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ABSTRACT

We introduce a sequential reinforcement learning framework for imitation learn-
ing designed to model heterogeneous cognitive strategies in pollinators. Focusing
on honeybees, our approach leverages trajectory similarity to capture and forecast
behavior across individuals that rely on distinct strategies: some exploiting nu-
merical cues, others drawing on memory, or being influenced by environmental
factors such as weather. Through empirical evaluation, we show that state-of-the-
art imitation learning methods often fail in this setting: when expert policies shift
across memory windows or deviate from optimality, these models overlook both
fast and slow learning behaviors and cannot faithfully reproduce key decision pat-
terns. Moreover, they offer limited interpretability, hindering biological insight.
Our contribution addresses these challenges by (i) introducing a model that min-
imizes predictive loss while identifying the effective memory horizon most con-
sistent with behavioral data, and (ii) ensuring full interpretability to enable biolo-
gists to analyze underlying decision-making strategies and finally (iii) providing
a mathematical framework linking bee policy search with bandit formulations un-
der varying exploration–exploitation dynamics, and releasing a novel dataset of 80
tracked bees observed under diverse weather conditions. This benchmark facili-
tates research on pollinator cognition and supports ecological governance by im-
proving simulations of insect behavior in agroecosystems. Our findings shed new
light on the learning strategies and memory interplay shaping pollinator decision-
making.

1 INTRODUCTION

Over the past decade, researchers have increasingly turned to artificial intelligence (AI) and com-
putational modeling to replicate or simulate animals’ decision processes, referred to as imitation
learning (Cully et al., 2015). In this case, the goal is to train an agent to learn by observing and
reproducing the animal’s behavior in the same way as if the animals were experts. In particular,
reinforcement learning (RL) frameworks have gained increasing attention as a way to describe how
animals learn from trial and error, as an alternative to statistical models or simple heuristic rules.
These RL models serve a dual purpose: they help biologists to understand how these animals learn
to facilitate rule discovery (Wason, 1960) (i.e. policy modelisation) from real animal data experi-
ments, and they can also be used to test ecological decisions in simulation. However, the state-of-
the-art models have some difficulties in representing bee behaviors for some reasons: (1) some of
them exclude the balance between contextual and non-contextual strategies in the decision process
modeling. (2) These models overlook the archetypical mechanism in limited memory observable
reinforcement learning (RL): we define here the memory of the animal by a parameter, τ , that trun-
cates the observation history to the τ most recent observations. This parameter needs to be optimized
in the imitation learning. (3) These models assume homogeneity among bees, although individuals
may exhibit distinct behaviors and no explainability is given for each individual. In fact, some bees
are able to understand the context information to limit the regret in their strategies, and some oth-
ers do not Giurfa et al. (2022). The goal is then to provide a model that can explain and forecast
the policy of each bee. This paper proposes a new algorithm to model bees behaviors focusing on
contextual binary foraging tasks (scenarios with two alternatives in a Y-maze, with left vs. right
choices, where the reward depends on a one-dimensional contextual information). We summarize
key methodologies and show (1) how to identify the best τ window size, (2) how individuals vary
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according to their strategies, and (3) that by combining bandit RL algorithms with several similarity
measures, we can forecast any individual’s policy regardless of their specific skills. Our method is
summarized in Fig. 1. Our code is open-source and our data are openly available.1.

A new imitation learning framework Imitation learning (IL) enables agents to acquire behavior
from expert demonstrations in order to limit costly or unsafe exploration Zhao et al. (2020). By
grounding policy optimization in expert trajectories, IL offers a sample-efficient framework to cap-
ture adaptive strategies. However, when the goal is to imitate different experts rather than efficiently
learning the optimal policy, many IL methods fail when the expert has a non-optimal strategy. This
is mostly explained by the fact that they prioritize policy optimization over expert imitation. Unlike
classical IL, biological experts (such as bees) often follow non-optimal policies. In nature, several
policies may coexist, and a single expert can change its strategy over time. This is largely due to
the limited memory of insects, which restricts decisions to a short history of past actions and re-
wards. Therefore, attention must be paid to how the expert guides the agent, and how the agent
adapts to multiple experts. It requires not only defining what should be imitated, but also handling
this memory limitation. Our contribution is MAYA (Multi Agent Y-maze Allocation) which enables
bee imitation learning on a sequential two-choice learning (Y-maze). MAYA combines several multi
armed bandit (MAB) policies (including random and contextual variants) with a fixed memory set-
ting for similarity evaluation. Similarity evaluation can be based on probability of success (with
Kullback-Leibler or Wasserstein distance) or on trajectory (with Dynamic Time Warping DTW sim-
ilarity). The best choice of similarity is made according to the ability to imitate the expert and limit
the cumulative cost of wrongly replicated actions over trials. Then, our paper studies the similarity
that should be used.

Understanding the learning skill MAYA models bee policies as mixtures of multiple agents,
thereby providing a quantitative framework for analyzing behavioral variability. Since bees possess
limited memory of past experiences, their decision policies may shift over time. To capture this,
MAYA decomposes the observed trajectories into segments that align with distinct agent models,
each defined by a specific MAB. These MAB vary according to their strategies: pure exploration,
deterministic or stochastic reward-based choice between left and right arms of the Y-maze, and
context-dependent strategies where external cues guide decisions (see App. 13). By structuring bee
behavior as a combination of such agents, MAYA not only reproduces expert trajectories but also
yields an interpretable description of policy shifts and memory constraints.

Window-size discovering MAYA requires the specification of a sliding window τ ∈ T in order
to select the importance of the past information used to align the behavior of the bee and the MAB.
Consequently, similarity evaluations are restricted to a finite history of previous trials. In our exper-
iments, we assess how this setting influences the ability to imitate the bee. We find that the optimal
window length decreases under adverse weather conditions, but generally stabilizes around seven
past trials across all datasets. As a complementary analysis, we also include experiments with mice,
where a similar optimal setting emerges. This suggests that this memory-related hyperparameter
reflects a biologically grounded constraint observed across different species.

Open dataset and ecological insights We release to the community a new open dataset recording
experiments on 80 bees (with [22 − 40] sequential trials per bee) across 5 diverse situations (favor-
able and adverse weather, in Oceania and Europe). More details about the experiment are given in
App 6.1. In each experiment, a bee enters a Y-maze where it is exposed to a number of visual stimuli
presented on both the left and right arms. The reward is consistently located on the side displaying
the greater number of stimuli. During a session, each bee performs between 22 and 40 trials, where
the rewarded side has been randomly assigned at each trial.

2 PRELIMINARIES

Problem formulation. We model the bee prediction task (forecast the decision left or right)
as an RL problem. At each trial t ∈ 1, . . . , T the environment reveals a state st ∈ S
described by the number of trial t and available contextual information : xt ∈ R2 with

1https://anonymous.4open.science/r/maya-4E30
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Figure 1: MAYA (Multi-Agent Y-maze Allocation) is an imitation learning framework for policy
selection via windowed regret matching. Leveraging logged bee trajectories and three similarity
metrics (Wasserstein, KL, DTW), MAYA maps learning dynamics onto 2-armed bandit strategies
(UCB, Epsilon-greedy, LinUCB, Uniform). Beyond performance alignment, MAYA provides inter-
pretability of bee behaviors by revealing differences in memory span and learning aptitude, thereby
distinguishing “good learners” from “poor learners” in contextual experiments.

xt = (stimuli on Left and Right side,weather, . . .). The bee selects an action (i.e. chose a
side) : at ∈ A := {L,R}, corresponding to Left and Right. Then, the bee receives a reward
rt = r(st, at) ∈ {0, 1}, which captures whether the choice is correct or incorrect (e.g., sugar or
quinine). This model is actually a Markov Decision Process (MDP) Sutton & Barto (2018). It is
defined as a tuple (S,A, P,R) with a state space S , an action space A. In our setting, S = |S| and
A = |A| are finite (i.e S,A <∞). The quantity P = (Pa : a ∈ A) is called the transition function
with Pa : S × S → [0, 1] and so Pa(s, s′) is the probability that the agent moves from state s in
state s′ according to action a. The set space R is defined by all outputs of reward functions ra
according an action a : R = (ra : a ∈ A). We are on a discrete-time series system such as the
initial state is defined by S1. In each round t the agent observes the state St ∈ S, chooses an action
At ∈ A and receives the reward rAt(St). The environment then samples St+1 from the probability
vector PAt(St) ∈ P . The history Ht = (S1, A1, r(S1, A1), . . . , St−1, At−1, r(St−1, At−1), St)
or more simply Ht = (S1, A1, r1, . . . , St−1, At−1, rt−1, St), contains the information available
before the action for the round t is to be chosen. A policy is a (possibly randomised) map from
the set of possible histories to actions. The set of such policies is denoted by Π and its elements
are identified with maps π : A × S → [0, 1] with

∑
a∈A π(a|s) = 1 for any s ∈ S so that π(a|s)

is interpreted as the probability that policy π takes action a in state s. We are on a finite-trial
experiment i.e. t ∈ {1, . . . , T} where T is the total number of trials. We consider here that all
rewards are equivalent whatever the future, then an optimal policy π∗ for a discrete time T system
is a policy that satisfies, for any state s : π∗ = argmaxπ∈Π

∑T
t=1 γ

tr(At, St) with γ = 1. Finally,
let Nt(a) denote the total number of times action a has been selected up to round t. We define
Qt(a) =

1
Nt(a)

∑t−1
j=1 rj1{aj=a} as the simple average of rewards which have been observed.

Regret. Let π⋆ denote the (unknown) optimal policy. The instantaneous regret at trial t is defined
as ∆t = r(st, a

⋆
t ) − r(st, at), where a⋆t := π⋆(st) = argmaxa∈Ar(st, a) is the optimal action

under the state st. The cumulative simple regret after T trials is the sum of instantaneous regrets
R(π, 1, T ) =

∑T
t=1 ∆π,t.

In the experiment, the reward given to the bee at each state st does not depend on the state st−1.
Hence our model can be seen as a 2-armed bandit problem and not a classical reinforcement learning
problem. Bees differ in solving such learning task. Based on biology literature Capela et al. (2024),
their different behaviors can be modeled by four different two-armed bandit strategies (MAB) :

1. Epsilon Greedy Sutton & Barto (1998) : exploits current action that maximize observed
average reward (i.e. .) and explore the other action according a small probability (ϵ).

At =

ß
Argmaxa[Qt(a)] with probability 1− ϵ
a ∼ Uniform(A\{Argmaxa[Qt(a)]}) with probability ϵ

3
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2. Optimistic stategy UCB style Auer et al. (2002) : construct an adaptative upper confidence
bound around Qt(a) . In this case UCB1 chose according :

At = Argmaxa[Qt(a) +

 
ln t

Nt(a)
].

The number of trials onNa(t) and empirical observed reward on each arms are considered.
3. Contextual-multi-armed bandits (CMAB) LINUCB style Li et al. (2010) : At the be-

ginning of trial t, the agent observes a context xt. It’s redefine the choice of an action
according the context information xt. LetGa = X⊤

a Xa + λI where Xa is the matrix with
the context vectors of action a as rows, I the identity matrix and λ ∈ R is a regularization
parameter. LINUCB1 chose according :

At = Argmaxa[ x
⊤
t Θ̂a,t +

»
x⊤t G

−1
a xt ].

where Θ̂a,t ∈ R2 are estimated parameter of action a at t.
4. Random choice strategy UNIFORM style : At each trial, the agent chooses an action

uniformly at random, independently of past observations or contexts. This baseline strategy
does not exploit reward or contextual informations, and serves as a comparison.

At ∼ Uniform(A).

Among the strategies considered above, LINUCB1 (ref as LINUCB) is the only bandit algorithm
here that explicitly incorporates contextual information. Consequently, it is the sole approach capa-
ble of asymptotically converging to the optimal policy in our Y-maze experimental setting. Regard-
less of its ability to adopt the optimal strategy (i.e., to use contextual information), the bee selects an
action At based on memory history. This memory reflects the history of past actions, rewards, and
contexts. However, learning and memory of honeybees can be impacted by a large amount environ-
mental conditions, like the weather variation Gérard et al. (2022). Additionally, the learning process
in itself may be reflected by the succession of sub-optimal strategy (based on Qa(t) or based on a
random choice) to the optimal strategy (based on the contextual information) with potential tran-
sitive states. Therefore, comparing bee strategies with these four policies must be carried out in a
non-stationary framework. Unfortunately, the effective history length is difficult to anticipate, as
it may evolve in different ways: piecewise-constant with abrupt changes at unknown breakpoints,
smoothly varying with gradual trends, monotonically increasing or decreasing, or within bounded
variation, where the total change over time remains limited Fiandri et al. (2024).

Then, to incorporate this bee’s memory concept, defined in psychology as the recency effect Glanzer
& Cunitz (1966), we introduce the concept of a sliding window τ ∈ T to lay the stress on recent
data. The history becomes Ht,τ = (St−τ , At−τ , rt−τ , . . . , St−1, At−1, rt−1, St) and the policy
becomes π : A × S × T → [0, 1] with

∑
a∈A π(a|s, τ) = 1. The simple regret according τ is :

R(π, τ, 1, T ) =
∑T
t=τ ∆π,t.

Imitation learning to approximate a bee’s behaviour Our goal is to learn a policy πθ which
is close to πbee. The selection of the best MAB algorithm that mimics a bee’s behaviour will be
achieved by looking at the trajectories of their regrets. For this, for a well chosen similarity distance
d, we define for two policies π1 and π2, their distance δ(π1, π2, 1, T ) := d((∆π1,t)

T
t=1, (∆π2,t)

T
t=1).

Note that, if we take into account the memory effect, δ becomes t and τ adapted as follows
δ(π1, π2, τ, T ) := d((∆π1,t)

T
t=τ , (∆π2,t)

T
t=τ ). In the following, we will consider for d three dif-

ferent distances: the sequence of regrets is on the one hand considered as a sequence of random
variables and the natural distances between the sequence of regrets are distributional distances such
as Kullback-Leibler (KL) divergence (related to similarity for probabilistic inference) or Wasserstein
distance (capturing geometric information between distributions); on the other hand, the sequence of
regrets is considered as a trajectory of positions and a suitable choice is the Dynamic Time Warping
(DTW) similarity, which focuses on temporal alignment.

Finally, the success of the imitation learning algorithm will be quantified here using the following
cost of a wrong reproduced action. Let :

c(st|at) =
ß

1 if at ̸= πbee(st)
0 otherwise

4
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Assume that πθ(a ̸= πbee(s)|s) ≤ ε, with ε ∈ [0, 1] then Ross et al. (2010) shows that
E[
∑T
t=1 c(st, at)] ≤ εT . If πθ is learned by minimizing previous distances, success is measured by

considering this cost.

3 CONTRIBUTION

Our contribution, the MAYA (Multi-Agent Y-maze Allocation) algorithm addresses the challenge
in biology of inverse reinforcement learning when expert demonstrations are heterogeneous and not
necessarily optimal. Rather than assuming a single “perfect” expert, MAYA models bee trajecto-
ries by dynamically aligning them with candidate MAB policies, thereby capturing both successful
and sub-optimal learning behaviors. We present here a condensed version of MAYA; the complete
procedure is provided in Appendix (App. 11).

Inputs. The algorithm takes as input the logged regret trajectory of a bee policy R(πbee, 1, T ), a
finite set P = {π1, . . . , πN} of N candidate bandit policies, and a window size τ . The window size
controls how much historical regret information is used at each step: for t < τ the algorithm uses
all past data, while for t ≥ τ it only considers the most recent τ steps.

Initialization. The algorithm initializes a placeholder policy πθ and an agent buffer ξ.

Warm-up Phase (t < τ ). For each time step t ∈ {2, . . . , τ − 1}:

1. The algorithm observes the bee regret R(πbee, 1, t− 1) with the context information xt.
2. For each candidate policy πi ∈ P , the algorithm simulates its action distribution
πi(st−1|xt) and computes the cumulative regret R(πi, 1, t− 1). w

3. A distance d(·, ·) is computed between the bee regret trajectory and the simulated regret of
πi, then we compute ξt = argminπ∈P δ(πbee, π, t) according to the choice of d(.). In case
of a tie, ξt is sampled from the set of best candidates.

4. The algorithm updates πθ to imitate πξt , i.e. πθ(at|st−1) ← πξt(at|st−1), and we store
ξ[t]← ξt.

The chosen policy πθ is then used to sample an action At, a reward rt is received, and all candidate
policies are updated.

Windowed Phase (t ≥ τ ). For subsequent steps t ∈ {τ, . . . , T}, the procedure is analo-
gous, except that only the most recent observations τ are used when computing regret and ξt =
argminπ∈P δ(πbee, π, τ, t). Specifically, regret and policy regrets are evaluated over the interval
[t − τ, t − 1] rather than the full trajectory. Again, the best match ξt is calculated between each
policy π ∈ P , and πθ is updated according to the best match.

Output. After T steps, the algorithm returns the policy πθ, which best matches the bee’s regret
profile, while adapting online to the context and rewards.

3.1 SIMILARITY EVALUATION

The algorithm depends on the choice of the distance d between the trajectories of the regrets. We
will consider three distinct distances. For a review of different distances see for instance in Besse
et al. (2015).

1. Dynamic Time Warping (DTW). One of the most used similarity measures between two
paths is given by the so-called DTW. It is defined as follows. Given two temporal sequences
X = (x1, . . . , xT1

) and Y = (y1, . . . , yT2
) over E ⊂ Rd with d ∈ N∗. DTW aligns

them by finding an admissible path ψ = {(ik, jk)}Kk=1 that respects temporal ordering.
Formally, the DTW is defined as DTW (X,Y ) = minψ

∑K
k=1 ∥xik − yjk∥, with K ∈ N∗

where the minimization runs over all monotone alignment paths ψ between the indices of
X and Y . This distance enables comparison of sequences with different lengths or temporal
distortions, by optimally stretching or compressing the time axis.

5
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2. KL-distance. In this case, the sequence of the regrets is considered as a realization at
each step of a Bernoulli distribution. Hence we can define the Kullback Leibler distance
between each trajectory by a proper normalization. Set Q a probability measure on E. If
P is another probability measure on (E,B(E)), then the KL divergence is DKL(P∥Q) =∫
E
log dP

dQdP , if P ≪ Q and log dP
dQ ∈ L

1(P ), and +∞ otherwise.

3. Wasserstein-distance. We consider again the distributional point of view. The 1-
Wasserstein distance is defined as follows. For two distributions π1 and π2 over E ⊂ Rd a
compact subset, endowed with the norm ∥.∥, recall that their 1-Wasserstein distance is de-

fined as W1(π1, π2) = min
π∈Π(π1,π2)

∫
x∈E,y∈E

∥ x− y ∥ dπ(x, y), where Π(π1, π2) denotes

the set of distributions on E × E with marginals π1 and π2.

3.2 THEORETICAL ANALYSIS

We provide in App 14 worst-case upper bounds on the cumulative regret gap between πMAYA and
πbee across stationary and cyclic regimes, expressed in terms of T and the memory window τ . We
inform the choice of τ to control the error in non-stationary settings.

4 EXPERIMENTAL EVALUATION

Our experiments aim to address the following questions: i/ What is the best window size and sim-
ilarity metric to approximate bee learning? ii/ What information can MAYA provide about the
exploratory and contextual process of bees? iii/ How MAYA can adapt itself to contextual, none
contextual, fast and slow learners. iv/ How external information (here the weather) can impact the
window size?

Experiment description The datasets vary according to location (three from France and two from
Australia) and weather conditions (two cold, one moderate, and two hot). Each dataset contains the
trajectories of 16 bees with 22 or 40 trials (depending on the dataset, see App 6.1 for more details).
We also include a complementary experiment in the App 12, adapted from Ashwood et al. (2020b),
using data from mice performing perceptual decision-making tasks.

Metrics MAYA and comparative methods are evaluated based on their ability to minimize the cost
of incorrectly reproduced actions over the sequence of trials. We then report, for our five datasets, the
MSE

Ä∑T
t=1 c(st | at)

ä
and MAE

Ä∑T
t=1 c(st | at)

ä
, computed across all bees within the same

dataset. We first observe how these metrics evolve in Sec.4.1. Then, in Sec. 4.2, we show how
MAYA generates trajectories that closely match those of bees across all datasets. Sec 4.3 provides
an individual analysis. We also observe how trajectories are clustered in a similar manner in Sec.4.4.
This can be considered as an additional performance metric: the ability to assign trajectories to the
same cluster.

4.1 BEST WINDOW SIZE AND DISTANCE METRICS

Figure 2 reports the average MSE and MAE results according τ for the five datasets. When several
MAB agents are candidates for ξt, the selection is random, which can introduce some variability.
For readability, we report only the average MSE/MAE over 1,000 simulations, and we provide the
standard deviation for several τ in the App 6.2. However, the recorded standard deviations are small
and nearly constant. This is easily explained: if agents follow the same action sequence, their costs
are identical. Therefore, the effect of randomness is limited. This can be seen in Fig.3, for example,
where UCB and UNIFORM act identically at the beginning of the experiment.

Across all datasets, the results confirm the trend that for τ ∈ [5, 10] the losses decrease. However,
weather influences the optimal τ . Cold weather requires to choose τ ∈ [5, 7], moderate weather
τ ∈ [6, 8], and hot weather τ ∈ [7, 10]. According to this observation, we suggest fixing τ = 7
to handle multiple weather conditions. This choice is also the best parameter in complementary
experiments with mice (App 12). Then, we fix τ = 7 for the rest of the paper. With this window,
MAYA–Wass provides the best results across all datasets.

6
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(a) Dataset 1 (Cold, France) (b) Dataset 2 (Hot, France) (c) Dataset 3 (Moderate, France)

(d) Dataset 4 (Cold, Australia) (e) Dataset 5 (Hot, Australia)

Figure 2: Comparative study of the best window size τ by average MSE and MAE; weather and
location for each dataset are provided. The maximum window value corresponds to using the full
sequence (i.e., no window). ⋆ symbol refers as best performance according standard deviation and
average reward (see Tab8. in App 9 for the full results)

Table 1: MSE comparison of methods across the five datasets. Values are reported as mean ±
standard deviation. We fix τ = 7 for all MAYA variant. Best performance of comparative methods
are reported here.

Dataset GAIL BC AIRL Dagger DBR MCE Pref-Comp SQIL GLM (no ctx) GLM (ctx) MAYA-KL MAYA-Wass MAYA-DTW
1 29.6± 41 5.16 ± 3 0 ± 0 22.8 ± 32 43.1 ± 54 148.83 ± 38 104± 57 26.2±19 3.0 ± 1 3.0 ± 1 4.2 ± 3 2.5 ± 1 6.7 ± 7
2 23.2±17 2.86 ± 2 0 ± 0 9.67 ± 12 15.26 ± 16 49.5 ± 14 24.54 ± 18 9.8±6 1.4 ± 2 1.4 ± 2 1.6 ± 1 1.5 ± 1 1.3 ± 3
3 27.5±40 5.5 ± 4 0 ± 0 21.6 ± 46 41.38 ± 51 140.3 ± 34 125.7 ± 44 22.6±15 3.1 ± 1 3.1 ± 1 3.7 ± 3 2.6 ± 1 5.7 ± 5
4 25.3±39 5.35 ± 4 0 ± 0 22.9 ± 34 46.06 ± 55 148.2 ± 39 124.1 ± 52 25.3±20 3.0 ± 1 3.0 ± 1 3.7 ± 3 3.6 ± 2 8.3 ± 10
5 47.7 ± 45 26.7 ± 42 0 ± 0 25.8 ± 47 115.7 ± 242 374 ± 311 284 +/-254 25.0±16 8.0 ± 8 7.9 ± 8 3.4 ± 3 4.5 ± 5 10.3 ± 11

4.2 COMPARATIVE STUDY OF REPRODUCTIVE BEHAVIOR

We compare the performance of MAYA-Wasserstein, MAYA-KL and MAYA-DTW with all IRL al-
gorithms implemented in the imitation library of Gleave et al. (2022). It includes implementations of
Generative Adversarial Imitation Learning (GAIL), Behavioral Cloning (BC), Dataset Aggregation
(DAgger), Adversarial Inverse Reinforcement Learning (AIRL), Density-based reward modeling
(DBR), Reward Learning through Preference Comparisons (Pref-Comp), Maximum Causal Entropy
Inverse Reinforcement Learning (MCE) and Soft Q Imitation learning (SQIL). These methods are
the baseline references of IRL methods. We provide a full explanation of these methods in App 8.
We also compare our results with a generalized linear model (GLM) applied to the full trajectory. In
this case, the GLM captures each bee trajectory through a response transformation, while allowing
the variance of each measurement to depend on its predicted value. We further introduce a variant
that incorporates contextual information xt as covariates (GLM-Context).

The reported results are in Tab 1 for the MSE. As the best performances are almost identical for
the MAE we provide MAE results in App 8.1. Methods such as Pref-comp, MCE, and DBR tend
to overshoot bee trajectories and focus mainly on minimizing regret (policy optimization), as the
context provides all the necessary information to choose correctly. These methods fail to reproduce
bee behavior: the loss between the bee regret trajectory and the policy increases over time, while
the learned policy achieves only a small cumulative regret. In fact, these methods generally act like
LinUCB. GAIL, Dagger and SQIL fail to capture the full range of behaviors, instead tending to
mimic the most frequently represented populations in the dataset. AIRL reproduces bee trajectories
identically, and can therefore be seen as a full copy-paste of the dataset without any real capacity
for generalization. This leads to overfitting, where the model memorizes observed trajectories rather
than capturing the underlying decision-making mechanisms. When we fine-tune the parameters
of these methods, we reinforce the influence of the expert on the learning process (see App 9).
However, this requires more computation time, and the resulting MSE/MAE values are higher than
those obtained with MAYA (considering a large set of τ ). The GLM can be considered the most
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challenging baseline to outperform in terms of MSE/MAE, since it is explicitly designed to fit the
bee trajectory rather than to learn a policy. Adding contextual covariates has only a minor influence,
which is expected because the GLM primarily captures direct statistical dependencies rather than
adaptive decision-making. Among all variants, MAYA with the Wasserstein distance (MAYA-Wass)
consistently achieves the best performance across datasets, highlighting its robustness in capturing
trajectory similarity. We report in Fig 3a and Fig3b MAYA’s fitting for two bees.

(a) Bee 1 (b) Bee 15 (c) Bee 1 (d) Bee 15

Figure 3: For bee 1 (fast learner, low regret) and bee 15 (slow learner, high regret) from dataset 2.
Left: Cumulative regret of 4 MABs, GLM and MAYA (τ = 7) for two bees from Dataset 2. Right:
Choice interpretability with MAYA–Wass (τ = 7).

4.3 UNDERSTANDING THE LEARNING PROCESS

MAYA provides post-hoc behavioral explainability at both the individual-bee and dataset levels.
Concretely, our explainability metric is the alignment rate: the proportion of time MAYA’s chosen
action at matches the action prescribed by a reference MAB policy (e.g., LinUCB, UCB, Epsilon-
greedy, or Uniform). Empirically, when focusing on low-regret bees, MAYA’s decisions align pre-
dominantly with LinUCB-like choices (see Fig3c). In contrast, for high-regret bees, decisions align
more often with Epsilon greedy (see Fig3d) as a context-agnostic heuristic tends to over-exploit
early, locking onto arms that were temporarily lucky and thus yielding higher cumulative regret
(exploited 80% of the time). Table 2b reports the MAB-policy alignment proportions aggregated
across all bees from the five datasets. Across MAYA variants, alignment profiles are broadly similar,
though MAYA–DTW exhibits greater variability. The strong performance of MAYA–Wass appears
consistent with its higher alignment to LinUCB-style trajectories, suggesting better identification of
context-sensitive decision patterns. Additional per-τ and per-dataset analyses are provided in App 7.
There we also show that using a smaller temporal window (τ ≤ 5) can increase divergence in ex-
plainability (i.e., alignment instability), especially for slow learners, whose behavior requires longer
horizons to disambiguate. These empirical proportions are useful for biologists as priors for forward
ecological simulations: one can sample actions from the observed mixture over reference policies to
synthesize realistic behavioral decisions.

4.4 SIMULATE AND FORECAST THE BEE TRAJECTORY

We study MAYA’s ability to forecast realistic trajectories that capture bee behavior. We consider two
behavioral types (slow and fast learners) defined by their cumulative regret according to the number
of trials. We jointly cluster real bee trajectories and MAYA-generated trajectories separately, and
we assess alignment by checking whether real and simulated samples fall into the same clusters via
a confusion matrix. We define a clustering function κ that assigns each trajectory R(.) to a cluster:
κ : R(.) 7→ {1, . . . ,K}, where K is the number of clusters. As an additional performance
evaluation, we compute the proportion of cases where the model and bee trajectories fall into the

same cluster: ClusterAcc =
1

J

J∑
i=1

1
î
κ(R(πjbee, 1, T ) = R(πjθ, 1, T )

ó
, where J denotes the total

number of bees across all datasets (here, 80), πjbee is the policy of the jth bee, and πjθ is the policy
generated by MAYA for the jth bee. We useK = 2 clusters to mirror the two archetypes. Clustering
I (Euclidean) uses Euclidean distance on time series and requires equal lengths. We pool all bees
across datasets. Lengths differ, so we truncate each series to the minimum common length (22).
We apply a second clustering with Dynamic Barycenter Averaging (DBA); a DTW-based clustering
method. It handles unequal lengths and local time shifts, so no truncation is needed. We report
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DBA clustering of real bee trajectories in Fig4, and in Fig5 MAYA-Wass trajectories clustering. We
report the confusion matrix (real vs. simulated labels) in Tab 2a. According to Fig 6 and Fig 7
the MAYA-Wass error fluctuations remain bounded with Gaussian amplitude. It shows that MAYA-
Wass’s dynamics are stable, almost 0-centered with a maximal standard deviation error equal to 3.
We provide additional figures of Euclidean Clustering in App 10.

Table 2: Left: For all bees in the five datasets, we report average ClusterAcc (%) under two prototype
aggregation regimes: (i) Euclidean averaging with a maximum sequence length of 22, and (ii) DBA
with a maximum sequence length of 40. Across both regimes, MAYA–Wass achieves the highest
accuracy (79% and 91%), followed by MAYA–KL and MAYA–DTW. Standard errors are≤ 1% for all
entries and are omitted for readability. Right: Proportion of at according to all trials for all dataset
(5). We fix τ = 7 for all MAYA variants.

MAYA-KL MAYA-Wass MAYA-DTW
ClusterAcc (Euclidean, Max L = 22) 77% 79% 70%
ClusterAcc (DBA, Max L = 40) 84% 91% 80%

(a) ClusterAcc (%)

Epsilon-Greedy Lin-UCB UCB Uniform
MAYA-KL 34.4%±2 10.5%±1 22.6%±1 32.5%±2
MAYA-W 31.1%±1.5 16.2%±0.8 22.2%±0.9 30.5%±1.4
MAYA-DTW 36.5%±2.5 10.8%±1 17.5%±1 35.2%±2.3

(b) MAYA explainability for all bees choices

Figure 4: Bees trajectories Figure 5: MAYA-Wass Figure 6: Cluster 0 Figure 7: Cluster 1

Figure 8: Left: Centroides of two clustering of 80 bees trajectories (in Fig4) and 80 MAYA-Wass
simulated trajectories (with τ = 7 in Fig.5). Clustering is done with DBA method (Clustering
II). The two centroids estimated from MAYA-generated trajectories closely match those from real
trajectories, indicating that MAYA preserves the underlying behavioral structure. Right: average
difference between MAYA predictions and real trajectories (R(πθ, 1, t) − R(πbee, 1, t)) (z-axis) for
Clustering 0 and 1. Red range corresponds to ±σ (standard deviation). Average cost evolves ac-
cording trial t (time step) and average trajectory values (cumulative regret, in y axis).

5 DISCUSSION

We introduced MAYA, a sequential imitation-learning model that forecasts individual bee trajecto-
ries across heterogeneous cognitive strategies. Across datasets and weather conditions, a memory
window of (τ = 7) consistently yielded the best fit; this choice is corroborated by complementary
experiments and corresponds roughly to 15–30 minutes in our protocol (≈ seven trials, depend-
ing on the bee). Among variants, MAYA-Wass achieved the strongest overall performance, while
MAYA-KL and MAYA-DTW remained competitive. Beyond accuracy, MAYA provides inter-
pretable, per-trial explanations of choice, enables the generation of “artificial bees,” and supports
forward simulation for ecological what-if scenarios. These results position MAYA as a viable al-
ternative to IRL baselines and traditional statistical models. Future work will deploy MAYA in
large-scale ecological simulations to assess its predictive value for ecological management deci-
sions.
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6 APPENDIX

6.1 DATASET DESCRIPTION

In this dataset, bees are confronted to a numerical discrimination task. Bees first enter the maze
in an entrance chamber before flying in a hole and facing two images located at the end of each
arm. The image has different number of dots : for example in dataset 1 and 2, one of the image
has two dots while the other have four dots. If the bee chooses the correct image (i.e. the side
with the highest number of dots), it will be rewarded by a sugar reward (50% sugar/water) placed
in pipette in the middle of the image, alternatively if it chooses the incorrect image then it will be
punished finding a bitter tasting solution (quinine solution) within the pipette. Bees cannot detect
(neither visually nor by odor) which solution is located where. Then, they are only able to know
image on each side before to choose. Between each trials the bee will go back to the hive to deliver
the collected sugar, before reaching back the maze for another trial (typically lasting a few minutes).
During this time the experimenter randomly changes the images or not, and varying the position of
the dots. The localization of the correct image alternate between the right and left arm according to
a pseudo-random sequence. Each dataset include 16 bees.

Table 3: Datasets summary

Dataset nb indiv T Location Weather
Dataset 1 16 40 France Cold
Dataset 2 16 22 France Hot
Dataset 3 16 40 France Moderate
Dataset 4 16 40 Australia Cold
Dataset 5 16 30 Australia Hot

(a) Dataset 1 (Cold, France) (b) Dataset 2 (Hot, France) (c) Dataset 3 (Moderate, France)

(d) Dataset 4 (Cold, Australia) (e) Dataset 5 (Hot, Australia)

Figure 9: Proportion of cumulative regret for the five datasets, per bees
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6.2 MSE AND MAE OF MAYA ACCORDING τ

side window MAYA KL MAYA KL MAYA Wass MAYA Wass MAYA DTW MAYA DTW
mean MSE mean MAE mean MSE mean MAE mean MSE mean MAE

3.0 2.7 ± 2 1.2 ± 0.7 2.7±2 1.2 ± 0.6 7.4 ± 10 1.9 ± 1
4.0 4.2 ± 4 1.5 ± 0.8 3.0 ± 2 1.3 ± 0.6 8.0 ± 13 1.9 ± 1
5.0 4.0 ± 4 1.4 ± 0.9 3.8 ± 3 1.5 ± 0.6 6.8 ± 7 1.9 ± 0.9
6.0 4.1 ± 2 1.6 ± 0.6 2.8 ± 2 1.2 ± 0.5 7.5 ± 7 2.0 ± 1
7.0 4.2 ± 3 1.5 ± 0.7 2.5 ± 1 1.2 ± 0.5 6.7 ± 7 1.9 ± 1
8.0 5.5 ± 5 1.7 ± 0.9 3.7 ± 3 1.4 ± 0.7 7.2 ± 7.8 2.0 ± 1
9.0 3.9 ± 3 1.4 ± 0.7 2.9 ± 2 1.2 ± 0.6 8.8± 9 2.2 ± 1
10.0 5.5 ± 5 1.7 ± 0.9 4.1 ± 4 1.5 ± 0.8 8.7 ± 10 2.0 ± 1
20.0 5.4 ± 5 1.6 ± 0.8 4.8 ± 5 1.5 ± 0.9 8.7 ± 10 2.1 ± 1
30.0 4.3 ± 3 1.5± 0.6 4.4 ± 3 1.5 ± 0.7 8.4 ± 10 2.0 ± 1
T = 40 5.1 ± 5 1.6 ± 1 4.8 ±6 1.5 ± 0.9 9.7 ± 11 2.2±1

Table 4: Dataset 1 (Cold weather, France)

side window MAYA KL MAYA KL MAYA Wass MAYA Wass MAYA DTW MAYA DTW
mean mean mean mean mean mean

3.0 1.2± 1 0.7± 0.4 1.3± 1 0.8± 0.4 2.4± 1 1.1± 0.4
4.0 1.3± 0.8 0.8± 0.3 1.5± 1 0.8 ± 0.4 2.7± 2 1.1± 0.6
5.0 2.1± 1 1.0± 0.4 1.9± 2 1.0± 0.5 2.4± 2.7 1.0± 0.6
6.0 2.1± 1 1.0± 0.5 1.5± 1 0.8 ± 0.4 3.5 ± 3 1.3± 0.7
7.0 1.6± 1 0.9± 0.4 1.5± 1 0.8± 0.4 3.0± 3 1.2± 0.6
8.0 1.9± 1 1.0± 0.3 1.8± 1 0.9± 0.4 2.8± 2 1.2± 0.6
9.0 1.8± 1 0.9± 0.4 2.2± 2 1.0± 0.6 2.5± 2 1.1± 0.6
10.0 2.3 ± 2 1.0± 0.5 2.1± 2 1.0± 0.6 2.7± 1 1.2± 0.6
20.0 2.3± 1 1.0± 0.4 2.6± 1 1.1± 0.3 2.0± 1 1.0± 0.4
T = 22 3.2± 3 1.2± 0.6 2.8± 1 1.2± 0.4 2.1± 1 1.0± 0.5

Table 5: Dataset 2 (Hot weather, France)

side window MAYA KL MAYA KL MAYA Wass MAYA Wass MAYA DTW MAYA DTW
mean MSE mean MAE mean MSE mean MAE mean MSE mean MAE

3.0 3.0±2 1.3±0.6 4.0±4 1.4 ±0.8 8.4±12 2.0±1.4
4.0 4.4±4 1.5±0.9 3.9±4 1.4±0.8 7.4±11 1.9±1
5.0 4.3±4 1.5±0.7 3.0±3 1.2±0.7 7.3±11 1.9±1
6.0 4.4±4 1.5±0.8 3.1±2 1.3±0.6 7.7±9 2.0±1
7.0 3.7±3 1.4±0.6 2.6±1 1.2±0.5 5.7±5 1.8±0.8
8.0 4.1±3 1.5±0.7 2.5±1 1.1±0.4 8.3±9 2.1±1
9.0 5.8±5 1.8±0.8 4.2±2 1.6±0.6 8.1±8 2.1±1
10.0 3.6±3 1.4±0.7 4.9±5 1.6±1 7.1±9 1.9±1
20.0 5.3±4 1.7±0.8 5.2±5 1.7±0.7 6.5±8 1.9±1
30.0 3.6±2 1.4±0.5 4.4±3 1.6±0.7 8.7±9 2.2±1
T = 40 4.2 ± 4 1.5 ± 0.8 3.45±3 1.3±0.6 9.3 ± 11 2.2±1

Table 6: Dataset 3 (Moderate weather, France)

side window MAYA KL MAYA KL MAYA Wass MAYA Wass MAYA DTW MAYA DTW
mean MSE mean MAE mean MSE mean MAE mean MSE mean MAE

3.0 4.5 ± 4 1.6 ± 0.9 3.0 ± 4 1.2 ±0.9 7.1 ± 10 1.8 ± 1.3
4.0 3.8 ± 3 1.5±0.7 3.6 ±3 1.5 ± 0.6 7.1 ± 9 1.9 ± 1
5.0 4.9 ± 3 1.7 ±0.7 2.6 ± 3 1.2 ± 0.7 7.6±11 1.9 ±1
6.0 4.1±3 1.5 ± 0.7 2.6 ± 1 1.2 ± 0.4 7.8±9 2.0 ± 1
7.0 3.7±3 1.4±0.6 3.6±2 1.5 ±0.5 8.3 ±10 2.1 ±1
8.0 6.2±8 1.7 ±1 3.4±2 3.4±2 6.2±7 1.8 ± 1
9.0 4.6 ±3 1.6 ±0.7 3.1 ±2 1.3±0.5 8.1±7 2.1 ±1
10.0 7.7±7 2.0 ±1 4.8±4 1.6±0.8 8.4±10 2.0±1
20.0 5.4 ±4 1.7 ±0.8 4.4 ± 2 1.6 ±0.5 8.5 ± 11 2.1 ±1.2
30.0 5.5 ±4 1.7±0.7 6.7 ±7 1.9 ±0.9 9.0 ±12 2.1 ± 1
T = 40 4.2 ± 5 1.4 ± 0.8 3.3 ± 2 1.3 ± 0.6 9.0 ± 10 2.2 ± 1

Table 7: Dataset 4 (Cold weather, Australia)

side window MAYA KL MAYA KL MAYA Wass MAYA Wass MAYA DTW MAYA DTW
mean MSE mean MAE mean MSE mean MAE mean MSE mean MAE

3 6.6 ± 9 1.6 ± 1 6.3 ± 9 1.6 ± 1 8.6 ± 10 1.9 ± 1
4 8.1 ± 8 2.0 ± 1 10.4 ± 12 2.2 ± 1 9.4 ± 8 2.1 ± 1
5 4.3 ± 5 1.4 ± 0.9 8.4 ± 10 2.0 ± 1 10.4 ± 12 2.2 ± 1
6 3.6 ± 3 1.4 ± 0.7 3.9 ± 8 1.2 ± 1 12.0 ± 11 2.3 ± 1
7 3.4± 3 1.2 ± 0.9 4.5 ± 5 1.5 ± 1 10.3 ± 11 2.1 ± 1
8 4.1 ±3 1.5±0.6 4.4±5 1.5±0.9 10.3 ± 12 2.2±1
9 5.5±8 1.6±1 5.7±6 1.7±1 12.9 ± 16 2.4 ± 1
10 3.3 ± 3 1.3 ± 0.6 3.3 ± 3 1.3 ± 0.7 9.6 ± 10 2.1 ± 1
20 6.4±6 1.8 ±1 4.7 ± 5 1.5 ±0.8 11.8±13 2.3 ± 1
T = 30 6.1±5 1.8±0.9 6.1±5 1.8±0.9 9.2±10 2.1±1

Table 8: Dataset 5 (Hot weather, Australia)

Table 9: MSE and MAE of MAYA as a function of the window size τ . The T row denotes the
no-window setting (τ = T ), where at each trial the full trajectory up to time t is used.
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7 UNDERSTANDING THE LEARNING PROCESS

7.1 MAYA EXPLAINABILITY WITH τ = 7

Figure 10: MAYA-KL Figure 11: MAYA-Wass Figure 12: MAYA-DTW

Figure 13: For bee 1 (fast learner, low regret) from dataset 2 we report choice interpretability for
MAYA-variants (τ = 7).

Figure 14: MAYA-KL Figure 15: MAYA-Wass Figure 16: MAYA-DTW

Figure 17: For bee 15 (slow learner, high regret) from dataset 2 we report choice interpretability for
MAYA-variants (τ = 7).
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7.2 MAYA EXPLAINABILITY WITH τ = 3

Figure 18: MAYA-KL Figure 19: MAYA-Wass Figure 20: MAYA-DTW

Figure 21: For bee 1 (fast learner, low regret) from dataset 2 we report choice interpretability for
MAYA-variants (τ = 3).

Figure 22: MAYA-KL Figure 23: MAYA-Wass Figure 24: MAYA-DTW

Figure 25: For bee 15 (slow learner, high regret) from Dataset 2 we report choice interpretability for
MAYA-variants (τ = 3).

Figure 26: Bee 1 Figure 27: Bee 15

Figure 28: Regret modelization for bee 1 (lower cumulative regret) and bee 15 (higher cumulative
regret) of Dataset 2, with τ = 3
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8 COMPARATIVE METHODES DESCRIPTION

• Generative Adversarial Imitation Learning (GAIL) GAIL learns a policy by simultaneously
training it with a discriminator that aims to distinguish expert trajectories against trajecto-
ries from the learned policy. Ho & Ermon (2016)

• Behavioral Cloning (BC) Behavioral cloning directly learns a policy by using supervised
learning on observation-action pairs from expert demonstrations. It is a simple approach
to learning a policy, but the policy often generalizes poorly and does not recover well from
errors. Foster et al. (2024).

• AIRL, similar to GAIL, adversarially trains a policy against a discriminator that aims to
distinguish the expert demonstrations from the learned policy. Unlike GAIL, AIRL recov-
ers a reward function that is more generalizable to changes in environment dynamics. Fu
et al. (2018).

• DAgger (Dataset Aggregation) iteratively trains a policy using supervised learning on a
dataset of observation-action pairs from expert demonstrations (like behavioral cloning),
runs the policy to gather observations, queries the expert for good actions on those obser-
vations, and adds the newly labeled observations to the dataset. DAgger improves on be-
havioral cloning by training on a dataset that better resembles the observations the trained
policy is likely to encounter, but it requires querying the expert online Ross et al. (2011).

• Density-based reward modeling is an inverse reinforcement learning (IRL) technique that
assigns higher rewards to states or state-action pairs that occur more frequently in an ex-
pert’s demonstrations. The key intuition behind this method is to incentivize the agent to
take actions that resemble the expert’s actions in similar states Dumoulin et al. (2024).

• Maximum Causal Entropy Inverse Reinforcement Learning (MCE IRL) : The principle of
maximum causal entropy is a method that extends the classical maximum entropy idea
to sequential settings. Instead of considering probabilities in isolation, it uses causally
conditioned probabilities, which means that the model explicitly accounts for the fact that
information is revealed step by step over time. This allows us to properly capture how side
information becomes available and how it influences decisions at each stage Biernaskie
et al. (2009).

• Preference Comparisons : The preference comparison algorithm learns a reward function
from preferences between pairs of trajectories. The comparisons are modeled as being
generated from a Bradley-Terry (or Boltzmann rational) model, where the probability of
preferring trajectory A over B is proportional to the exponential of the difference between
the return of trajectory A minus B. In other words, the difference in returns forms a logit
for a binary classification problem, and accordingly the reward function is trained using a
cross-entropy loss to predict the preference comparison. Christiano et al. (2023).

• Soft Q Imitation Learning (SQIL) : Soft Q Imitation learning learns to imitate a policy from
demonstrations by using the DQN algorithm with modified rewards. During each policy
update, half of the batch is sampled from the demonstrations and half is sampled from the
environment. Expert demonstrations are assigned a reward of 1, and the environment is
assigned a reward of 0. This encourages the policy to imitate the demonstrations, and to
simultaneously avoid states not seen in the demonstrations Reddy et al. (2020).

• GLM : A Generalized Linear Model (GLM) is a statistical framework that extends linear
regression to response variables with non-Gaussian distributions. In our setting, the regret
trajectoryR(π, 1, T ) is modeled as a function of time,R(π, 1, T ) ∼ f(t), where f is linked
to a linear predictor through a canonical link function. A Poisson GLM is employed when
the noise structure is count-like, while a Gamma GLM is used to capture multiplicative
noise. This allows us to statistically frame the evolution of regret as a stochastic pro-
cess, while accounting for heterogeneous variability across agents. Nelder & Wedderburn
(1972).

• Contextual GLM : The contextual variant incorporates side information (e.g., environmen-
tal or experimental conditions) into the predictor, enabling the model to capture how context
modulates regret dynamics. Then R(π, 1, T ) ∼ f(t, xt) McCullagh & Nelder (1989).
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8.1 MAE COMPARISON OF METHODS

Table 10: MAE comparison of methods across the five datasets. Values are reported as mean ±
standard deviation. We fix τ = 7 for all MAYA variant

Dataset GAIL BC AIRL Dagger DBR MCE Pref-Comp SQIL GLM (no ctx) GLM (ctx) MAYA-KL MAYA-Wass MAYA-DTW
1 3.75± 2.5 1.61 ± 0.79 0 ± 0 2.9 ± 2.8 4.3± 3.8 10.38 ± 1.60 8.35± 3.25 3.71±1 1.4 ± 0.3 1.4 ± 0.3 1.5 ± 0.7 1.2 ± 0.5 1.9 ± 1
2 3.69±1.8 1.24± 0.72 0 ± 0 1.93 ± 1.7 2.72 ± 1.89 6.04 ± 1.0 3.7 ± 1.9 2.18±0.9 0.8 ± 0.5 0.8 ± 0.5 1.4 ±0.6 1.5 ±0.5 2.1 ± 1
3 3.62±2.4 1.79 ± 0.98 0 ± 0 2.6 ± 3.1 3.4 ± 4.1 8.13 ± 1.10 9.76 ± 1.75 3.2±1 1.4 ± 0.4 1.4 ± 0.4 3.7 ± 3 2.6 ± 1 1.8 ± 0.8
4 3.1±2.8 1.65 ± 0.86 0 ± 0 3.0 ± 2.7 4.60 ± 4.8 10± 1.6 9.7 ± 1.7 3.2±1 2.1 ± 1 2.1 ± 1 1.4± 0.6 1.5 ± 0.5 2.1 ± 1
5 4.9 ± 2.8 3.23 ± 3 0 ± 0 6.5± 5.1 5.5 ± 7.8 15.0 ± 7.6 14.3 ± 6.92 4.52±2 8.0 ± 8 2.2 ± 1 1.2 ± 0.9 1.3 ± 0.7 2.1 ± 1

9 FINETUNING IMITATION LEARNING

We present ablations over the fine-tuning budget of the IRL methods. As the tuning knobs differ
across methods, we use the unified notation b for the method-specific budget (see Tab 11). The best
results are summarized in the main text.

b(GAIL) b(BC) b(Dagger) b(DBR) b(MCE) b(PrefComp) b(PrefComp)

epochs epochs env. steps epochs epochs # envs eval episodes

Table 11: Hyperparameters of each comparative methods.

MSE (b=1) MAE (b=1) MSE (b=10) MAE (b=10) MSE (b=50) MAE (b=50)
GAIL 29.6 +/- 41 3.75+/-2.5 29.6 +/- 41 3.75+/-2.5 29.6 +/- 41 3.75+/-2.5
BC 23.2 +/- 30.8 3.26 +/- 2.74 19.8 +/- 26.5 3.1+/-2.3 5.16+/-3.94 1.61+/-0.79
AIRL 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0
Dagger 22.8+/- 32.9 2.9+/-2.8 36.9+/-52.0 3.7 +/- 3.8 32.5 +/- 50.6 3.7+/- 3.3
Density based reward 43.1 +/- 54.81 4.3+/-3.8 43.1 +/- 54.8 4.3+/-3.8 43.1 +/- 54.8 4.3+/-3.8
MCE 148.83 +/- 38.47 10.38 +/- 1.60 148.83 +/- 38.47 10.38 +/- 1.60 148.83 +/- 38.47 10.38 +/- 1.60
Pref-Comp 120.25 +/- 52.1 9.17 +/- 2.99 114 +/- 53 8.9 +/- 2.9 104.5 +/- 57 8.35 +/- 3.25
SQIL 26.2 +/-19 3.75 +/- 1 26.2 +/-19 3.75 +/- 1 26.2 +/-19 3.75 +/- 1

Table 12: Dataset 1 (Cold weather, France)

MSE (b=1) MAE (b=1) MSE (b=10) MAE (b=10) MSE (b=50) MAE (b=50)
GAIL 23.2 +/- 17 3.69 +/- 1.8 23.2 +/- 17 3.69 +/- 1.8 23.2 +/- 17 3.69 +/- 1.8
BC 12.1+/-12.1 2.54+/-1.74 7.3+/-7.7 1.99+/-1.3 2.86 +/- 2.95 1.24 +/- 0.72
AIRL 0 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0
Dagger 15.63 +/- 19.2 2.54+/-2.2 11.8 +/- 16.5 2.1+/-2.0 9.67+/- 12.6 1.93 +/-1.7
Density based reward 15.26 +/- 16.43 2.72 +/- 1.89 15.26 +/- 16.43 2.72 +/- 1.89 15.26 +/- 16.43 2.72 +/- 1.89
MCE 49.5 +/- 14.2 6.04 +/- 1.0 49.5 +/- 14.2 6.04 +/- 1.0 49.5 +/- 14.2 6.04 +/- 1.0
Pref-Comp 24.54+/-18.3 3.7 +/-1.9 30.15 +/-17.3 4.49 +/- 1.53 28.84 +/- 16.13 4.46 +/- 1.30
SQIL 9.80 +/-6 2.18+/-0.9 9.80 +/-6 2.18+/-0.9 9.80 +/-6 2.18+/-0.9

Table 13: Dataset 2 (Hot weather, France)

MSE (b=1) MAE (b=1) MSE (b=10) MAE (b=10) MSE (b=50) MAE (b=50)
GAIL 27.5 +/- 40 3.62 +/-2.5 27.5 +/- 40 3.62 +/-2.5 27.5 +/- 40 3.62 +/-2.5
BC 15.9+/-24 2.67 +/- 2.26 22.0+/-25 3.55+/-2.1 5.5+/-4.1 1.79+/-0.98
AIRL 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0
Dagger 35.4+/- 61.8 3.3 +/-3.7 34.5+/-48.2 3.5 +/- 3.4 21.6 +/-46.0 2.6 +/-3.1
Density based reward 41.38 +/- 51.1 3.4+/-4.1 41.38 +/- 51.1 3.4+/-4.1 41.38 +/- 51.1 3.4+/-4.1
MCE 140.3 +/-34.7 8.13 +/-1.10 140.3 +/-34.7 8.13 +/-1.10 140.3 +/-34.7 8.13 +/-1.10
Pref-Comp 130.98 +/-44.7 9.98 +/-1.98 134.12+/-37 10.12 +/-1.39 125.70 +/- 44.1 9.76 +/- 1.75
SQIL 22.65+/-15 3.2+/-1 22.65+/-15 3.2+/-1 22.65+/-15 3.2+/-1

Table 14: Dataset 3 (Moderate weather, France)
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MSE (b=1) MAE (b=1) MSE (b=10) MAE (b=10) MSE (b=50) MAE (b=50)
GAIL 25.3 +/-39 3.1 +/- 2.8 25.3 +/-39 3.1 +/- 2.8 25.3 +/-39 3.1 +/- 2.8
BC 23.2 +/- 28.6 3.4+/-2.4 22.3 +/- 26.1 3.5 +/-2.2 5.35+/-4.17 1.65 +/-0.86
AIRL 0+/-0 0+/-0 0+/-0 0+/-0 0+/-0 0+/-0
Dagger 22.9 +/-34.0 3.0 +/- 2.7 45.3 +/- 52.8 4.6 +/- 3.6 24.4 +/- 24.2 3.2 +/- 2.7
Density based reward 46.06 +/-55 4.60+/-4.8 46.06 +/-55 4.60+/-4.8 46.06 +/-55 4.60+/-4.8
MCE 148.2 +/- 39.6 10.3 +/-1.6 148.2 +/- 39.6 10.3 +/-1.6 148.2 +/- 39.6 10.3 +/-1.6
Pref-Comp 124.1 +/-52 9.4 +/- 2.78 128.29 +/- 42.7 9.86 +/- 1.68 125.68 +/- 44.19 9.7 +/- 1.7
SQIL 25.3 +/-20 3.2 +/- 1 25.3 +/-20 3.2 +/- 1 25.3 +/-20 3.2 +/- 1

Table 15: Dataset 4 (Cold weather, Australia)

MSE (b=1) MAE (b=1) MSE (b=10) MAE (b=10) MSE (b=50) MAE (b=50)
GAIL 45.71 +/- 45.7 4.9 +/- 2.8 45.71 +/- 45.7 4.9 +/- 2.8 45.71 +/- 45.7 4.9 +/- 2.8
BC 124.4 +/- 186.46 6.94 +/- 7.05 39.7+/- 70 3.91+/-3 26.7+/-42.7 3.23 +/- 3.17
AIRL 0+/-0 0+/-0 0+/-0 0+/-0 0+/-0 0+/-0
Dagger 113.4 +/-247.5 6.0+/-7.1 93.2 +/-115.9 6.5 +/- 5.1 25.8 +/- 47.1 6.5 +/- 5.1
Density based reward 115.7 +/- 242.51 5.5 +/-7.8 115.7 +/- 242.51 5.5 +/-7.8 115.7 +/- 242.51 5.5 +/-7.8
MCE 374 +/-311.9 15.0+/-7.6 374 +/-311.9 15.0+/-7.6 374 +/-311.9 15.0+/-7.6
Pref-Comp 284 +/-254 12.9 +/- 7 335.6 +/-271 14.5 +/- 332.8 +/- 272.29 14.3 +/-6.92
SQIL 25 +/- 16 4.52+/-2 25 +/- 16 4.52+/-2 25 +/- 16 4.52+/-2

Table 16: Dataset 5 (Hot weather, Australia)
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10 CLUSTERING : OTHER VARIANTS

Figure 29: Bees trajectories Figure 30: MAYA-Wass Figure 31: MAYA-KL Figure 32: MAYA-DTW

Figure 33: Centroı̈des of two clustering of 80 bees trajectories (in Fig29) and 80 MAYA-variant
(Fig30, Fig31 and Fig32) simulated trajectories (with τ = 7). Clustering are done with Euclidean
method (Clustering I).

Figure 34: Bees trajectories Figure 35: MAYA-Wass Figure 36: MAYA-KL Figure 37: MAYA-DTW

Figure 38: Centroı̈des of two clustering of 80 bees trajectories (in Fig34) and 80 MAYA-variant
(Fig35, Fig36 and Fig37) simulated trajectories (with τ = 7). Clustering are done with DBA method
(Clustering II).

Figure 39: Cluster 0 (I) Figure 40: Cluster 1 (I) Figure 41: Cluster 0 (II) Figure 42: Cluster 1 (II)

Figure 43: Average difference between MAYA-Wass (τ = 7) predictions and real trajectories
(R(πMAYA, 1, t)−R(πbee, 1, t)) (z-axis) for Euclidean (I) and DBA (II) Clustering according 0 and 1
Cluster. Red range correspond to ±σ (standard deviation).
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Figure 44: Cluster 0 (I) Figure 45: Cluster 1 (I) Figure 46: Cluster 0 (II) Figure 47: Cluster 1 (II)

Figure 48: Average difference between MAYA-KL (τ = 7) predictions and real trajectories
(R(πMAYA, 1, t)−R(πbee, 1, t)) (z-axis) for Euclidean (I) and DBA (II) Clustering according 0 and 1
Cluster. Red range correspond to ±σ (standard deviation).

Figure 49: Cluster 0 (I) Figure 50: Cluster 1 (I) Figure 51: Cluster 0 (II) Figure 52: Cluster 1 (II)

Figure 53: Average difference between MAYA-DTW (τ = 7) predictions and real trajectories
(R(πMAYA, 1, t)−R(πbee, 1, t)) (z-axis) for Euclidean (I) and DBA (II) Clustering according 0 and 1
Cluster. Red range correspond to ±σ (standard deviation).
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11 MAYA ALGORITHM

Algorithm 1 MAYA : Multi Agent Y-maze Allocation

Require: Logged bee regret trajectory R(πbee, 1, T )
Require: Set P of N bandit policies {π1, . . . , πN}
Require: Window size τ such that t ≥ τ
Require: A similarity metric δ

1: ξ = ()Tt=1
2: Init πθ
3: for t ∈ {2, . . . , τ − 1} do
4: Observe R(πbee, 1, t− 1)
5: Observe a context information xt
6: for i = 1 to N do
7: Simulate policy agent πi(st−1|xt)
8: Compute cumulative regret R(πi, 1, t− 1)
9: end for

10: ξt = argminπ∈P δ(πbee, π, t)
11: πθ(at|st−1)← πξ(at|st−1)
12: Select At ∼ πθ(at|st−1)
13: Receive reward rt
14: Update πi ∀πi ∈ P
15: ξ[t]← ξt
16: end for
17: for t ∈ {τ, . . . , T} do
18: Observe R(πbee, τ, 1, t− 1)
19: Observe a context information xt
20: for i = 1 to N do
21: Simulate policy agent πi(st−1|xt)
22: Compute cumulative regret R(πi, τ, 1, t− 1)
23: end for
24: ξt = argminπ∈P δ(πbee, π, τ, t)
25: πθ(at|st−1)← πξ(at|st−1)
26: Select At ∼ πθ(at|st−1)
27: Receive reward rt
28: Update πi ∀πi ∈ P
29: ξ[t]← ξt
30: end for
31: return πθ
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12 MICE DATASET EXPERIMENT

Dataset and setup. We use the dataset of Ashwood et al. (2020a), which reports trial-by-trial
changes in mice policy and decomposes those updates into a learning component and a noise com-
ponent (see Fig. 54a). Unlike their original analysis, which simulates an average trajectory across
individuals, our method (MAYA) simulates one trajectory per individual. The dataset contains 19
rats with between 1500 and 6000 trials each. To control the computational cost of DTW and to align
with our bee experiments, we reduce the number of individual at 100.

Selecting the memory horizon τ . According with Tab 17, Fig 54b shows MAE and MSE as a
function of the memory window τ . MAYA-KL clearly identifies an optimal range around τ ∈ [6, 7],
whereas MAYA-Wass suggests τ ∈ [8, 10] when balancing MAE and MSE. For consistency with
previous experiments, we set τ = 7 in all subsequent analyses.

Explanations and performance. With τ = 7, Fig. 63 and Fig. 59 provides MAYA explanations
for the rats with the lowest and highest cumulative regret (see Fig. 55). For slow learners, all MAYA
variants behave similarly (Fig. 65); for fast learners, MAYA-KL achieves the best fit, capturing
rapid policy changes better than MAYA-Wass (Fig. 64). A plausible explanation is that, under KL
similarity, MAYA acts more often from LinUCB-like behavior than with Wasserstein similarity (see
Tab18b). As in previous datasets, MAYA-DTW tends to act more like Epsilon-Greedy, likely due to
DTW’s alignment properties. Overall, all MAYA variants outperform GLM baselines (Table 18a).

side window MSE MAYA-KL MAE MAYA-KL MSE MAYA-Wass MAE MAYA-Wass MSE MAYA-DTW MAE MAYA-DTW
mean std mean std mean std mean std mean std mean std

3 5760 3894 59 24 8083 5012 72 25 5790 5683 55 29
4 3868 3493 46 25 6547 3672 64 23 5815 5770 55 30
5 3046 3307 40 24 5724 3803 59 23 5819 5788 55 29
6 2763 3090 37 23 5276 3511 57 21 5830 5758 55 29
7 2786 3161 38 23 4640 3382 53 22 5822 5747 55 29
8 2974 3197 39 23 4728 3722 53 23 5851 5777 55 29
9 3114 3424 40 24 4231 3403 50 22 5819 5740 55 29
10 3223 3378 41 25 4197 3576 49 24 5810 5701 54 29
20 4710 6689 47 33 3491 3515 43 25 5771 5725 54 29
30 5618 8543 50 38 3453 3896 41 27 5760 5724 54 29

Table 17: MSE and MAE of MAYA as a function of the window size τ for Mice Dataset.

(a) According Ashwood et al. (2020a), on each trial,
a sinusoidal grating (with contrast values between 0
and 100%) appears on either the left or right side of
a screen. Mice must report the side of the grating by
turning a wheel (left or right) in order to receive a
water reward.

(b) Comparative study of the best window size τ by
average MSE and MAE. ⋆ symbol refers as best per-
formance according standard deviation and average
reward (see Tab.17 for the full results). MSE is dis-
played as ×102.

Figure 54: Left : experimental description of the Mice Dataset. Right : Comparative study of the
best window size τ for Mice Dataset.
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Figure 55: Proportion of cumulative regret for the Mice dataset, per mice

MSE MAE
Mean Std Mean Std

MAYA KL 2786 3161 38 23
MAYA-Wass 4640 3382 53 22
MAYA-DTW 5822 5777 55 29
GLM 6427 4137 63 21
GLM Contextual 6416 4133 63 21

(a)

Epsilon-Greedy Lin-UCB UCB Uniform
MAYA-KL 30%±2.5 2%±1.1 29%±1.3 36%±2.2
MAYA-W 27%±1.8 10%±1 28%±1 33%±1.5
MAYA-DTW 28%±3 0.5%±1 56%±4 15%±3

(b)

Table 18: Left : MSE and MAE comparison of MAYA (with τ = 7 ) and GLM variants. Right :
MAYA explainability for all MAYA choices (τ = 7)

MAYA-KL MAYA-Wass MAYA-DTW
ClusterAcc (Euclidean, Max L = 1400) 90% 85% 75%
ClusterAcc (DBA, Max L = 6000) 80% 75% 65%

Table 19: ClusterAcc (%) for Mice Datset)

Figure 56: MAYA-KL Figure 57: MAYA-Wass Figure 58: MAYA-DTW

Figure 59: MAYA explainability for mouse 20 (fast learner, low regret) from Mice dataset. We
report choice interpretability for MAYA-variants (τ = 7).

Figure 60: MAYA-KL Figure 61: MAYA-Wass Figure 62: MAYA-DTW

Figure 63: MAYA explainability for mouse 2 (slow learner, high regret) from Mice dataset. We
report choice interpretability for MAYA-variants (τ = 7).
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Figure 64: Mouse 20 Figure 65: Mouse 2

Figure 66: Regret modelization for mouse 20 (best) and mice 2 (worst) from Mice 2, with τ = 7

Figure 67: Mouse’ trajectories Figure 68: MAYA-KL trajectories

Figure 69: Centroides of Clustering (I) of 100 mice’ (Left) and MAYA-KL (τ = 7) (Right) trajec-
tories.

Figure 70: Cluster 0 Figure 71: Cluster 1

Figure 72: Average difference between MAYA-KL (τ = 7) predictions and real trajectories
(R(πMAYA, 1, t)− R(πmice1, t)) (z-axis) for Euclidean (I) Clustering according 0 and 1 Cluster. Red
range correspond to ±σ (standard deviation).
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13 COMPLEMENTARY INFORMATION ABOUT THE BIOLOGY INTEREST

We share with other vertebrates a basic ability for abstract number representation, the number
sense Dehaene (2011). As early as two days postnatally Izard et al. (2009), this ability enables us
to evaluate numbers as concepts: three books are perceived as similar to three cups, even though
they differ completely in their visual features (i.e., sensory information). To evaluate quantity,
both numerical and sensory information can be used. For example, when visually comparing two
quantities, the larger set will often contain more items (i.e., numerosity), but may also exhibit
greater density, a larger total surface area, or a wider convex hull encompassing all elements.
Neuronal encoding of sensory information occurs early in the primary cortex, whereas numbers are
computed in higher integrative areas by what Nieder et al. identified as number neurons Nieder
(2016).

Quantity discrimination is necessary in contexts as diverse as evaluating food patches, regulating
social attraction, or competing for resources Nieder (2020). From sharks to mammals, all major ver-
tebrate clades appear capable of discriminating between different quantities, either spontaneously or
in learning tasks Vila Pouca et al. (2019). By carefully designing protocols that control for sensory
cues, researchers have demonstrated that several non-human species are capable of performing
quantity discrimination based on the abstract evaluation of numbers Cantlon & Brannon (2006).
Among them is an insect: the honeybee (Apis mellifera). Beyond discriminating numerosities of
up to eight items, these insects, with brains of fewer than one million neurons, can also manipulate
numbers, performing simple addition, subtraction, and symbolic tasks Dacke & Srinivasan (2008);
Gross et al. (2009); Howard et al. (2018; 2019); Giurfa et al. (2022).

Later experiments required a Y-maze: a three-armed apparatus shaped like the letter Y, commonly
used to study memory, learning, and decision-making in rodents Kraeuter et al. (2018) (see Fig. 73).
These mazes required bees to inhibit their spatial memory Menzel et al. (2005) (e.g., recalling that
the last reward was in the left arm) and to focus instead on the visual stimuli displayed at the end
of each arm. The balance between exploring new options and exploiting previously rewarded ones
is key to their foraging behavior and likely plays a crucial role in their learning performance within
these devices Kembro et al. (2019); Lochner et al. (2024).

Figure 73: Y-maze for bees experiments
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14 MATHEMATICAL PROOF OF MAYA ACCORDING τ

Stationary case (1) : upper bound of MAYA error Consider the case of two policies π1 that
achieves the highest regret i.e. R(π1, 1, T ) = T and π0 that achieves a zero regret i.e. R(π0, 1, T ).In
this case

∆π1,t −∆π0,t ≤ 1 ∀t
as the reward is in {0, 1}. The maximal bound of R(πMAYA, 1, T ) − R(πbee, 1, T ) corresponds to
the case where R(πbee, 1, T ) is always centered between R(π1, 1, T ) and R(π0, 1, T ) (see Fig74a).
Let’s define ε∗t the agent who act the closest of the bee at t and εt the agent chosen by MAYA at t.
Then

P[εt = ε∗t ] = 0.5 ∀t
as no best agent are better from the other one. This case corresponds to an equality between the two
possible agent (with extreme regret values) and leads to the worst scenario of a stationary case when
the similarity distance d() are when define. Then the maximal cumulative gap between MAYA-regret
and Bee-regret in stationary case are :

T∑
t=1

|∆MAYA,t −∆Bee,t| ≤
1

2

T∑
t=1

|∆π1,t −∆Bee,t|+
1

2

T∑
t=1

|∆π0,t −∆Bee,t|

≤
T∑
t=1

t

2

≤
T
2 (

T
2 + 1)

2

≤ 1

8
(T (T + 2)) (1)

Stationary case (2) : upper bound of the worst policy Consider the case where πMAYA always
chose like π1 and πbee always chose like π0 (see Fig 74b). Then the similarity distance d() fails to
provide a correct measure and MAYA chose the agent with the largest regret gap relative to the bee’s
regret. Then for all t

P[εt ̸= ε∗t ] = 1.

Then the maximal cumulative gap between MAYA-regret and Bee-regret in the worst policy in
stationary case are :

T∑
t=1

|∆MAYA,t −∆Bee,t| ≤
T∑
t=1

|∆π1,t −∆π0,t|

≤ T · (T + 1)

2
(2)

The alternative case where πMAYA always chooses as π0 and πbee always chooses as π1 is equivalent.

Cyclic case : upper bound of MAYA error with no windows (τ = T ) policy Consider that after
S trials the bee moves from π1 to π0 (alternative cases are equivalent, see Fig 75a). Consider that
the distances are well defined, as in the stationary case (1). Then :

S∑
t=1

|∆MAYA,t −∆Bee,t| ≤
1

8
(S × (S + 2)) (3)

The time required for MAYA to act like π0 is 2S + 1 but at t = 2S + 1, the bee changes from π0 to
π1 and MAYA continues to act like π1 (see Fig.75a). Recursively, MAYA always act like π1 from
t = 1 until t = T . Then

P[εt = π1] = 1 ∀t
and

P[εt = ε∗t ] =
N∗(T )

T
, ∀t
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(a) Distance d(·) provide a cor-
rect measure, R(π1, 1, T ), and
R(π2, 1, T ) has the maximal distance
from R(πbee, 1, T ).

(b) Distance d(·) fails to provide a cor-
rect measure. MAYA alawys selects
actions as the agent whose behavior is
farthest from that of the bee.

Figure 74: Maximal cumulative gap between MAYA-regret and Bee-regret in stationary case ac-
cording the distance d(·) abilities to provide a correct measure

Where

N∗(T ) = qS +min(S, r),

q =

õ
T

2S

û
,

r = T − 2Sq ∈ [0, 2S).

A minimal bound of N∗ are :

N∗(T ) ≥
T

2

Then the maximal cumulative gap between MAYA-regret and Bee-regret in a cyclic case with no
windows is :

T∑
t=1

|∆MAYA,t −∆Bee,t| ≤
N∗(T )

T

1

8
(T.(T + 2)) + (1− N∗(T )

T
)
T.(T + 1)

2

≤ T

2

1

T

1

8
(T.(T + 2)) + (1− T

2

1

T
)
T.(T + 1)

2

=
T (5T + 6)

16
(4)

Cyclic case : upper bound of MAYA error with windows τ = S Assume that S are even.
Consider that after S trials, the bee moves from π1 to π0 (alternative cases are equivalent, see
Fig75b). Consider that the distance is well define like in the stationary case (1). From time t = 1
until S, MAYA act as the best agent :

S∑
t=1

|∆MAYA,t −∆Bee,t| ≤
1

8
(S × (S + 2)) (5)

and
P[εt = ε∗t ] = 1 ∀t ∈ {1, . . . , S}.

From time S + 1 until S + S
2 , MAYA acts as the worst policy (start cycle)

S+S
2∑

t=S+1

|∆MAYA,t −∆Bee,t| ≤
S+S

2∑
t=S+1

t (6)

≤ S(5S + 2)

8
(7)
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and
P[εt ̸= ε∗t ] = 1 ∀t ∈ {S + 1, . . . , S +

S

2
}.

And from t = S + S
2 + 1 until t = 2S MAYA acts with the best policy (end cycle):

2S∑
t=S+S

2 +1

|∆MAYA,t −∆Bee,t| ≤
2S∑

t=S+S
2 +1

t

2

≤ S(7S + 2)

16
(8)

and
P[εt = ε∗t ] = 1 ∀t ∈ {S +

S

2
+ 1, . . . , 2S}.

Consider a full cycle, the event εt = ε∗t appears S − S
2 times. Let’s set

q =
⌊max(0, T − S)

S

⌋
, r = max(0, T − S)− qS ∈ [0, S).

Here q is the number of full cycle S in t > S, and r is the rest of a potential unfinished tail segment
of the started cycle. Let N∗(T ) =

∑T
t=1 1εt=ε∗ with N∗(T ) ≤ T equal to

N∗(T ) = min(T, S) + q · S
2
+ max(0, r − S

2
)

If S is even and T > S then

N∗(T ) ≥
T

2
+
S

4
(9)

Proof:
With T = S + qS + r :

N∗(T )− (
T

2
+
S

4
) =

S

2
− r

2
+ max(0, r − S

2
) ≥ 0,

where the minimum are archived with r = S
2 .

P[εt = ε∗t ] =
N∗(T )

T
≥ 1

2
+

S

4T
(10)

In the cases where S is not not even

q =
⌊
T−S
S

⌋
, r = T − S − qS ∈ [0, S).

then

N∗(T ) = S +
q(S + 1)

2
+ max

(
0, r − S − 1

2

)
.

As T = S + qS + r, we have

N∗(T )−
T

2
=
S

2
+
q

2
+ max

(
0, r − S − 1

2

)
− r

2
.

and for any r ∈ [0, S),

min
r

(
max(0, r − S−1

2 )− r
2

)
= − S − 1

4
.

Then
N∗(T ) ≥

S

2
+
q

2
− S − 1

4
+
T

2
=
S + 1

4
+
q

2
+
T

2
≥ S + 1

4
+
T

2
.

N∗(T ) ≥
T

2
+
S + 1

4
≥ T

2
+
S

4
. (11)
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Which are better to the S parity case.
Then the maximal cumulative gap between MAYA-regret and Bee-regret with windows τ = S is

T∑
t=1

|∆MAYA,t −∆Bee,t| ≤
N∗(T )

T

T (T + 2)

8
+ (1− N∗(T )

T
)
T (T + 1)

2

≤ (
T

2
+
S

4
).
1

T
.
T (T + 2)

8
+ (1− (

T

2
+
S

4
).
1

T
)
T (T + 1)

2

≤ 10T 2 + 12T − 3ST − 2ST

32
(12)

(a) τ = T (b) τ = S (c) τ ∈ {S
2
+ 1; . . . , S − 1}

Figure 75: Maximal cumulative gap between MAYA regret and bee regret in a non-stationary case,
measured with respect to window τ . The purple arrow highlights the period during which MAYA
chooses actions in accordance with the agent whose behavior is most distant from that of the bee.

Cyclic case : upper bound of MAYA error with windows τ ∈ {S2 +1; . . . , S−1} . We consider
the case where S

2 + 1 ≤ τ < S (see Fig75c). Assume that S are even. From time t = 1 until S,
MAYA act as the best agent (stationary case 1) :

S∑
t=1

|∆MAYA,t −∆Bee,t| ≤
1

8
(S × (S + 2)) (13)

and
P[εt = ε∗] = 1 ∀t ∈ {1, . . . , S}.

From time S + 1 until S + τ
2 , MAYA acts as the worst policy (start cycle)

S+ τ
2∑

t=S+1

|∆MAYA,t −∆Bee,t| ≤
S+ τ

2∑
t=S+1

t

≤ τ

4
(2S + 1 +

τ

2
)

≤ τ2

8
+
Sτ

2
+
τ

4
(14)

and
P[εt ̸= ε∗] = 1 ∀t ∈ {S + 1, . . . , S +

τ

2
}.

And from t = S + τ
2 + 1 until t = 2S, MAYA acts as the best policy (end cycle) with :

2S∑
t=S+ τ

2+1

|∆MAYA,t −∆Bee,t| ≤
2S∑

t=S+ τ
2+1

t

2

≤
(3S + τ

2 + 1)(S − τ
2 )

4
(15)
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and
P[εt = ε∗t ] = 1 ∀t ∈ {S +

τ

2
+ 1, . . . , 2S}.

Consider a full cycle, the event εt = ε∗t appears S − τ
2 times. Let’s set

q = ⌊T − S
S
⌋ r = (T − S)− qS ∈ [0, S).

Let N∗(T ) =
∑T
t=1 1εt=ε∗ with N∗(T ) ≤ T equal to

N∗(T ) = S + q(S − τ

2
) + max(0, r − τ

2
).

and

P[εt = ε∗t ] =
N∗(T )

T
(16)

The maximal cumulative gap between MAYA-regret and Bee-regret with windows τ ∈ {S2 +
1; . . . , S − 1} with S parity is

T∑
t=1

|∆MAYA,t −∆Bee,t| ≤
N∗(T )

T
· T (T + 2)

8
+

(
1− N∗(T )

T

)
· T (T + 1)

2

≤
S + q(S − τ

2 ) + max(0, r − τ
2 ).

T
· T (T + 2)

8

+ (1−
S + q(S − τ

2 ) + max(0, r − τ
2 ).

T
) · T (T + 1)

2

As N∗(T ) ≥ T (1 − τ
2S ) without any condition on S parity, the maximal cumulative gap between

the MAYA-regret and the Bee-regret with windows τ ∈ {S2 + 1; . . . , S − 1} is

T∑
t=1

|∆MAYA,t −∆Bee,t| ≤
T (T + 2)

8
+

(3T + 2)T

16

τ

S
(17)

Cyclic case : upper bound of MAYA with windows τ < S
2 +1 In this case, there is no way to be

sure that the distance d() do not fails to identify the best agent. It’s equivalent to choose randomly
and the worst case corresponds to the upper bound of the worst policy. Then the maximal cumulative
gap between MAYA regret and Bee-regret with τ < S

2 + 1 in cyclic case are equivalent to Eq. 2.

Cyclic case : upper bound of MAYA with windows τ > S In this case, the time required to
change the policy is over a cycle S > 1. Then, the bee switch two times in τ and MAYA allows it
to act as the same agent. Then it is equivalent to act as a cyclic case with no windows (τ = T ) Then
the maximal cumulative gap between MAYA regret and Bee-regret with τ > S in cyclic case are
equivalent to Eq. 4.
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15 DISCLOSURE OF LLM USE

Large Language Models (LLMs) were used in a limited capacity during the preparation of this paper.
Their use was restricted to (i) spelling and phrasing assistance (to support a dyslexic co-author), and
(ii) suggesting improvements to Python scripts for graph generation and visualization. No part of
the scientific content, analyses, or conclusions was produced by LLMs.
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