisons (Pref-Comp), Maximum Causal Entropy Inverse Reinforcement Learning (MCE) and Soft Q Imitation learning (SQL). These methods are the baseline references of IRL methods. We provide a full explanation of these methods in App 8. We also compare our results with a generalized linear model (GLM) applied to the full trajectory. In this case, the GLM captures each bee trajectory through a response transformation, while allowing the variance of each measurement to depend on its predicted value. We further introduce a variant that incorporates contextual information x_t as covariates (GLM-Context).

The reported results are in Tab 2 for the MSE. As the best performances are almost identical for the MAE we provide MAE results in App 8.1. Methods such as Pref-comp, MCE, and DBR tend to overshoot the bee trajectories and focus mainly on minimizing regret (policy optimization), as the context provides all the necessary information to choose correctly. These methods fail to reproduce bee behavior: **the divergence between the cumulative regret trajectories grows over time, since the learned policy accumulates substantially less regret**. In fact, these methods generally act like LinUCB. GAIL, Dagger and SQL fail to capture the full range of behaviors, instead tending to mimic the most frequently represented populations in the dataset. AIRL reproduces bee trajectories identically, and can therefore be seen as a full copy-paste of the dataset without any real capacity for generalization (see App. 8.1 for more details). **AIRL actually memorizes observed trajectories rather than capturing the underlying decision-making mechanisms**. When we fine-tune the parameters of these methods, we reinforce the influence of the expert on the learning process (see App 9). However, this requires more computation time, and the resulting MSE/MAE values are higher than those obtained with MAYA (considering a large set of τ). The GLM can be considered the most challenging baseline to outperform in terms of MSE/MAE, since it is explicitly designed to fit **the bee’s T -trial trajectory rather than to learn a policy**. Adding contextual covariates has only a minor influence, which is expected because the GLM primarily captures direct statistical dependencies

432 Table 2: MSE comparison of methods across the five datasets. Values are reported as mean \pm
 433 standard deviation. We fix $\tau = 7$ for all MAYA variant. Best performance of comparative methods
 434 are reported here.

Dataset	GAIL	BC	AIRL	Digger	DBR	MCE	Pref-Comp	SQL	GLM (no ctx)	GLM (ctx)	MAYA-KL	MAYA-Wass	MAYA-DTW
1	29.6 \pm 41	5.16 \pm 3	0 \pm 0	22.8 \pm 32	43.1 \pm 54	148.83 \pm 38	104.5 \pm 57	26.2 \pm 19	3.0 \pm 1	3.0 \pm 1	4.2 \pm 3	2.5 \pm 1	6.7 \pm 7
2	23.2 \pm 17	2.86 \pm 2	0 \pm 0	9.67 \pm 12	15.26 \pm 16	49.5 \pm 14	24.54 \pm 18	9.8 \pm 6	1.4 \pm 2	1.4 \pm 2	1.6 \pm 1	1.5 \pm 1	1.3 \pm 3
3	27.5 \pm 40	5.5 \pm 4	0 \pm 0	21.6 \pm 46	41.38 \pm 51	140.3 \pm 34	125.7 \pm 44	22.6 \pm 15	3.1 \pm 1	3.1 \pm 1	3.7 \pm 3	2.6 \pm 1	5.7 \pm 5
4	25.3 \pm 39	5.35 \pm 4	0 \pm 0	22.9 \pm 34	46.06 \pm 55	148.2 \pm 39	124.1 \pm 52	25.3 \pm 20	3.0 \pm 1	3.0 \pm 1	3.7 \pm 3	3.6 \pm 2	8.3 \pm 10
5	47.7 \pm 45	26.7 \pm 42	0 \pm 0	25.8 \pm 47	115.7 \pm 242	374 \pm 311	284 \pm 254	25.0 \pm 16	8.0 \pm 8	7.9 \pm 8	3.4 \pm 3	4.5 \pm 5	10.3 \pm 11

439
 440 rather than adaptive decision-making. Among all variants, MAYA with the Wasserstein distance
 441 (MAYA-Wass) consistently achieves the best performance across datasets, highlighting its robust-
 442 ness in capturing trajectory similarity. We report in Fig 3a and Fig 3b MAYA’s fitting for two bees.

486 same cluster: $\text{ClusterAcc} = \frac{1}{J} \sum_{i=1}^J \mathbf{1} \left[\kappa(R(\pi_{\text{bee}}^j, 1, T) = R(\pi_{\text{MAYA}}^j, 1, T)) \right]$, where J denotes the
 487 total number of bees across all datasets (here, 80), π_{bee}^j is the policy of the j th bee, and π_{MAYA}^j is the
 488 policy generated by MAYA for the j th bee. We use $K = 2$ clusters to mirror the two archetypes.
 489 Clustering I (Euclidean) uses Euclidean distance on time series and requires equal lengths. We pool
 490 all bees across datasets. Lengths differ, so we truncate each series to the minimum common length
 491 (22). We apply a second clustering with Dynamic Barycenter Averaging (DBA); a DTW-based
 492 clustering method. It handles unequal lengths and local time shifts, so no truncation is needed. We
 493 report DBA clustering of real bee trajectories in App10. We report the confusion matrix (real vs.
 494 simulated labels) in Tab 3a. The MAYA-Wass error fluctuations remain bounded with Gaussian
 495 amplitude. It shows that MAYA-Wass’s dynamics are stable, almost 0-centered with a maximum
 496 standard deviation error equal to 3. We provide additional figures of Euclidean Clustering in App 10.
 497

498
 499 **Table 3: Left:** For all bees in the five datasets, we report average ClusterAcc (%) under two prototype
 500 aggregation regimes: (i) Euclidean averaging with a maximum sequence length of 22, and (ii) DBA
 501 with a maximum sequence length of 40. Across both regimes, MAYA–Wass achieves the highest
 502 accuracy (79% and 91%), followed by MAYA–KL and MAYA–DTW. Standard errors are $\leq 1\%$ for all
 503 entries and are omitted for readability. **Right:** Proportion of a_t according to all trials for all dataset
 504 (5). We fix $\tau = 7$ for all MAYA variants.

	MAYA-KL	MAYA-Wass	MAYA-DTW	Epsilon-Greedy	Lin-UCB	UCB	Uniform
ClusterAcc (Euclidean, Max L = 22)	77%	79%	70%	34.4% \pm 2	10.5% \pm 1	22.6% \pm 1	32.5% \pm 2
ClusterAcc (DBA, Max L = 40)	84%	91%	80%	31.1% \pm 1.5	16.2% \pm 0.8	22.2% \pm 0.9	30.5% \pm 1.4
	(a) ClusterAcc (%)		(b) MAYA explainability for all bees choices				

505
 506 **Figure 4:** Average difference between MAYA-Wass ($\tau = 7$) predictions and real trajectories, expressed as
 507 $R(\pi_{\text{MAYA-Wass}}, 1, t) - R(\pi_{\text{bee}}, 1, t)$ (z-axis), for the two DBA clusters (0 and 1). The red band represents $\pm\sigma$
 508 (standard deviation). These surfaces show how the average prediction error evolves across trials (t) and
 509 cumulative regret (y -axis).

5 DISCUSSION

510 We introduced MAYA, a sequential imitation-learning model that forecasts individual bee trajectories
 511 across heterogeneous cognitive strategies. Across datasets and weather conditions, **a memory**
 512 **window of ($\tau = 7$) represents a reasonable trade-off with weather-driven variability while main-**
 513 **taining robust predictive performance.** It corresponds to 15–30 minutes in our protocol (\approx seven
 514 trials, depending on the bee). Among variants, MAYA-Wass achieved the strongest overall per-
 515 formance, while MAYA-KL and MAYA-DTW remained competitive. Beyond accuracy, MAYA
 516 provides interpretable, per-trial explanations of choice, enables the generation of “artificial bees,”
 517 and supports forward simulation for ecological what-if scenarios. These results position MAYA
 518 as a viable alternative to IRL baselines and traditional statistical models. Future work will deploy
 519 MAYA in large-scale ecological simulations to assess its predictive value for ecological manage-
 520 ment decisions.

540 REFERENCES
541

542 Zoe C. Ashwood, Nicholas A. Roy, Ji Hyun Bak, The International Brain Laboratory, and
543 Jonathan W. Pillow. Inferring learning rules from animal decision-making. In *Proceedings of*
544 *the 34th International Conference on Neural Information Processing Systems*, NIPS '20, Red
545 Hook, NY, USA, 2020a. Curran Associates Inc. ISBN 9781713829546.

546 Zoe C. Ashwood, Nicholas A. Roy, Ji Hyun Bak, Jonathan W. Pillow, and International Brain Lab-
547 oratory. Inferring learning rules from animal decision-making. *Advances in Neural Informa-*
548 *tion Processing Systems*, 33:3442–3453, 2020b. ISSN 1049-5258. URL <https://pubmed.ncbi.nlm.nih.gov/36177341/>.

549

550 Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
551 problem. *Machine Learning*, 47(2-3):235–256, 2002. doi: 10.1023/A:1013689704352.

552

553 Philippe Besse, Brendan Guilloet, Jean-Michel Loubes, and Royer François. Review and perspec-
554 tive for distance based trajectory clustering, 2015. URL <https://arxiv.org/abs/1508.04904>.

555

556 Jay M. Biernaskie, Steven C. Walker, Robert J. Gegear, Associate Editor: Marc Mangel, and Editor:
557 Michael C. Whitlock. Bumblebees learn to forage like bayesians. *The American Naturalist*, 174
558 (3):413–423, 2009. ISSN 00030147, 15375323. URL <http://www.jstor.org/stable/10.1086/603629>.

559

560 Djallel Bouneffouf and Emmanuelle Claeys. Online hyper-parameter tuning for the contextual ban-
561 dit. In *ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal*
562 *Processing (ICASSP)*, pp. 3445–3449, 2021. doi: 10.1109/ICASSP39728.2021.9413526.

563

564 Jessica F. Cantlon and Elizabeth M. Brannon. Shared system for ordering small and large numbers in
565 monkeys and humans. *Psychological Science*, 17(5):401–406, 2006. doi: 10.1111/j.1467-9280.
566 2006.01719.x. PMID: 16683927.

567

568 Nuno Capela, Xiaodong Duan, Elżbieta M. Ziółkowska, and Christopher John Topping. Mod-
569 eling foraging strategies of honey bees as agents in a dynamic landscape representation. *Food*
570 *and Ecological Systems Modelling Journal*, 5:e99103, 2024. doi: 10.3897/fmj.5.99103. URL
571 <https://doi.org/10.3897/fmj.5.99103>.

572

573 Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
574 reinforcement learning from human preferences, 2023. URL <https://arxiv.org/abs/1706.03741>.

575

576 Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. Robots that can adapt like
577 animals. *Nature*, 521(7553):503–507, May 2015. ISSN 1476-4687. doi: 10.1038/nature14422.
578 URL <http://dx.doi.org/10.1038/nature14422>.

579

580 Marie Dacke and Mandyam V Srinivasan. Evidence for counting in insects. *Animal cognition*, 11:
581 683–689, 2008. Publisher: Springer.

582

583 Stanislas Dehaene. *The Number Sense: How the Mind Creates Mathematics*. Oxford University
584 Press, Oxford, UK, revised and updated edition edition, 2011.

585

586 Vincent Dumoulin, Daniel D. Johnson, Pablo Samuel Castro, Hugo Larochelle, and Yann Dauphin.
587 A density estimation perspective on learning from pairwise human preferences, 2024. URL
588 <https://arxiv.org/abs/2311.14115>.

589

590 Marco Fiandri, Alberto Maria Metelli, and Francesco Trovò. Sliding-window thompson sampling
591 for non-stationary settings. *CoRR*, abs/2409.05181, 2024. doi: 10.48550/ARXIV.2409.05181.
592 URL <https://doi.org/10.48550/arXiv.2409.05181>.

593

594 Dylan J. Foster, Adam Block, and Dipendra Misra. Is behavior cloning all you need? understanding
595 horizon in imitation learning, 2024. URL <https://arxiv.org/abs/2407.15007>.

596

597 Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse rein-
598 forcement learning, 2018. URL <https://arxiv.org/abs/1710.11248>.

594 Maxence Gérard, Anahit Amiri, Bérénice Cariou, and Emily Baird. Short-term exposure to
 595 heatwave-like temperatures affects learning and memory in bumblebees. *Global Change Biology*
 596 28(14):4251–4259, 2022.

597 Martin Giurfa, Claire Marcout, Peter Hilpert, Catherine Thevenot, and Rosa Rugani. An insect brain
 598 organizes numbers on a left-to-right mental number line. *Proceedings of the National Academy
 599 of Sciences*, 119(44):e2203584119, 2022.

600 Murray Glanzer and Anita R Cunitz. Two storage mechanisms in free recall. *Journal of verbal
 601 learning and verbal behavior*, 5(4):351–360, 1966.

602 Adam Gleave, Mohammad Taufeeque, Juan Rocamonde, Erik Jenner, Steven H. Wang, Sam Toyer,
 603 Maximilian Ernestus, Nora Belrose, Scott Emmons, and Stuart Russell. imitation: Clean imitation
 604 learning implementations. arXiv:2211.11972v1 [cs.LG], 2022. URL <https://arxiv.org/abs/2211.11972>.

605 Hans J Gross, Mario Pahl, Aung Si, Hong Zhu, Jürgen Tautz, and Shaowu Zhang. Number-based
 606 visual generalisation in the honeybee. *PLoS one*, 4(1):e4263, 2009. Publisher: Public Library of
 607 Science San Francisco, USA.

608 Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning, 2016. URL <https://arxiv.org/abs/1606.03476>.

609 Scarlett R Howard, Aurore Avarguès-Weber, Jair E Garcia, Andrew D Greentree, and Adrian G
 610 Dyer. Numerical ordering of zero in honey bees. *Science*, 360(6393):1124–1126, 2018. Publisher:
 611 American Association for the Advancement of Science.

612 Scarlett R Howard, Aurore Avarguès-Weber, Jair E Garcia, Andrew D Greentree, and Adrian G
 613 Dyer. Symbolic representation of numerosity by honeybees (*Apis mellifera*): matching characters
 614 to small quantities. *Proceedings of the Royal Society B*, 286(1904):20190238, 2019. Publisher:
 615 The Royal Society.

616 Véronique Izard, Coralie Sann, Elizabeth S Spelke, and Arlette Streri. Newborn infants perceive ab-
 617 stract numbers. *Proceedings of the National Academy of Sciences*, 106(25):10382–10385, 2009.

618 Jackelyn M Kembro, Mathieu Lihoreau, Joan Garriga, Ernesto P Raposo, and Frederic Bartumeus.
 619 Bumblebees learn foraging routes through exploitation–exploration cycles. *Journal of the Royal
 620 Society Interface*, 16(156):20190103, 2019.

621 Ann-Katrin Kraeuter, Paul C Guest, and Zoltán Sarnyai. The y-maze for assessment of spatial
 622 working and reference memory in mice. In *Pre-clinical models: Techniques and protocols*, pp.
 623 105–111. Springer, 2018.

624 Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-bandit approach to
 625 personalized news article recommendation. In *Proceedings of the 19th International Conference
 626 on World Wide Web (WWW)*, pp. 661–670. ACM, 2010. doi: 10.1145/1772690.1772758.

627 Stephan Lochner, Daniel Honerkamp, Abhinav Valada, and Andrew D. Straw. Reinforcement learn-
 628 ing as a robotics-inspired framework for insect navigation: From spatial representations to neural
 629 implementation, 2024. URL <https://arxiv.org/abs/2406.01501>.

630 Peter McCullagh and John Ashworth Nelder. *Generalized Linear Models*. Chapman and Hall/CRC,
 631 2nd edition, 1989. ISBN 9780412317606.

632 Randolph Menzel, Uwe Greggers, Alan Smith, Sandra Berger, Robert Brandt, Sascha Brunke, Gesine
 633 Bundrock, Sandra Hülse, Tobias Plümpe, Frank Schaupp, et al. Honey bees navigate according to
 634 a map-like spatial memory. *Proceedings of the National Academy of Sciences*, 102(8):3040–3045,
 635 2005.

636 John Ashworth Nelder and Robert WM Wedderburn. Generalized linear models. *Journal of the
 637 Royal Statistical Society: Series A (General)*, 135(3):370–384, 1972. doi: 10.2307/2344614.

638 Andreas Nieder. The neuronal code for number. *Nature Reviews Neuroscience*, 17(6):366–382,
 639 2016.

648 Andreas Nieder. The adaptive value of numerical competence. *Trends in Ecology & Evolution*, 35
649 (7):605–617, 2020.

650
651 Siddharth Reddy, Anca D. Dragan, and Sergey Levine. {SQL}: Imitation learning via reinforce-
652 ment learning with sparse rewards. In *International Conference on Learning Representations*,
653 2020. URL <https://openreview.net/forum?id=S1xKd24twB>.

654 Stéphane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. No-regret reductions for imitation
655 learning and structured prediction. *CoRR*, abs/1011.0686, 2010. URL <http://arxiv.org/abs/1011.0686>.

656
657 Stephane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. A reduction of imitation learning and
658 structured prediction to no-regret online learning, 2011. URL <https://arxiv.org/abs/1011.0686>.

659
660 Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. MIT Press,
661 Cambridge, MA, 1998.

662
663 Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. The MIT Press,
664 second edition, 2018. URL <http://incompleteideas.net/book/the-book-2nd.html>.

665
666 Catarina Vila Pouca, Connor Gervais, Joshua Reed, Jade Michard, and Culum Brown. Quantity
667 discrimination in port jackson sharks incubated under elevated temperatures. *Behavioral Ecology
and Sociobiology*, 73:1–9, 2019.

668
669 P. C. Wason. On the failure to eliminate hypotheses in a conceptual task. *Quarterly Journal of
Experimental Psychology*, 12(3):129–140, 1960. doi: 10.1080/17470216008416717.

670
671 Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. Sim-to-real transfer in deep rein-
672 force-
673 ment learning for robotics: a survey. In *2020 IEEE Symposium Series on Computational
Intelligence (SSCI)*, pp. 737–744, 2020. doi: 10.1109/SSCI47803.2020.9308468.

674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 6 APPENDIX

703 704 6.1 DATASET DESCRIPTION

705
 706 In this dataset, bees are confronted to a numerical discrimination task. Bees first enter the maze in
 707 an entrance chamber before flying through a hole and facing two images located at the end of each
 708 arm. The image has a different number of dots : for example in dataset 1 and 2, one of the image
 709 has two dots while the other have four dots. If the bee chooses the correct image (i.e. the side with
 710 the highest number of dots), it will be rewarded with a sugar reward (50% sugar/water) placed in
 711 a pipette in the middle of the image, alternatively if it chooses the incorrect image, then it will be
 712 punished by finding a bitter tasting solution (quinine solution) within the pipette. Bees cannot detect
 713 (neither visually nor by odor) which solution is located where. Then, they are only able to know
 714 the image on each side before choosing. Between each trials the bee will go back to the hive to
 715 deliver the collected sugar, before returning back the maze for another trial (typically lasting a few
 716 minutes). During this time, the experimenter randomly changes the images or not, and varying the
 717 position of the dots. The localization of the correct image alternate between the right and left arm
 718 according to a pseudo-random sequence. Each dataset include 16 bees.

719 Table 4: Datasets summary

720 Dataset	721 nb indiv	722 T	723 Location	724 Weather
722 Dataset 1	723 16	724 40	725 France	726 Cold
723 Dataset 2	724 16	725 22	726 France	727 Hot
724 Dataset 3	725 16	726 40	727 France	728 Moderate
725 Dataset 4	726 16	727 40	728 Australia	729 Cold
726 Dataset 5	727 16	728 30	729 Australia	730 Hot

747 Figure 5: Proportion of cumulative regret for the five datasets, per bees

756 6.2 MSE AND MAE OF MAYA ACCORDING TO τ
757

side,window	MAYA_KL	MAYA_KL	MAYA_Wass	MAYA_Wass	MAYA_DTW	MAYA_DTW
mean MSE	mean MAE	mean MSE	mean MAE	mean MSE	mean MAE	
3.0	2.7 ± 2	1.2 ± 0.7	2.7±2	1.2 ± 0.6	7.4 ± 10	1.9 ± 1
4.0	4.2 ± 4	1.5 ± 0.8	3.0 ± 2	1.3 ± 0.6	8.0 ± 13	1.9 ± 1
5.0	4.0 ± 4	1.4 ± 0.9	3.8 ± 3	1.5 ± 0.6	6.8 ± 7	1.9 ± 0.9
6.0	4.1 ± 2	1.6 ± 0.6	2.8 ± 2	1.2 ± 0.5	7.5 ± 7	2.0 ± 1
7.0	4.2 ± 3	1.5 ± 0.7	2.5 ± 1	1.2 ± 0.5	6.7 ± 7	1.9 ± 1
8.0	5.5 ± 5	1.7 ± 0.9	3.7 ± 3	1.4 ± 0.7	7.2 ± 7.8	2.0 ± 1
9.0	5.9 ± 4	1.4 ± 0.7	2.9 ± 2	1.3 ± 0.6	8.0 ± 10	2.1 ± 1
10.0	5.5 ± 5	1.6 ± 0.9	4.1 ± 4	1.5 ± 0.8	8.7 ± 10	2.0 ± 1
20.0	5.4 ± 4	1.6 ± 0.8	4.8 ± 5	1.5 ± 0.9	8.7 ± 10	2.1 ± 1
30.0	4.3 ± 3	1.5 ± 0.6	4.4 ± 3	1.5 ± 0.7	8.4 ± 10	2.0 ± 1
$T = 40$	5.1 ± 5	1.6 ± 1	4.8 ± 6	1.5 ± 0.9	9.7 ± 11	2.2±1

764 Table 5: Dataset 1 (Cold weather, France)
765

side,window	MAYA_KL	MAYA_KL	MAYA_Wass	MAYA_Wass	MAYA_DTW	MAYA_DTW
mean	mean	mean	mean	mean	mean	mean
3.0	1.2±1	0.7±0.4	1.3±1	0.8±0.4	2.4±1	1.1±0.4
4.0	1.3±0.8	0.8±0.3	1.5±1	0.8±0.4	2.7±2	1.1±0.6
5.0	2.1±1	1.0±0.4	1.9±2	1.0±0.5	2.4±2.7	1.0±0.6
6.0	2.1±1	1.0±0.5	1.5±1	0.8±0.4	3.5±3	1.3±0.7
7.0	1.6±1	0.9±0.4	1.5±1	0.8±0.4	3.0±3	1.2±0.6
8.0	1.9±1	1.0±0.3	1.8±1	0.9±0.4	2.8±2	1.2±0.6
9.0	1.8±1	0.9±0.4	2.2±2	1.0±0.6	2.5±2	1.1±0.6
10.0	2.3±2	1.0±0.5	2.1±2	1.0±0.6	2.7±1	1.2±0.6
$T = 22$	3.2±3	1.2±0.6	2.8±1	1.2±0.4	2.1±1	1.0±0.5

766 Table 6: Dataset 2 (Hot weather, France)
767

side,window	MAYA_KL	MAYA_KL	MAYA_Wass	MAYA_Wass	MAYA_DTW	MAYA_DTW
mean MSE	mean MAE	mean MSE	mean MAE	mean MSE	mean MAE	
3.0	3.0±2	1.3±0.6	4.0±4	1.4±0.8	8.4±12	2.0±1.4
4.0	4.4±4	1.5±0.9	3.9±4	1.4±0.8	7.4±11	1.9±1
5.0	4.3±4	1.5±0.7	3.0±3	1.2±0.7	7.3±11	1.9±1
6.0	4.4±4	1.5±0.8	3.1±2	1.2±0.6	7.7±9	2.0±1
7.0	3.2±4	1.4±0.6	3.9±4	1.2±0.5	8.0±10	1.8±0.8
8.0	4.1±3	1.5±0.7	2.5±1	1.1±0.4	8.3±9	2.1±1
9.0	5.8±5	1.8±0.8	4.2±2	1.6±0.6	8.1±8	2.1±1
10.0	3.6±3	1.4±0.7	4.9±5	1.6±1	7.1±9	1.9±1
20.0	5.3±4	1.7±0.8	5.2±5	1.7±0.7	6.3±8	1.9±1
30.0	3.6±2	1.4±0.5	4.4±3	1.6±0.7	8.7±9	2.2±1
$T = 40$	4.2 ± 4	1.5 ± 0.8	3.45±3	1.3±0.6	9.3 ± 11	2.2±1

772 Table 7: Dataset 3 (Moderate weather, France)
773

side,window	MAYA_KL	MAYA_KL	MAYA_Wass	MAYA_Wass	MAYA_DTW	MAYA_DTW
mean MSE	mean MAE	mean MSE	mean MAE	mean MSE	mean MAE	
3.0	4.5 ± 4	1.6 ± 0.9	3.0 ± 4	1.2 ± 0.9	7.1 ± 10	1.8 ± 1.3
4.0	3.8 ± 3	1.5 ± 0.7	3.6 ± 3	1.5 ± 0.6	7.1 ± 9	1.9 ± 1
5.0	4.9 ± 3	1.7 ± 0.7	2.6 ± 3	1.2 ± 0.7	7.6 ± 11	1.9 ± 1
6.0	4.1 ± 3	1.5 ± 0.7	2.6 ± 1	1.3 ± 0.4	7.8 ± 9	2.0 ± 1
7.0	3.6 ± 3	1.4 ± 0.6	3.2 ± 2	1.5 ± 0.5	8.3 ± 10	2.1 ± 1
8.0	6.2 ± 8	1.7 ± 1	3.4 ± 2	1.3 ± 0.5	6.2 ± 7	1.8 ± 1
9.0	4.6 ± 3	1.6 ± 0.7	3.1 ± 2	1.3 ± 0.5	8.1 ± 7	2.1 ± 1
10.0	7.7 ± 7	2.0 ± 1	4.8 ± 4	1.6 ± 0.8	8.4 ± 10	2.0 ± 1
20.0	5.4 ± 4	1.7 ± 0.8	4.4 ± 2	1.6 ± 0.5	8.5 ± 11	2.1 ± 1.2
30.0	5.5 ± 4	1.7 ± 0.7	6.7 ± 7	1.9 ± 0.9	9.0 ± 12	2.1 ± 1
$T = 40$	4.2 ± 5	1.4 ± 0.8	3.3 ± 2	1.3 ± 0.6	9.0 ± 10	2.2 ± 1

774 Table 8: Dataset 4 (Cold weather, Australia)
775

side,window	MAYA_KL	MAYA_KL	MAYA_Wass	MAYA_Wass	MAYA_DTW	MAYA_DTW
mean MSE	mean MAE	mean MSE	mean MAE	mean MSE	mean MAE	
3	6.6 ± 9	1.6 ± 1	6.3 ± 9	1.6 ± 1	8.6 ± 10	1.9 ± 1
4	8.1 ± 8	2.0 ± 1	10.4 ± 12	2.2 ± 1	9.4 ± 8	2.1 ± 1
5	4.3 ± 5	1.4 ± 0.9	8.4 ± 10	2.0 ± 1	10.4 ± 12	2.2 ± 1
6	3.6 ± 3	1.4 ± 0.7	3.9 ± 8	1.2 ± 1	12.0 ± 11	2.3 ± 1
7	3.4 ± 3	1.2 ± 0.9	4.5 ± 5	1.5 ± 1	10.3 ± 11	2.1 ± 1
8	4.1 ± 3	1.5 ± 0.6	4.4 ± 5	1.5 ± 0.9	10.3 ± 12	2.2 ± 1
9	5.5 ± 8	1.6 ± 1	5.7 ± 6	1.7 ± 1	12.9 ± 16	2.4 ± 1
10	3.3 ± 3	1.3 ± 0.6	3.3 ± 3	1.3 ± 0.7	9.6 ± 10	2.1 ± 1
20	6.4 ± 6	1.8 ± 1	4.7 ± 5	1.5 ± 0.8	11.8 ± 13	2.3 ± 1
$T = 30$	6.1 ± 5	1.8 ± 0.9	6.1 ± 5	1.8 ± 0.9	9.2 ± 10	2.1 ± 1

776 Table 9: Dataset 5 (Hot weather, Australia)
777778 Table 10: MSE and MAE of MAYA as a function of the window size τ . The T row denotes the
779 no-window setting ($\tau = T$), where at each trial the full trajectory up to time t is used.
780

810
811
7 UNDERSTANDING THE LEARNING PROCESS812
813
7.1 MAYA EXPLAINABILITY WITH $\tau = 7$ 814
815
816
817
818
819
820
821
822
823
Figure 6: MAYA-KL824
Figure 7: MAYA-Wass824
Figure 8: MAYA-DTW825
826
Figure 9: For bee 1 (fast learner, low regret) from dataset 2 we report choice interpretability for
827
MAYA-variants ($\tau = 7$). **Left: LinUCB, Top: Uniform, Right: UCB, Bottom: EpsilonGreedy.**828
829
830
831
832
833
834
835
836
837
Figure 10: MAYA-KL838
Figure 11: MAYA-Wass839
Figure 12: MAYA-DTW840
841
Figure 13: For bee 15 (slow learner, high regret) from dataset 2 we report choice interpretability for
MAYA-variants ($\tau = 7$). **Left: LinUCB, Top: Uniform, Right: UCB, Bottom: EpsilonGreedy.**842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864 7.2 MAYA EXPLAINABILITY WITH $\tau = 3$
865870 Figure 14: MAYA-KL
871872 Figure 15: MAYA-Wass
873874 Figure 16: MAYA-DTW
875876 Figure 17: For bee 1 (fast learner, low regret) from dataset 2 we report choice interpretability for
877 MAYA-variants ($\tau = 3$). **Left: LinUCB, Top: Uniform, Right: UCB, Bottom: EpsilonGreedy.**
878880 Figure 18: MAYA-KL
881884 Figure 19: MAYA-Wass
885888 Figure 20: MAYA-DTW
889890 Figure 21: For bee 15 (slow learner, high regret) from Dataset 2 we report choice interpretability for
891 MAYA-variants ($\tau = 3$). **Left: LinUCB, Top: Uniform, Right: UCB, Bottom: EpsilonGreedy.**
892905 Figure 22: Bee 1
906905 Figure 23: Bee 15
906907 Figure 24: Regret modelization for bee 1 (lower cumulative regret) and bee 15 (higher cumulative
908 regret) of Dataset 2, with $\tau = 3$.
909910
911
912
913
914
915
916
917

918 8 COMPARATIVE METHODS DESCRIPTION
919

- 920 • Generative Adversarial Imitation Learning (GAIL) GAIL learns a policy by simultaneously
921 training it with a discriminator that aims to distinguish expert trajectories against trajectories
922 from the learned policy. (Ho & Ermon, 2016)
- 923 • Behavioral Cloning (BC) Behavioral cloning directly learns a policy by using supervised
924 learning on observation-action pairs from expert demonstrations. It is a simple approach
925 to learning a policy, but the policy often generalizes poorly and does not recover well from
926 errors. (Foster et al., 2024).
- 927 • AIRL, similar to GAIL, adversarially trains a policy against a discriminator that aims to
928 distinguish the expert demonstrations from the learned policy. Unlike GAIL, AIRL recov-
929 ers a reward function that is more generalizable to changes in environment dynamics. (Fu
930 et al., 2018).
- 931 • DAgger (Dataset Aggregation) iteratively trains a policy using supervised learning on a
932 dataset of observation-action pairs from expert demonstrations (like behavioral cloning),
933 runs the policy to gather observations, queries the expert for good actions on those obser-
934 vations, and adds the newly labeled observations to the dataset. DAgger improves on be-
935 havioral cloning by training on a dataset that better resembles the observations the trained
936 policy is likely to encounter, but it requires querying the expert online (Ross et al., 2011).
- 937 • Density-based reward modeling is an inverse reinforcement learning (IRL) technique that
938 assigns higher rewards to states or state-action pairs that occur more frequently in an ex-
939 pert’s demonstrations. The key intuition behind this method is to incentivize the agent to
940 take actions that resemble the expert’s actions in similar states (Dumoulin et al., 2024).
- 941 • Maximum Causal Entropy Inverse Reinforcement Learning (MCE IRL) : The principle of
942 maximum causal entropy is a method that extends the classical maximum entropy idea
943 to sequential settings. Instead of considering probabilities in isolation, it uses causally
944 conditioned probabilities, which means that the model explicitly accounts for the fact that
945 information is revealed step by step over time. This allows us to properly capture how side
946 information becomes available and how it influences decisions at each stage (Biernaskie
947 et al., 2009).
- 948 • Preference Comparisons : The preference comparison algorithm learns a reward function
949 from preferences between pairs of trajectories. The comparisons are modeled as being
950 generated from a Bradley-Terry (or Boltzmann rational) model, where the probability of
951 preferring trajectory A over B is proportional to the exponential of the difference between
952 the return of trajectory A minus B. In other words, the difference in returns forms a logit
953 for a binary classification problem, and accordingly the reward function is trained using a
954 cross-entropy loss to predict the preference comparison. (Christiano et al., 2023).
- 955 • Soft Q Imitation Learning (SQL) : Soft Q Imitation learning learns to imitate a policy from
956 demonstrations by using the DQN algorithm with modified rewards. During each policy
957 update, half of the batch is sampled from the demonstrations and half is sampled from the
958 environment. Expert demonstrations are assigned a reward of 1, and the environment is
959 assigned a reward of 0. This encourages the policy to imitate the demonstrations, and to
960 simultaneously avoid states not seen in the demonstrations (Reddy et al., 2020).
- 961 • GLM : A Generalized Linear Model (GLM) is a statistical framework that extends linear
962 regression to response variables with non-Gaussian distributions. In our setting, the regret
963 trajectory $R(\pi, 1, T)$ is modeled as a function of time, $R(\pi, 1, T) \sim f(t)$, where f is linked
964 to a linear predictor through a canonical link function. A Poisson GLM is employed when
965 the noise structure is count-like, while a Gamma GLM is used to capture multiplicative
966 noise. This allows us to statistically frame the evolution of regret as a stochastic pro-
967 cess, while accounting for heterogeneous variability across agents. (Nelder & Wedderburn,
968 1972).
- 969 • Contextual GLM : The contextual variant incorporates side information (e.g., environmen-
970 tal or experimental conditions) into the predictor, enabling the model to capture how context
971 modulates regret dynamics. Then $R(\pi, 1, T) \sim f(t, x_t)$ (McCullagh & Nelder, 1989).

972 8.1 MAE COMPARISON OF METHODS
973974 Table 11: MAE comparison of methods across the five datasets. Values are reported as mean \pm
975 standard deviation. We fix $\tau = 7$ for all MAYA variant
976

Dataset	GAIL	BC	AIRL	Dagger	DBR	MCE	Pref-Comp	SQIL	GLM (no ctx)	GLM (ctx)	MAYA-KL	MAYA-Wass	MAYA-DTW
1	3.75 \pm 2.5	1.61 \pm 0.79	0 \pm 0	2.9 \pm 2.8	4.3 \pm 3.8	10.38 \pm 1.60	8.35 \pm 3.25	3.71 \pm 1	1.4 \pm 0.3	1.4 \pm 0.3	1.5 \pm 0.7	1.2 \pm 0.5	1.9 \pm 1
2	3.69 \pm 1.8	1.24 \pm 0.72	0 \pm 0	1.93 \pm 1.7	2.72 \pm 1.89	6.04 \pm 1.0	3.7 \pm 1.9	2.18 \pm 0.9	0.8 \pm 0.5	0.8 \pm 0.5	1.4 \pm 0.6	1.5 \pm 0.5	2.1 \pm 1
3	3.62 \pm 2.4	1.79 \pm 0.98	0 \pm 0	2.6 \pm 3.1	3.4 \pm 4.1	8.13 \pm 1.10	9.76 \pm 1.75	3.2 \pm 1	1.4 \pm 0.4	1.4 \pm 0.4	3.7 \pm 3	2.6 \pm 1	1.8 \pm 0.8
4	3.1 \pm 2.8	1.65 \pm 0.86	0 \pm 0	3.0 \pm 2.7	4.60 \pm 4.8	10 \pm 1.6	9.7 \pm 1.7	3.2 \pm 1	2.1 \pm 1	2.1 \pm 1	1.4 \pm 0.6	1.5 \pm 0.5	2.1 \pm 1
5	4.9 \pm 2.8	3.23 \pm 3	0 \pm 0	6.5 \pm 5.1	5.5 \pm 7.8	15.0 \pm 7.6	14.3 \pm 6.92	4.52 \pm 2	8.0 \pm 8	2.2 \pm 1	1.2 \pm 0.9	1.3 \pm 0.7	2.1 \pm 1

977
978
979
980
981
982 **More details about the 0-MSE/MAE of AIRL** AIRL is not guaranteed to reproduce expert tra-
983 jectories in general (e.g., continuous control), but it can do so in small, deterministic MDPs where
984 the expert policy is simple and near-deterministic. This is exactly our setting: the animal’s deci-
985 sions form a low-dimensional bandit strategy with discrete actions with sequences of 40 trials and
986 where the reward is fully deterministic (according to the door with the highest number of stimuli on
987 the Y-maze). In such environments, AIRL can recover a reward sequence whose optimal policy is
988 identical to the expert’s mapping from states to actions, leading to trajectories that match exactly.
989

990 9 FINETUNING IMITATION LEARNING
991

992 We present ablations over the fine-tuning budget of the IRL methods. As the tuning knobs differ
993 across methods, we use the unified notation b for the method-specific budget (see Tab 12). The best
994 results are summarized in the main text.

$b^{(\text{GAIL})}$	$b^{(\text{BC})}$	$b^{(\text{Dagger})}$	$b^{(\text{DBR})}$	$b^{(\text{MCE})}$	$b^{(\text{PrefComp})}$	$b^{(\text{PrefComp})}$
epochs	epochs	env. steps	epochs	epochs	# envs	eval episodes

995 996 997 998 Table 12: Hyperparameters of each comparative methods.
999

	MSE (b=1)	MAE (b=1)	MSE (b=10)	MAE (b=10)	MSE (b=50)	MAE (b=50)
GAIL	29.6 \pm 41	3.75 \pm 2.5	29.6 \pm 41	3.75 \pm 2.5	29.6 \pm 41	3.75 \pm 2.5
BC	23.2 \pm 30.8	3.26 \pm 2.74	19.8 \pm 26.5	3.1 \pm 2.3	5.16 \pm 3.94	1.61 \pm 0.79
AIRL	0 \pm 0	0 \pm 0	0 \pm 0	0 \pm 0	0 \pm 0	0 \pm 0
Dagger	22.8 \pm 32.9	2.9 \pm 2.8	36.9 \pm 52.0	3.7 \pm 3.8	32.5 \pm 50.6	3.7 \pm 3.3
Density based reward	43.1 \pm 54.81	4.3 \pm 3.8	43.1 \pm 54.8	4.3 \pm 3.8	43.1 \pm 54.8	4.3 \pm 3.8
MCE	148.83 \pm 38.47	10.38 \pm 1.60	148.83 \pm 38.47	10.38 \pm 1.60	148.83 \pm 38.47	10.38 \pm 1.60
Pref-Comp	120.25 \pm 52.1	9.17 \pm 2.99	114 \pm 53	8.9 \pm 2.9	104.5 \pm 57	8.35 \pm 3.25
SQIL	26.2 \pm 19	3.75 \pm 1	26.2 \pm 19	3.75 \pm 1	26.2 \pm 19	3.75 \pm 1

1000 1001 1002 1003 1004 1005 1006 1007 Table 13: Dataset 1 (Cold weather, France)

	MSE (b=1)	MAE (b=1)	MSE (b=10)	MAE (b=10)	MSE (b=50)	MAE (b=50)
GAIL	23.2 \pm 17	3.69 \pm 1.8	23.2 \pm 17	3.69 \pm 1.8	23.2 \pm 17	3.69 \pm 1.8
BC	12.1 \pm 12.1	2.54 \pm 1.74	7.3 \pm 7.7	1.99 \pm 1.3	2.86 \pm 2.95	1.24 \pm 0.72
AIRL	0	0 \pm 0	0 \pm 0	0 \pm 0	0 \pm 0	0 \pm 0
Dagger	15.63 \pm 19.2	2.54 \pm 2.2	11.8 \pm 16.5	2.1 \pm 2.0	9.67 \pm 12.6	1.93 \pm 1.7
Density based reward	15.26 \pm 16.43	2.72 \pm 1.89	15.26 \pm 16.43	2.72 \pm 1.89	15.26 \pm 16.43	2.72 \pm 1.89
MCE	49.5 \pm 14.2	6.04 \pm 1.0	49.5 \pm 14.2	6.04 \pm 1.0	49.5 \pm 14.2	6.04 \pm 1.0
Pref-Comp	24.54 \pm 18.3	3.7 \pm 1.9	30.15 \pm 17.3	4.49 \pm 1.53	28.84 \pm 16.13	4.46 \pm 1.30
SQIL	9.80 \pm 6	2.18 \pm 0.9	9.80 \pm 6	2.18 \pm 0.9	9.80 \pm 6	2.18 \pm 0.9

1018 1019 1020 1021 1022 1023 1024 1025 Table 14: Dataset 2 (Hot weather, France)

1026	MSE (b=1)	MAE (b=1)	MSE (b=10)	MAE (b=10)	MSE (b=50)	MAE (b=50)
1027 GAIL	27.5 +/- 40	3.62 +/- 2.5	27.5 +/- 40	3.62 +/- 2.5	27.5 +/- 40	3.62 +/- 2.5
1028 BC	15.9 +/- 24	2.67 +/- 2.26	22.0 +/- 25	3.55 +/- 2.1	5.5 +/- 4.1	1.79 +/- 0.98
1029 AIRL	0 +/- 0	0 +/- 0	0 +/- 0	0 +/- 0	0 +/- 0	0 +/- 0
1030 Dagger	35.4 +/- 61.8	3.3 +/- 3.7	34.5 +/- 48.2	3.5 +/- 3.4	21.6 +/- 46.0	2.6 +/- 3.1
1031 Density based reward	41.38 +/- 51.1	3.4 +/- 4.1	41.38 +/- 51.1	3.4 +/- 4.1	41.38 +/- 51.1	3.4 +/- 4.1
1032 MCE	140.3 +/- 34.7	8.13 +/- 1.10	140.3 +/- 34.7	8.13 +/- 1.10	140.3 +/- 34.7	8.13 +/- 1.10
Pref-Comp	130.98 +/- 44.7	9.98 +/- 1.98	134.12 +/- 37	10.12 +/- 1.39	125.70 +/- 44.1	9.76 +/- 1.75
SQIL	22.65 +/- 15	3.2 +/- 1	22.65 +/- 15	3.2 +/- 1	22.65 +/- 15	3.2 +/- 1

Table 15: Dataset 3 (Moderate weather, France)

1036	MSE (b=1)	MAE (b=1)	MSE (b=10)	MAE (b=10)	MSE (b=50)	MAE (b=50)
1037 GAIL	25.3 +/- 39	3.1 +/- 2.8	25.3 +/- 39	3.1 +/- 2.8	25.3 +/- 39	3.1 +/- 2.8
1038 BC	23.2 +/- 28.6	3.4 +/- 2.4	22.3 +/- 26.1	3.5 +/- 2.2	5.35 +/- 4.17	1.65 +/- 0.86
1039 AIRL	0 +/- 0	0 +/- 0	0 +/- 0	0 +/- 0	0 +/- 0	0 +/- 0
1040 Dagger	22.9 +/- 34.0	3.0 +/- 2.7	45.3 +/- 52.8	4.6 +/- 3.6	24.4 +/- 24.2	3.2 +/- 2.7
1041 Density based reward	46.06 +/- 55	4.60 +/- 4.8	46.06 +/- 55	4.60 +/- 4.8	46.06 +/- 55	4.60 +/- 4.8
1042 MCE	148.2 +/- 39.6	10.3 +/- 1.6	148.2 +/- 39.6	10.3 +/- 1.6	148.2 +/- 39.6	10.3 +/- 1.6
Pref-Comp	124.1 +/- 52	9.4 +/- 2.78	128.29 +/- 42.7	9.86 +/- 1.68	125.68 +/- 44.19	9.7 +/- 1.7
SQIL	25.3 +/- 20	3.2 +/- 1	25.3 +/- 20	3.2 +/- 1	25.3 +/- 20	3.2 +/- 1

Table 16: Dataset 4 (Cold weather, Australia)

1046	MSE (b=1)	MAE (b=1)	MSE (b=10)	MAE (b=10)	MSE (b=50)	MAE (b=50)
1047 GAIL	45.71 +/- 45.7	4.9 +/- 2.8	45.71 +/- 45.7	4.9 +/- 2.8	45.71 +/- 45.7	4.9 +/- 2.8
1048 BC	124.4 +/- 186.46	6.94 +/- 7.05	39.7 +/- 70	3.91 +/- 3	26.7 +/- 42.7	3.23 +/- 3.17
1049 AIRL	0 +/- 0	0 +/- 0	0 +/- 0	0 +/- 0	0 +/- 0	0 +/- 0
1050 Dagger	113.4 +/- 247.5	6.0 +/- 7.1	93.2 +/- 115.9	6.5 +/- 5.1	25.8 +/- 47.1	6.5 +/- 5.1
1051 Density based reward	115.7 +/- 242.51	5.5 +/- 7.8	115.7 +/- 242.51	5.5 +/- 7.8	115.7 +/- 242.51	5.5 +/- 7.8
1052 MCE	374 +/- 311.9	15.0 +/- 7.6	374 +/- 311.9	15.0 +/- 7.6	374 +/- 311.9	15.0 +/- 7.6
Pref-Comp	284 +/- 254	12.9 +/- 7	335.6 +/- 271	14.5 +/-	332.8 +/- 272.29	14.3 +/- 6.92
SQIL	25 +/- 16	4.52 +/- 2	25 +/- 16	4.52 +/- 2	25 +/- 16	4.52 +/- 2

Table 17: Dataset 5 (Hot weather, Australia)

1053	45.71 +/- 45.7	4.9 +/- 2.8	45.71 +/- 45.7	4.9 +/- 2.8	45.71 +/- 45.7	4.9 +/- 2.8
1054	124.4 +/- 186.46	6.94 +/- 7.05	39.7 +/- 70	3.91 +/- 3	26.7 +/- 42.7	3.23 +/- 3.17
1055	0 +/- 0	0 +/- 0	0 +/- 0	0 +/- 0	0 +/- 0	0 +/- 0
1056	113.4 +/- 247.5	6.0 +/- 7.1	93.2 +/- 115.9	6.5 +/- 5.1	25.8 +/- 47.1	6.5 +/- 5.1
1057	115.7 +/- 242.51	5.5 +/- 7.8	115.7 +/- 242.51	5.5 +/- 7.8	115.7 +/- 242.51	5.5 +/- 7.8
1058	374 +/- 311.9	15.0 +/- 7.6	374 +/- 311.9	15.0 +/- 7.6	374 +/- 311.9	15.0 +/- 7.6
1059	284 +/- 254	12.9 +/- 7	335.6 +/- 271	14.5 +/-	332.8 +/- 272.29	14.3 +/- 6.92
1060	25 +/- 16	4.52 +/- 2	25 +/- 16	4.52 +/- 2	25 +/- 16	4.52 +/- 2
1061						
1062						
1063						
1064						
1065						
1066						
1067						
1068						
1069						
1070						
1071						
1072						
1073						
1074						
1075						
1076						
1077						
1078						
1079						

1080 10 CLUSTERING
10811082 With DBA-clustering, the shift of the simulated centroids toward lower cumulative regret values is
1083 explained by the structure of our datasets: one of the five datasets contains bees with trajectories of
1084 only 22 trials. When aggregated with 40-trial trajectories, these short sequences lower the average
1085 cumulative regret in DBA-based clustering, which pulls the corresponding centroid downward. This
1086 effect is expected, since DBA aligns sequences globally and is sensitive to systematic differences in
1087 trajectory length.

1088

1104 Figure 25: Real bee trajectories clustered into two groups using DBA-based k -means. Each curve represents
1105 the cumulative regret trajectory of one of the 80 bees, and the two centroid trajectories summarize the dominant
1106 behavioural modes observed in the dataset.
1107

1108

1124 Figure 26: MAYA-Wass simulated trajectories ($\tau = 7$) clustered into two groups using the same DBA-
1125 based k -means procedure as for the real bees. The resulting centroids closely match those obtained from
1126 real trajectories, indicating that MAYA-Wass preserves the underlying behavioural structure captured by DBA
1127 clustering.
1128
1129
1130
1131
1132
1133

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157

Figure 27: Bees trajectories

Figure 28: MAYA-Wass

1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173

Time series Euclidean KMeans

Figure 29: MAYA-KL

Time series Euclidean KMeans

Figure 30: MAYA-DTW

1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Figure 31: Centroïdes of two clustering of 80 bees trajectories (in Fig27) and 80 MAYA-variant (Fig28, Fig29 and Fig30) simulated trajectories (with $\tau = 7$). Clustering are done with Euclidean method (Clustering I).

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

Figure 32: Bees trajectories

Figure 33: MAYA-Wass

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

Figure 34: MAYA-KL

Figure 35: MAYA-DTW

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Figure 37: Average difference between MAYA-Wass ($\tau = 7$) predictions and real trajectories ($R(\pi_{\text{MAYA}}, 1, t) - R(\pi_{\text{bee}}, 1, t)$, z -axis) for Euclidean (top row) and DBA (bottom row) clustering, for clusters 0 and 1. The red band shows $\pm\sigma$ (standard deviation).

Figure 38: Average difference between MAYA-KL ($\tau = 7$) predictions and real trajectories ($R(\pi_{\text{MAYA}}, 1, t) - R(\pi_{\text{bee}}, 1, t)$, z -axis) for Euclidean (top row) and DBA (bottom row) clustering. The red band corresponds to $\pm\sigma$.

1350 11 MAYA ALGORITHM
13511352 **Algorithm 1** MAYA : Multi Agent Y-maze Allocation

1354 **Require:** Logged bee regret trajectory $R(\pi_{\text{bee}}, 1, T)$
 1355 **Require:** Set \mathcal{P} of N bandit policies $\{\pi_1, \dots, \pi_N\}$
 1356 **Require:** Window size τ such that $t \geq \tau$
 1357 **Require:** A similarity metric δ

1358 1: $\xi = ()_{t=1}^T$
 1359 2: Init π_θ
 1360 3: **for** $t \in \{2, \dots, \tau - 1\}$ **do**
 1361 4: Observe $R(\pi_{\text{bee}}, 1, t - 1)$
 1362 5: Observe a context information x_t
 1363 6: **for** $i = 1$ to N **do**
 1364 7: Simulate policy agent $\pi_i(s_{t-1}|x_t)$
 1365 8: Compute cumulative regret $R(\pi_i, 1, t - 1)$
 1366 9: **end for**
 1367 10: $\xi_t = \operatorname{argmin}_{\pi \in \mathcal{P}} \delta(\pi_{\text{bee}}, \pi, t)$
 1368 11: $\pi_\theta(a_t|s_{t-1}) \leftarrow \pi_\xi(a_t|s_{t-1})$
 1369 12: Select $A_t \sim \pi_\theta(a_t|s_{t-1})$
 1370 13: Receive reward r_t
 1371 14: Update $\pi_i \quad \forall \pi_i \in \mathcal{P}$
 1372 15: $\xi[t] \leftarrow \xi_t$
 1373 16: **end for**
 1374 17: **for** $t \in \{\tau, \dots, T\}$ **do**
 1375 18: Observe $R(\pi_{\text{bee}}, \tau, 1, t - 1)$
 1376 19: Observe a context information x_t
 1377 20: **for** $i = 1$ to N **do**
 1378 21: Simulate policy agent $\pi_i(s_{t-1}|x_t)$
 1379 22: Compute cumulative regret $R(\pi_i, \tau, 1, t - 1)$
 1380 23: **end for**
 1381 24: $\xi_t = \operatorname{argmin}_{\pi \in \mathcal{P}} \delta(\pi_{\text{bee}}, \pi, \tau, t)$
 1382 25: $\pi_\theta(a_t|s_{t-1}) \leftarrow \pi_\xi(a_t|s_{t-1})$
 1383 26: Select $A_t \sim \pi_\theta(a_t|s_{t-1})$
 1384 27: Receive reward r_t
 1385 28: Update $\pi_i \quad \forall \pi_i \in \mathcal{P}$
 1386 29: $\xi[t] \leftarrow \xi_t$
 30: **end for**
 31: **return** π_θ

1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403

1404 12 MICE DATASET EXPERIMENT

1405
1406 Dataset and setup. We use the dataset of (Ashwood et al., 2020a), which reports trial-by-trial
1407 changes in mice policy and decomposes those updates into a learning component and a noise com-
1408 ponent (see Fig. 39a). Unlike their original analysis, which simulates an average trajectory across
1409 individuals, our method (MAYA) simulates one trajectory *per* individual. The dataset contains 19
1410 rats with between 1500 and 6000 trials each. To control the computational cost of DTW and to align
1411 with our bee experiments, we reduce the number of individual at 100.

1412
1413 Selecting the memory horizon τ . According with Tab 18, Fig 39b shows MAE and MSE as a
1414 function of the memory window τ . MAYA-KL clearly identifies an optimal range around $\tau \in [6, 7]$,
1415 whereas MAYA-Wass suggests $\tau \in [8, 10]$ when balancing MAE and MSE. For consistency with
1416 previous experiments, we set $\tau = 7$ in all subsequent analyses.

1417
1418 Explanations and performance. With $\tau = 7$, Fig. 48 and Fig. 44 provides MAYA explanations
1419 for the rats with the lowest and highest cumulative regret (see Fig. 40). For slow learners, all MAYA
1420 variants behave similarly (Fig. 50); for fast learners, MAYA-KL achieves the best fit, capturing
1421 rapid policy changes better than MAYA-Wass (Fig. 49). A plausible explanation is that, under KL
1422 similarity, MAYA acts more often from LinUCB-like behavior than with Wasserstein similarity (see
1423 Tab 19b). As in previous datasets, MAYA-DTW tends to act more like Epsilon-Greedy, likely due to
1424 DTW’s alignment properties. Overall, all MAYA variants outperform GLM baselines (Table 19a).

1425 side.window	MSE MAYA-KL		MAE MAYA-KL		MSE MAYA-Wass		MAE MAYA-Wass		MSE MAYA-DTW		MAE MAYA-DTW	
	mean	std	mean	std	mean	std	mean	std	mean	std	mean	std
3	5760	3894	59	24	8083	5012	72	25	5790	5683	55	29
4	3868	3493	46	25	6547	3672	64	23	5815	5770	55	30
5	3046	3307	40	24	5724	3803	59	23	5819	5788	55	29
6	2763	3090	37	23	5276	3511	57	21	5830	5758	55	29
7	2786	3161	38	23	4640	3382	53	22	5822	5747	55	29
8	2974	3197	39	23	4728	3722	53	23	5851	5777	55	29
9	3114	3424	40	24	4231	3403	50	22	5819	5740	55	29
10	3223	3378	41	25	4197	3576	49	24	5810	5701	54	29
20	4710	6689	47	33	3491	3515	43	25	5771	5725	54	29
30	5618	8543	50	38	3453	3896	41	27	5760	5724	54	29

1433 Table 18: MSE and MAE of MAYA as a function of the window size τ for Mice Dataset.

1446 (a) According (Ashwood et al., 2020a), on each trial,
1447 a sinusoidal grating (with contrast values between 0
1448 and 100%) appears on either the left or right side of
1449 a screen. Mice must report the side of the grating by
1450 turning a wheel (left or right) in order to receive a
water reward.

1451 (b) Comparative study of the best window size τ by
1452 average MSE and MAE. \star symbol refers to the best
1453 performance according to standard deviation and average
1454 reward (see Tab.18 for the full results). MSE is
1455 displayed as $\times 10^2$.

1456 Figure 39: Left : experimental description of the Mice Dataset. Right : Comparative study of the
1457 best window size τ for Mice Dataset.

Figure 40: Proportion of cumulative regret for the Mice dataset, per mice

1468
1469
1470
1471
1472
1473
1474
1475
1476
1477

	MSE		MAE	
	Mean	Std	Mean	Std
MAYA KL	2786	3161	38	23
MAYA-Wass	4640	3382	53	22
MAYA-DTW	5822	5777	55	29
GLM	6427	4137	63	21
GLM Contextual	6416	4133	63	21

(a)

(b)

	Epsilon-Greedy	Lin-UCB	UCB	Uniform
MAYA-KL	30% \pm 2.5	2% \pm 1.1	29% \pm 1.3	36% \pm 2.2
MAYA-W	27% \pm 1.8	10% \pm 1	28% \pm 1	33% \pm 1.5
MAYA-DTW	28% \pm 3	0.5% \pm 1	56% \pm 4	15% \pm 3

Table 19: **Left** : MSE and MAE comparison of MAYA (with $\tau = 7$) and GLM variants. **Right** : MAYA explainability for all MAYA choices ($\tau = 7$)

1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497

	MAYA-KL	MAYA-Wass	MAYA-DTW
ClusterAcc (Euclidean, Max L = 1400)	90%	85%	75%
ClusterAcc (DBA, Max L = 6000)	80%	75%	65%

Table 20: ClusterAcc (%) for Mice Datset)

Figure 41: MAYA-KL

Figure 42: MAYA-Wass

Figure 43: MAYA-DTW

Figure 44: MAYA explainability for mouse 20 (fast learner, low regret) from Mice dataset. We report choice interpretability for MAYA-variants ($\tau = 7$). **Left:** LinUCB, **Top:** Uniform, **Right:** UCB, **Bottom:** EpsilonGreedy.

Figure 45: MAYA-KL

Figure 46: MAYA-Wass

Figure 47: MAYA-DTW

Figure 48: MAYA explainability for mouse 2 (slow learner, high regret) from Mice dataset. We report choice interpretability for MAYA-variants ($\tau = 7$). **Left:** LinUCB, **Top:** Uniform, **Right:** UCB, **Bottom:** EpsilonGreedy.

1566 13 COMPLEMENTARY INFORMATION ABOUT THE BIOLOGY INTEREST
1567

1568 We share with other vertebrates a basic ability for abstract number representation, the *number sense*
1569 (Dehaene, 2011). As early as two days postnatally (Izard et al., 2009), this ability enables us to
1570 evaluate numbers as concepts: three books are perceived as similar to three cups, even though
1571 they differ completely in their visual features (i.e., sensory information). To evaluate quantity,
1572 both numerical and sensory information can be used. For example, when visually comparing two
1573 quantities, the larger set will often contain more items (i.e., numerosity), but may also exhibit
1574 greater density, a larger total surface area, or a wider convex hull encompassing all elements.
1575 Neuronal encoding of sensory information occurs early in the primary cortex, whereas numbers are
1576 computed in higher integrative areas by what Nieder et al. identified as *number neurons* (Nieder,
1577 2016).

1578
1579 Quantity discrimination is necessary in contexts as diverse as evaluating food patches, regulating
1580 social attraction, or competing for resources (Nieder, 2020). From sharks to mammals, all
1581 major vertebrate clades appear capable of discriminating between different quantities, either
1582 spontaneously or in learning tasks (Vila Pouca et al., 2019). By carefully designing protocols that
1583 control for sensory cues, researchers have demonstrated that several non-human species are capable
1584 of performing quantity discrimination based on the abstract evaluation of numbers (Cantlon &
1585 Brannon, 2006). Among them is an insect: the honeybee (*Apis mellifera*). Beyond discriminating
1586 numerosities of up to eight items, these insects, with brains of fewer than one million neurons, can
1587 also manipulate numbers, performing simple addition, subtraction, and symbolic tasks (Dacke &
1588 Srinivasan, 2008; Gross et al., 2009; Howard et al., 2018; 2019; Giurfa et al., 2022).

1589 Later experiments required a Y-maze: a three-armed apparatus shaped like the letter Y, commonly
1590 used to study memory, learning, and decision-making in rodents (Kraeuter et al., 2018) (see Fig. 58).
1591 These mazes required bees to inhibit their spatial memory (Menzel et al., 2005) (e.g., recalling that
1592 the last reward was in the left arm) and to focus instead on the visual stimuli displayed at the end
1593 of each arm. The balance between exploring new options and exploiting previously rewarded ones
1594 is key to their foraging behavior and likely plays a crucial role in their learning performance within
1595 these devices (Kembro et al., 2019; Lochner et al., 2024).

1610 Figure 58: Y-maze for bees experiments
1611
1612
1613
1614
1615
1616
1617
1618
1619

1620 14 MATHEMATICAL PROOF OF MAYA ACCORDING TO τ
16211622 **Stationary case (1) : upper bound of MAYA error** Consider the case of two policies π_1 that
1623 achieves the highest regret i.e. $R(\pi_1, 1, T) = T$ and π_0 that achieves a zero regret i.e. $R(\pi_0, 1, T)$. In
1624 this case

1625
$$\Delta_{\pi_1,t} - \Delta_{\pi_0,t} \leq 1 \quad \forall t$$

1626

1627 as the reward is in $\{0, 1\}$. The maximal bound of $R(\pi_{\text{MAYA}}, 1, T) - R(\pi_{\text{bee}}, 1, T)$ corresponds to
1628 the case where $R(\pi_{\text{bee}}, 1, T)$ is always centered between $R(\pi_1, 1, T)$ and $R(\pi_0, 1, T)$ (see Fig 59a).
1629 Let's define ε_t^* the agent who act the closest of the bee at t and ε_t the agent chosen by MAYA at t .
1630 Then

1631
$$\mathbb{P}[\varepsilon_t = \varepsilon_t^*] = 0.5 \quad \forall t$$

1632

1633 as no best agent are better from the other one. This case corresponds to an equality between the two
1634 possible agent (with extreme regret values) and leads to the worst scenario of a stationary case when
1635 the similarity distance $d()$ are when define. Then the maximal cumulative gap between MAYA-regret
1636 and Bee-regret in stationary case are :

1637
$$\begin{aligned} \sum_{t=1}^T |\Delta_{\text{MAYA},t} - \Delta_{\text{Bee},t}| &\leq \frac{1}{2} \sum_{t=1}^T |\Delta_{\pi_1,t} - \Delta_{\text{Bee},t}| + \frac{1}{2} \sum_{t=1}^T |\Delta_{\pi_0,t} - \Delta_{\text{Bee},t}| \\ &\leq \sum_{t=1}^T \frac{t}{2} \\ &\leq \frac{\frac{T}{2}(\frac{T}{2} + 1)}{2} \\ &\leq \frac{1}{8}(T(T + 2)) \end{aligned} \tag{1}$$

1638

1639 **Stationary case (2) : upper bound of the worst policy** Consider the case where π_{MAYA} always
1640 chose like π_1 and π_{bee} always chose like π_0 (see Fig 59b). Then the similarity distance $d()$ fails to
1641 provide a correct measure and MAYA chose the agent with the largest regret gap relative to the bee's
1642 regret. Then for all t

1643
$$\mathbb{P}[\varepsilon_t \neq \varepsilon_t^*] = 1.$$

1644

1645 Then the maximal cumulative gap between MAYA-regret and Bee-regret in the worst policy in
1646 stationary case are :

1647
$$\begin{aligned} \sum_{t=1}^T |\Delta_{\text{MAYA},t} - \Delta_{\text{Bee},t}| &\leq \sum_{t=1}^T |\Delta_{\pi_1,t} - \Delta_{\pi_0,t}| \\ &\leq \frac{T \cdot (T + 1)}{2} \end{aligned} \tag{2}$$

1648

1649 The alternative case where π_{MAYA} always chooses as π_0 and π_{bee} always chooses as π_1 is equivalent.
16501651 **Cyclic case : upper bound of MAYA error with no windows ($\tau = T$) policy** Consider that after
1652 S trials the bee moves from π_1 to π_0 (alternative cases are equivalent, see Fig 60a). Consider that
1653 the distances are well defined, as in the stationary case (1). Then :

1654
$$\sum_{t=1}^S |\Delta_{\text{MAYA},t} - \Delta_{\text{Bee},t}| \leq \frac{1}{8}(S \times (S + 2)) \tag{3}$$

1655

1656 The time required for MAYA to act like π_0 is $2S + 1$ but at $t = 2S + 1$, the bee changes from π_0 to
1657 π_1 and MAYA continues to act like π_1 (see Fig 60a). Recursively, MAYA always act like π_1 from
1658 $t = 1$ until $t = T$. Then

1659
$$\mathbb{P}[\varepsilon_t = \pi_1] = 1 \quad \forall t$$

1660

1661 and

1662
$$\mathbb{P}[\varepsilon_t = \varepsilon_t^*] = \frac{N_*(T)}{T}, \quad \forall t$$

1663

Figure 59: Maximal cumulative gap between MAYA-regret and Bee-regret in **stationary case** according the distance $d(\cdot)$ abilities to provide a correct measure

Where

$$N_*(T) = qS + \min(S, r),$$

$$q = \left\lfloor \frac{T}{2S} \right\rfloor,$$

$$r = T - 2Sq \in [0, 2S].$$

A minimal bound of N_* are :

$$N_*(T) \geq \frac{T}{2}$$

Then the maximal cumulative gap between MAYA-regret and Bee-regret in a cyclic case with no windows is :

$$\begin{aligned} \sum_{t=1}^T |\Delta_{\text{MAYA},t} - \Delta_{\text{Bee},t}| &\leq \frac{N_*(T)}{T} \frac{1}{8} (T \cdot (T+2)) + \left(1 - \frac{N_*(T)}{T}\right) \frac{T \cdot (T+1)}{2} \\ &\leq \frac{T}{2} \frac{1}{T} \frac{1}{8} (T \cdot (T+2)) + \left(1 - \frac{T}{2} \frac{1}{T}\right) \frac{T \cdot (T+1)}{2} \\ &= \frac{T(5T+6)}{16} \end{aligned} \quad (4)$$

Cyclic case : upper bound of MAYA error with windows $\tau = S$ Assume that S are even. Consider that after S trials, the bee moves from π_1 to π_0 (alternative cases are equivalent, see Fig60b). Consider that the distance is well define like in the stationary case (1). From time $t = 1$ until S , MAYA act as the best agent :

$$\sum_{t=1}^S |\Delta_{\text{MAYA},t} - \Delta_{\text{Bee},t}| \leq \frac{1}{8} (S \times (S+2)) \quad (5)$$

and

$$\mathbb{P}[\varepsilon_t = \varepsilon_t^*] = 1 \quad \forall t \in \{1, \dots, S\}.$$

From time $S+1$ until $S + \frac{S}{2}$, MAYA acts as the worst policy (start cycle)

$$\sum_{t=S+1}^{S+\frac{S}{2}} |\Delta_{\text{MAYA},t} - \Delta_{\text{Bee},t}| \leq \sum_{t=S+1}^{S+\frac{S}{2}} t \quad (6)$$

$$\leq \frac{S(5S+2)}{8} \quad (7)$$

1728 and

$$\mathbb{P}[\varepsilon_t \neq \varepsilon_t^*] = 1 \quad \forall t \in \{S+1, \dots, S + \frac{S}{2}\}.$$

1731 And from $t = S + \frac{S}{2} + 1$ until $t = 2S$ MAYA acts with the best policy (end cycle):

$$\begin{aligned} 1733 \quad & \sum_{t=S+\frac{S}{2}+1}^{2S} |\Delta_{\text{MAYA},t} - \Delta_{\text{Bee},t}| \leq \sum_{t=S+\frac{S}{2}+1}^{2S} \frac{t}{2} \\ 1734 \quad & \leq \frac{S(7S+2)}{16} \end{aligned} \quad (8)$$

1738 and

$$\mathbb{P}[\varepsilon_t = \varepsilon_t^*] = 1 \quad \forall t \in \{S + \frac{S}{2} + 1, \dots, 2S\}.$$

1741 Consider a full cycle, the event $\varepsilon_t = \varepsilon_t^*$ appears $S - \frac{S}{2}$ times. Let's set

$$1743 \quad q = \left\lfloor \frac{\max(0, T - S)}{S} \right\rfloor, \quad r = \max(0, T - S) - qS \in [0, S].$$

1745 Here q is the number of full cycle S in $t > S$, and r is the rest of a potential unfinished tail segment
1746 of the started cycle. Let $N_*(T) = \sum_{t=1}^T 1_{\varepsilon_t = \varepsilon^*}$ with $N_*(T) \leq T$ equal to

$$1748 \quad N_*(T) = \min(T, S) + q \cdot \frac{S}{2} + \max(0, r - \frac{S}{2})$$

1750 If S is even and $T > S$ then

$$1751 \quad N_*(T) \geq \frac{T}{2} + \frac{S}{4} \quad (9)$$

1754 *Proof:*1755 With $T = S + qS + r$:

$$1757 \quad N_*(T) - \left(\frac{T}{2} + \frac{S}{4}\right) = \frac{S}{2} - \frac{r}{2} + \max(0, r - \frac{S}{2}) \geq 0,$$

1759 where the minimum are archived with $r = \frac{S}{2}$.

$$1762 \quad \mathbb{P}[\varepsilon_t = \varepsilon_t^*] = \frac{N_*(T)}{T} \geq \frac{1}{2} + \frac{S}{4T} \quad (10)$$

1764 In the cases where S is not even

$$1766 \quad q = \left\lfloor \frac{T-S}{S} \right\rfloor, \quad r = T - S - qS \in [0, S].$$

1768 then

$$1769 \quad N_*(T) = S + \frac{q(S+1)}{2} + \max\left(0, r - \frac{S-1}{2}\right).$$

1771 As $T = S + qS + r$, we have

$$1772 \quad N_*(T) - \frac{T}{2} = \frac{S}{2} + \frac{q}{2} + \max\left(0, r - \frac{S-1}{2}\right) - \frac{r}{2}.$$

1774 and for any $r \in [0, S)$,

$$1776 \quad \min_r \left(\max(0, r - \frac{S-1}{2}) - \frac{r}{2} \right) = -\frac{S-1}{4}.$$

1777 Then

$$1778 \quad N_*(T) \geq \frac{S}{2} + \frac{q}{2} - \frac{S-1}{4} + \frac{T}{2} = \frac{S+1}{4} + \frac{q}{2} + \frac{T}{2} \geq \frac{S+1}{4} + \frac{T}{2}.$$

$$1781 \quad N_*(T) \geq \frac{T}{2} + \frac{S+1}{4} \geq \frac{T}{2} + \frac{S}{4}. \quad (11)$$

1782

Which are better to the S parity case.

1783

Then the maximal cumulative gap between MAYA-regret and Bee-regret with windows $\tau = S$ is

1784

$$\begin{aligned}
 1785 \quad \sum_{t=1}^T |\Delta_{\text{MAYA},t} - \Delta_{\text{Bee},t}| &\leq \frac{N_*(T)}{T} \frac{T(T+2)}{8} + \left(1 - \frac{N_*(T)}{T}\right) \frac{T(T+1)}{2} \\
 1786 \quad &\leq \left(\frac{T}{2} + \frac{S}{4}\right) \cdot \frac{1}{T} \cdot \frac{T(T+2)}{8} + \left(1 - \left(\frac{T}{2} + \frac{S}{4}\right)\right) \cdot \frac{1}{T} \cdot \frac{T(T+1)}{2} \\
 1787 \quad &\leq \frac{10T^2 + 12T - 3ST - 2ST}{32} \\
 1788 \quad &\leq \dots \\
 1789 \quad &\dots \\
 1790 \quad &\dots \\
 1791 \quad &\dots \\
 1792 \quad &\dots \\
 1793 \quad &\dots \\
 1794 \quad &\dots \\
 1795 \quad &\dots \\
 1796 \quad &\dots \\
 1797 \quad &\dots \\
 1798 \quad &\dots \\
 1799 \quad &\dots \\
 1800 \quad &\dots \\
 1801 \quad &\dots \\
 1802 \quad &\dots \\
 1803 \quad &\dots \\
 1804 \quad &\dots
 \end{aligned} \tag{12}$$

Figure 60: Maximal cumulative gap between MAYA regret and bee regret in a non-stationary case, measured with respect to window τ . The purple arrow highlights the period during which MAYA chooses actions in accordance with the agent whose behavior is most distant from that of the bee.

Cyclic case : upper bound of MAYA error with windows $\tau \in \{\frac{S}{2} + 1; \dots, S - 1\}$. We consider the case where $\frac{S}{2} + 1 \leq \tau < S$ (see Fig60c). Assume that S are even. From time $t = 1$ until S , MAYA act as the best agent (stationary case 1) :

$$\sum_{t=1}^S |\Delta_{\text{MAYA},t} - \Delta_{\text{Bee},t}| \leq \frac{1}{8}(S \times (S+2)) \tag{13}$$

and

$$\mathbb{P}[\varepsilon_t = \varepsilon^*] = 1 \quad \forall t \in \{1, \dots, S\}.$$

From time $S + 1$ until $S + \frac{\tau}{2}$, MAYA acts as the worst policy (start cycle)

$$\begin{aligned}
 1820 \quad \sum_{t=S+1}^{S+\frac{\tau}{2}} |\Delta_{\text{MAYA},t} - \Delta_{\text{Bee},t}| &\leq \sum_{t=S+1}^{S+\frac{\tau}{2}} t \\
 1821 \quad &\leq \frac{\tau}{4}(2S + 1 + \frac{\tau}{2}) \\
 1822 \quad &\leq \frac{\tau^2}{8} + \frac{S\tau}{2} + \frac{\tau}{4} \\
 1823 \quad &\dots \\
 1824 \quad &\dots \\
 1825 \quad &\dots \\
 1826 \quad &\dots
 \end{aligned} \tag{14}$$

and

$$\mathbb{P}[\varepsilon_t \neq \varepsilon^*] = 1 \quad \forall t \in \{S + 1, \dots, S + \frac{\tau}{2}\}.$$

And from $t = S + \frac{\tau}{2} + 1$ until $t = 2S$, MAYA acts as the best policy (end cycle) with :

$$\begin{aligned}
 1831 \quad \sum_{t=S+\frac{\tau}{2}+1}^{2S} |\Delta_{\text{MAYA},t} - \Delta_{\text{Bee},t}| &\leq \sum_{t=S+\frac{\tau}{2}+1}^{2S} \frac{t}{2} \\
 1832 \quad &\leq \frac{(3S + \frac{\tau}{2} + 1)(S - \frac{\tau}{2})}{4} \\
 1833 \quad &\dots \\
 1834 \quad &\dots \\
 1835 \quad &\dots
 \end{aligned} \tag{15}$$

1836 and

1837
$$\mathbb{P}[\varepsilon_t = \varepsilon_t^*] = 1 \quad \forall t \in \{S + \frac{\tau}{2} + 1, \dots, 2S\}.$$
 1838

1839 Consider a full cycle, the event $\varepsilon_t = \varepsilon_t^*$ appears $S - \frac{\tau}{2}$ times. Let's set

1840
$$1841 q = \lfloor \frac{T - S}{S} \rfloor \quad r = (T - S) - qS \in [0, S].$$
 1842

1843 Let $N_*(T) = \sum_{t=1}^T 1_{\varepsilon_t = \varepsilon^*}$ with $N_*(T) \leq T$ equal to

1844
$$1845 N_*(T) = S + q(S - \frac{\tau}{2}) + \max(0, r - \frac{\tau}{2}).$$
 1846

1847 and

1848
$$1849 \mathbb{P}[\varepsilon_t = \varepsilon_t^*] = \frac{N_*(T)}{T} \quad (16)$$
 1850

1851 The maximal cumulative gap between MAYA-regret and Bee-regret with windows $\tau \in \{\frac{S}{2} +$
1852 $1; \dots, S - 1\}$ with S parity is

1853
$$\sum_{t=1}^T |\Delta_{\text{MAYA},t} - \Delta_{\text{Bee},t}| \leq \frac{N_*(T)}{T} \cdot \frac{T(T+2)}{8} + \left(1 - \frac{N_*(T)}{T}\right) \cdot \frac{T(T+1)}{2}$$
 1854
1855
1856
$$\leq \frac{S + q(S - \frac{\tau}{2}) + \max(0, r - \frac{\tau}{2}) \cdot \frac{T(T+2)}{8}}{T}$$
 1857
1858
1859
$$+ \left(1 - \frac{S + q(S - \frac{\tau}{2}) + \max(0, r - \frac{\tau}{2}) \cdot \frac{T(T+1)}{2}}{T}\right) \cdot \frac{T(T+1)}{2}$$
 1860

1861 As $N_*(T) \geq T(1 - \frac{\tau}{2S})$ without any condition on S parity, the maximal cumulative gap between
1862 the MAYA-regret and the Bee-regret with windows $\tau \in \{\frac{S}{2} + 1; \dots, S - 1\}$ is

1863
$$1864 \sum_{t=1}^T |\Delta_{\text{MAYA},t} - \Delta_{\text{Bee},t}| \leq \frac{T(T+2)}{8} + \frac{(3T+2)T\tau}{16S} \quad (17)$$
 1865
1866

1867 **Cyclic case : upper bound of MAYA with windows $\tau < \frac{S}{2} + 1$** In this case, there is no way to be
1868 sure that the distance $d()$ do not fails to identify the best agent. It's equivalent to choose randomly
1869 and the worst case corresponds to the upper bound of the worst policy. Then the maximal cumulative
1870 gap between MAYA regret and Bee-regret with $\tau < \frac{S}{2} + 1$ in cyclic case are equivalent to Eq. 2.
18711872 **Cyclic case : upper bound of MAYA with windows $\tau > S$** In this case, the time required to
1873 change the policy is over a cycle $S > 1$. Then, the bee switch two times in τ and MAYA allows it
1874 to act as the same agent. Then it is equivalent to act as a cyclic case with no windows ($\tau = T$) Then
1875 the maximal cumulative gap between MAYA regret and Bee-regret with $\tau > S$ in cyclic case are
1876 equivalent to Eq. 4.
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Figure 61: Top–5 minimal MAE/MSE values according to the memory parameter τ under the three similarity metrics (KL, Wasserstein, DTW) for the simulated bee trajectories with (unknown by MAYA) switching period S . Each column corresponds to a policy-shift after S trials scenario (LinUCB– ϵ -greedy, LinUCB–UCB, LinUCB–Worst), and each row reports either MAE or MSE scoring. Dashed lines show the theoretical constraint $\frac{S}{2} + 1 \leq \tau \leq S$.

15 SIMULATIONS

We extended our experimental protocol to include 42 simulated datasets, resulting in more than 100.800 synthetic trajectories. These trajectories were generated by introducing controlled policy shifts (after S trials) between two bandit strategies that are observed in the real data and interest biologist (e.g., LinUCB \leftrightarrow UCB and LinUCB \leftrightarrow ϵ -greedy). We additionally simulated a 'LinUCB \leftrightarrow Worst' condition, i.e., a switch from the best-performing to the worst-performing policy, in order to stress-test MAYA under extreme behavioural changes.

Across all these simulated scenarios (see Fig. 61), our results confirm that constraining the memory parameter to the interval

$$\frac{S}{2} + 1 \leq \tau \leq S$$

leads to a consistent minimization of the loss between the full cumulative-regret trajectory of the simulated bee and the cumulative-regret trajectory produced by MAYA. The only exception arises in the "LinUCB \leftrightarrow Worst" condition, where we can set $\tau < \frac{S}{2}$. This behaviour is expected: the two policies are extremely different and nearly stationary (their rewards are almost always equal to 1 or 0, respectively), so a very small memory window is sufficient to discriminate their cumulative regret sequence. Overall, these analyses validate the theoretical justification of our τ -range and demonstrate its empirical robustness across diverse switching regimes.

Grid search over bandit parameters ($\alpha_{\text{UCB}}, \alpha_{\text{LinUCB}}, \epsilon$) We provide here a small grid search over exploration parameters using held-out simulated policy. For ϵ -greedy we tested $\epsilon \in \{0.1, 0.2, 0.3\}$, and for UCB and LinUCB we used $\alpha_{\text{ucb}}, \alpha_{\text{linucb}} \in \{0.5, 1, 1.5, 2, 4\}$.

Our results show that the value of α_{linucb} has only a limited effect, because rewards in our task are a fully deterministic function of the context (the arm with the largest stimulus, encoded in the integer-valued context vector). Increasing either ϵ or α_{ucb} effectively drives the corresponding policy toward uniform exploration, which in turn increases c_t if the behavior of the bee are none in a uniform style and reduces the diversity of candidate policies.

For LinUCB and UCB, we set the exploration parameter to $\alpha = 1$, a standard default value for binary rewards in contextual bandit implementations (Li et al., 2010; Bouneffouf & Claeys, 2021); typical

Figure 62: MSE Sensitivity analysis of MAYA across three hyperparameters (α_{ucb} , α_{linucb} , ϵ) and two simulated bees policies (Shift LinUCB- ϵ -Greedy and Shift LinUCB-UCB). We fix $S = 12$ and $\tau = 7$ for generate simulations.

LinUCB libraries set $\alpha = 1$ by default). For ϵ -greedy, we use $\epsilon = 0.2$ (20% random exploration), a conventional choice in empirical bandit studies with Bernoulli rewards (e.g., standard tutorials and empirical evaluations typically consider $\epsilon = [0.1, 0.3]$)

1998 16 EXPLANATION OF THE SIMILARITY METRICS

2000 The *instantaneous regret* at trial t is defined as $\Delta_t = r(s_t, a_t^*) - r(s_t, a_t)$, where $a_t^* := \pi^*(s_t) =$
 2001 $\operatorname{argmax}_{a \in \mathcal{A}} r(s_t, a)$ is the optimal action under the state s_t . The *cumulative simple regret* after T
 2002 trials is the sum of instantaneous regrets $R(\pi, 1, T) = \sum_{t=1}^T \Delta_{\pi, t}$.
 2003

2004 At each trial t , the bee selects an action a_t^{bee} and MAYA selects a_t^{MAYA} . We define the *cost of*
 2005 *reproduction cost*

$$2006 c_t := c(s_t \mid a_t^{\text{MAYA}}) = \begin{cases} 1, & \text{if } a_t^{\text{MAYA}} \neq a_t^{\text{bee}}, \\ 2007 0, & \text{otherwise.} \end{cases}$$

2008 The sequence of c_t is the binary vector (start from the first trial 1 until T).
 2009

$$2010 \mathbf{c} = (c_1, \dots, c_T),$$

2012 and the cumulative reproduction-cost trajectory $C_T = \sum_{t=1}^T c_t$ is used in the MSE/MAE evaluation.
 2013

2014 This quantity is closely related to classical simple regret. For any policy π ,

$$2015 \Delta_{\pi, t} = r(s_t, a_t^*) - r(s_t, a_t), \quad a_t^* = \arg \max_{a \in \mathcal{A}} r(s_t, a),$$

2017 and the cumulative simple cumulative regret is

$$2018 2019 2020 R(\pi, 1, T) = \sum_{t=1}^T \Delta_{\pi, t}.$$

2021 Therefore, the cumulative difference in regret after t trials is bounded by the number of disagreements:
 2022

$$2023 2024 2025 |R(\pi_{\text{bee}}, 1, t) - R(\pi_{\text{MAYA}}, 1, t)| \leq \sum_{s=1}^t c_s$$

2026 Intuitively, the two regrets can only drift apart on trials where the bee and MAYA disagree, and each
 2027 such case can increase their regret difference by at most one unit.
 2028

2029 We recall that as this is related to a full deterministic experiment, there is no stochasticity in the
 2030 reward function (as it always related to the Y-maze side with the highest number of stimuli)

2031 Then :

$$2032 2033 2034 C_t = \sum_{i=1}^t c_i$$

2035 The evaluation metrics reported in the paper are:

$$2036 \text{MSE}(C_T), \quad \text{MAE}(C_T),$$

2038 according the setting (KL/Wasserstein/DTW distances) of MAYA.
 2039

2040 **Worked numeric example.** Consider $T = 5$ trials. Suppose the bee obtains reward 1 when
 2041 selecting L and reward 0 when selecting R . Then:
 2042

t	a_t^{bee}	a_t^{MAYA}	c_t	C_t	$R(\pi_{\text{bee}}, 1, t)$	$R(\pi_{\text{MAYA}}, 1, t)$	$ R(\pi_{\text{bee}}, 1, t) - R(\pi_{\text{MAYA}}, 1, t) $
1	L	L	0	0	0	0	0
2	L	R	1	1	0	1	1
3	R	R	0	1	1	1	0
4	L	R	1	2	1	2	1
5	L	L	0	2	1	2	1

2050 Thus

$$2051 \mathbf{c} = (0, 1, 0, 1, 0), \quad (C_t)_{t=1}^5 = (0, 1, 1, 2, 2),$$

2052 and

2053
$$R(\pi_{\text{bee}}, 1, T) = (0, 0, 1, 1, 1), \quad R(\pi_{\text{MAYA}}, 1, T) = (0, 1, 1, 2, 2).$$
 2054

2055 The mean squared error between the cumulative reproduction cost and the bee’s ideal trajectory is:

2056
$$2057 \text{MSE} = \frac{1}{5}(0^2 + 1^2 + 1^2 + 2^2 + 2^2) = 1.8.$$
 2058

2059 This illustrates the exact sequences used by the similarity metrics in MAYA. Since the cumulative
2060 disagreement C_t upper-bounds the difference in cumulative regret between the bee and the model,
2061

2062
$$|R(\pi_{\text{bee}}, 1, t) - R(\pi_{\text{MAYA}}, 1, t)| \leq C_t,$$

2063 the process C_t provides a direct and interpretable proxy for trajectories divergence. Studying its
2064 mean squared error (MSE) and mean absolute error (MAE) between the bee and the model therefore
2065 offers complementary insight into the quality of imitation. While trajectory-wise regret metrics
2066 capture global differences in learning performance, the MSE and MAE of C_t quantify how tightly
2067 the model reproduces the *pattern of action choices* over time. Low MSE/MAE values indicate that
2068 the model not only matches the scale of regret but also closely follows the trial-by-trial structure of
2069 action agreements and disagreements, providing a finer-grained measure of imitation quality.
20702071

17 DISCLOSURE OF LLM USE

2072 Large Language Models (LLMs) were used in a limited capacity during the preparation of this paper.
2073 Their use was restricted to (i) spelling and phrasing assistance (to support a dyslexic co-author), and
2074 (ii) suggesting improvements to Python scripts for graph generation and visualization. No part of
2075 the scientific content, analyses, or conclusions was produced by LLMs.
2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105