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Abstract

In this paper, we propose Topic-Aware
Variational Auto-Encoders for Controllable
Text Generation (TA-VAE). Distinct from ex-
isting VAE based approaches, we explicitly
model document topic and sequence apart: a
text variational auto-encoder (VAE) is utilized
for sequence modeling, whose posterior is re-
molded by a Householder flow to be compat-
ible with the non-isotropic allocation of texts
(with diverse topics) in latent space; a varia-
tional topic model with its prior conditioned on
well-crafted sequential posterior to take advan-
tage from acquired text sequential information.
Besides, an explicit discriminator (based on the
topic encoder) as well as a mutual information
maximization term (on topic latent code and
observed data) are additionally added to en-
hance the utterance of topic behalf. Encourag-
ing experimental results on real-world datasets
demonstrate that the proposed model not only
learns interpretable topic representations, but is
fully capable of generating high-quality para-
graphs that are grammatically reasonable and
semantically consistent.

1 Introduction

In recent years, considerable advanced network
architectures are employed to design robust and
effective language models (LMs) for text gener-
ation. These language models gain apparent im-
provement in varied generation tasks, including
machine translation (Bahdanau et al., 2014), sum-
marization (Rush et al., 2015) and question answer-
ing (Iyyer et al., 2014). However, generating texts
that fulfil expected attributions (e.g., topics, sen-
timent) remains a mountain to climb. However,
methods incorporate explicit constraints (Mei et al.,
2015; Wiseman et al., 2018; Jain et al., 2018) often
face challenges like dull syntax, semantical discon-
tinuity (Wiseman et al., 2017) and rigorous model
requirement (Garbacea and Mei, 2020). Yet gener-
ation with implicit constraints is more compatible

to produce authentic texts, and also in favor of
downstream tasks by catching hold of high-quality
linguistic representations.

Compared with other approaches to produce tex-
tual content, such as those based on generative
adversarial networks (GANSs) or plain recurrent
neural network (RNN), VAE is suitable for text
generation with implicit constraints, because its
flexible latent representation is capable of captur-
ing integral properties of input, such as style, topic,
and high-level linguistic or semantic features (Fang
et al., 2019). Nevertheless, a plain text VAE with
one monopolistic latent space is faced with latent
vacancy dilemma (Xu et al., 2020), which makes it
notoriously unsuitable for controllable text gener-
ation. By infusing side knowledge to VAE-based
LMs, techniques for generating desired sentences
are widely explored (Wang et al., 2019; Tang et al.,
2019; Rezaee and Ferraro, 2020).

However, other problems arise in practice may
limit the modeling capacity and empirical perfor-
mance of VAE-based models. KL collapse is one
of the major challenges that are widely concerned
(Bowman et al., 2015). Several approaches have
been devised to handle this issue, including opti-
mizing decoder architectures (Yang et al., 2017; Se-
meniuta et al., 2017; Li et al., 2020a), inventing aux-
iliary objectives (Zhao et al., 2017a,b; Xiao et al.,
2018; Fang et al., 2019; Dai et al., 2020), novel en-
coder training schedule (Bowman et al., 2015; Fu
et al., 2019), flexible latent code posterior (Wang
et al., 2019), etc. These methods generally share a
same goal: to impair the ability of powerful recur-
rent decoder and strengthen the expression of latent
space. The second issue associated with a VAE to
generate topic-specified texts is rooted in the as-
sumption of its variational posterior, which usually
accepts a spherical Gaussian distributions with di-
agonal co-variance matrices. Thus the true poste-
rior can only be well approximated by the possible
variational one when it is in the exact same fam-



ily (Cremer et al., 2018). To address such plight,
latent information with external help beyond only
one single continuous space was considered (Xiao
et al., 2018), but its training can not be regarded as
end-to-end. As a fixup, methods that extract both
text syntax and topic information simultaneously
were proposed (Tang et al., 2019), but they suffered
from an oversimplified representation in sequence
component for analogous samples (i.e., isotropic
Gaussian) for both hidden codes. Flexible latent
modeling had also attracted attention (Wang et al.,
2019; Dai et al., 2020), whereas it confused the text
structure knowledge and topic information, which
made the model less interpretable.

These methods (1) ignore the nature that topic-
specified sentences are not analogous thus their rep-
resentations are unlike to be fit in isotropic space;
(2) neglect that modeling diverse topic information
from scratch is harder than text sequential model-
ing using RNNSs, so external help for topic learning
benefits; (3) may confuse topic and sequence mod-
eling in a holistic continuous space, which makes
them suffer from interpretability and mode collapse
issues for controllable generation.

In this paper we address these limitations and
propose TA-VAE. As illustrated in Figure 1, our
model essentially consists of a topic modeling part
and a sequence modeling part, which equip their
own continuous latent space and are both optimized
based on VAE. In detail, TA-VAE discards the
spherical Gaussian assumption of latent sequence
component and replace its posterior with a more
flexible Gaussian distribution using Householder
flow. In order to maximize the utilization of coher-
ent sequence latent space, we also condition the
topic prior on expressive sequence posterior, which
acts like a prophet in the topic learning process
and brings about a leap forward on both language
modeling and topic concentration level. Moreover,
we estimate and maximize the mutual information
between topic representations and input data to dis-
till document topic knowledge, and also adjust the
topic encoder as a discriminator to aggregate the
topic expression.

Contributions. (1) We present TA-VAE, a novel
approach to document topic modeling and control-
lable text generation based on VAE. (2) We clearly
separate topic modeling and text generation pro-
cess, propose to condition the topic latent on flex-
ible sequence latent distribution parametrized by
Householder flow. (3) We adapt a topic discrimina-

tor and a latent mutual information term to regular-
ize topic learning, and further verify their effective-
ness in multi-tasks. (4) The overall effectiveness
is validated by consistently remarkable results on
language modeling, topic modeling, classification
and unsupervised style transfer tasks. Our model
reaches the state-of-the-art performance on text per-
plexity for better quality of output content, and
the topic latent classification accuracy for higher
interpretability of topic learning.

2 TA-VAE Methodology

In this section, we will firstly introduce variational
auto-encoder for text generation, then the proposed
model. Since TA-VAE is essentially: a topic model
for topic recognition and a conditional encoder-
decoder frame for text generation, we will start
from these two parts and then dive into their joint
training stage and model enhanced components. A
graphic illustration of the model is in the left part
of Figure 1. Observed variables are in gray, while
unseen variables are in white. Solid lines represent
the inference process, dashed lines work during
the training process. The corresponding model
structure is in the right part of Figure 1.

2.1 Text Variational Auto-Encoder

Latent variable models (LVM) such as VAE-based
models aim at minimizing the average negative log
likelihood (NLL) of data X . They achieve this goal
by updating the evidence lower bound (ELBO) of
pe(X), which consists of a reconstruction loss and
a regularization term on latent 2:

log p(X) > Eyz x) [log p(X | 2)]
— Dk (¢(z | X)|p(2)) -

Yet the existing LVM-related works mainly assume
the latent code z follows an isotropic Gaussian with
diagonal covariance matrix (Kingma and Welling,
2013; Rezende et al., 2014; Bowman et al., 2015),
which can only be well and truly gained on if the
actual latent distribution is exactly a Gaussian. This
hypothesis leaves huge defects when it comes to
modeling samples with obvious variations (e.g.,
topic-controlled sentences).

In recent years, normalizing flow (NF) (Rezende
and Mohamed, 2015) as a practical framework has
been widely employed to generative models (Dinh
et al., 2014; Ziegler and Rush, 2019; Ding and
Gimpel, 2021). By starting with a relatively sim-
ple distribution (e.g., Gaussian), it uses a series of
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Figure 1: Graphic model of (a) modeling of sequence and topic latent codes without any dependency between z;
and z as most previous works, (b) conditional assumption between topic and sequence latent codes described in
our model. (c) Model structure of TA-VAE. The overall architecture observes the Encoder-Decoder framework,
which leverages two separate models for sequence and topic modeling.

invertible functions to form the overall transforma-
tion and obtain a flexible representation of data.
Latent distributions parameterized with NF are no
longer constrained to a specific distribution family,
allowing more accurate estimation towards the data
pattern. For a VAE-based generative model, the
normalizing flow can be used to enrich the poste-
rior of it with small or even none modifications
in the architecture of the encoder and the decoder
(Tomczak and Welling, 2016).

2.2 From Texts to Topic Knowledge Learning

Bag-of-Word (BoW) is a generally recognized in-
put manner for a topic model, thus we utilize such
method for our neural topic part. We define c to
be the corpus size, and d € Z¢ as the BoW repre-
sentation of a document X = [z1, x9, ..., T,,] with
length n, which indicates that every document has ¢
elements with non-negative count. As in a standard
latent Dirichlet allocation (LDA) model, we first
assume there are 7' topics, and ideally each is rep-
resented as one dimension of the document-level
Dirichlet parameter. Although recurrent features of
texts can be caught by RNNs preferably, sometimes
topic knowledge is less faithful to be accurately
modeled. To synchronously obtain both informa-
tion from a text corpus, topic modeling component
can surely benefit from some extra helps. As a
result, we share the well-expressive sequential
posterior from the sequence part to ease the bur-
den of learning topic knowledge groundlessly for
the topic component. The generative process of
our topic part can then be accomplished via the

output probability of each word token, which can
be specified as: (1) draw zg from the sequence
posterior: zs ~ q(zs|X); (2) generate topic prior
condition on zg: p(z¢ | zs) = f.(zs); (3) draw
z¢ from its learned prior: z¢ ~ p(z¢ | zs); (4)
generate output probability of topic words from
topic decoder: [p(y1),...,p(yc)] = g(z¢). Here
f2(+) and g(+) are two functions acting on zs and
z¢ respectively, X is the original document and
Y = [y1,Y2,..-,Yc) is the reconstructed words
from topic decoder, which are non-sequential. In
detail, function f,(-) is implemented with a neural
linear layer with bias, while g(-) consists of one
linear layer with batch normalization and a soft-
max function. The recovery process of topic model
(see Appendix A.1.1 for the complete proof) can
be specified as:

p(Y) = / / p(Y, zs, zt)dzsdz. )

To preferably depict the topic distribution of docu-
ments, z; follows Dirichlet as mentioned above.

Since the neural topic component is constructed
in the fashion of VAE, the ELBO of this component
is in the following form:

L = Eq(zS\X)q(zth,zs) [log(p(Y | Zt, ZS))]

= MEqzx) [DrL(q(ze | X, zs)|[p(2t | 25))]

3)

with q(z¢ | X, zs) and p(z¢ | zs)) to be the poste-
rior and conditional prior of z; respectively.



2.3 From Latent Codes to Guided Text
Generation

Text modeling stage can be roughly split into two
phases under the framework of variational encoder-
decoder, namely text recurrent feature capture and
joint generation with obtained topic guidance. Re-
current structure of texts is sequentially corre-
lated, thus we utilize a text variational auto-encoder
(textVAE) (Bowman et al., 2015) to model the se-
quential features of textual sequences. To be spe-
cific, we assign variable z¢ from a continuous la-
tent space that follows non-isotropic Gaussian for
sequential feature modeling. When it comes to con-
ditional language generation, controlled LMs aim
at generating attribute-specified contents, which
requires applicable mix plans for topic knowledge
and text sequential information. In our model, there
are two moments for them to be fully integrated.

As mentioned above, a flexible posterior of zg
is utilized as a condition for topic latent z; update.
During training, this connection not only assists
topic model to learn with the help of basic sentence
understanding, but also pushes zs to be updated
in the direction of learned topic messages through
backpropagation. For the recurrent decoder, we
concatenate two obtained latent variables from sep-
arate components as the holistic code z = [z, z¢]
and further feed to the decoder as its direct input.
For a reconstructed document X output from the
proposed method, its probability likelihood can be
calculated as follow:

n n

p(X | z)= Hp(évz' | 1:-1,2) = Hp(l‘z' | hi, 2),

i=1 i=1
“4)
where h; is the i-th hidden state of the decoder
RNN that satisfies h; = Decoder(h;_1,z;—1, 2).
Overall, the ELBO of our customized sequence
VAE is:

Ls = Ey(z 2. x) 10g(p(X | 2t,25))]

6))
— AsDkw(g(zs [ X)llp(2s))-

Note that, the ELBOs of these two separate compo-
nents are essentially corelative and can be rewritten
in a unified manner (see Appendix A.1.2).

2.4 Householder Flow for ¢(zs | X)
Approximation

Endowing sequence posterior ¢(zs | X ) with high
flexibility, so TA-VAE can not only models topic-
specified texts but provides timely help for z; learn-

ing. We apply a linear normalizing flow: House-
holder flow (Tomczak and Welling, 2016; Zhang
et al., 2018; Wang et al., 2019) to leverage this
process. Householder flow is made up of a series
of Householder transformations. When applying
to distribution estimation, it is not only capable
of generating more flexible sequential posteriors
thanks to its nature as a flow, but significantly sim-

plifies the objective of flow-based variational meth-
OHpz,,—1|
(2B =0

for k € [1, K]. By starting from a simple pos-
terior with the full covariance matrix z,(g) from
sequence encoder, a K -layer Householder flow is
inflicted to it in order to better approximate the
true posterior that befits various topics. The loss
function of our sequence part in Eq. (5) should be
modified as:

IEq(z,g,zs(o)|X) [log(p(X | Ztvzs(K)))]
— AsDkL(g(zs(0y | X)lIp(2s(k)))-

ods. Because there stands log ‘de

(6)

Though we only use flow to directly produce se-
quence posterior, the approximation method is also
conducive to the topic latent z; due to its condi-
tional assumption on zs. Note that, distinct from
TGVAE (Wang et al., 2019), which also utilizes
Householder flow but does not divide topic and
sequence modeling and requires Gaussian mixture
model (GMM) to parameterize the hidden space,
our method is more simple and effective to employ
(check Section 3.3 for experimental results). A de-
tailed introduction about flow-based VAE models
is in Appendix A.2.

2.5 Topic-Aware Objectives
2.5.1 Discriminator

In the explicit manner, we expect the generated sen-
tences could approach to the input texts in terms
of topic representation as much as possible. We
resort to a discriminator that is similar to the one
described in Tang et al. (2019) to fulfill this goal.
Formally, we re-input the output from our gener-
ative scheme X to the topic modeling part. The
updated objective of our discriminator setting is:

LD =Epz )z |logalze | X)|. (7

However, topic discriminator in Tang et al. (2019)
transfers tokens by word embedding and inevitably
demands the same size between the hidden layers
of topic encoder and word embedding, instead, we
employs the BoW input as the embedding from
topic encoder to avoid such dilemma.



Model |APNEWS IMDB BNC PTB
LSTM LM 64.13  72.14 102.89 116.2
LSTM+LDA| 57.05 69.58 9642 -
Topic-RNN | 56.77 68.74 94.66 97.3
TDLM 53.00 63.67 8742 -
LSTM VAE | 75.89  86.16 105.10 96.0
VAE+HF 71.60  83.67 104.82 -
TCNLM 5275 6398 8798 -
TGVAE 4873  57.11 87.86 -
DVAE - - - 334
TATGM 4723  52.01 80.78 -
rGBN-RNN | 4271 5136 79.13 -
VRTM 47778  51.08 86.33 55.82
iVAE - - - 5344
APo-VAE - - - 53.02
Ours | 36.35 36.53 76.34 27.25

Table 1: Text quality analysis in terms of text perplexity
(PPL). All topic language models remain the same topic
latent size (if available) of 50.

Dataset | F=0 F=5 F=10 F=20
IMDB | 5201 37.48 36.53 35.75
PTB | 49.06 2740 27.25 2694

Table 2: PPL of our models on test set with various
number of flow layers (represented by F).

2.5.2 Mutual Information Maximization

Inspired by infoVAE (Zhao et al., 2017a), which
adds a mutual information (MI) term between la-
tent codes for direct output (z5) and the input
data (X)) to avoid vanished representations, we
encourage the model to explicitly maximize the
MI term between input data and the conditioned
topic latent code (instead of z; for direct textual
output) I(X; z¢ | z5). Maximizing such MI term
between observed data and conditioned topic la-
tent can be factored into two items related to KL
divergence Dkr,(q(z¢ | X, zs)|lp(z¢ | zs)) and
Dkr(q(z¢ | zs)||p(z¢ | zs)). A detailed proof
can be found in Appendix A.1.3. Finally, we can
rewrite the holistic ELBO of the proposed model
into an equivalent form:

Linto = Dk1.(q(2t | 2s)llp(2¢ | 25)), ®)
L=Ls+ Ly + ApLp — AinfoLinfo,
Ap and \jpf, are weights of the discriminator loss
and mutual information loss severally.

3 Experimental Results and Analysis

3.1 Datasets

We conduct our experiments on five publicly avail-
able datasets (APNEWS, IMDB, BNC, PTB and
Yelpl5). Details are listed in Appendix A.3.1.

3.2 Baselines

In our experiments, we compare against baseline
methods that mostly consider both topic and syn-
tax information into generation:

Language model (LM) based methods: LSTM
LDA is a LSTM language model with learned LDA
representations infuses into its hidden states. Topic-
RNN (Dieng et al., 2016) blends topic distribution
from an LDA component using gate mechanism,
and trains jointly with the language model. TDLM
(Lau et al., 2017) employs a convolutional network
for topic model and also concatenates it with hid-
den states of RNN. rGBN-RNN (Guo et al., 2020)
brings a gamma belief network as a topic model,
infuses learned topic information into RNN to im-
prove model capability.

VAE-based methods: TCNLM (Wang et al.,
2018) utilizes a neural topic model based on the
VAE paradigm, and a multiple experts network to
generate texts. TGVAE (Wang et al., 2019) con-
sists of the same topic model of TCNLM, but a
textVAE with Gaussian mixture prior and a House-
holder flow to approximate its posterior. DVAE
(Xiao et al., 2018) incorporates an external LDA
model to improve textVAE. TATGM (Tang et al.,
2019) applies multivariant Gaussian for both topic
and sequence latent codes, and concatenates them
for generation. VRTM (Rezaee and Ferraro, 2020)
blends RNN hidden state with a binary vector sign
to judge topic expression. iVAE (Fang et al., 2019)
parameterizes hidden space with sample method
and replace KL divergence with mutual informa-
tion. APo-VAE (Dai et al., 2020) makes the latent
space a Riemannian manifold with learnable prior
and posterior. Note that, both iVAE and APo-VAE
only equip latent codes for sequence modeling.

Though VAE-based models with mighty en-
coder/decoder (i.e., pre-trained language models
such as GPT-2 (Radford et al., 2019)) are recently
explored and show optimistic empirical results (Li
et al., 2020a; Fang et al., 2021), they are not suit-
able for being baseline candidates because they nei-
ther derive topic latent space nor use RNN-based
decoder trained from scratch for generation (fine-
tuning two large pre-trained language models based



. APNEWS IMDB BNC PTB
Metrics Methods
B-2 B-3 B4 B-2 B-3 B-4 B-2 B-3 B-4 B-2 B-3 B-4

VAE 0.564 0278  0.192 | 0597 0315 0219 | 0479 0266 0.169 | 0.5215 0.3633 0.2642
VAE+HF 0570 0279  0.195 | 0.610 0.322  0.221 0483 0270  0.169 | 0.5565 0.3616 0.2529

TGVAE(T=10) 0.584 0327 0.202 | 0.621 0.357 0223 | 0518 0.283  0.173 - - -

TGVAE(T=30) 0.627 0335 0.207 | 0.655 0369 0.243 | 0528 0.291 0.182 - -

test-BLEUT TGVAE(T=50) 0.629 0340 0210 | 0.652 0372 0239 | 0535 0290 0.188 - - -
Ours(T=10) 0.6512 0.3862 0.2358 | 0.7202 0.4505 0.2470 | 0.6997 0.5947 0.4934 | 0.6824 0.4847 0.3564
Ours(T=30) 0.6434 03776  0.2374 | 0.7037 0.4347 0.2566 | 0.6791 0.5473 0.4502 | 0.6705 0.4779 0.3438
Ours(T=50) 0.6757 0.3983 0.2432 | 0.7542 0.4753 0.2755 | 0.7681 0.6610 0.5672 | 0.6924 0.5076 0.3733
Ours w/o Dis (T=50) | 0.6596 0.4100 0.2497 | 0.7447 0.4637 0.2678 | 0.7316 0.6234 0.5292 | 0.6484 0.4587 0.3297
VAE 0.2166 0.3491 0.3071 | 0.1843 0.3394 0.3364 | 0.2273 0.3448 0.2812 | 0.2033 0.4055 0.3843
VAE+HF 0.2077 0.3439 0.3121 | 0.1689 0.3363 0.3401 | 0.2242 0.3456 0.2809 | 0.2174 0.4292 0.3692

TGVAE(T=10) 0.2524 0.3916 0.3248 | 0.1883 0.3872 0.3446 | 0.2571 0.3645 0.2874 - - -

TGVAE(T=30) 0.2904 0.4081 0.3324 | 0.2441 0.4014 0.3693 | 0.2837 0.3750 0.2998 - -

BLEU-F11 TGVAE(T=50) 0.2942 0.4124 0.3368 0.2544 0.4036 0.3651 | 0.2985 0.3751 0.3079 - - -
Ours(T=10) 0.3720 0.4088 0.3362 | 0.3193 0.4265 0.3501 | 0.2875 0.3299 0.3513 | 0.3233 0.3998 0.4027
Ours(T=30) 0.4007 04268 0.3484 | 0.3371 0.4337 0.3642 | 0.2933 0.3564 0.3845 | 0.3562 0.4350 0.4168
Ours(T=50) 0.3813  0.4281 0.3487 | 0.3272 0.4415 0.3809 | 0.3358 0.3725 0.3989 | 0.3459 0.4246 0.4241
Ours w/o Dis (T=50) | 0.3842 0.4228 0.3490 | 0.3148 0.4310 0.3709 | 0.3284 0.3653 0.3850 | 0.3287 0.4093 0.3986

Table 3: Text quality analysis in terms of test-BLEU and BLEU-F1 score. T is the topic number.

Methods APNEWS IMDB BNC PTB YelplS
LDA 0.125 0.084 0.106 0.118 0.087
TDLM 0.149 0.104 0.102 - -
Topic-RNN 0.134 0.103 0.102 - -
TCNLM 0.159 0.106 0.114 - -
TGVAE 0.157 0.105 0.113 - -
TATGM 0.171 0.121 0.115 - 0.114
Ours 0.159 0.099 0.114 0.148 0.135
Ours w/o Dis 0.155 0.092 0.109 0.130 0.123
Ours w/0 Lino 0.165 0.084 0.118 0.142 0.127

Table 4: NPMI scores for topic coherence evaluation.

on VAE requires vast amount of resources). Among
all forementioned baselines, the rGBN-RNN model
performs currently the best in terms of text quality
metrics, and the TATGM model reaches state-of-
the-art values on metrics about topic coherence.

3.3 Evaluations and Analysis
3.3.1 Text Perplexity

One important role our model plays is language
model. For any language model, quality of its gen-
erated sentences is of priority. We adopted text per-
plexity (PPL) to evaluate the model at the content
level (whether the content is relevant and grammati-
cal). The perplexity values of the baselines and our
TA-VAE across four evaluation sets are shown in
Table 1. We also present experiments demonstrat-
ing the performance of our methods with different
layer settings in Table 2. From these tables, (1) TA-
VAE outperforms other baselines across all bench-
mark datasets; (2) Householder flow in sequence
latent level improves the PPL value by over 10
absolute points on both IMDB and PTB. Besides,

with the increase of flow layers, the PPL value
gradually decrease; (3) Our models without flow
parametrization can still reach competitive PPL re-
sults on IMDB and PTB compared with baselines,
which yields convincing effectiveness of the model
design. The flow layer number was chosen to 10
for the rest experiments, more discussions are in
Appendix A.5.1.

3.3.2 BLEU

Following Wang et al. (2019); Guo et al. (2020),
we used fest-BLEU to evaluate the quality of gen-
erated sentences with a set of texts from the test
sets as reference, and self-BLEU to evaluate the
diversity of generated contents (Zhu et al., 2018).
It is well known that, there intrinsically exists a
trade-off between text quality and text diversity.
Motivated by Gu et al. (2018); Li et al. (2020b), we
proposed to employ BLEU-F1 score to evaluate the
overall metric involving text quality and diversity
simultaneously:

2 x test-BLEU X (1 — self~-BLEU )
test-BLEU + (1 — self-BLEU)
©))
For the baseline methods, three VAE-based topic
language models were selected, among which
VAE+HF and TGVAE are two systems utilizing
Householder flow like the proposed TA-VAE does.
Since BLEU-related indexes require specific word
output and comparison, we believe the discrimina-
tor can play a more important role in this process,
because it is optimized on the word-token-level, we
report model performances with or without it. For-

BLEU-F1 =




Models APNEWS IMDB BNC PTB Model zt Zs z
LDA VB(T=10) 220%  229% 230% 1.75 VAE N/A N/A 272
VRTM(T=10) 2.15% 1.56* 1.76* 1.70 LDA N/A N/A 30.44
Ours(T=10) | 1.32 146 159 1.46 DVAE N/A N/A 42.4
LDA VB(T=30) 3.39% 3.39% 3.39*% 291 TATGM 34.36 35.37 46.03
VRTM(T=30) 2.82 298 288 2.77 Ours(T=10) 43.81+0.78 46.97+0.29 47.2840.58
Ours(T=30) | 2.57 273 2.68 2.34 Ours(T=30) 45.2840.85 46.561+0.48 47.814+0.47
LDA VB(T=50) 3.90* 3.90* 3.90* 3.53 Ours(T=50) 46.25+0.59 48.09+0.38 48.75+0.42
VRTM(T=50) 3.30 340 339 334 Ours(T=50) w/o Dis 47.09-+£0.27 46.56+0.84 48.06+0.84
Ours(T=50),, 3.01 326 313 3.25 Ours(T=50) wW/0 Cinte 43.22140.45 45.69+0.63 47.12+1.13

Ours(T=50) w/o Dis |, 3.00 332 3.17 328

Ours(T=50) W/0 Linto | |  3.02 330  3.15 3.26 . e

Ours(T=50) wio HF 3735 390 331 332 Table 6: Latent classification accuracy on Yelp15. N/A

Table 5: Inferred document topic entropy. Statistics
with * are from Rezaee and Ferraro (2020).

mally, we carried out all the BLEU-related experi-
ments using benchmark tool Texygen (Zhu et al.,
2018). From the fest-BLEU and BLEU-F1 scores
in Table 3, we could see that our TA-VAE model
is superior to the baselines in terms of BLEU-F1
as well as test-BLEU in most cases, and the dis-
criminator is a strong performer in improving
text quality (higher fest-BLEU values in all circum-
stances). Moreover, values of TA-VAE on BLEU-
F1 change much smoother than others from B-2
to B-3. One possible reason is that TA-VAE pro-
duces more coherent texts (under the framework
of n-gram language model) than other baselines
do. The full statistics, discussions, experimental
settings are available in Appendix A.5.2.

3.3.3 Normalized PMI

Chang et al. (2009) argued that metrics for text
quality (e.g., PPL, BLEU) are not suitable for mea-
suring topic inference ability due to its low correla-
tion with attribute knowledge. Hence we followed
Lau et al. (2017) and tested our topic model using
normalized PMI (NPMI). Detailed setup can be
found in Appendix A.3.5. The numbers of topics
remained 50 among all baselines. The flow layer
number was 10 for all TA-VAE models. From Ta-
ble 4, we find that the discriminator gives more
improvement than Liug, does. It is because NPMI
calculation requires explicit topic word outputs,
which indicates that discriminator is more adept at.
While informative penalty is an implicit optimized
proposal, that is, Liyf helps reinforce the topic
model in the latent spaces with more efficiency
than the direct output of topic modeling part.
Though the primary goal of the proposed model
is to generate sentences with matching attributes in-
stead of topic words production (Wang et al., 2019).

means not applicable for the current method.

Our model exhibits competitive scores compared
with baselines. In result, the topic modeling com-
ponent as an independent topic model to be a side
product of our model is qualified.

3.3.4 Document-Level Topic Entropy

Topic entropy (Rezaee and Ferraro, 2020) reflects
the concentration degree of a topic model. By cal-
culating the entropy value of the topic latent rep-
resentations, we can obtain the focus intensity of
the topic modeling part with different documents.
The lower entropy is, the less topics a topic model
infers for one document, i.e., the higher concentra-
tion level for one script. From Table 5, we find that
our model performs well among different baselines.
Besides, both advanced objectives make efforts to
form the topic modeling component a more dedi-
cated one. To verify the validity of conditioning z
on expressive zg, we additionally display topic en-
tropy value without flow approximation. It is very
obvious that, flexible z¢ largely prompts topic ex-
pression of the model. All in all, these make clear
that TA-VAE is competent to provide consistent
and accurate topic analyses.

3.3.5 Latent Codes Classification

Do latent codes really distinguish different text
attributes? To answer that question, we conducted
a supervised classification task on latent variables
of various types on Yelp15. Higher the accuracy is,
more precise topic guidance TA-VAE captures.
Specific experimental setting can be found in
Appendix A.3.6. From Table 6 we can draw the
following conclusions: firstly, the proposed TA-
VAE model under different settings takes top posi-
tions regarding to the test accuracy, which demon-
strates the advantage of our model to learn attribute
knowledge from its latent spaces. Secondly, both
topic-aware objectives contribute to distinct senti-



#1 #2 #3 #4 #5 #6 #7 #8 #9
gay iraq 57-year plane tea rain deputies mark museum
marriage  soldier  19-year  crashed gop rains deputy staff art
anti syria  collision miles nomination Snow commissioners  clinton festival
ruling troops  2l-year  wildfire democrat  unemployment maricopa lead music
congress  forces tractor engine  challenger storms patrol elections 700

Table 7: Top-5 topic words from nine topics generated by 50 topic TA-VAE models on APNEWS (cherry-picked).

o0k . the waiter was rude to us , we did n’t know what we wanted to do with our food ... we were told that they

every disappointing . the only thing that was not the best thing about this place is that they do n’t care about the

enot very disappointed . the only thing that was not the best thing about this place is that they do n’t care about

the quality of the food ! ! ! we were not impressed with the service , food was good , service was horrible . we .

enot bad . the food was not bad , we had to ask for the <unk>sauce . we were told that they were not only to be

able to get our food to be delivered . we were told that they were n’t even busy , but we were not impressed with

enot bad . the food was not bad , but the <unk>was not too salty . we were told that they were n’t even able to

get our food to be delivered to the kitchen . we were told that they were n’t even busy . we had a great time to go

enot bad at all ! the food was not bad at all ! the only thing i would say was that the service was great . we

enot sure what i wanted to say about this place but the service was great . we were in the area for a few minutes

and they were very nice . they were very friendly and helpful . i would recommend this place to anyone who

ethis starbucks is my favorite breakfast spot , i have been to a few times . i have a good time and i have a good

Int. 1 Gore not busy at all
Int. 2 quality of the food ! ! ! we were not impressed with the service , food was bad , service was horrible .
Int. 3
will be back to try their <unk>
Int. 4
the service . we will be back to try this place again !
Int. 5
to this place , the service was great !
Int. 6 ere greeted by the owner and he was very friendly and helpful . we will be back for sure .
Int. 7
likes the <unk>
Int. 8 ethis place is amazing and the breakfast is delicious and the staff is very friendly . i will be back .
Int. 9

time . the coffee is very good and the staff is very friendly . i will be back .

Table 8: Text style transfer generation from negative to positive by traversing learned topic representation.

ments in sentences, but the implicit informative
penalty devotes more, which can be ascribed
to the direct devotion in latent spaces of Li,y,.
Moreover, statistics with only topic latent codes are
sometimes inferior to accuracy inferred from se-
quence latent representations. We argue that, since
labels in Yelp15 dataset are specified as sentiment
attributes, a positive sentence may only differ from
anegative sentence by several non-topic words (i.e.,
“happy” and “not happy’’), which is more correlated
with the sequential expression. Finally, different
topic numbers give different outcomes. Models
with 50 topic numbers reach the highest accuracy
in three settings. While results with only topic rep-
resentations get improved with the increase of topic
numbers, results with only sequence latent seem to
be less effected in this process. This can be natu-
rally explained as a greater information capacity of
z; with a larger topic number.

3.3.6 Sentiment Transfer & Topic Words
Generation

We expect each dimension of the latent representa-
tions derives a topic in texts. As a result, we con-
ducted sentence generation tasks via latent traversal
and interpolation to demonstrate the capability of
learned knowledge of TA-VAE. As shown in Table

8, there is a sentiment transformation from nega-
tive to positive by traversing latent codes. Adjacent
sentences share a similar context structure while
gradually converted sentiment, that is to say, by
manipulating expressive learned latent spaces, we
could obtain effective implicit guidance for context
generation while maintaining consistent structure.
More textual examples are presented in Appendix
A.4 due to the page length limit. Besides, we also
selected 9 dimensions in the topic representation,
and printed the top-5 topic words in Table 7.

4 Conclusion

We have proposed an unsupervised conditional text
generation model TA-VAE, with theoretical justifi-
cation on feasibility and remarkable empirical per-
formance. TA-VAE proves a better generalization
ability for language modeling with learned topic
guidance based on the efficient latent dependency
assumption and inference method of Householder
flow. More importantly, TA-VAE demonstrates its
superiority on validating the effectiveness of topic
enhanced modifications with promising results in
related tasks, and it can further derive meaningful
learning representations to guide text generation.
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A Appendix

A.1 Proofs

We do the mathematical proof of reconstruction
process in the topic modeling part, decomposition
of I(X; z¢ | zs) and the separation of KL diver-
gence of two modeling parts in this section.

A.1.1 Reconstruction Process in the Topic
Modeling Part

We assume X is the input text data, « is the
document-level topic parameter, Y is the output
of the topic modeling component. Then the recon-
struction of topic modeling part is:

p(X [ @) =p(Y)

| [ otz (Hpm | Zp(z zs>p<zs>) Az

= /Zt /zsp(Zt) (gp(yi,zs \ Zt)) dzsdz

— / / p(z)p(Y 2 | 22)dzsdzs
Z//p(sz&Zt)dzstt

—/ / p(X, zs, 2t | @)dzsdze,
o (10)

The relation between X and Y isY = X | «.
The second equation above can stand because of
the approximation method of the marginal prob-
ability of a word in documents: p(y; | z¢)p(2¢ |
zs)p(2zs) = p(yi | zt)p(2t, 2s) = p(Yi, 2s | 2t)-

A.1.2 From the Overall KL to Separate
Modes

We will give a more intuitive explanation of the
derivation of KL terms from separate modeling
component (sequence and topic) in TA-VAE. The
overall KL term of TA-VAE model under the
paradigm of two VAEs can be modeled as:

Dkr(q(2t, zs | X)|p(2t, 25)), (11)

where we treat two different latent representations
as one and calculate its regularization penalty using
KL divergence. However, Eq.(11) can be factorized
into two terms with regard to sequence and topic
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latents respectively, that is:

Dkr(q(2t, zs | X)[[p(2t, 2s))
= q(2zt, 25 | X)loglq(zt, 25 | X)| —

B q(z4, 25, X)  q(zs, X)
=zt 7 | X)log[ 9(zs, X)  q(X) ]
p(Zt,ZS) .

ez | X tog | HEEE)

= q(zt, zs | X){log[q(2¢ | zs, X))

q(zs | X){log[q(zs | X)] —logp(zs)}
~ (2 o | 2 X log 12t [ 28 X)
_q( SIX)q( t’ S7X)1g p(zt‘zs)
ey 8z [ X)
q( S ’ X>1 g p(zs)

= Eq(z1x) [Dxu(q(ze | X, 25)|lp(2e | 25))]
KL Term in Topic Modeling Component
Dkr(q(zs | X)llp(2s))

KL Term in Sequence Modeling Component

+

(12)
The third equation can stand because we replace
q(zt, zs | X) with ¢(zs | X) in the second term
for the third equation. At last, we discover that the
overall KL term of the system is well approximated
by two distinct KL penalties related to components
in TA-VAE model.

A.1.3 Decomposition of 1(X; z; | z5)

To avoid inferring meaningless latent representa-
tions with regard to the true data X, we add a
mutual information maximization term between
X and topic latent code z;. In practice, topic la-
tent space is conditioned on sequence latent rep-
resentation zg in TA-VAE setup. So we calculate
I(X; z | zs) instead.

I(X;2¢ | zs)

[ Lt
Zt

(2t | 2s), X)

4(ze | za)a(X) 20X

X)log

= q(z¢ | zs, X ) lo, Mdzth
/ /zt q(ze | zs)

/ /Zt q(z¢ | zs, X )[ g%] dzydX
— /X /Zt q((z¢ | zs), X) {log ZZ%}ZH dzed X

(Zt | Zsa

= Epx) [Drrlg(ze | X, 25)[|p(2e | 25))]

— Dkr(g(ze | 2s5)llp(2e | 25))-
(13)

log [p(zt, 2s)]

—log [p(2¢ | 2s)]}



The whole continued equality can stand because
we make the following assumption: we assume
the observed data X has no direct impact on
latent variable zg, which can explain the sec-
ond decomposition equation. This is also the
main reason for adding the auxiliary mutual in-
formation maximization between observed data
and latent codes for effective inference. Be-
sides, we approximate KL term in topic modeling
part (Ey(z, x) [Dke(g(zt | X, 28) [p(zt | 25))))
by the first KL penalty in the last equation from
Eq.(13), which helps upgrade the holistic model
ELBO in a uniform way. Finally the holistic ELBO
of TA-VAE model is

Linto = Dxr.(q(2¢ | 2s)lIp(2¢ | 25)),

(14)
L= ES + LT + )\D»CD - )\info»cinfo‘

A.2 Introduction of Flow-based VAE and
Householder Transformation

A.2.1 Flow-based VAE

In recent years, normalizing flow (NF) (Rezende
and Mohamed, 2015) as a practical framework to
approximate flexible posterior distributions by start-
ing with a relatively simple one (e.g., Gaussian)
has been widely employed to generative models
(Dinh et al., 2014, 2016). Formally, given an ini-
tial distribution Dy and a data point zg ~ Dy,
we aim to find the true and complex distribution
Dy of data by orienting a specific variable z g
from it. This process should be accomplished
by an invertible and intuitively complex function
f(), such that f(z9) = zk. To build the pow-
erful modeling function f(-), a series of invert-
ible transformations F' {fi}E | are stacked
into a chain and applied on zg. Methodologically,
they play the same role as f(-) with Dy, that is:
f(Z()) ZK £ fK(fQ(fl(ZO))) The last it-
erate gives a random variable zx with more flex-
ibility. For a VAE-based generative model, the
normalizing flow can be used to enrich the poste-
rior of it with small or even none modifications in
the architecture of the encoder and the decoder.

Constant invertible transformations on a data
point are equivalent to coordinate changes of the
system. As aresult, once we choose the transforma-
tion f(-) for which the Jacobian-determinant can
be computed, the training objective from Eq. (1)
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should be refactored as follow:

log p(X)
A fs

det
¢ 0zk—1

K
> Eq(zo1x) |logp (X | zK) + Zlog
k=1

|

15)
here the original latent code z is replaced by zg,
which is more competent to build a flexible poste-
rior distribution.

—Dxr (¢ (20 | X)|lp(2x)),

A.2.2 Householder Transformation

The Householder transformation (Householder,
1958) is defined as follows. For a given vector
zk—1, the reflection hyperplane can be defined by
a vector vg, € R (also known as Householder vec-
tor), which is orthogonal to the hyperplane. Then
the reflection of zx_1 to zg regard to the hyper-
plane can be described as (Tomczak and Welling,
2016):

gt

=Hp zp_1=(I-2

) Zk—1,

(16)
where Hy, = I — 2% is called the Householder
Matrix. Householder matrix is orthogonal, so the
absolute value of its Jacobian determinant is al-
ways 1. This property also makes a Householder

transformation to be volume-preserving.

A.3 Experimental Details
A.3.1 Dataset Details

We evaluated the performance of TA-VAE on five
public corpora, namely APNEWS!, IMDB (Maas
et al., 2011), BNC (Consortium et al., 2007), PTB
(Marcus et al., 1993) and Yelp152. The first three
corpora are the same datasets including the train,
validation and test splits, as used by prior works,
which are publicly available® and widely used. For
the first four datasets (APNEWS, IMDB, BNC,
PTB), we fixed the maximum sequence length to
80 and maximum vocabulary size to 40, 000. For
Yelp15, we followed the work in (Tang et al., 2019)
and set the maximum sentence length to 150 while
maximum vocabulary size to 20, 000. In the pre-
process procedure, we first used the publicly pro-
vided tokenizer and followed past works (Lau et al.,
2017; Xiao et al., 2018; Tang et al., 2019) to low-
ercase all texts, then mapped the most frequent

"https://www.ap.org/en-gb/

https://www.yelp.com/dataset

‘https://github.com/jhlau/
topically-driven-language-model
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Dataset  #SM. Voc #TM. Voc #Training Docs #Val. Docs #Test Docs #Avg. Len
APNEWS 22,760 7,498 50k 2k 2k 214
IMDB 27,764 5,829 75k 12.5k 12.5k 22.5
BNC 22,154 7,700 15k 1k 1k 22.6
PTB 9,733 4,498 42k 3.8k 3.4k 24.8
Yelp15 20,004 7,575 74k 7.4k 7.4k 75.3
Table 9: Statistical summary of five datasets.

Dataset #1 #2 #3 #4 #5 #6 #7 #8 #9
reviewers poorly debut oscar  finished toronto happened twice grade
ridiculous cinematography finest terrific  remote independent screening yesterday sub

IMDB total romance beautifully poorly aged maker makers funniest flicks

considering dialogue stage independent maker oscar camera cable fu
highly directing romance talented pre debut reviewers  viewed kung
yesterday council conservation voice award africa  international england environmental
night britain environmental yesterday pounds  pacific east cup pollution
BNC today environmental ~ pollution night ref council european voice  conservation
young meeting council daily research asia europe britain council
just title species post holder east british league  environment
cost composite mortgages gains futures nov benchmark tuesday nasdaq
fiscal counter adjustable rise traders oct points notes counter
PTB  spending volume capped inflation short priced priced october s&p
budget ounce yields orders gains mature treasury  september  activity
senate pence rise percentage selling dec point oct decline
casino avec massage beers matcha min spa cons rooms
hotels c’est pedicure buffet milk mins tub pros suite
Yelp15 strip des gel tap bagel tip shower buffet amenities
mgm en nail burgers  vanilla dirty pool rooms stayed
rooms que polish bartender cupcake 40 massage rental pool

Table 10: Top-5 topic words from nine topics generated from 50 topic TA-VAE models (cherry-picked).

and infrequent words (those in the top 0.03% of
frequency and appear less than 100 documents)
to a special token (i.e. (UNK) token). We set
the minimum frequency to 2 for all corpus except
BNC, which was 8 to avoid over-fitting (Dieng
et al., 2016) and expedite training process. The full
statistics of datasets is presented in Table 1.

A.3.2 Overall Model Settings

We used pre-trained GloVe (Pennington et al.,
2014) word vector to initialize the 200-dimensional
word embedding layer. Bag-of-Word (BoW) en-
coder was a 2-layer feedforward neural network
with 200 hidden units. The sequential encoder level
Bi-LSTM had 2 x 300 hidden states, while the de-
coder LSTM had 300. Weight decay was set as
1075 with dropout ratio 0.2 for all RNNs. The size
of zs was fixed to 32. We employed the Adam
(Kingma and Ba, 2014) optimizer using a batch of
32 training samples and learning rate of 10~ for all
the model training. All models were trained for 80
epochs except the ones on BNC (100 epochs for ad-
equate training) on a single GeForce GTX 1080Ti
GPU. We set the max clip norm of gradient to 5.0
for avoiding gradiant explosion. Moreover, to take
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full advantage of learned latent knowledge as well
as making topic modeling part to be more concen-
trated, we trained the model with Ag : Ap =1 :3
and used cyclical schedule (Fu et al., 2019) with 4
cycles through all training epochs for KL anneal-
ing. The weight of discriminator Ap and infor-
mative penalty Aipr, were 0.3 and 500 respectively
followed infoVAE (Zhao et al., 2017a). As for
Householder flow implementation, we formally fol-
lowed the experimental settings in (Tomczak and
Welling, 2016), but with the change that q(z4(0))
was a simple Gaussian with full covariance matrix.
Finally, we assigned the pre-defined parameter 7
in discriminator to 0.02 during training and 1.0 at
inference stage as described in (Tang et al., 2019).
In the generation procedure, we calculated text per-
plexity as the negative exponential value of the
negative log-likelihood (NLL) averaged over the
sum of words. We adopted models that perform the
best on validation sets and reported results on test
sets.

A.3.3 Implementation of Discriminator

In detail, we employ Gumbel-Softmax (Jang et al.,
2016) for the implementation because of the inhos-



Dataset Sampled Sentences

evirginia ’s largest school system is getting ready to raise a new tax increase .
ered cross - area residents are being hit by the winter storm .

APNEWS esan francisco police officers are investigating a suspected of marijuana and a car that killed

a man and injured two others in a rural area of san diego county .
eplant destroyed and wind gusts of winter weather .
ewounded castle county police are looking for a missing boater .

ein the late 1980 ’s , i was never able to say that the film industry made a great deal .
50 bad - the plot line was very bad , to me , i know what this is about .

IMDB ea thoroughly entertaining thriller from beginning , i have no idea what the hell .

eit made that a great cast - like this , well - acted film .
ethis movie reminds more kind of sort of science fiction of an <unk>of science fiction and
science fiction of crap .

BNC

ewhen rail comes to the <unk>world cup qualifying <unk>at the end of the season .
ecurope albania <unk>, political correspondent the government ’s largest government has
been launched.

eaward title : the structure of <unk>and social services, award type : research

grant ( project ), award ref no : <unk>/ <unk>, award holder : dr r <unk>

PTB

ethe company had been working with the state and financial services ’ plan
ethis is n’t more efficient for people who want to get out
ea spokesman said it would be able to reduce the tax rate on the market

eavoid this place ! ! ! ! i will never go back .
egreat place ! the best part of the strip is the free . the price is reasonable .

Yelp15 ea great selection of beers . they have a lot of options .

eserver was rude , rude owner was rude , rude and unhelpful . i would n’t recommend this
place to anyone looking for a good chinese food , but i would n’t go back to this place .
ereally good ! i would recommend this place to anyone looking for a quick car wash and a
great price for a quick bite and will be back !

Table 11: Generated sentences on five datasets from trained TA-VAE models (randomly sampled).

Int.

Int.

Int.

Int.

Int.

Int.

Int.

Int.
Int.

8
9

ehave been here twice , and i have never had a bad experience . i had the chicken salad with

ei have been here twice and have never been disappointed . the food was delicious , the fish
tacos were delicious . i had the shrimp tacos , and the chicken was cooked perfectly .

ei have been to this location twice and have never been disappointed . the service is very
friendly and helpful .

ei have n’t been to this location twice . the <unk>is very nice and helpful . the <unk>is located
in the middle of the strip mall .

ei have n’t been to this location twice . pros : <unk>and <unk>. the <unk>was very nice and
the service was great . i was in the area for a few days and it was n’t a bad experience .

ei have n’t been to this location twice . the <unk>was very nice and the service was great . i
was n’t sure what to expect .

ei have n’t been to this location twice . i would have given a lot of money in the future , buti ’'m
not sure why the prices are reasonable .

oi think it ’s a bit overpriced . pros : <unk>:

Table 12: Text style transfer generation from positive to slightly negative by traversing learned topic representations
(cherry-picked).
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Sentences

Type

Org. I ethe company and its executives deny the charges

Rec. 1 ethe company had been working with the state and
financial services and the government ’s plan

Int. 1 ethe company had no comment on the other hand
and the state department said

Int. 2 ethe company wants to keep the entire computer
system says the agency

Int. 3 ethese guys are a good idea he says

ethese guys is an important and financial services

he says

Rec. II eyou have a lot more efficient than he says

Org. II eour doors are open an nbc spokesman says

Int. 4

Table 13: Generated sentences by interpolating latent
codes.

pitality of discrete tokens for backpropagation. Our
choice of discriminator can be depicted as follow:

* Gain the conditional probability of at the i-th
time step p(Z; | £14,2) = [p1, D02, - Pnls

exp(log(pi)+gi)/T
i1 exp(log(ps)+g;)/T°

¢ Obtain a;

* Approximate the i-th reconstructed word by
&; = a’ W,

here g; and g; are separately drawn from a Gumbel-
Softmax distribution between 0 and 1. Parameter 7
is set in advance during both training and inference
stages. @ = {a;}"_; is the vector for token approx-
imation, while W}, denotes the BoW input from
topic encoder. This setting has technical advan-
tage compared with the discriminator in Tang et al.
(2019), which transfers tokens by word embedding
and inevitably demands the same size between the
hidden layers of topic encoder and word embed-
ding.

A.3.4 Implementation of Mutual Information
Maximazation

In practice, we followed previous explorations, and
replaced KL divergence in Dy, (q(z¢ | 2zs)||p(z¢ |
zs)) with another divergence Maximum-Mean
Discrepancy (MMD) (Gretton et al., 2012; Li
et al., 2015) that can be efficiently optimized over.
Maximum-Mean Discrepancy efficiently quantifies
the distance between two distributions using the
kernel trick. For the given distributions ¢, p, and
variables drawn from them z ~ p, 2z’ ~ ¢ we ap-
proximated MMD term with the Gaussian kernel,
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that is:

Dyvmvp (p, q) = IE:p(z)p(z') [k(=, Z,)]
+ Eqz)q(2) k(2. 27)]
— Ep2)g(2)[k(2, 27)]

where the function &(-) is a Gaussian kernel.

z, 2 17
z,2')],

A.3.5 NPMI Details

Given the top-n words of a topic, coherence is com-
puted based on the sum of pairwise NPMI scores
between topic words. We averaged topic coherence
over the top 5/10/15/20 topic words. To aggregate
topic coherence scores, we calculated the mean co-
herence over topics (Dieng et al., 2016; Lau et al.,
2017; Wang et al., 2019; Tang et al., 2019).

A.3.6 Classification Details

For any model to be tested, we first obtained the
latent representations from a well-trained TA-VAE
model with 10 flow layers of the training sets, then
randomly sampled 2,000 examples to train a 2-
layer feedforward neural network with softmax
function. As for final classification results, we
recorded the model with highest accuracy on valida-
tion set for final result. We trained the classifier five
times with every setup and reported the averaged
classification accuracy as well as its standardized
deviation.

A4 Texts & Topic Words Generation
A.4.1 Generated Topics

For topic word generation, we used the decoder
of topic modeling part to produce probability of
each token in a corpora, and sorted words with the
highest five probabilities as top-5 topic word output.
We selected nine channels from TA-VAE models
with 50 topic latent dimensions. And generated
top-5 topic words from them severally. Results are
shown in Table 10.

A.4.2 Sampled Texts

We randomly sampled sequence latent code zg
from its prior N(0,I), and generated sentences
from it on well-trained TA-VAE models on five
datasets. Textual results are presented in Table 11.

A.4.3 Style Transfer Generation and
Interpolated Sentences

For well-expressive attribute representation spaces,
we expect they contain distinct attribute and can be
easily manipulated. For sentence generation with
transferred styles, we traversed the value in one



latent dimension of latent variables from —10.0
to 10.0 by a step size of 2.0. Results in Table 12
show a transformation from positive sentiment to
relatively negative (i.e., with negative expressions
“n’tbeen ... twice”, “overpriced”). For interpolation
task. We used linear interpolation strategy, this

process can be specified as follows:

1. Given two samples x;, x; from train set.

2. Obtain
and

latent code
respectively

their
topic
(Zs(i), 2t(3))s (Zs(5) - 2t(5))-

sequential
latent code

For both types of latent variables we use lin-
ear interpolation Ziype = Ziype(s) * (1—7)+
Ziype(j) © T Where zype € {25, 2¢} and 7 in-
creases from 0 to 1 by a step size of 0.2.

We can see there is a maintenance from the original
text key phrases or structure (e.g., “the company”,
“lawmakers are consider”, inverted form) and se-
mantics (e.g., positive, business, law) as well as a
transformation between two given examples. We
can observe smooth and sensible interpolation re-
sults for almost arbitrary input pairs. This demon-
strates our TA-VAE model learns meaningful latent
spaces.

A.5 Full Statistical Results
A.5.1 Text Perplexity and KL Divergence

We present PPL values of models with varied flow
layer numbers also with or without two auxiliary
objectives respectively, as well as KL values of
both modeling components (sequence and topic)
from a top-down order in Table 15. For PPL results,
our model outperforms all baselines on different
settings. However, when flow layers are not elabo-
rately designed (i.e., flow layer that is shallow for
5 layers or too deep for 20 layers), models with the
proposed two auxiliary functions do not noticeably
outperform models without them. As for observed
KL values, firstly, models with medium-sized flow
layers are more likely to reach a lower KL value in
zt, which is equivalent to a more competent topic
modeling part. Secondly, sequential KL values are
much lower than topic KL values. On the one hand,
this can be attributed to a more powerful fitting tool
(i.e., Householder flow) for sequential posterior to
approximate the true distribution of its represen-
tation. On the other hand, as mentioned in (Tang
et al., 2019), the topic information reveals much
of the diversity of texts, which leads to higher KL
values.
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Sentences
elawmakers are considering restrictions on
harvesting a hawaii seafood <unk>
known as <unk>.
elawmakers are considering a bill that would
link at least two dozen dogs dead inside a
local airport .
elawmakers are considering a bill that would

Type

Org. 1

Rec. 1

Int. 1  link the south carolina town of marine corps
on sunday night .

ethe state ’s government will be held on a las
Int. 2 vegas strip - based weapons ring that killed in
the u.s . house , but it does n’t have a chance .
ethe city of a florida man who died after being
held by a fellow military veterans affairs in the
nation ’s largest valley .

ethe man who died in a shooting that killed

Int. 3

Int. 4 .
a tennessee valley business .

ethe man who shot a man in a downtown
Rec. 2 philadelphia house is now that he has received
a plea deal .
ea man who barricaded himself in his
Org.2 omaha home has surrendered without

incident .

Table 14: Generated sentences by interpolating latent
codes.

A.5.2 Full Results of BLEU

We used benchmark tool Texygen (Zhu et al., 2018)
to do all the BLEU-related calculations. We show
results of our model only with or without discrim-
inator, which we believe is more important for
token-level upgrade, because the mutual informa-
tion term is directly optimized in the topic latent
space zi, rather than in sequence embedding z4 or
token level like the discriminator does. From the
full results in Table 16, we can see that our model
outperforms all baselines in test-BLEU metric, yet
is only superior to other models on self~-BLEU un-
der B-2 in major cases. This phenomenon demon-
strates that the proposed model is qualified to pro-
duce texts with high quality, but has difficulty in
generating texts with high diversity. Nevertheless,
the overall metric BLEU-F1 shows the superior-
ity of TA-VAE model in a well weighted trade-off
between text quality and diversity.



Model APNEWS IMDB BNC PTB
PPL KL PPL KL PPL KL PPL KL
LSTM LM 64.13 - 72.14 - 102.89 - 116.2 -
LSTM+LDA 57.05 - 69.58 - 96.42 - - -
Topic-RNN 56.77 - 68.74 - 94.66 - 97.3 -
TDLM 53.00 - 63.67 - 87.42 - - -
LSTM VAE 71.60 0.83 86.16 2.78 105.10 0.13 79.8 9.6
TCNLM 52.75 - 63.98 - 87.98 - - -
TGVAE 48.73 3.55 57.11 5.02 87.86 4.57 - -
DVAE - - - - - - 334 233
2.90 3.87 2.54 -
TATGM 47.23 818 52.01 034 80.78 776 - ]
rGBN-RNN 42.71 - 51.36 - 79.13 - - -
VRTM 47.78 - 51.08 - 86.33 8.64 55.82 1.64
0.20 0.16 2.30 0.28
Ours(F=5) 36.48 4.86 37.48 13.9 78.11 23.00 27.40 13.74
. 0.20 0.15 2.70 0.30
Ours(F=5) w/o Dis 36.50 759 37.25 10.9 80.25 31.85 26.84 982
0.20 0.16 2.18 0.30
Ours(F=5) w/o Linfo 37.11 524 37.87 131 79.44 26.91 27.76 11.88
0.20 0.14 4.68 0.26
Ours(F=10) 36.35 53] 36.53 12.3 76.34 958 27.25 318
. 0.23 0.16 2.88 0.30
Ours(F=10) w/o Dis 36.11 575 37.26 873 78.31 17.17 27.67 10.07
0.24 0.15 2.71 0.25
Ours(F=10) w/o Ling 36.42 371 37.09 117 79.60 16.32 26.98 778
0.21 0.12 2.88 0.27
Ours(F=20) 36.08 558 35.75 318 78.45 945 26.94 13.04
_ . 0.22 0.12 2.97 0.35
Ours(F=20) w/o Dis 36.09 936 34.95 703 79.93 10.40 26.96 967
0.23 0.13 2.36 0.33
Ours(F=20) w/o Lingo 36.42 430 35.92 921 77.49 952 26.74 11.78

Table 15: Text quality analysis in terms of perplexity and KL value. Sequence and topic KL values are arranged in

the top-down order.
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