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ABSTRACT

We introduce a sequential reinforcement learning framework for imitation learn-
ing designed to model heterogeneous cognitive strategies in pollinators. Focusing
on honeybees, our approach leverages trajectory similarity to capture and forecast
behavior across individuals that rely on distinct strategies: some exploiting nu-
merical cues, others drawing on memory, or being influenced by environmental
factors such as weather. Through empirical evaluation, we show that state-of-the-
art imitation learning methods often fail in this setting: when expert policies shift
across memory windows or deviate from optimality, these models overlook both
fast and slow learning behaviors and cannot faithfully reproduce key decision pat-
terns. Moreover, they offer limited interpretability, hindering biological insight.
Our contribution addresses these challenges by (i) introducing a model that min-
imizes predictive loss while identifying the effective memory horizon most con-
sistent with behavioral data, and (ii) ensuring full interpretability to enable biolo-
gists to analyze underlying decision-making strategies and finally (iii) providing
a mathematical framework linking bee policy search with bandit formulations un-
der varying exploration–exploitation dynamics, and releasing a novel dataset of 80
tracked bees observed under diverse weather conditions. This benchmark facili-
tates research on pollinator cognition and supports ecological governance by im-
proving simulations of insect behavior in agroecosystems. Our findings shed new
light on the learning strategies and memory interplay shaping pollinator decision-
making.

1 INTRODUCTION

Over the past decade, researchers have increasingly turned to artificial intelligence (AI) and com-
putational modeling to replicate or simulate animals’ decision processes, referred to as imitation
learning (Cully et al., 2015). In this case, the goal is to train an agent to learn by observing and
reproducing the animal’s behavior in the same way as if the animals were experts. In particular,
reinforcement learning (RL) frameworks have gained increasing attention as a way to describe how
animals learn from trial and error, as an alternative to statistical models or simple heuristic rules.
These RL models serve a dual purpose: they help biologists to understand how these animals learn
to facilitate rule discovery (Wason, 1960) (i.e. policy modelisation) from real animal data experi-
ments, and they make it possible to run virtual ecological interventions (for instance, simulating how
bees that switch between policies would respond to guidance toward pesticide-free zones). How-
ever, existing imitation-learning and RL-based models still face major limitations when applied to
bees for some reasons: (1) some of them exclude the balance between contextual and non-contextual
strategies in the decision process modeling. (2) They overlook the archetypal mechanism of limited-
memory learning ; we define here the memory of the animal by a parameter, S, that truncates the
observation history to the S most recent observations. This parameter needs to be optimized in the
imitation learning. (3) These models assume homogeneity among bees, although individuals may
exhibit distinct behaviors and no explainability is given for each individual. (4) They require access
to the full trial sequence and cannot operate online, making them unsuitable for sequential, real-time
prediction of behavior. Some bees are able to understand the context information to limit the regret
in their strategies, and some others do not (Giurfa et al., 2022). The overarching challenge is there-
fore to provide a model that can both explain and forecast the policy of each individual bee. This
paper proposes a new algorithm to model bees behaviors focusing on contextual binary foraging
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tasks (scenarios with two alternatives in a Y-maze, with left vs. right choices, where the reward is
systematically located on the side presenting the highest stimulus number, a cue the bee can perceive
before making its choice. We summarize key methodologies and show (1) how to identify the best
τ window size that estimates S, (2) how individuals vary according to their strategies, and (3) how
can we forecast any individual’s policy regardless of their specific skills in an online setting. Our
method is summarized in Fig. 1. Our code is open-source and our data are openly available.1.

A new imitation learning framework Imitation learning (IL) enables agents to acquire behav-
ior from expert demonstrations in order to limit costly or unsafe exploration (Zhao et al., 2020).
By grounding policy optimization in expert trajectories, IL offers a sample-efficient framework to
capture adaptive strategies. However, most IL methods are designed to imitate experts that behave
near-optimally, and therefore struggle when the expert exhibits non-optimal, heterogeneous, or tem-
porally shifting policies. This is mostly explained by the fact that they prioritize policy optimization
over expert imitation. Unlike classical IL, biological experts (such as bees) often follow non-optimal
policies. In nature, several policies may coexist, and a single expert can change its strategy over time.
This is largely due to the limited memory of insects, which restricts decisions to a short history of
past actions and rewards. Therefore, attention must be paid to how the expert guides the agent, and
how the agent adapts to multiple experts. It requires not only defining what should be imitated, but
also handling this memory limitation. When data are collected in real time, for instance via drone-
based tracking, an online framework becomes indispensable to process and interpret bee behavior
as observations arrive. Our contribution is MAYA (Multi Agent Y-maze Allocation), which enables
bee imitation learning on a sequential two-choice learning (Y-maze). MAYA combines several multi
armed bandit (MAB) policies (including random and contextual variants) with a fixed memory set-
ting τ for similarity evaluation. Similarity evaluation can be based on probability of success (with
Kullback-Leibler or Wasserstein distance) or on trajectory (with Dynamic Time Warping DTW sim-
ilarity). The best choice of similarity is made according to the ability to imitate the expert and limit
the cumulative cost of wrongly replicated actions over trials. Then, our paper studies the similarity
that should be used.

Understanding the learning skill MAYA models bee policies as mixtures of multiple MAB
agents, thus providing a quantitative framework for characterizing behavioral variability across in-
dividuals. Since bees possess limited memory of past experiences, their decision policies may shift
over time. Such shifts are not random but reflect different effective strategies depending on the re-
cent learning window S. To capture this, MAYA decomposes the observed trajectories into segments
that align with distinct agent models, each defined by a specific MAB. These MAB vary according
to their strategies: pure exploration, deterministic or stochastic reward-based choice between left
and right arms of the Y-maze, and context-dependent strategies where cues guide decisions (see
App. 13). By structuring bee behavior as a combination of such MAB, MAYA not only reproduces
expert trajectories but also yields an interpretable description of MAB policy shifts and memory
constraints.

Window-size discovering MAYA requires the specification of a sliding window τ ∈ T in order
estimate S and to select the importance of the past information used to align the behavior of the bee
and the MAB. Because memory is a biological constraint rather than a freely tunable parameter, it
is essential to determine which τ best reflects the bee’s effective learning horizon S. In our experi-
ments, we assess how this setting influences the ability to imitate the bee.We find, for example that
the optimal window length decreases under adverse weather conditions, consistent with the idea that
environmental noise reduces the usable amount of past information, but generally stabilizes around
seven past trials across all datasets. As a complementary analysis, we also include experiments
with mice, where a similar optimal setting emerges. We also include simulated data to validate the
robustness of MAYA under controlled conditions, where the ground-truth strategy is known.

Open dataset and ecological insights We release to the community a new open dataset recording
experiments on 80 bees (with [22 − 40] sequential trials per bee) across 5 diverse situations (favor-
able and adverse weather, in Oceania and Europe). More details about the experiment are given in
App 6.1. In each experiment, a bee enters a Y-maze where it is exposed to a number of visual stimuli
presented on both the left and right arms. The reward is consistently located on the side displaying

1https://anonymous.4open.science/r/maya-4E30
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Inferring learning choices from bee’s behavior with MAYA alg. 

Contextual experiments

Figure 1: MAYA (Multi-Agent Y-maze Allocation) is an imitation learning framework for policy
selection via windowed regret matching. Leveraging logged bee trajectories and three similarity
metrics (Wasserstein, KL, DTW), MAYA maps learning dynamics onto 2-armed bandit strategies
(UCB, Epsilon-greedy, LinUCB, Uniform). Beyond performance alignment, MAYA provides inter-
pretability of bee behaviors by revealing differences in memory span and learning aptitude, thereby
distinguishing “good learners” from “poor learners” in contextual experiments.

the greater number of stimuli. During a session, each bee performs between 22 (for one dataset) and
40 (for the other datasets) trials, where the number of stimuli (and therefore the rewarded side) is
randomly assigned at each trial.

2 PRELIMINARIES

Problem formulation. We model the bee prediction task (forecast the decision left or right)
as an RL problem. At each trial t ∈ 1, . . . , T the environment reveals a state st ∈ S
described by the number of trial t and available contextual information : xt ∈ R2 with
xt = (stimuli on Left and Right side,weather, . . .). The bee selects an action (i.e. chose a
side) : at ∈ A := {L,R}, corresponding to Left and Right. Then, the bee receives a reward
rt = r(st, at) ∈ {0, 1}, which captures whether the choice is correct or incorrect (e.g., sugar or
quinine). This model is actually a Markov Decision Process (MDP) (Sutton & Barto, 2018). It is
defined as a tuple (S,A, P,R) with a state space S, an action space A. In our setting, S = |S| and
A = |A| are finite (i.e S,A <∞). The quantity P = (Pa : a ∈ A) is called the transition function
with Pa : S × S → [0, 1] and so Pa(s, s′) is the probability that the agent moves from state s in
state s′ according to action a. The set space R is defined by all outputs of reward functions ra
according an action a : R = (ra : a ∈ A). We are on a discrete-time series system such as the
initial state is defined by S1. In each round t the agent observes the state St ∈ S, chooses an action
At ∈ A and receives the reward rAt

(St). The environment then samples St+1 from the probability
vector PAt

(St) ∈ P . The history Ht = (S1, A1, r(S1, A1), . . . , St−1, At−1, r(St−1, At−1), St)
or more simply Ht = (S1, A1, r1, . . . , St−1, At−1, rt−1, St), contains the information available
before the action for the round t is to be chosen. A policy is a (possibly randomised) map from
the set of possible histories to actions. The set of such policies is denoted by Π and its elements
are identified with maps π : A × S → [0, 1] with

∑
a∈A π(a|s) = 1 for any s ∈ S so that π(a|s)

is interpreted as the probability that policy π takes action a in state s. We are on a finite-trial
experiment i.e. t ∈ {1, . . . , T} where T is the total number of trials. We consider here that all
rewards are equivalent whatever the future, then an optimal policy π∗ for a discrete time T system
is a policy that satisfies, for any state s : π∗ = argmaxπ∈Π

∑T
t=1 γ

tr(At, St) with γ = 1. Finally,
let Nt(a) denote the total number of times action a has been selected up to round t. We define
Qt(a) =

1
Nt(a)

∑t−1
j=1 rj1{aj=a} as the simple average of rewards which have been observed.

Regret. Let π⋆ denote the (unknown) optimal policy. The instantaneous regret at trial t is defined
as ∆t = r(st, a

⋆
t ) − r(st, at), where a⋆t := π⋆(st) = argmaxa∈Ar(st, a) is the optimal action

3
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under the state st. The cumulative simple regret after T trials is the sum of instantaneous regrets
R(π, 1, T ) =

∑T
t=1 ∆π,t.

In the experiment, the reward given to the bee at each state st does not depend on the state st−1.
Hence our model can be seen as a 2-armed bandit problem and not a classical reinforcement learning
problem. Bees differ in solving such learning task. Based on biology literature (Capela et al., 2024),
their different behaviors can be modeled by four different two-armed bandit strategies (MAB) :

1. Epsilon Greedy (Sutton & Barto, 1998) : exploits current action that maximize observed
average reward (i.e. .) and explore the other action according a small probability (ϵ).

At =

ß
Argmaxa[Qt(a)] with probability 1− ϵ
a ∼ Uniform(A\{Argmaxa[Qt(a)]}) with probability ϵ

2. Optimistic stategy UCB style (Auer et al., 2002) : construct an adaptative upper confi-
dence bound around Qt(a) . In this case UCB1 chose according :

At = Argmaxa[Qt(a) +

 
ln t

Nt(a)
].

The number of trials onNa(t) and empirical observed reward on each arms are considered.
3. Contextual-multi-armed bandits (CMAB) LINUCB style (Li et al., 2010) : At the be-

ginning of trial t, the agent observes a context xt. It’s redefine the choice of an action
according the context information xt. LetGa = X⊤

a Xa + λI where Xa is the matrix with
the context vectors of action a as rows, I the identity matrix and λ ∈ R is a regularization
parameter. LINUCB1 chose according :

At = Argmaxa[ x
⊤
t Θ̂a,t +

»
x⊤t G

−1
a xt ].

where Θ̂a,t ∈ R2 are estimated parameter of action a at t.
4. Random choice strategy UNIFORM style : At each trial, the agent chooses an action

uniformly at random, independently of past observations or contexts. This baseline strategy
does not exploit reward or contextual informations, and serves as a comparison.

At ∼ Uniform(A).

Among the strategies considered above, LINUCB1 (ref as LINUCB) is the only bandit algorithm
here that explicitly incorporates contextual information. Consequently, it is the sole approach capa-
ble of asymptotically converging to the optimal policy in our Y-maze experimental setting. Regard-
less of its ability to adopt the optimal strategy (i.e., to use contextual information), the bee selects
an action At based on memory history. This memory reflects the history of past actions, rewards,
and contexts. However, learning and memory of honeybees can be impacted by a large amount en-
vironmental conditions, like the weather variation (Gérard et al., 2022). Additionally, the learning
process in itself may be reflected by the succession of sub-optimal strategies (based on Qa(t) or
based on a random choice) to the optimal strategy (based on the contextual information) with poten-
tial transitive states. Therefore, comparing bee strategies with these four policies must be carried out
in a non-stationary framework. Unfortunately, the effective history length is difficult to anticipate,
as it may evolve in many ways (Fiandri et al., 2024).

Then, to incorporate this bee’s memory concept, defined in psychology as the recency effect (Glanzer
& Cunitz, 1966), we introduce the concept of a sliding window τ ∈ T to lay the stress on recent
history. The history is restricted to Ht,τ = (St−τ , At−τ , rt−τ , . . . , St−1, At−1, rt−1, St) and the
policy becomes π : A× S × T → [0, 1] with

∑
a∈A π(a|s, τ) = 1. The simple regret according to

τ is : R(π, τ, 1, T ) =
∑T
t=τ ∆π,t.

Imitation learning to approximate a bee’s behaviour Our goal is to learn a policy πMAYA which
is close to πbee. The selection of the best MAB algorithm that mimics a bee’s behaviour is based on
comparing at t the τ -last cumulative regret trajectories generated (R(π, τ, 1, t)) by the bee and by
each candidate MAB. For this, for a well-chosen similarity distance d. We define for two policies π1
and π2, their distance according to τ and t trials: δ(π1, π2, τ, t) := d(R(π1, τ, 1, t), R(π2, τ, 1, t)) .

4
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In the following, we consider three choices for d, reflecting two complementary interpretations of the
regret sequence. First, when regrets are viewed as random variables, we use distributional distances
such as Kullback–Leibler (KL) divergence and Wasserstein distance, which measure similarity in
probabilistic structure or geometric displacement. Second, when regrets are interpreted as a temporal
trajectory, we use Dynamic Time Warping (DTW), which emphasizes temporal alignment and is
robust to local timing fluctuations.

Finally, the success of the imitation learning algorithm will be quantified here using the following
cost of a wrong reproduced action. Let :

c(st|at) =
ß

1 if at ̸= πbee(st)
0 otherwise

Assume that πMAYA(a ̸= πbee(s)|s) ≤ ε, with ε ∈ [0, 1] then (Ross et al., 2010) shows that
E[
∑T
t=1 c(st, at)] ≤ εT . If πθ is learned by minimizing previous distances, success is measured by

considering this cost. See App. 16 for additional details on this metric.

3 CONTRIBUTION

Our contribution, the MAYA algorithm, addresses the challenge of inverse reinforcement learning
in biology when expert demonstrations are heterogeneous, non-stationnary and not necessarily opti-
mal. Instead of assuming a single coherent expert policy, MAYA explicitly treats bee trajectories as
mixtures of potentially distinct and sometimes sub-optimal MAB strategies. By dynamically align-
ing the observed behaviour with a set of candidate MAB policies, MAYA captures both successful
learning episodes and non-optimal or inconsistent actions, which are common in insect cognition.
We present here a condensed version of the MAYA framework; the complete algorithmic description
is provided in Appendix 11.

Inputs. The algorithm takes as input the logged regret trajectory of a bee policy R(πbee, 1, T ), a
finite set P = {π1, . . . , πN} of N candidate bandit policies, and a window size τ . The window size
controls how much historical regret information is used at each step: for t < τ the algorithm uses
all past data, while for t ≥ τ it only considers the most recent τ steps.

Initialization. The algorithm initializes a placeholder policy πθ and an agent buffer ξ.

Warm-up Phase (t < τ ). For each time step t ∈ {2, . . . , τ − 1}:

1. We define τ = t− 1 and the algorithm observes the bee regret R(πbee, τ, 1, t− 1) with the
context information xt.

2. For each candidate policy πi ∈ P , the algorithm simulates its action distribution
πi(st−1|xt) and computes the cumulative regret R(πi, τ, 1, t− 1).

3. A distance d(·, ·) is computed between the bee regret trajectory and the simulated regret of
πi, then we compute ξt = argminπ∈P δ(πbee, π, t) according to the choice of d(.). In case
of a tie, ξt is sampled from the set of best candidates.

4. The algorithm updates πθ to imitate πξt , i.e. πθ(at|st−1) ← πξt(at|st−1), and we store
ξ[t]← ξt.

The chosen policy πθ is then used to sample the next action At, a reward rt is received, and all
candidate policies are updated.

Windowed Phase (t ≥ τ ). For subsequent steps t ∈ {τ, . . . , T}, the procedure is analogous,
except that we fix τ as a hyperparameter. Then, only the most recent observations τ are used when
computing regret and ξt = argminπ∈P δ(πbee, π, τ, t). Specifically, regret and policy regrets are
evaluated over the interval [t − τ, t − 1] rather than the full trajectory. Again, the best match ξt is
calculated between each policy π ∈ P , and πθ is updated according to the best match.

Output. After T steps, the algorithm returns the policy πMAYA = πθ, which best matches the bee’s
regret profile, while adapting online to the context and rewards.

5
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3.1 SIMILARITY EVALUATION

The algorithm depends on the choice of the distance d between the trajectories of the regrets. We
will consider three distinct distances. For a review of different distances, see for instance in (Besse
et al., 2015).

1. Dynamic Time Warping (DTW). One of the most used similarity measures between two
paths is given by the so-called DTW. It is defined as follows. Given two temporal sequences
X = (x1, . . . , xT1) and Y = (y1, . . . , yT2) over E ⊂ Rd with d ∈ N∗. DTW aligns
them by finding an admissible path ψ = {(ik, jk)}Kk=1 that respects temporal ordering.
Formally, the DTW is defined as DTW (X,Y ) = minψ

∑K
k=1 ∥xik − yjk∥, with K ∈ N∗

where the minimization runs over all monotone alignment paths ψ between the indices of
X and Y . This distance enables comparison of sequences with different lengths or temporal
distortions, by optimally stretching or compressing the time axis.

2. KL-distance. In this case, the sequence of the regrets is considered as a realization at
each step of a Bernoulli distribution. Hence we can define the Kullback-Leibler distance
between each trajectory by a proper normalization. Set Q a probability measure on E. If
P is another probability measure on (E,B(E)), then the KL divergence is DKL(P∥Q) =∫
E
log dP

dQdP , if P ≪ Q and log dP
dQ ∈ L

1(P ), and +∞ otherwise.

3. Wasserstein-distance. We consider again the distributional point of view. The 1-
Wasserstein distance is defined as follows. For two distributions π1 and π2 over E ⊂ Rd a
compact subset, endowed with the norm ∥.∥, recall that their 1-Wasserstein distance is de-

fined as W1(π1, π2) = min
π∈Π(π1,π2)

∫
x∈E,y∈E

∥ x− y ∥ dπ(x, y), where Π(π1, π2) denotes

the set of distributions on E × E with marginals π1 and π2.

3.2 THEORETICAL ANALYSIS

We provide in App 14 worst-case upper bounds on the cumulative regret gap between πMAYA and πbee
across stationary and S cyclic regimes, expressed in terms of T , τ and S. We inform the choice of τ
to control the error in non-stationary settings. In App;15, we extended our experimental protocol to
include 42 simulated datasets, resulting in more than 100.800 synthetic trajectories. Overall, these
analyses validate the theoretical justification of our τ -range and demonstrate its empirical robustness
across diverse S switching regimes. We also added a small grid search over exploration parameters
: ϵ ∈ {0.1, 0.2, 0.3}, and αucb, αlinucb ∈ {0.5, 1, 1.5, 2, 4}.

4 EXPERIMENTAL EVALUATION

Our experiments aim to address the following questions: i/ What is the best window size (τ ) to
estimate S and similarity metric (DTW, KL, Wass) to approximate bee learning? ii/ What infor-
mation can MAYA provide about the exploratory and contextual process of bees? iii/ How external
information (here, the weather) can impact the window size parameter τ?

Experiment description The datasets vary according to location (three from France and two from
Australia) and weather conditions (two cold, one moderate, and two hot). Each dataset contains the
trajectories of 16 bees with 22 or 40 trials (depending on the dataset, see App 6.1 for more details).
We also include a complementary experiment in the App 12, adapted from (Ashwood et al., 2020b),
using data from mice performing perceptual decision-making tasks. We complete our study with
simulated data in App 15.

Metrics MAYA and comparative methods are evaluated based on their ability to minimize the cost
of incorrectly reproduced actions over the sequence of trials. We then report, for our five datasets, the
MSE

Ä∑T
t=1 c(st | at)

ä
and MAE

Ä∑T
t=1 c(st | at)

ä
, computed across all bees within the same

dataset. We first observe how these metrics evolve in Sec.4.1. We further include a variance-based
residual statistical test comparing the bee’s cumulative regret with MAYA. We provide in App.16
more explanation with a numeric toy example. Then, in Sec. 4.2, we show how MAYA generates

6
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trajectories that closely match those of bees across all datasets. Sec 4.3 provides an example of
individual analysis. We also observe how trajectories are clustered in a similar manner in Sec.4.4.
This can be considered as an additional performance metric: the ability to assign trajectories to the
same cluster.

4.1 BEST WINDOW SIZE AND DISTANCE METRICS

Figure 2 reports the average MSE and MAE results according to τ for the five datasets. When
several MAB agents are the best candidates for ξt, the selection is random, which can introduce
some variability. We report average MSE/MAE over τ ∈ [3,min(T, 30)] and over the full-history
value τ = T . We also provide the standard deviation for several τ in the App 6.2. However,
the MAYA MSE/MAE recorded standard deviations are small and nearly constant. This is easily
explained: if agents follow the same action sequence, their costs are identical. Therefore, the effect
of randomness is limited. This can be seen in Fig.3, for example, where UCB and UNIFORM act
identically at the beginning of the experiment.

Across all datasets, the results confirm the trend that for τ ∈ [5, 10] the losses decrease. However,
weather influences the optimal τ . Weather conditions modulate this optimum. Cold weather requires
to choose τ ∈ [5, 7], moderate weather τ ∈ [6, 8], and hot weather τ ∈ [7, 10]. Based on this
observation, we set τ = 7 as a robust compromise across all conditions. This observation is similar
in complementary experiments with mice (App 12). Then, we fix τ = 7 for the rest of the paper.
Whatever τ , MAYA–Wass provides the best results across all datasets.

(a) Dataset 1 (Cold, France) (b) Dataset 2 (Hot, France) (c) Dataset 3 (Moderate, France)

(d) Dataset 4 (Cold, Australia) (e) Dataset 5 (Hot, Australia)

Figure 2: Comparative study of the best window size τ by average MSE and MAE; weather and
location for each dataset are provided. The maximum window value corresponds to using the full
sequence (i.e., no window). ⋆ symbol refers as best performance according standard deviation and
average reward (see Tab9. in App 10 for the full results)

4.1.1 STATISTICAL TEST: VARIANCE-BASED RESIDUAL ANALYSIS

To quantify how well a model reproduces the behaviour of an individual bee, we analyse the residual
trajectory : et = R(πbee, 1, t) − R(πmodel, 1, t), where R(π, 1, t) denotes cumulative simple
regret without τ restriction. Because regret trajectories are monotone and strongly autocorrelated,
we focus on the variance of the residuals rather than their absolute level. Let s2e = Var(et), and
s2bee = Var

(
R(πbee, 1, t)

)
. Under the null hypothesis : H0 : s2e ≤ s2bee, the model’s deviations are no

larger than the intrinsic variability of the animal. We compute the Fisher statistic : Fobs =
s2e
s2bee

, and
obtain a one-sided p-value p = Pr(F ≥ Fobs | H0). Small p-values indicate that the model fails to
capture the individual’s dynamics; large values indicate a good match. Table 1 reports (mean, min,
max) p-values per dataset.

7
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Overall, MAYA-based models (MAYA-KL, MAYA-Wass, MAYA-DTW) achieve the highest min-
imal p-values across all datasets, whereas baseline bandit algorithms (UCB, LinUCB, Uniform,
ϵ-greedy) exhibit larger residual dispersion and more frequent rejection of H0. The results also
show that, in Dataset 2, many bees display a clear LinUCB-like phase, whereas in the other datasets
the dominant patterns are UCB-, EpsilonGreedy or Uniform-like. The reported minimum p-value
for each dataset reflects whether at least one bee deviates significantly from the model; values below
0.05 lead to rejectingH0. MAYA-KL and MAYA-Wass consistently achieve near-perfect alignment,
and MAYA-DTW performs similarly except for a single bee in Dataset 2, likely due to the sensitivity
of DTW to constant cumulative regret trajectories, which are more frequent in this dataset. We also
include a new WORST baseline that always selects the suboptimal arm; the opposite BEST baseline
is equivalent to LinUCB and is therefore omitted.

Algorithm dataset1 dataset2 dataset3 dataset4 dataset5
mean min max mean min max mean min max mean min max mean min max

UCB 0.79 0.01 1 0.85 0.01 1 0.75 0.01 1 0.82 0.01 1 0.91 0.24 1
LINUCB 0.63 0.55 0.72 0.90 0.60 0.99 0.64 0.57 0.72 0.61 0.51 0.83 0.62 0.54 0.73
UNIFORM 0.91 0.01 1 0.82 0.04 1 0.89 0.01 1 0.91 0.01 1 0.94 0.65 1
E-GREEDY 0.91 0.01 1 0.74 0.01 1 0.91 0.01 1 0.93 0.01 1 0.95 0.80 1
WORST 0.34 0.01 0.99 0.28 0.01 0.99 0.29 0.01 0.99 0.33 0.01 0.99 0.28 0.01 0.97
MAYA-KL 0.99 0.99 1 0.92 0.65 1 0.99 0.99 1 1.00 0.99 1 0.99 0.94 1
MAYA-Wass 1.00 1.00 1 0.99 0.91 1 1.00 1.00 1 1.00 1.00 1 0.99 0.99 1
MAYA-DTW 0.93 0.01 1 0.90 0.01 1 0.97 0.80 1 0.99 0.87 1 0.99 0.97 1

Table 1: Performance of all algorithms across five real bee datasets (16 bees per dataset), reported in
terms of (mean, min, max) Fisher-test (one side) p-values per dataset. Lower values indicate a worse
match, while values near 1 indicate high similarity to the subject’s trajectory. MAYA consistently
achieves the highest p-values across datasets, indicating superior trajectory alignment. The code is
available on our GitHub repository.

4.2 COMPARATIVE STUDY OF REPRODUCTIVE BEHAVIOR

We compare the performance of MAYA-Wasserstein, MAYA-KL and MAYA-DTW with all IRL al-
gorithms implemented in the imitation library of (Gleave et al., 2022). It includes implementations
of Generative Adversarial Imitation Learning (GAIL), Behavioral Cloning (BC), Dataset Aggrega-
tion (DAgger), Adversarial Inverse Reinforcement Learning (AIRL), Density-based reward model-
ing (DBR), Reward Learning through Preference Comparisons (Pref-Comp), Maximum Causal En-
tropy Inverse Reinforcement Learning (MCE) and Soft Q Imitation learning (SQIL). These methods
are the baseline references of IRL methods. We provide a full explanation of these methods in App 8.
We also compare our results with a generalized linear model (GLM) applied to the full trajectory. In
this case, the GLM captures each bee trajectory through a response transformation, while allowing
the variance of each measurement to depend on its predicted value. We further introduce a variant
that incorporates contextual information xt as covariates (GLM-Context).

The reported results are in Tab 2 for the MSE. As the best performances are almost identical for
the MAE we provide MAE results in App 8.1. Methods such as Pref-comp, MCE, and DBR tend
to overshoot the bee trajectories and focus mainly on minimizing regret (policy optimization), as
the context provides all the necessary information to choose correctly. These methods fail to re-
produce bee behavior: the divergence between the cumulative regret trajectories grows over time,
since the learned policy accumulates substantially less regret. In fact, these methods generally act
like LinUCB. GAIL, Dagger and SQIL fail to capture the full range of behaviors, instead tending to
mimic the most frequently represented populations in the dataset. AIRL reproduces bee trajectories
identically, and can therefore be seen as a full copy-paste of the dataset without any real capacity
for generalization (see App. 8.1 for more details). AIRL actually memorizes observed trajectories
rather than capturing the underlying decision-making mechanisms. When we fine-tune the parame-
ters of these methods, we reinforce the influence of the expert on the learning process (see App 9).
However, this requires more computation time, and the resulting MSE/MAE values are higher than
those obtained with MAYA (considering a large set of τ ). The GLM can be considered the most
challenging baseline to outperform in terms of MSE/MAE, since it is explicitly designed to fit the
bee’s T -trial trajectory rather than to learn a policy. Adding contextual covariates has only a mi-
nor influence, which is expected because the GLM primarily captures direct statistical dependencies
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Table 2: MSE comparison of methods across the five datasets. Values are reported as mean ±
standard deviation. We fix τ = 7 for all MAYA variant. Best performance of comparative methods
are reported here.

Dataset GAIL BC AIRL Dagger DBR MCE Pref-Comp SQIL GLM (no ctx) GLM (ctx) MAYA-KL MAYA-Wass MAYA-DTW
1 29.6± 41 5.16 ± 3 0 ± 0 22.8 ± 32 43.1 ± 54 148.83 ± 38 104± 57 26.2±19 3.0 ± 1 3.0 ± 1 4.2 ± 3 2.5 ± 1 6.7 ± 7
2 23.2±17 2.86 ± 2 0 ± 0 9.67 ± 12 15.26 ± 16 49.5 ± 14 24.54 ± 18 9.8±6 1.4 ± 2 1.4 ± 2 1.6 ± 1 1.5 ± 1 1.3 ± 3
3 27.5±40 5.5 ± 4 0 ± 0 21.6 ± 46 41.38 ± 51 140.3 ± 34 125.7 ± 44 22.6±15 3.1 ± 1 3.1 ± 1 3.7 ± 3 2.6 ± 1 5.7 ± 5
4 25.3±39 5.35 ± 4 0 ± 0 22.9 ± 34 46.06 ± 55 148.2 ± 39 124.1 ± 52 25.3±20 3.0 ± 1 3.0 ± 1 3.7 ± 3 3.6 ± 2 8.3 ± 10
5 47.7 ± 45 26.7 ± 42 0 ± 0 25.8 ± 47 115.7 ± 242 374 ± 311 284 +/-254 25.0±16 8.0 ± 8 7.9 ± 8 3.4 ± 3 4.5 ± 5 10.3 ± 11

rather than adaptive decision-making. Among all variants, MAYA with the Wasserstein distance
(MAYA-Wass) consistently achieves the best performance across datasets, highlighting its robust-
ness in capturing trajectory similarity. We report in Fig 3a and Fig3b MAYA’s fitting for two bees.

(a) Bee 1 (b) Bee 15 (c) Bee 1 (d) Bee 15

Figure 3: For bee 1 (fast learner, low regret) and bee 15 (slow learner, high regret) from dataset 2.
Left: Cumulative regret of 4 MABs, GLM and MAYA (τ = 7) for two bees from Dataset 2. Right:
Choice interpretability with MAYA–Wass (τ = 7), Left: LinUCB, Top: Uniform, Right: UCB,
Bottom: EpsilonGreedy.

4.3 UNDERSTANDING THE LEARNING PROCESS

MAYA provides post-hoc behavioral explainability at both the individual-bee and dataset levels.
Concretely, our explainability metric is the alignment rate: the proportion of time MAYA’s chosen
action at matches the action prescribed by a reference MAB policy (e.g., LinUCB, UCB, Epsilon-
greedy, or Uniform). Empirically, when focusing on low-regret bees, MAYA’s decisions align pre-
dominantly with LinUCB-like choices (see Fig3c). In contrast, for high-regret bees, decisions align
more often with Epsilon greedy (see Fig3d) as a context-agnostic heuristic tends to over-exploit
early, locking onto arms that were temporarily lucky and thus yielding higher cumulative regret
(exploited 80% of the time). Table 3b reports the MAB-policy alignment proportions aggregated
across all bees from the five datasets. Across MAYA variants, alignment profiles are broadly similar,
though MAYA–DTW displays greater variability, likely due to its sensitivity to local misalignments
and abrupt strategy shifts.. The strong performance of MAYA–Wass appears consistent with its
higher alignment to LinUCB-style trajectories, suggesting better identification of context-dependent
decision patterns. Additional per-τ and per-dataset analyses are provided in App 7. There we also
show that using a smaller temporal window (τ ≤ 5) tend to produce unstable alignment patterns,
especially for slow learners, whose behavior requires longer horizons to disambiguate. These em-
pirical proportions are useful for biologists as priors for forward ecological simulations: one can
generate realistic behavioural sequences by sampling actions from the inferred mixture over refer-
ence policies.

4.4 SIMULATE AND FORECAST THE BEE TRAJECTORY

We study MAYA’s ability to forecast realistic trajectories that capture bee behavior. We consider two
behavioral types (slow and fast learners) defined by their cumulative regret according to the number
of trials. We jointly cluster real bee trajectories and MAYA-generated trajectories separately, and
we assess alignment by checking whether real and simulated samples fall into the same clusters via
a confusion matrix. We define a clustering function κ that assigns each trajectory R(.) to a cluster:
κ : R(.) 7→ {1, . . . ,K}, where K is the number of clusters. As an additional performance
evaluation, we compute the proportion of cases where the model and bee trajectories fall into the

9
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same cluster: ClusterAcc =
1

J

J∑
i=1

1
î
κ(R(πjbee, 1, T ) = R(πjMAYA, 1, T )

ó
, where J denotes the

total number of bees across all datasets (here, 80), πjbee is the policy of the jth bee, and πjMAYA is the
policy generated by MAYA for the jth bee. We use K = 2 clusters to mirror the two archetypes.
Clustering I (Euclidean) uses Euclidean distance on time series and requires equal lengths. We pool
all bees across datasets. Lengths differ, so we truncate each series to the minimum common length
(22). We apply a second clustering with Dynamic Barycenter Averaging (DBA); a DTW-based
clustering method. It handles unequal lengths and local time shifts, so no truncation is needed. We
report DBA clustering of real bee trajectories in App10. We report the confusion matrix (real vs.
simulated labels) in Tab 3a. The MAYA-Wass error fluctuations remain bounded with Gaussian
amplitude. It shows that MAYA-Wass’s dynamics are stable, almost 0-centered with a maximum
standard deviation error equal to 3. We provide additional figures of Euclidean Clustering in App 10.

Table 3: Left: For all bees in the five datasets, we report average ClusterAcc (%) under two prototype
aggregation regimes: (i) Euclidean averaging with a maximum sequence length of 22, and (ii) DBA
with a maximum sequence length of 40. Across both regimes, MAYA–Wass achieves the highest
accuracy (79% and 91%), followed by MAYA–KL and MAYA–DTW. Standard errors are≤ 1% for all
entries and are omitted for readability. Right: Proportion of at according to all trials for all dataset
(5). We fix τ = 7 for all MAYA variants.

MAYA-KL MAYA-Wass MAYA-DTW
ClusterAcc (Euclidean, Max L = 22) 77% 79% 70%
ClusterAcc (DBA, Max L = 40) 84% 91% 80%

(a) ClusterAcc (%)

Epsilon-Greedy Lin-UCB UCB Uniform
MAYA-KL 34.4%±2 10.5%±1 22.6%±1 32.5%±2
MAYA-W 31.1%±1.5 16.2%±0.8 22.2%±0.9 30.5%±1.4
MAYA-DTW 36.5%±2.5 10.8%±1 17.5%±1 35.2%±2.3

(b) MAYA explainability for all bees choices

(a) Cluster 0 (b) Cluster 1

Figure 4: Average difference between MAYA-Wass (τ = 7) predictions and real trajectories, expressed as
R(πMAYA-Wass, 1, t) − R(πbee, 1, t) (z-axis), for the two DBA clusters (0 and 1). The red band represents ±σ
(standard deviation). These surfaces show how the average prediction error evolves across trials (t) and cumu-
lative regret (y-axis).

5 DISCUSSION

We introduced MAYA, a sequential imitation-learning model that forecasts individual bee trajecto-
ries across heterogeneous cognitive strategies. Across datasets and weather conditions, a memory
window of (τ = 7) represents a reasonable trade-off with weather-driven variability while main-
taining robust predictive performance. It corresponds to 15–30 minutes in our protocol (≈ seven
trials, depending on the bee). Among variants, MAYA-Wass achieved the strongest overall per-
formance, while MAYA-KL and MAYA-DTW remained competitive. Beyond accuracy, MAYA
provides interpretable, per-trial explanations of choice, enables the generation of “artificial bees,”
and supports forward simulation for ecological what-if scenarios. These results position MAYA
as a viable alternative to IRL baselines and traditional statistical models. Future work will deploy
MAYA in large-scale ecological simulations to assess its predictive value for ecological manage-
ment decisions.
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6 APPENDIX

6.1 DATASET DESCRIPTION

In this dataset, bees are confronted to a numerical discrimination task. Bees first enter the maze in
an entrance chamber before flying through a hole and facing two images located at the end of each
arm. The image has a different number of dots : for example in dataset 1 and 2, one of the image
has two dots while the other have four dots. If the bee chooses the correct image (i.e. the side with
the highest number of dots), it will be rewarded with a sugar reward (50% sugar/water) placed in
a pipette in the middle of the image, alternatively if it chooses the incorrect image, then it will be
punished by finding a bitter tasting solution (quinine solution) within the pipette. Bees cannot detect
(neither visually nor by odor) which solution is located where. Then, they are only able to know
the image on each side before choosing. Between each trials the bee will go back to the hive to
deliver the collected sugar, before returning back the maze for another trial (typically lasting a few
minutes). During this time, the experimenter randomly changes the images or not, and varying the
position of the dots. The localization of the correct image alternate between the right and left arm
according to a pseudo-random sequence. Each dataset include 16 bees.

Table 4: Datasets summary

Dataset nb indiv T Location Weather
Dataset 1 16 40 France Cold
Dataset 2 16 22 France Hot
Dataset 3 16 40 France Moderate
Dataset 4 16 40 Australia Cold
Dataset 5 16 30 Australia Hot

(a) Dataset 1 (Cold, France) (b) Dataset 2 (Hot, France) (c) Dataset 3 (Moderate, France)

(d) Dataset 4 (Cold, Australia) (e) Dataset 5 (Hot, Australia)

Figure 5: Proportion of cumulative regret for the five datasets, per bees
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6.2 MSE AND MAE OF MAYA ACCORDING TO τ

side window MAYA KL MAYA KL MAYA Wass MAYA Wass MAYA DTW MAYA DTW
mean MSE mean MAE mean MSE mean MAE mean MSE mean MAE

3.0 2.7 ± 2 1.2 ± 0.7 2.7±2 1.2 ± 0.6 7.4 ± 10 1.9 ± 1
4.0 4.2 ± 4 1.5 ± 0.8 3.0 ± 2 1.3 ± 0.6 8.0 ± 13 1.9 ± 1
5.0 4.0 ± 4 1.4 ± 0.9 3.8 ± 3 1.5 ± 0.6 6.8 ± 7 1.9 ± 0.9
6.0 4.1 ± 2 1.6 ± 0.6 2.8 ± 2 1.2 ± 0.5 7.5 ± 7 2.0 ± 1
7.0 4.2 ± 3 1.5 ± 0.7 2.5 ± 1 1.2 ± 0.5 6.7 ± 7 1.9 ± 1
8.0 5.5 ± 5 1.7 ± 0.9 3.7 ± 3 1.4 ± 0.7 7.2 ± 7.8 2.0 ± 1
9.0 3.9 ± 3 1.4 ± 0.7 2.9 ± 2 1.2 ± 0.6 8.8± 9 2.2 ± 1
10.0 5.5 ± 5 1.7 ± 0.9 4.1 ± 4 1.5 ± 0.8 8.7 ± 10 2.0 ± 1
20.0 5.4 ± 5 1.6 ± 0.8 4.8 ± 5 1.5 ± 0.9 8.7 ± 10 2.1 ± 1
30.0 4.3 ± 3 1.5± 0.6 4.4 ± 3 1.5 ± 0.7 8.4 ± 10 2.0 ± 1
T = 40 5.1 ± 5 1.6 ± 1 4.8 ±6 1.5 ± 0.9 9.7 ± 11 2.2±1

Table 5: Dataset 1 (Cold weather, France)

side window MAYA KL MAYA KL MAYA Wass MAYA Wass MAYA DTW MAYA DTW
mean mean mean mean mean mean

3.0 1.2± 1 0.7± 0.4 1.3± 1 0.8± 0.4 2.4± 1 1.1± 0.4
4.0 1.3± 0.8 0.8± 0.3 1.5± 1 0.8 ± 0.4 2.7± 2 1.1± 0.6
5.0 2.1± 1 1.0± 0.4 1.9± 2 1.0± 0.5 2.4± 2.7 1.0± 0.6
6.0 2.1± 1 1.0± 0.5 1.5± 1 0.8 ± 0.4 3.5 ± 3 1.3± 0.7
7.0 1.6± 1 0.9± 0.4 1.5± 1 0.8± 0.4 3.0± 3 1.2± 0.6
8.0 1.9± 1 1.0± 0.3 1.8± 1 0.9± 0.4 2.8± 2 1.2± 0.6
9.0 1.8± 1 0.9± 0.4 2.2± 2 1.0± 0.6 2.5± 2 1.1± 0.6
10.0 2.3 ± 2 1.0± 0.5 2.1± 2 1.0± 0.6 2.7± 1 1.2± 0.6
20.0 2.3± 1 1.0± 0.4 2.6± 1 1.1± 0.3 2.0± 1 1.0± 0.4
T = 22 3.2± 3 1.2± 0.6 2.8± 1 1.2± 0.4 2.1± 1 1.0± 0.5

Table 6: Dataset 2 (Hot weather, France)

side window MAYA KL MAYA KL MAYA Wass MAYA Wass MAYA DTW MAYA DTW
mean MSE mean MAE mean MSE mean MAE mean MSE mean MAE

3.0 3.0±2 1.3±0.6 4.0±4 1.4 ±0.8 8.4±12 2.0±1.4
4.0 4.4±4 1.5±0.9 3.9±4 1.4±0.8 7.4±11 1.9±1
5.0 4.3±4 1.5±0.7 3.0±3 1.2±0.7 7.3±11 1.9±1
6.0 4.4±4 1.5±0.8 3.1±2 1.3±0.6 7.7±9 2.0±1
7.0 3.7±3 1.4±0.6 2.6±1 1.2±0.5 5.7±5 1.8±0.8
8.0 4.1±3 1.5±0.7 2.5±1 1.1±0.4 8.3±9 2.1±1
9.0 5.8±5 1.8±0.8 4.2±2 1.6±0.6 8.1±8 2.1±1
10.0 3.6±3 1.4±0.7 4.9±5 1.6±1 7.1±9 1.9±1
20.0 5.3±4 1.7±0.8 5.2±5 1.7±0.7 6.5±8 1.9±1
30.0 3.6±2 1.4±0.5 4.4±3 1.6±0.7 8.7±9 2.2±1
T = 40 4.2 ± 4 1.5 ± 0.8 3.45±3 1.3±0.6 9.3 ± 11 2.2±1

Table 7: Dataset 3 (Moderate weather, France)

side window MAYA KL MAYA KL MAYA Wass MAYA Wass MAYA DTW MAYA DTW
mean MSE mean MAE mean MSE mean MAE mean MSE mean MAE

3.0 4.5 ± 4 1.6 ± 0.9 3.0 ± 4 1.2 ±0.9 7.1 ± 10 1.8 ± 1.3
4.0 3.8 ± 3 1.5±0.7 3.6 ±3 1.5 ± 0.6 7.1 ± 9 1.9 ± 1
5.0 4.9 ± 3 1.7 ±0.7 2.6 ± 3 1.2 ± 0.7 7.6±11 1.9 ±1
6.0 4.1±3 1.5 ± 0.7 2.6 ± 1 1.2 ± 0.4 7.8±9 2.0 ± 1
7.0 3.7±3 1.4±0.6 3.6±2 1.5 ±0.5 8.3 ±10 2.1 ±1
8.0 6.2±8 1.7 ±1 3.4±2 3.4±2 6.2±7 1.8 ± 1
9.0 4.6 ±3 1.6 ±0.7 3.1 ±2 1.3±0.5 8.1±7 2.1 ±1
10.0 7.7±7 2.0 ±1 4.8±4 1.6±0.8 8.4±10 2.0±1
20.0 5.4 ±4 1.7 ±0.8 4.4 ± 2 1.6 ±0.5 8.5 ± 11 2.1 ±1.2
30.0 5.5 ±4 1.7±0.7 6.7 ±7 1.9 ±0.9 9.0 ±12 2.1 ± 1
T = 40 4.2 ± 5 1.4 ± 0.8 3.3 ± 2 1.3 ± 0.6 9.0 ± 10 2.2 ± 1

Table 8: Dataset 4 (Cold weather, Australia)

side window MAYA KL MAYA KL MAYA Wass MAYA Wass MAYA DTW MAYA DTW
mean MSE mean MAE mean MSE mean MAE mean MSE mean MAE

3 6.6 ± 9 1.6 ± 1 6.3 ± 9 1.6 ± 1 8.6 ± 10 1.9 ± 1
4 8.1 ± 8 2.0 ± 1 10.4 ± 12 2.2 ± 1 9.4 ± 8 2.1 ± 1
5 4.3 ± 5 1.4 ± 0.9 8.4 ± 10 2.0 ± 1 10.4 ± 12 2.2 ± 1
6 3.6 ± 3 1.4 ± 0.7 3.9 ± 8 1.2 ± 1 12.0 ± 11 2.3 ± 1
7 3.4± 3 1.2 ± 0.9 4.5 ± 5 1.5 ± 1 10.3 ± 11 2.1 ± 1
8 4.1 ±3 1.5±0.6 4.4±5 1.5±0.9 10.3 ± 12 2.2±1
9 5.5±8 1.6±1 5.7±6 1.7±1 12.9 ± 16 2.4 ± 1
10 3.3 ± 3 1.3 ± 0.6 3.3 ± 3 1.3 ± 0.7 9.6 ± 10 2.1 ± 1
20 6.4±6 1.8 ±1 4.7 ± 5 1.5 ±0.8 11.8±13 2.3 ± 1
T = 30 6.1±5 1.8±0.9 6.1±5 1.8±0.9 9.2±10 2.1±1

Table 9: Dataset 5 (Hot weather, Australia)

Table 10: MSE and MAE of MAYA as a function of the window size τ . The T row denotes the
no-window setting (τ = T ), where at each trial the full trajectory up to time t is used.
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7 UNDERSTANDING THE LEARNING PROCESS

7.1 MAYA EXPLAINABILITY WITH τ = 7

Figure 6: MAYA-KL Figure 7: MAYA-Wass Figure 8: MAYA-DTW

Figure 9: For bee 1 (fast learner, low regret) from dataset 2 we report choice interpretability for
MAYA-variants (τ = 7). Left: LinUCB, Top: Uniform, Right: UCB, Bottom: EpsilonGreedy.

Figure 10: MAYA-KL Figure 11: MAYA-Wass Figure 12: MAYA-DTW

Figure 13: For bee 15 (slow learner, high regret) from dataset 2 we report choice interpretability for
MAYA-variants (τ = 7). Left: LinUCB, Top: Uniform, Right: UCB, Bottom: EpsilonGreedy.
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7.2 MAYA EXPLAINABILITY WITH τ = 3

Figure 14: MAYA-KL Figure 15: MAYA-Wass Figure 16: MAYA-DTW

Figure 17: For bee 1 (fast learner, low regret) from dataset 2 we report choice interpretability for
MAYA-variants (τ = 3). Left: LinUCB, Top: Uniform, Right: UCB, Bottom: EpsilonGreedy.

Figure 18: MAYA-KL Figure 19: MAYA-Wass Figure 20: MAYA-DTW

Figure 21: For bee 15 (slow learner, high regret) from Dataset 2 we report choice interpretability for
MAYA-variants (τ = 3). Left: LinUCB, Top: Uniform, Right: UCB, Bottom: EpsilonGreedy.

Figure 22: Bee 1 Figure 23: Bee 15

Figure 24: Regret modelization for bee 1 (lower cumulative regret) and bee 15 (higher cumulative
regret) of Dataset 2, with τ = 3.
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8 COMPARATIVE METHODS DESCRIPTION

• Generative Adversarial Imitation Learning (GAIL) GAIL learns a policy by simultaneously
training it with a discriminator that aims to distinguish expert trajectories against trajecto-
ries from the learned policy. (Ho & Ermon, 2016)

• Behavioral Cloning (BC) Behavioral cloning directly learns a policy by using supervised
learning on observation-action pairs from expert demonstrations. It is a simple approach
to learning a policy, but the policy often generalizes poorly and does not recover well from
errors. (Foster et al., 2024).

• AIRL, similar to GAIL, adversarially trains a policy against a discriminator that aims to
distinguish the expert demonstrations from the learned policy. Unlike GAIL, AIRL recov-
ers a reward function that is more generalizable to changes in environment dynamics. (Fu
et al., 2018).

• DAgger (Dataset Aggregation) iteratively trains a policy using supervised learning on a
dataset of observation-action pairs from expert demonstrations (like behavioral cloning),
runs the policy to gather observations, queries the expert for good actions on those obser-
vations, and adds the newly labeled observations to the dataset. DAgger improves on be-
havioral cloning by training on a dataset that better resembles the observations the trained
policy is likely to encounter, but it requires querying the expert online (Ross et al., 2011).

• Density-based reward modeling is an inverse reinforcement learning (IRL) technique that
assigns higher rewards to states or state-action pairs that occur more frequently in an ex-
pert’s demonstrations. The key intuition behind this method is to incentivize the agent to
take actions that resemble the expert’s actions in similar states (Dumoulin et al., 2024).

• Maximum Causal Entropy Inverse Reinforcement Learning (MCE IRL) : The principle of
maximum causal entropy is a method that extends the classical maximum entropy idea
to sequential settings. Instead of considering probabilities in isolation, it uses causally
conditioned probabilities, which means that the model explicitly accounts for the fact that
information is revealed step by step over time. This allows us to properly capture how side
information becomes available and how it influences decisions at each stage (Biernaskie
et al., 2009).

• Preference Comparisons : The preference comparison algorithm learns a reward function
from preferences between pairs of trajectories. The comparisons are modeled as being
generated from a Bradley-Terry (or Boltzmann rational) model, where the probability of
preferring trajectory A over B is proportional to the exponential of the difference between
the return of trajectory A minus B. In other words, the difference in returns forms a logit
for a binary classification problem, and accordingly the reward function is trained using a
cross-entropy loss to predict the preference comparison. (Christiano et al., 2023).

• Soft Q Imitation Learning (SQIL) : Soft Q Imitation learning learns to imitate a policy from
demonstrations by using the DQN algorithm with modified rewards. During each policy
update, half of the batch is sampled from the demonstrations and half is sampled from the
environment. Expert demonstrations are assigned a reward of 1, and the environment is
assigned a reward of 0. This encourages the policy to imitate the demonstrations, and to
simultaneously avoid states not seen in the demonstrations (Reddy et al., 2020).

• GLM : A Generalized Linear Model (GLM) is a statistical framework that extends linear
regression to response variables with non-Gaussian distributions. In our setting, the regret
trajectoryR(π, 1, T ) is modeled as a function of time,R(π, 1, T ) ∼ f(t), where f is linked
to a linear predictor through a canonical link function. A Poisson GLM is employed when
the noise structure is count-like, while a Gamma GLM is used to capture multiplicative
noise. This allows us to statistically frame the evolution of regret as a stochastic pro-
cess, while accounting for heterogeneous variability across agents. (Nelder & Wedderburn,
1972).

• Contextual GLM : The contextual variant incorporates side information (e.g., environmen-
tal or experimental conditions) into the predictor, enabling the model to capture how context
modulates regret dynamics. Then R(π, 1, T ) ∼ f(t, xt) (McCullagh & Nelder, 1989).
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8.1 MAE COMPARISON OF METHODS

Table 11: MAE comparison of methods across the five datasets. Values are reported as mean ±
standard deviation. We fix τ = 7 for all MAYA variant

Dataset GAIL BC AIRL Dagger DBR MCE Pref-Comp SQIL GLM (no ctx) GLM (ctx) MAYA-KL MAYA-Wass MAYA-DTW
1 3.75± 2.5 1.61 ± 0.79 0 ± 0 2.9 ± 2.8 4.3± 3.8 10.38 ± 1.60 8.35± 3.25 3.71±1 1.4 ± 0.3 1.4 ± 0.3 1.5 ± 0.7 1.2 ± 0.5 1.9 ± 1
2 3.69±1.8 1.24± 0.72 0 ± 0 1.93 ± 1.7 2.72 ± 1.89 6.04 ± 1.0 3.7 ± 1.9 2.18±0.9 0.8 ± 0.5 0.8 ± 0.5 1.4 ±0.6 1.5 ±0.5 2.1 ± 1
3 3.62±2.4 1.79 ± 0.98 0 ± 0 2.6 ± 3.1 3.4 ± 4.1 8.13 ± 1.10 9.76 ± 1.75 3.2±1 1.4 ± 0.4 1.4 ± 0.4 3.7 ± 3 2.6 ± 1 1.8 ± 0.8
4 3.1±2.8 1.65 ± 0.86 0 ± 0 3.0 ± 2.7 4.60 ± 4.8 10± 1.6 9.7 ± 1.7 3.2±1 2.1 ± 1 2.1 ± 1 1.4± 0.6 1.5 ± 0.5 2.1 ± 1
5 4.9 ± 2.8 3.23 ± 3 0 ± 0 6.5± 5.1 5.5 ± 7.8 15.0 ± 7.6 14.3 ± 6.92 4.52±2 8.0 ± 8 2.2 ± 1 1.2 ± 0.9 1.3 ± 0.7 2.1 ± 1

More details about the 0-MSE/MAE of AIRL AIRL is not guaranteed to reproduce expert tra-
jectories in general (e.g., continuous control), but it can do so in small, deterministic MDPs where
the expert policy is simple and near-deterministic. This is exactly our setting: the animal’s deci-
sions form a low-dimensional bandit strategy with discrete actions with sequences of 40 trials and
where the reward is fully deterministic (according to the door with the highest number of stimuli on
the Y-maze). In such environments, AIRL can recovers a reward sequence whose optimal policy is
identical to the expert’s mapping from states to actions, leading to trajectories that match exactly.

9 FINETUNING IMITATION LEARNING

We present ablations over the fine-tuning budget of the IRL methods. As the tuning knobs differ
across methods, we use the unified notation b for the method-specific budget (see Tab 12). The best
results are summarized in the main text.

b(GAIL) b(BC) b(Dagger) b(DBR) b(MCE) b(PrefComp) b(PrefComp)

epochs epochs env. steps epochs epochs # envs eval episodes

Table 12: Hyperparameters of each comparative methods.

MSE (b=1) MAE (b=1) MSE (b=10) MAE (b=10) MSE (b=50) MAE (b=50)
GAIL 29.6 +/- 41 3.75+/-2.5 29.6 +/- 41 3.75+/-2.5 29.6 +/- 41 3.75+/-2.5
BC 23.2 +/- 30.8 3.26 +/- 2.74 19.8 +/- 26.5 3.1+/-2.3 5.16+/-3.94 1.61+/-0.79
AIRL 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0
Dagger 22.8+/- 32.9 2.9+/-2.8 36.9+/-52.0 3.7 +/- 3.8 32.5 +/- 50.6 3.7+/- 3.3
Density based reward 43.1 +/- 54.81 4.3+/-3.8 43.1 +/- 54.8 4.3+/-3.8 43.1 +/- 54.8 4.3+/-3.8
MCE 148.83 +/- 38.47 10.38 +/- 1.60 148.83 +/- 38.47 10.38 +/- 1.60 148.83 +/- 38.47 10.38 +/- 1.60
Pref-Comp 120.25 +/- 52.1 9.17 +/- 2.99 114 +/- 53 8.9 +/- 2.9 104.5 +/- 57 8.35 +/- 3.25
SQIL 26.2 +/-19 3.75 +/- 1 26.2 +/-19 3.75 +/- 1 26.2 +/-19 3.75 +/- 1

Table 13: Dataset 1 (Cold weather, France)

MSE (b=1) MAE (b=1) MSE (b=10) MAE (b=10) MSE (b=50) MAE (b=50)
GAIL 23.2 +/- 17 3.69 +/- 1.8 23.2 +/- 17 3.69 +/- 1.8 23.2 +/- 17 3.69 +/- 1.8
BC 12.1+/-12.1 2.54+/-1.74 7.3+/-7.7 1.99+/-1.3 2.86 +/- 2.95 1.24 +/- 0.72
AIRL 0 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0
Dagger 15.63 +/- 19.2 2.54+/-2.2 11.8 +/- 16.5 2.1+/-2.0 9.67+/- 12.6 1.93 +/-1.7
Density based reward 15.26 +/- 16.43 2.72 +/- 1.89 15.26 +/- 16.43 2.72 +/- 1.89 15.26 +/- 16.43 2.72 +/- 1.89
MCE 49.5 +/- 14.2 6.04 +/- 1.0 49.5 +/- 14.2 6.04 +/- 1.0 49.5 +/- 14.2 6.04 +/- 1.0
Pref-Comp 24.54+/-18.3 3.7 +/-1.9 30.15 +/-17.3 4.49 +/- 1.53 28.84 +/- 16.13 4.46 +/- 1.30
SQIL 9.80 +/-6 2.18+/-0.9 9.80 +/-6 2.18+/-0.9 9.80 +/-6 2.18+/-0.9

Table 14: Dataset 2 (Hot weather, France)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

MSE (b=1) MAE (b=1) MSE (b=10) MAE (b=10) MSE (b=50) MAE (b=50)
GAIL 27.5 +/- 40 3.62 +/-2.5 27.5 +/- 40 3.62 +/-2.5 27.5 +/- 40 3.62 +/-2.5
BC 15.9+/-24 2.67 +/- 2.26 22.0+/-25 3.55+/-2.1 5.5+/-4.1 1.79+/-0.98
AIRL 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0
Dagger 35.4+/- 61.8 3.3 +/-3.7 34.5+/-48.2 3.5 +/- 3.4 21.6 +/-46.0 2.6 +/-3.1
Density based reward 41.38 +/- 51.1 3.4+/-4.1 41.38 +/- 51.1 3.4+/-4.1 41.38 +/- 51.1 3.4+/-4.1
MCE 140.3 +/-34.7 8.13 +/-1.10 140.3 +/-34.7 8.13 +/-1.10 140.3 +/-34.7 8.13 +/-1.10
Pref-Comp 130.98 +/-44.7 9.98 +/-1.98 134.12+/-37 10.12 +/-1.39 125.70 +/- 44.1 9.76 +/- 1.75
SQIL 22.65+/-15 3.2+/-1 22.65+/-15 3.2+/-1 22.65+/-15 3.2+/-1

Table 15: Dataset 3 (Moderate weather, France)

MSE (b=1) MAE (b=1) MSE (b=10) MAE (b=10) MSE (b=50) MAE (b=50)
GAIL 25.3 +/-39 3.1 +/- 2.8 25.3 +/-39 3.1 +/- 2.8 25.3 +/-39 3.1 +/- 2.8
BC 23.2 +/- 28.6 3.4+/-2.4 22.3 +/- 26.1 3.5 +/-2.2 5.35+/-4.17 1.65 +/-0.86
AIRL 0+/-0 0+/-0 0+/-0 0+/-0 0+/-0 0+/-0
Dagger 22.9 +/-34.0 3.0 +/- 2.7 45.3 +/- 52.8 4.6 +/- 3.6 24.4 +/- 24.2 3.2 +/- 2.7
Density based reward 46.06 +/-55 4.60+/-4.8 46.06 +/-55 4.60+/-4.8 46.06 +/-55 4.60+/-4.8
MCE 148.2 +/- 39.6 10.3 +/-1.6 148.2 +/- 39.6 10.3 +/-1.6 148.2 +/- 39.6 10.3 +/-1.6
Pref-Comp 124.1 +/-52 9.4 +/- 2.78 128.29 +/- 42.7 9.86 +/- 1.68 125.68 +/- 44.19 9.7 +/- 1.7
SQIL 25.3 +/-20 3.2 +/- 1 25.3 +/-20 3.2 +/- 1 25.3 +/-20 3.2 +/- 1

Table 16: Dataset 4 (Cold weather, Australia)

MSE (b=1) MAE (b=1) MSE (b=10) MAE (b=10) MSE (b=50) MAE (b=50)
GAIL 45.71 +/- 45.7 4.9 +/- 2.8 45.71 +/- 45.7 4.9 +/- 2.8 45.71 +/- 45.7 4.9 +/- 2.8
BC 124.4 +/- 186.46 6.94 +/- 7.05 39.7+/- 70 3.91+/-3 26.7+/-42.7 3.23 +/- 3.17
AIRL 0+/-0 0+/-0 0+/-0 0+/-0 0+/-0 0+/-0
Dagger 113.4 +/-247.5 6.0+/-7.1 93.2 +/-115.9 6.5 +/- 5.1 25.8 +/- 47.1 6.5 +/- 5.1
Density based reward 115.7 +/- 242.51 5.5 +/-7.8 115.7 +/- 242.51 5.5 +/-7.8 115.7 +/- 242.51 5.5 +/-7.8
MCE 374 +/-311.9 15.0+/-7.6 374 +/-311.9 15.0+/-7.6 374 +/-311.9 15.0+/-7.6
Pref-Comp 284 +/-254 12.9 +/- 7 335.6 +/-271 14.5 +/- 332.8 +/- 272.29 14.3 +/-6.92
SQIL 25 +/- 16 4.52+/-2 25 +/- 16 4.52+/-2 25 +/- 16 4.52+/-2

Table 17: Dataset 5 (Hot weather, Australia)
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10 CLUSTERING

With DBA-clustering, the shift of the simulated centroids toward lower cumulative regret values is
explained by the structure of our datasets: one of the five datasets contains bees with trajectories of
only 22 trials. When aggregated with 40-trial trajectories, these short sequences lower the average
cumulative regret in DBA-based clustering, which pulls the corresponding centroid downward. This
effect is expected, since DBA aligns sequences globally and is sensitive to systematic differences in
trajectory length.

Figure 25: Real bee trajectories clustered into two groups using DBA-based k-means. Each curve represents
the cumulative regret trajectory of one of the 80 bees, and the two centroid trajectories summarize the dominant
behavioural modes observed in the dataset.

Figure 26: MAYA-Wass simulated trajectories (τ = 7) clustered into two groups using the same DBA-
based k-means procedure as for the real bees. The resulting centroids closely match those obtained from
real trajectories, indicating that MAYA-Wass preserves the underlying behavioural structure captured by DBA
clustering.
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Figure 27: Bees trajectories Figure 28: MAYA-Wass

Figure 29: MAYA-KL Figure 30: MAYA-DTW

Figure 31: Centroı̈des of two clustering of 80 bees trajectories (in Fig27) and 80 MAYA-variant
(Fig28, Fig29 and Fig30) simulated trajectories (with τ = 7). Clustering are done with Euclidean
method (Clustering I).

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 32: Bees trajectories Figure 33: MAYA-Wass

Figure 34: MAYA-KL Figure 35: MAYA-DTW

Figure 36: Centroı̈des of two clustering of 80 bees trajectories (in Fig32) and 80 MAYA-variant
(Fig33, Fig34 and Fig35) simulated trajectories (with τ = 7). Clustering are done with DBA method
(Clustering II).
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(a) Cluster 0 (Euclidean) (b) Cluster 1 (Euclidean)

(c) Cluster 0 (DBA) (d) Cluster 1 (DBA)

Figure 37: Average difference between MAYA-Wass (τ = 7) predictions and real trajectories
(R(πMAYA, 1, t) − R(πbee, 1, t), z-axis) for Euclidean (top row) and DBA (bottom row) clustering, for clus-
ters 0 and 1. The red band shows ±σ (standard deviation).
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(a) Cluster 0 (Euclidean) (b) Cluster 1 (Euclidean)

(c) Cluster 0 (DBA) (d) Cluster 1 (DBA)

Figure 38: Average difference between MAYA-KL (τ = 7) predictions and real trajectories (R(πMAYA, 1, t)−
R(πbee, 1, t), z-axis) for Euclidean (top row) and DBA (bottom row) clustering. The red band corresponds to
±σ.
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11 MAYA ALGORITHM

Algorithm 1 MAYA : Multi Agent Y-maze Allocation

Require: Logged bee regret trajectory R(πbee, 1, T )
Require: Set P of N bandit policies {π1, . . . , πN}
Require: Window size τ such that t ≥ τ
Require: A similarity metric δ

1: ξ = ()Tt=1
2: Init πθ
3: for t ∈ {2, . . . , τ − 1} do
4: Observe R(πbee, 1, t− 1)
5: Observe a context information xt
6: for i = 1 to N do
7: Simulate policy agent πi(st−1|xt)
8: Compute cumulative regret R(πi, 1, t− 1)
9: end for

10: ξt = argminπ∈P δ(πbee, π, t)
11: πθ(at|st−1)← πξ(at|st−1)
12: Select At ∼ πθ(at|st−1)
13: Receive reward rt
14: Update πi ∀πi ∈ P
15: ξ[t]← ξt
16: end for
17: for t ∈ {τ, . . . , T} do
18: Observe R(πbee, τ, 1, t− 1)
19: Observe a context information xt
20: for i = 1 to N do
21: Simulate policy agent πi(st−1|xt)
22: Compute cumulative regret R(πi, τ, 1, t− 1)
23: end for
24: ξt = argminπ∈P δ(πbee, π, τ, t)
25: πθ(at|st−1)← πξ(at|st−1)
26: Select At ∼ πθ(at|st−1)
27: Receive reward rt
28: Update πi ∀πi ∈ P
29: ξ[t]← ξt
30: end for
31: return πθ
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12 MICE DATASET EXPERIMENT

Dataset and setup. We use the dataset of (Ashwood et al., 2020a), which reports trial-by-trial
changes in mice policy and decomposes those updates into a learning component and a noise com-
ponent (see Fig. 39a). Unlike their original analysis, which simulates an average trajectory across
individuals, our method (MAYA) simulates one trajectory per individual. The dataset contains 19
rats with between 1500 and 6000 trials each. To control the computational cost of DTW and to align
with our bee experiments, we reduce the number of individual at 100.

Selecting the memory horizon τ . According with Tab 18, Fig 39b shows MAE and MSE as a
function of the memory window τ . MAYA-KL clearly identifies an optimal range around τ ∈ [6, 7],
whereas MAYA-Wass suggests τ ∈ [8, 10] when balancing MAE and MSE. For consistency with
previous experiments, we set τ = 7 in all subsequent analyses.

Explanations and performance. With τ = 7, Fig. 48 and Fig. 44 provides MAYA explanations
for the rats with the lowest and highest cumulative regret (see Fig. 40). For slow learners, all MAYA
variants behave similarly (Fig. 50); for fast learners, MAYA-KL achieves the best fit, capturing
rapid policy changes better than MAYA-Wass (Fig. 49). A plausible explanation is that, under KL
similarity, MAYA acts more often from LinUCB-like behavior than with Wasserstein similarity (see
Tab19b). As in previous datasets, MAYA-DTW tends to act more like Epsilon-Greedy, likely due to
DTW’s alignment properties. Overall, all MAYA variants outperform GLM baselines (Table 19a).

side window MSE MAYA-KL MAE MAYA-KL MSE MAYA-Wass MAE MAYA-Wass MSE MAYA-DTW MAE MAYA-DTW
mean std mean std mean std mean std mean std mean std

3 5760 3894 59 24 8083 5012 72 25 5790 5683 55 29
4 3868 3493 46 25 6547 3672 64 23 5815 5770 55 30
5 3046 3307 40 24 5724 3803 59 23 5819 5788 55 29
6 2763 3090 37 23 5276 3511 57 21 5830 5758 55 29
7 2786 3161 38 23 4640 3382 53 22 5822 5747 55 29
8 2974 3197 39 23 4728 3722 53 23 5851 5777 55 29
9 3114 3424 40 24 4231 3403 50 22 5819 5740 55 29
10 3223 3378 41 25 4197 3576 49 24 5810 5701 54 29
20 4710 6689 47 33 3491 3515 43 25 5771 5725 54 29
30 5618 8543 50 38 3453 3896 41 27 5760 5724 54 29

Table 18: MSE and MAE of MAYA as a function of the window size τ for Mice Dataset.

(a) According (Ashwood et al., 2020a), on each trial,
a sinusoidal grating (with contrast values between 0
and 100%) appears on either the left or right side of
a screen. Mice must report the side of the grating by
turning a wheel (left or right) in order to receive a
water reward.

(b) Comparative study of the best window size τ by
average MSE and MAE. ⋆ symbol refers to the best
performance according to standard deviation and av-
erage reward (see Tab.18 for the full results). MSE is
displayed as ×102.

Figure 39: Left : experimental description of the Mice Dataset. Right : Comparative study of the
best window size τ for Mice Dataset.
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Figure 40: Proportion of cumulative regret for the Mice dataset, per mice

MSE MAE
Mean Std Mean Std

MAYA KL 2786 3161 38 23
MAYA-Wass 4640 3382 53 22
MAYA-DTW 5822 5777 55 29
GLM 6427 4137 63 21
GLM Contextual 6416 4133 63 21

(a)

Epsilon-Greedy Lin-UCB UCB Uniform
MAYA-KL 30%±2.5 2%±1.1 29%±1.3 36%±2.2
MAYA-W 27%±1.8 10%±1 28%±1 33%±1.5
MAYA-DTW 28%±3 0.5%±1 56%±4 15%±3

(b)

Table 19: Left : MSE and MAE comparison of MAYA (with τ = 7 ) and GLM variants. Right :
MAYA explainability for all MAYA choices (τ = 7)

MAYA-KL MAYA-Wass MAYA-DTW
ClusterAcc (Euclidean, Max L = 1400) 90% 85% 75%
ClusterAcc (DBA, Max L = 6000) 80% 75% 65%

Table 20: ClusterAcc (%) for Mice Datset)

Figure 41: MAYA-KL Figure 42: MAYA-Wass Figure 43: MAYA-DTW

Figure 44: MAYA explainability for mouse 20 (fast learner, low regret) from Mice dataset. We
report choice interpretability for MAYA-variants (τ = 7). Left: LinUCB, Top: Uniform, Right:
UCB, Bottom: EpsilonGreedy.

Figure 45: MAYA-KL Figure 46: MAYA-Wass Figure 47: MAYA-DTW

Figure 48: MAYA explainability for mouse 2 (slow learner, high regret) from Mice dataset. We
report choice interpretability for MAYA-variants (τ = 7). Left: LinUCB, Top: Uniform, Right:
UCB, Bottom: EpsilonGreedy.
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Figure 49: Mouse 20 Figure 50: Mouse 2

Figure 51: Regret modelization for mouse 20 (best) and mice 2 (worst) from Mice 2, with τ = 7

Figure 52: Mouse’ trajectories Figure 53: MAYA-KL trajectories

Figure 54: Centroides of Clustering (I) of 100 mice’ (Left) and MAYA-KL (τ = 7) (Right) trajec-
tories.

Figure 55: Cluster 0 Figure 56: Cluster 1

Figure 57: Average difference between MAYA-KL (τ = 7) predictions and real trajectories
(R(πMAYA, 1, t)− R(πmice1, t)) (z-axis) for Euclidean (I) Clustering according 0 and 1 Cluster. Red
range correspond to ±σ (standard deviation).
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13 COMPLEMENTARY INFORMATION ABOUT THE BIOLOGY INTEREST

We share with other vertebrates a basic ability for abstract number representation, the number sense
(Dehaene, 2011). As early as two days postnatally (Izard et al., 2009), this ability enables us to
evaluate numbers as concepts: three books are perceived as similar to three cups, even though
they differ completely in their visual features (i.e., sensory information). To evaluate quantity,
both numerical and sensory information can be used. For example, when visually comparing two
quantities, the larger set will often contain more items (i.e., numerosity), but may also exhibit
greater density, a larger total surface area, or a wider convex hull encompassing all elements.
Neuronal encoding of sensory information occurs early in the primary cortex, whereas numbers are
computed in higher integrative areas by what Nieder et al. identified as number neurons (Nieder,
2016).

Quantity discrimination is necessary in contexts as diverse as evaluating food patches, regulating
social attraction, or competing for resources (Nieder, 2020). From sharks to mammals, all
major vertebrate clades appear capable of discriminating between different quantities, either
spontaneously or in learning tasks (Vila Pouca et al., 2019). By carefully designing protocols that
control for sensory cues, researchers have demonstrated that several non-human species are capable
of performing quantity discrimination based on the abstract evaluation of numbers (Cantlon &
Brannon, 2006). Among them is an insect: the honeybee (Apis mellifera). Beyond discriminating
numerosities of up to eight items, these insects, with brains of fewer than one million neurons, can
also manipulate numbers, performing simple addition, subtraction, and symbolic tasks (Dacke &
Srinivasan, 2008; Gross et al., 2009; Howard et al., 2018; 2019; Giurfa et al., 2022).

Later experiments required a Y-maze: a three-armed apparatus shaped like the letter Y, commonly
used to study memory, learning, and decision-making in rodents (Kraeuter et al., 2018) (see Fig. 58).
These mazes required bees to inhibit their spatial memory (Menzel et al., 2005) (e.g., recalling that
the last reward was in the left arm) and to focus instead on the visual stimuli displayed at the end
of each arm. The balance between exploring new options and exploiting previously rewarded ones
is key to their foraging behavior and likely plays a crucial role in their learning performance within
these devices (Kembro et al., 2019; Lochner et al., 2024).

Figure 58: Y-maze for bees experiments
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14 MATHEMATICAL PROOF OF MAYA ACCORDING TO τ

Stationary case (1) : upper bound of MAYA error Consider the case of two policies π1 that
achieves the highest regret i.e. R(π1, 1, T ) = T and π0 that achieves a zero regret i.e. R(π0, 1, T ).In
this case

∆π1,t −∆π0,t ≤ 1 ∀t
as the reward is in {0, 1}. The maximal bound of R(πMAYA, 1, T ) − R(πbee, 1, T ) corresponds to
the case where R(πbee, 1, T ) is always centered between R(π1, 1, T ) and R(π0, 1, T ) (see Fig59a).
Let’s define ε∗t the agent who act the closest of the bee at t and εt the agent chosen by MAYA at t.
Then

P[εt = ε∗t ] = 0.5 ∀t
as no best agent are better from the other one. This case corresponds to an equality between the two
possible agent (with extreme regret values) and leads to the worst scenario of a stationary case when
the similarity distance d() are when define. Then the maximal cumulative gap between MAYA-regret
and Bee-regret in stationary case are :

T∑
t=1

|∆MAYA,t −∆Bee,t| ≤
1

2

T∑
t=1

|∆π1,t −∆Bee,t|+
1

2

T∑
t=1

|∆π0,t −∆Bee,t|

≤
T∑
t=1

t

2

≤
T
2 (

T
2 + 1)

2

≤ 1

8
(T (T + 2)) (1)

Stationary case (2) : upper bound of the worst policy Consider the case where πMAYA always
chose like π1 and πbee always chose like π0 (see Fig 59b). Then the similarity distance d() fails to
provide a correct measure and MAYA chose the agent with the largest regret gap relative to the bee’s
regret. Then for all t

P[εt ̸= ε∗t ] = 1.

Then the maximal cumulative gap between MAYA-regret and Bee-regret in the worst policy in
stationary case are :

T∑
t=1

|∆MAYA,t −∆Bee,t| ≤
T∑
t=1

|∆π1,t −∆π0,t|

≤ T · (T + 1)

2
(2)

The alternative case where πMAYA always chooses as π0 and πbee always chooses as π1 is equivalent.

Cyclic case : upper bound of MAYA error with no windows (τ = T ) policy Consider that after
S trials the bee moves from π1 to π0 (alternative cases are equivalent, see Fig 60a). Consider that
the distances are well defined, as in the stationary case (1). Then :

S∑
t=1

|∆MAYA,t −∆Bee,t| ≤
1

8
(S × (S + 2)) (3)

The time required for MAYA to act like π0 is 2S + 1 but at t = 2S + 1, the bee changes from π0 to
π1 and MAYA continues to act like π1 (see Fig.60a). Recursively, MAYA always act like π1 from
t = 1 until t = T . Then

P[εt = π1] = 1 ∀t
and

P[εt = ε∗t ] =
N∗(T )

T
, ∀t
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(a) Distance d(·) provide a cor-
rect measure, R(π1, 1, T ), and
R(π2, 1, T ) has the maximal distance
from R(πbee, 1, T ).

(b) Distance d(·) fails to provide a cor-
rect measure. MAYA alawys selects
actions as the agent whose behavior is
farthest from that of the bee.

Figure 59: Maximal cumulative gap between MAYA-regret and Bee-regret in stationary case ac-
cording the distance d(·) abilities to provide a correct measure

Where

N∗(T ) = qS +min(S, r),

q =

õ
T

2S

û
,

r = T − 2Sq ∈ [0, 2S).

A minimal bound of N∗ are :

N∗(T ) ≥
T

2

Then the maximal cumulative gap between MAYA-regret and Bee-regret in a cyclic case with no
windows is :

T∑
t=1

|∆MAYA,t −∆Bee,t| ≤
N∗(T )

T

1

8
(T.(T + 2)) + (1− N∗(T )

T
)
T.(T + 1)

2

≤ T

2

1

T

1

8
(T.(T + 2)) + (1− T

2

1

T
)
T.(T + 1)

2

=
T (5T + 6)

16
(4)

Cyclic case : upper bound of MAYA error with windows τ = S Assume that S are even.
Consider that after S trials, the bee moves from π1 to π0 (alternative cases are equivalent, see
Fig60b). Consider that the distance is well define like in the stationary case (1). From time t = 1
until S, MAYA act as the best agent :

S∑
t=1

|∆MAYA,t −∆Bee,t| ≤
1

8
(S × (S + 2)) (5)

and
P[εt = ε∗t ] = 1 ∀t ∈ {1, . . . , S}.

From time S + 1 until S + S
2 , MAYA acts as the worst policy (start cycle)

S+S
2∑

t=S+1

|∆MAYA,t −∆Bee,t| ≤
S+S

2∑
t=S+1

t (6)

≤ S(5S + 2)

8
(7)
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and
P[εt ̸= ε∗t ] = 1 ∀t ∈ {S + 1, . . . , S +

S

2
}.

And from t = S + S
2 + 1 until t = 2S MAYA acts with the best policy (end cycle):

2S∑
t=S+S

2 +1

|∆MAYA,t −∆Bee,t| ≤
2S∑

t=S+S
2 +1

t

2

≤ S(7S + 2)

16
(8)

and
P[εt = ε∗t ] = 1 ∀t ∈ {S +

S

2
+ 1, . . . , 2S}.

Consider a full cycle, the event εt = ε∗t appears S − S
2 times. Let’s set

q =
⌊max(0, T − S)

S

⌋
, r = max(0, T − S)− qS ∈ [0, S).

Here q is the number of full cycle S in t > S, and r is the rest of a potential unfinished tail segment
of the started cycle. Let N∗(T ) =

∑T
t=1 1εt=ε∗ with N∗(T ) ≤ T equal to

N∗(T ) = min(T, S) + q · S
2
+ max(0, r − S

2
)

If S is even and T > S then

N∗(T ) ≥
T

2
+
S

4
(9)

Proof:
With T = S + qS + r :

N∗(T )− (
T

2
+
S

4
) =

S

2
− r

2
+ max(0, r − S

2
) ≥ 0,

where the minimum are archived with r = S
2 .

P[εt = ε∗t ] =
N∗(T )

T
≥ 1

2
+

S

4T
(10)

In the cases where S is not not even

q =
⌊
T−S
S

⌋
, r = T − S − qS ∈ [0, S).

then

N∗(T ) = S +
q(S + 1)

2
+ max

(
0, r − S − 1

2

)
.

As T = S + qS + r, we have

N∗(T )−
T

2
=
S

2
+
q

2
+ max

(
0, r − S − 1

2

)
− r

2
.

and for any r ∈ [0, S),

min
r

(
max(0, r − S−1

2 )− r
2

)
= − S − 1

4
.

Then
N∗(T ) ≥

S

2
+
q

2
− S − 1

4
+
T

2
=
S + 1

4
+
q

2
+
T

2
≥ S + 1

4
+
T

2
.

N∗(T ) ≥
T

2
+
S + 1

4
≥ T

2
+
S

4
. (11)
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Which are better to the S parity case.
Then the maximal cumulative gap between MAYA-regret and Bee-regret with windows τ = S is

T∑
t=1

|∆MAYA,t −∆Bee,t| ≤
N∗(T )

T

T (T + 2)

8
+ (1− N∗(T )

T
)
T (T + 1)

2

≤ (
T

2
+
S

4
).
1

T
.
T (T + 2)

8
+ (1− (

T

2
+
S

4
).
1

T
)
T (T + 1)

2

≤ 10T 2 + 12T − 3ST − 2ST

32
(12)

(a) τ = T (b) τ = S (c) τ ∈ {S
2
+ 1; . . . , S − 1}

Figure 60: Maximal cumulative gap between MAYA regret and bee regret in a non-stationary case,
measured with respect to window τ . The purple arrow highlights the period during which MAYA
chooses actions in accordance with the agent whose behavior is most distant from that of the bee.

Cyclic case : upper bound of MAYA error with windows τ ∈ {S2 +1; . . . , S−1} . We consider
the case where S

2 + 1 ≤ τ < S (see Fig60c). Assume that S are even. From time t = 1 until S,
MAYA act as the best agent (stationary case 1) :

S∑
t=1

|∆MAYA,t −∆Bee,t| ≤
1

8
(S × (S + 2)) (13)

and
P[εt = ε∗] = 1 ∀t ∈ {1, . . . , S}.

From time S + 1 until S + τ
2 , MAYA acts as the worst policy (start cycle)

S+ τ
2∑

t=S+1

|∆MAYA,t −∆Bee,t| ≤
S+ τ

2∑
t=S+1

t

≤ τ

4
(2S + 1 +

τ

2
)

≤ τ2

8
+
Sτ

2
+
τ

4
(14)

and
P[εt ̸= ε∗] = 1 ∀t ∈ {S + 1, . . . , S +

τ

2
}.

And from t = S + τ
2 + 1 until t = 2S, MAYA acts as the best policy (end cycle) with :

2S∑
t=S+ τ

2+1

|∆MAYA,t −∆Bee,t| ≤
2S∑

t=S+ τ
2+1

t

2

≤
(3S + τ

2 + 1)(S − τ
2 )

4
(15)
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and
P[εt = ε∗t ] = 1 ∀t ∈ {S +

τ

2
+ 1, . . . , 2S}.

Consider a full cycle, the event εt = ε∗t appears S − τ
2 times. Let’s set

q = ⌊T − S
S
⌋ r = (T − S)− qS ∈ [0, S).

Let N∗(T ) =
∑T
t=1 1εt=ε∗ with N∗(T ) ≤ T equal to

N∗(T ) = S + q(S − τ

2
) + max(0, r − τ

2
).

and

P[εt = ε∗t ] =
N∗(T )

T
(16)

The maximal cumulative gap between MAYA-regret and Bee-regret with windows τ ∈ {S2 +
1; . . . , S − 1} with S parity is

T∑
t=1

|∆MAYA,t −∆Bee,t| ≤
N∗(T )

T
· T (T + 2)

8
+

(
1− N∗(T )

T

)
· T (T + 1)

2

≤
S + q(S − τ

2 ) + max(0, r − τ
2 ).

T
· T (T + 2)

8

+ (1−
S + q(S − τ

2 ) + max(0, r − τ
2 ).

T
) · T (T + 1)

2

As N∗(T ) ≥ T (1 − τ
2S ) without any condition on S parity, the maximal cumulative gap between

the MAYA-regret and the Bee-regret with windows τ ∈ {S2 + 1; . . . , S − 1} is

T∑
t=1

|∆MAYA,t −∆Bee,t| ≤
T (T + 2)

8
+

(3T + 2)T

16

τ

S
(17)

Cyclic case : upper bound of MAYA with windows τ < S
2 +1 In this case, there is no way to be

sure that the distance d() do not fails to identify the best agent. It’s equivalent to choose randomly
and the worst case corresponds to the upper bound of the worst policy. Then the maximal cumulative
gap between MAYA regret and Bee-regret with τ < S

2 + 1 in cyclic case are equivalent to Eq. 2.

Cyclic case : upper bound of MAYA with windows τ > S In this case, the time required to
change the policy is over a cycle S > 1. Then, the bee switch two times in τ and MAYA allows it
to act as the same agent. Then it is equivalent to act as a cyclic case with no windows (τ = T ) Then
the maximal cumulative gap between MAYA regret and Bee-regret with τ > S in cyclic case are
equivalent to Eq. 4.
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(a) LinUCB–ϵ-greedy (MAE)
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(b) LinUCB–UCB (MAE)
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(c) LinUCB–Worst (MAE)
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(d) LinUCB–ϵ-greedy (MSE)
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(e) LinUCB–UCB (MSE)
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Figure 61: Top–5 minimal MAE/MSE values according to the memory parameter τ under the three
similarity metrics (KL, Wasserstein, DTW) for the simulated bee trajectories with (unknown by
MAYA) switching period S. Each column corresponds to a policy-shift after S trials scenario
(LinUCB–ϵ-greedy, LinUCB–UCB, LinUCB–Worst), and each row reports either MAE or MSE
scoring. Dashed lines show the theoretical constraint S2 + 1 ≤ τ ≤ S.

15 SIMULATIONS

We extended our experimental protocol to include 42 simulated datasets, resulting in more than
100.800 synthetic trajectories. These trajectories were generated by introducing controlled policy
shifts (after S trials) between two bandit strategies that are observed in the real data and interest
biologist (e.g., LinUCB ↔ UCB and LinUCB ↔ ϵ-greedy). We additionally simulated a ’Lin-
UCB↔Worst” condition, i.e., a switch from the best-performing to the worst-performing policy, in
order to stress-test MAYA under extreme behavioural changes.

Across all these simulated scenarios (see Fig. 61), our results confirm that constraining the memory
parameter to the interval

S

2
+ 1 ≤ τ ≤ S

leads to a consistent minimization of the loss between the full cumulative-regret trajectory of the
simulated bee and the cumulative-regret trajectory produced by MAYA. The only exception arises
in the “LinUCB ↔ Worst” condition, where we can set τ < S

2 . This behaviour is expected: the
two policies are extremely different and nearly stationary (their rewards are almost always equal to
1 or 0, respectively), so a very small memory window is sufficient to discriminate their cumulative
regret sequence. Overall, these analyses validate the theoretical justification of our τ -range and
demonstrate its empirical robustness across diverse switching regimes.

Grid search over bandit parameters (αUCB, αLinUCB, ϵ We provide here a small grid search over
exploration parameters using held-out simulated policy. For ϵ-greedy we tested ϵ ∈ {0.1, 0.2, 0.3},
and for UCB and LinUCB we used αucb, αlinucb ∈ {0.5, 1, 1.5, 2, 4}.
Our results show that the value of αlinucb has only a limited effect, because rewards in our task are a
fully deterministic function of the context (the arm with the largest stimulus, encoded in the integer-
valued context vector). Increasing either ϵ or αucb effectively drives the corresponding policy toward
uniform exploration, which in turn increases ct if the behavior of the bee are none in a uniform style
and reduces the diversity of candidate policies.

For LinUCB and UCB, we set the exploration parameter to α = 1, a standard default value for binary
rewards in contextual bandit implementations (Li et al., 2010; Bouneffouf & Claeys, 2021); typical
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(a) LinUCB–ϵ-Greedy: αucb.
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(b) LinUCB–ϵ-Greedy: αlinucb.
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(c) LinUCB–ϵ-Greedy: ϵ.
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(d) LinUCB–UCB: αucb.
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(e) LinUCB–UCB: αlinucb.
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(f) LinUCB–UCB: ϵ.

Figure 62: MSE Sensitivity analysis of MAYA across three hyperparameters (αucb, αlinucb, ϵ) and
two simulated bees policies (Shift LinUCB–ϵ-Greedy and Shift LinUCB–UCB). We fix S = 12 and
τ = 7 for generate simulations.

LinUCB libraries set α = 1 by default). For e-greedy, we use ϵ = 0.2 (20% random exploration), a
conventional choice in empirical bandit studies with Bernoulli rewards (e.g., standard tutorials and
empirical evaluations typically consider ϵ = [0.1, 0.3])
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16 EXPLANATION OF THE SIMILARITY METRICS

The instantaneous regret at trial t is defined as ∆t = r(st, a
⋆
t ) − r(st, at), where a⋆t := π⋆(st) =

argmaxa∈Ar(st, a) is the optimal action under the state st. The cumulative simple regret after T
trials is the sum of instantaneous regrets R(π, 1, T ) =

∑T
t=1 ∆π,t.

At each trial t, the bee selects an action abee
t and MAYA selects aMAYA

t . We define the cost of
reproduction cost

ct := c(st | aMAYA
t ) =

®
1, if aMAYA

t ̸= abee
t ,

0, otherwise.

The sequence of ct is the binary vector (start from the first trial 1 until T ).

c = (c1, . . . , cT ),

and the cumulative reproduction-cost trajectoryCT =
∑T
t=1 ct is used in the MSE/MAE evaluation.

This quantity is closely related to classical simple regret. For any policy π,

∆π,t = r(st, a
⋆
t )− r(st, at), a⋆t = argmax

a∈A
r(st, a),

and the cumulative simple cumulative regret is

R(π, 1, T ) =

T∑
t=1

∆π,t.

Therefore, the cumulative difference in regret after t trials is bounded by the number of disagree-
ments: ∣∣R(πbee, 1, t)−R(πMAYA, 1, t)

∣∣ ≤ t∑
s=1

cs

Intuitively, the two regrets can only drift apart on trials where the bee and MAYA disagree, and each
such case can increase their regret difference by at most one unit.

We recall that as this is related to a full deterministic experiment, there is no stochasticity in the
reward function ( as it always related to the Y-maze side with the highest number of stimuli)

Then :

Ct =

t∑
i=1

ct

The evaluation metrics reported in the paper are:

MSE(CT ) , MAE(CT ) ,

according the setting (KL/Wasserstein/DTW distances) of MAYA.

Worked numeric example. Consider T = 5 trials. Suppose the bee obtains reward 1 when
selecting L and reward 0 when selecting R. Then:

t abee
t aMAYA

t ct Ct R(πbee, 1, t) R(πMAYA, 1, t)
∣∣R(πbee, 1, t)−R(πMAYA, 1, t)

∣∣
1 L L 0 0 0 0 0
2 L R 1 1 0 1 1
3 R R 0 1 1 1 0
4 L R 1 2 1 2 1
5 L L 0 2 1 2 1

Thus
c = (0, 1, 0, 1, 0), (Ct)

5
t=1 = (0, 1, 1, 2, 2),
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and
R(πbee, 1, T ) = (0, 0, 1, 1, 1), R(πMAYA, 1, T ) = (0, 1, 1, 2, 2).

The mean squared error between the cumulative reproduction cost and the bee’s ideal trajectory is:

MSE =
1

5
(02 + 12 + 12 + 22 + 22) = 1.8.

This illustrates the exact sequences used by the similarity metrics in MAYA. Since the cumulative
disagreement Ct upper-bounds the difference in cumulative regret between the bee and the model,∣∣R(πbee, 1, t)−R(πMAYA, 1, t)

∣∣ ≤ Ct,
the process Ct provides a direct and interpretable proxy for trajectories divergence. Studying its
mean squared error (MSE) and mean absolute error (MAE) between the bee and the model therefore
offers complementary insight into the quality of imitation. While trajectory-wise regret metrics
capture global differences in learning performance, the MSE and MAE of Ct quantify how tightly
the model reproduces the pattern of action choices over time. Low MSE/MAE values indicate that
the model not only matches the scale of regret but also closely follows the trial-by-trial structure of
action agreements and disagreements, providing a finer-grained measure of imitation quality.

17 DISCLOSURE OF LLM USE

Large Language Models (LLMs) were used in a limited capacity during the preparation of this paper.
Their use was restricted to (i) spelling and phrasing assistance (to support a dyslexic co-author), and
(ii) suggesting improvements to Python scripts for graph generation and visualization. No part of
the scientific content, analyses, or conclusions was produced by LLMs.

39


	Introduction
	Preliminaries
	Contribution
	Similarity evaluation
	Theoretical analysis

	Experimental evaluation
	Best window size and distance metrics
	Statistical test: variance-based residual analysis

	Comparative study of reproductive behavior
	Understanding the learning process
	Simulate and forecast the bee trajectory

	Discussion
	Appendix
	Dataset description
	MSE and MAE of MAYA according to 

	UNDERSTANDING THE LEARNING PROCESS
	MAYA explainability with =7
	MAYA explainability with =3

	Comparative methods description
	MAE comparison of methods

	Finetuning imitation learning
	Clustering 
	MAYA Algorithm
	Mice Dataset experiment
	Complementary information about the biology interest
	Mathematical proof of MAYA according to 
	Simulations
	Explanation of the similarity metrics
	Disclosure of LLM Use

