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Abstract

In this paper, we propose Topic-Aware001
Variational Auto-Encoders for Controllable002
Text Generation (TA-VAE). Distinct from ex-003
isting VAE based approaches, we explicitly004
model document topic and sequence apart: a005
text variational auto-encoder (VAE) is utilized006
for sequence modeling, whose posterior is re-007
molded by a Householder flow to be compat-008
ible with the non-isotropic allocation of texts009
(with diverse topics) in latent space; a varia-010
tional topic model with its prior conditioned on011
well-crafted sequential posterior to take advan-012
tage from acquired text sequential information.013
Besides, an explicit discriminator (based on the014
topic encoder) as well as a mutual information015
maximization term (on topic latent code and016
observed data) are additionally added to en-017
hance the utterance of topic behalf. Encourag-018
ing experimental results on real-world datasets019
demonstrate that the proposed model not only020
learns interpretable topic representations, but is021
fully capable of generating high-quality para-022
graphs that are grammatically reasonable and023
semantically consistent.024

1 Introduction025

In recent years, considerable advanced network026

architectures are employed to design robust and027

effective language models (LMs) for text gener-028

ation. These language models gain apparent im-029

provement in varied generation tasks, including030

machine translation (Bahdanau et al., 2014), sum-031

marization (Rush et al., 2015) and question answer-032

ing (Iyyer et al., 2014). However, generating texts033

that fulfil expected attributions (e.g., topics, sen-034

timent) remains a mountain to climb. However,035

methods incorporate explicit constraints (Mei et al.,036

2015; Wiseman et al., 2018; Jain et al., 2018) often037

face challenges like dull syntax, semantical discon-038

tinuity (Wiseman et al., 2017) and rigorous model039

requirement (Garbacea and Mei, 2020). Yet gener-040

ation with implicit constraints is more compatible041

to produce authentic texts, and also in favor of 042

downstream tasks by catching hold of high-quality 043

linguistic representations. 044

Compared with other approaches to produce tex- 045

tual content, such as those based on generative 046

adversarial networks (GANs) or plain recurrent 047

neural network (RNN), VAE is suitable for text 048

generation with implicit constraints, because its 049

flexible latent representation is capable of captur- 050

ing integral properties of input, such as style, topic, 051

and high-level linguistic or semantic features (Fang 052

et al., 2019). Nevertheless, a plain text VAE with 053

one monopolistic latent space is faced with latent 054

vacancy dilemma (Xu et al., 2020), which makes it 055

notoriously unsuitable for controllable text gener- 056

ation. By infusing side knowledge to VAE-based 057

LMs, techniques for generating desired sentences 058

are widely explored (Wang et al., 2019; Tang et al., 059

2019; Rezaee and Ferraro, 2020). 060

However, other problems arise in practice may 061

limit the modeling capacity and empirical perfor- 062

mance of VAE-based models. KL collapse is one 063

of the major challenges that are widely concerned 064

(Bowman et al., 2015). Several approaches have 065

been devised to handle this issue, including opti- 066

mizing decoder architectures (Yang et al., 2017; Se- 067

meniuta et al., 2017; Li et al., 2020a), inventing aux- 068

iliary objectives (Zhao et al., 2017a,b; Xiao et al., 069

2018; Fang et al., 2019; Dai et al., 2020), novel en- 070

coder training schedule (Bowman et al., 2015; Fu 071

et al., 2019), flexible latent code posterior (Wang 072

et al., 2019), etc. These methods generally share a 073

same goal: to impair the ability of powerful recur- 074

rent decoder and strengthen the expression of latent 075

space. The second issue associated with a VAE to 076

generate topic-specified texts is rooted in the as- 077

sumption of its variational posterior, which usually 078

accepts a spherical Gaussian distributions with di- 079

agonal co-variance matrices. Thus the true poste- 080

rior can only be well approximated by the possible 081

variational one when it is in the exact same fam- 082
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ily (Cremer et al., 2018). To address such plight,083

latent information with external help beyond only084

one single continuous space was considered (Xiao085

et al., 2018), but its training can not be regarded as086

end-to-end. As a fixup, methods that extract both087

text syntax and topic information simultaneously088

were proposed (Tang et al., 2019), but they suffered089

from an oversimplified representation in sequence090

component for analogous samples (i.e., isotropic091

Gaussian) for both hidden codes. Flexible latent092

modeling had also attracted attention (Wang et al.,093

2019; Dai et al., 2020), whereas it confused the text094

structure knowledge and topic information, which095

made the model less interpretable.096

These methods (1) ignore the nature that topic-097

specified sentences are not analogous thus their rep-098

resentations are unlike to be fit in isotropic space;099

(2) neglect that modeling diverse topic information100

from scratch is harder than text sequential model-101

ing using RNNs, so external help for topic learning102

benefits; (3) may confuse topic and sequence mod-103

eling in a holistic continuous space, which makes104

them suffer from interpretability and mode collapse105

issues for controllable generation.106

In this paper we address these limitations and107

propose TA-VAE. As illustrated in Figure 1, our108

model essentially consists of a topic modeling part109

and a sequence modeling part, which equip their110

own continuous latent space and are both optimized111

based on VAE. In detail, TA-VAE discards the112

spherical Gaussian assumption of latent sequence113

component and replace its posterior with a more114

flexible Gaussian distribution using Householder115

flow. In order to maximize the utilization of coher-116

ent sequence latent space, we also condition the117

topic prior on expressive sequence posterior, which118

acts like a prophet in the topic learning process119

and brings about a leap forward on both language120

modeling and topic concentration level. Moreover,121

we estimate and maximize the mutual information122

between topic representations and input data to dis-123

till document topic knowledge, and also adjust the124

topic encoder as a discriminator to aggregate the125

topic expression.126

Contributions. (1) We present TA-VAE, a novel127

approach to document topic modeling and control-128

lable text generation based on VAE. (2) We clearly129

separate topic modeling and text generation pro-130

cess, propose to condition the topic latent on flex-131

ible sequence latent distribution parametrized by132

Householder flow. (3) We adapt a topic discrimina-133

tor and a latent mutual information term to regular- 134

ize topic learning, and further verify their effective- 135

ness in multi-tasks. (4) The overall effectiveness 136

is validated by consistently remarkable results on 137

language modeling, topic modeling, classification 138

and unsupervised style transfer tasks. Our model 139

reaches the state-of-the-art performance on text per- 140

plexity for better quality of output content, and 141

the topic latent classification accuracy for higher 142

interpretability of topic learning. 143

2 TA-VAE Methodology 144

In this section, we will firstly introduce variational 145

auto-encoder for text generation, then the proposed 146

model. Since TA-VAE is essentially: a topic model 147

for topic recognition and a conditional encoder- 148

decoder frame for text generation, we will start 149

from these two parts and then dive into their joint 150

training stage and model enhanced components. A 151

graphic illustration of the model is in the left part 152

of Figure 1. Observed variables are in gray, while 153

unseen variables are in white. Solid lines represent 154

the inference process, dashed lines work during 155

the training process. The corresponding model 156

structure is in the right part of Figure 1. 157

2.1 Text Variational Auto-Encoder 158

Latent variable models (LVM) such as VAE-based 159

models aim at minimizing the average negative log 160

likelihood (NLL) of data X . They achieve this goal 161

by updating the evidence lower bound (ELBO) of 162

pθ(X), which consists of a reconstruction loss and 163

a regularization term on latent z: 164

log p(X) ≥ Eq(z|X) [log p(X | z)]
− DKL (q(z | X)∥p(z)) .

(1) 165

Yet the existing LVM-related works mainly assume 166

the latent code z follows an isotropic Gaussian with 167

diagonal covariance matrix (Kingma and Welling, 168

2013; Rezende et al., 2014; Bowman et al., 2015), 169

which can only be well and truly gained on if the 170

actual latent distribution is exactly a Gaussian. This 171

hypothesis leaves huge defects when it comes to 172

modeling samples with obvious variations (e.g., 173

topic-controlled sentences). 174

In recent years, normalizing flow (NF) (Rezende 175

and Mohamed, 2015) as a practical framework has 176

been widely employed to generative models (Dinh 177

et al., 2014; Ziegler and Rush, 2019; Ding and 178

Gimpel, 2021). By starting with a relatively sim- 179

ple distribution (e.g., Gaussian), it uses a series of 180
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Figure 1: Graphic model of (a) modeling of sequence and topic latent codes without any dependency between zt
and zs as most previous works, (b) conditional assumption between topic and sequence latent codes described in
our model. (c) Model structure of TA-VAE. The overall architecture observes the Encoder-Decoder framework,
which leverages two separate models for sequence and topic modeling.

invertible functions to form the overall transforma-181

tion and obtain a flexible representation of data.182

Latent distributions parameterized with NF are no183

longer constrained to a specific distribution family,184

allowing more accurate estimation towards the data185

pattern. For a VAE-based generative model, the186

normalizing flow can be used to enrich the poste-187

rior of it with small or even none modifications188

in the architecture of the encoder and the decoder189

(Tomczak and Welling, 2016).190

2.2 From Texts to Topic Knowledge Learning191

Bag-of-Word (BoW) is a generally recognized in-192

put manner for a topic model, thus we utilize such193

method for our neural topic part. We define c to194

be the corpus size, and d ∈ Zc
+ as the BoW repre-195

sentation of a document X = [x1, x2, ..., xn] with196

length n, which indicates that every document has c197

elements with non-negative count. As in a standard198

latent Dirichlet allocation (LDA) model, we first199

assume there are T topics, and ideally each is rep-200

resented as one dimension of the document-level201

Dirichlet parameter. Although recurrent features of202

texts can be caught by RNNs preferably, sometimes203

topic knowledge is less faithful to be accurately204

modeled. To synchronously obtain both informa-205

tion from a text corpus, topic modeling component206

can surely benefit from some extra helps. As a207

result, we share the well-expressive sequential208

posterior from the sequence part to ease the bur-209

den of learning topic knowledge groundlessly for210

the topic component. The generative process of211

our topic part can then be accomplished via the212

output probability of each word token, which can 213

be specified as: (1) draw zs from the sequence 214

posterior: zs ∼ q(zs|X); (2) generate topic prior 215

condition on zs: p(zt | zs) = fz(zs); (3) draw 216

zt from its learned prior: zt ∼ p(zt | zs); (4) 217

generate output probability of topic words from 218

topic decoder: [p(y1), ..., p(yc)] = g(zt). Here 219

fz(·) and g(·) are two functions acting on zs and 220

zt respectively, X is the original document and 221

Y = [y1, y2, ..., yc] is the reconstructed words 222

from topic decoder, which are non-sequential. In 223

detail, function fz(·) is implemented with a neural 224

linear layer with bias, while g(·) consists of one 225

linear layer with batch normalization and a soft- 226

max function. The recovery process of topic model 227

(see Appendix A.1.1 for the complete proof) can 228

be specified as: 229

p(Y ) =

∫
zt

∫
zs

p(Y , zs, zt)dzsdzt. (2) 230

To preferably depict the topic distribution of docu- 231

ments, zt follows Dirichlet as mentioned above. 232

Since the neural topic component is constructed 233

in the fashion of VAE, the ELBO of this component 234

is in the following form: 235

LT = Eq(zs|X)q(zt|X,zs) [log(p(Y | zt, zs))]
− λTEq(zs|X) [DKL(q(zt | X, zs)∥p(zt | zs))] ,

(3) 236

with q(zt | X, zs) and p(zt | zs)) to be the poste- 237

rior and conditional prior of zt respectively. 238
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2.3 From Latent Codes to Guided Text239

Generation240

Text modeling stage can be roughly split into two241

phases under the framework of variational encoder-242

decoder, namely text recurrent feature capture and243

joint generation with obtained topic guidance. Re-244

current structure of texts is sequentially corre-245

lated, thus we utilize a text variational auto-encoder246

(textVAE) (Bowman et al., 2015) to model the se-247

quential features of textual sequences. To be spe-248

cific, we assign variable zs from a continuous la-249

tent space that follows non-isotropic Gaussian for250

sequential feature modeling. When it comes to con-251

ditional language generation, controlled LMs aim252

at generating attribute-specified contents, which253

requires applicable mix plans for topic knowledge254

and text sequential information. In our model, there255

are two moments for them to be fully integrated.256

As mentioned above, a flexible posterior of zs257

is utilized as a condition for topic latent zt update.258

During training, this connection not only assists259

topic model to learn with the help of basic sentence260

understanding, but also pushes zs to be updated261

in the direction of learned topic messages through262

backpropagation. For the recurrent decoder, we263

concatenate two obtained latent variables from sep-264

arate components as the holistic code z = [zs, zt]265

and further feed to the decoder as its direct input.266

For a reconstructed document X̂ output from the267

proposed method, its probability likelihood can be268

calculated as follow:269

p(X̂ | z) =
n∏

i=1

p(xi | x1:i−1, z) =

n∏
i=1

p(xi | hi, z),

(4)270

where hi is the i-th hidden state of the decoder271

RNN that satisfies hi = Decoder(hi−1, xi−1, z).272

Overall, the ELBO of our customized sequence273

VAE is:274

LS = Eq(zt,zs|X) [log(p(X | zt, zs))]
− λSDKL(q(zs | X)∥p(zs)).

(5)275

Note that, the ELBOs of these two separate compo-276

nents are essentially corelative and can be rewritten277

in a unified manner (see Appendix A.1.2).278

2.4 Householder Flow for q(zs | X)279

Approximation280

Endowing sequence posterior q(zs | X) with high281

flexibility, so TA-VAE can not only models topic-282

specified texts but provides timely help for zt learn-283

ing. We apply a linear normalizing flow: House- 284

holder flow (Tomczak and Welling, 2016; Zhang 285

et al., 2018; Wang et al., 2019) to leverage this 286

process. Householder flow is made up of a series 287

of Householder transformations. When applying 288

to distribution estimation, it is not only capable 289

of generating more flexible sequential posteriors 290

thanks to its nature as a flow, but significantly sim- 291

plifies the objective of flow-based variational meth- 292

ods. Because there stands log
∣∣∣det ∂Hkzk−1

∂zk−1

∣∣∣ = 0 293

for k ∈ [1,K]. By starting from a simple pos- 294

terior with the full covariance matrix zs(0) from 295

sequence encoder, a K-layer Householder flow is 296

inflicted to it in order to better approximate the 297

true posterior that befits various topics. The loss 298

function of our sequence part in Eq. (5) should be 299

modified as: 300

Eq(zt,zs(0)|X)

[
log(p(X | zt, zs(K)))

]
− λSDKL(q(zs(0) | X)∥p(zs(K))).

(6) 301

Though we only use flow to directly produce se- 302

quence posterior, the approximation method is also 303

conducive to the topic latent zt due to its condi- 304

tional assumption on zs. Note that, distinct from 305

TGVAE (Wang et al., 2019), which also utilizes 306

Householder flow but does not divide topic and 307

sequence modeling and requires Gaussian mixture 308

model (GMM) to parameterize the hidden space, 309

our method is more simple and effective to employ 310

(check Section 3.3 for experimental results). A de- 311

tailed introduction about flow-based VAE models 312

is in Appendix A.2. 313

2.5 Topic-Aware Objectives 314

2.5.1 Discriminator 315

In the explicit manner, we expect the generated sen- 316

tences could approach to the input texts in terms 317

of topic representation as much as possible. We 318

resort to a discriminator that is similar to the one 319

described in Tang et al. (2019) to fulfill this goal. 320

Formally, we re-input the output from our gener- 321

ative scheme X̂ to the topic modeling part. The 322

updated objective of our discriminator setting is: 323

LD = Ep(zs)p(zt)

[
log q(zt | X̂)

]
. (7) 324

However, topic discriminator in Tang et al. (2019) 325

transfers tokens by word embedding and inevitably 326

demands the same size between the hidden layers 327

of topic encoder and word embedding, instead, we 328

employs the BoW input as the embedding from 329

topic encoder to avoid such dilemma. 330
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Model APNEWS IMDB BNC PTB
LSTM LM 64.13 72.14 102.89 116.2

LSTM+LDA 57.05 69.58 96.42 -
Topic-RNN 56.77 68.74 94.66 97.3

TDLM 53.00 63.67 87.42 -
LSTM VAE 75.89 86.16 105.10 96.0

VAE+HF 71.60 83.67 104.82 -
TCNLM 52.75 63.98 87.98 -
TGVAE 48.73 57.11 87.86 -
DVAE - - - 33.4

TATGM 47.23 52.01 80.78 -
rGBN-RNN 42.71 51.36 79.13 -

VRTM 47.78 51.08 86.33 55.82
iVAE - - - 53.44

APo-VAE - - - 53.02
Ours ↓ 36.35 36.53 76.34 27.25

Table 1: Text quality analysis in terms of text perplexity
(PPL). All topic language models remain the same topic
latent size (if available) of 50.

Dataset F=0 F=5 F=10 F=20
IMDB 52.01 37.48 36.53 35.75
PTB 49.06 27.40 27.25 26.94

Table 2: PPL of our models on test set with various
number of flow layers (represented by F).

2.5.2 Mutual Information Maximization331

Inspired by infoVAE (Zhao et al., 2017a), which332

adds a mutual information (MI) term between la-333

tent codes for direct output (zs) and the input334

data (X) to avoid vanished representations, we335

encourage the model to explicitly maximize the336

MI term between input data and the conditioned337

topic latent code (instead of zs for direct textual338

output) I(X; zt | zs). Maximizing such MI term339

between observed data and conditioned topic la-340

tent can be factored into two items related to KL341

divergence DKL(q(zt | X, zs)∥p(zt | zs)) and342

DKL(q(zt | zs)∥p(zt | zs)). A detailed proof343

can be found in Appendix A.1.3. Finally, we can344

rewrite the holistic ELBO of the proposed model345

into an equivalent form:346

Linfo = DKL(q(zt | zs)∥p(zt | zs)),
L = LS + LT + λDLD − λinfoLinfo,

(8)347

λD and λinfo are weights of the discriminator loss348

and mutual information loss severally.349

3 Experimental Results and Analysis 350

3.1 Datasets 351

We conduct our experiments on five publicly avail- 352

able datasets (APNEWS, IMDB, BNC, PTB and 353

Yelp15). Details are listed in Appendix A.3.1. 354

3.2 Baselines 355

In our experiments, we compare against baseline 356

methods that mostly consider both topic and syn- 357

tax information into generation: 358

Language model (LM) based methods: LSTM 359

LDA is a LSTM language model with learned LDA 360

representations infuses into its hidden states. Topic- 361

RNN (Dieng et al., 2016) blends topic distribution 362

from an LDA component using gate mechanism, 363

and trains jointly with the language model. TDLM 364

(Lau et al., 2017) employs a convolutional network 365

for topic model and also concatenates it with hid- 366

den states of RNN. rGBN-RNN (Guo et al., 2020) 367

brings a gamma belief network as a topic model, 368

infuses learned topic information into RNN to im- 369

prove model capability. 370

VAE-based methods: TCNLM (Wang et al., 371

2018) utilizes a neural topic model based on the 372

VAE paradigm, and a multiple experts network to 373

generate texts. TGVAE (Wang et al., 2019) con- 374

sists of the same topic model of TCNLM, but a 375

textVAE with Gaussian mixture prior and a House- 376

holder flow to approximate its posterior. DVAE 377

(Xiao et al., 2018) incorporates an external LDA 378

model to improve textVAE. TATGM (Tang et al., 379

2019) applies multivariant Gaussian for both topic 380

and sequence latent codes, and concatenates them 381

for generation. VRTM (Rezaee and Ferraro, 2020) 382

blends RNN hidden state with a binary vector sign 383

to judge topic expression. iVAE (Fang et al., 2019) 384

parameterizes hidden space with sample method 385

and replace KL divergence with mutual informa- 386

tion. APo-VAE (Dai et al., 2020) makes the latent 387

space a Riemannian manifold with learnable prior 388

and posterior. Note that, both iVAE and APo-VAE 389

only equip latent codes for sequence modeling. 390

Though VAE-based models with mighty en- 391

coder/decoder (i.e., pre-trained language models 392

such as GPT-2 (Radford et al., 2019)) are recently 393

explored and show optimistic empirical results (Li 394

et al., 2020a; Fang et al., 2021), they are not suit- 395

able for being baseline candidates because they nei- 396

ther derive topic latent space nor use RNN-based 397

decoder trained from scratch for generation (fine- 398

tuning two large pre-trained language models based 399
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APNEWS IMDB BNC PTBMetrics Methods
B-2 B-3 B-4 B-2 B-3 B-4 B-2 B-3 B-4 B-2 B-3 B-4

VAE 0.564 0.278 0.192 0.597 0.315 0.219 0.479 0.266 0.169 0.5215 0.3633 0.2642
VAE+HF 0.570 0.279 0.195 0.610 0.322 0.221 0.483 0.270 0.169 0.5565 0.3616 0.2529

TGVAE(T=10) 0.584 0.327 0.202 0.621 0.357 0.223 0.518 0.283 0.173 - - -
TGVAE(T=30) 0.627 0.335 0.207 0.655 0.369 0.243 0.528 0.291 0.182 - - -
TGVAE(T=50) 0.629 0.340 0.210 0.652 0.372 0.239 0.535 0.290 0.188 - - -

Ours(T=10) 0.6512 0.3862 0.2358 0.7202 0.4505 0.2470 0.6997 0.5947 0.4934 0.6824 0.4847 0.3564
Ours(T=30) 0.6434 0.3776 0.2374 0.7037 0.4347 0.2566 0.6791 0.5473 0.4502 0.6705 0.4779 0.3438
Ours(T=50) 0.6757 0.3983 0.2432 0.7542 0.4753 0.2755 0.7681 0.6610 0.5672 0.6924 0.5076 0.3733

test-BLEU↑

Ours w/o Dis (T=50) 0.6596 0.4100 0.2497 0.7447 0.4637 0.2678 0.7316 0.6234 0.5292 0.6484 0.4587 0.3297

VAE 0.2166 0.3491 0.3071 0.1843 0.3394 0.3364 0.2273 0.3448 0.2812 0.2033 0.4055 0.3843
VAE+HF 0.2077 0.3439 0.3121 0.1689 0.3363 0.3401 0.2242 0.3456 0.2809 0.2174 0.4292 0.3692

TGVAE(T=10) 0.2524 0.3916 0.3248 0.1883 0.3872 0.3446 0.2571 0.3645 0.2874 - - -
TGVAE(T=30) 0.2904 0.4081 0.3324 0.2441 0.4014 0.3693 0.2837 0.3750 0.2998 - - -
TGVAE(T=50) 0.2942 0.4124 0.3368 0.2544 0.4036 0.3651 0.2985 0.3751 0.3079 - - -

Ours(T=10) 0.3720 0.4088 0.3362 0.3193 0.4265 0.3501 0.2875 0.3299 0.3513 0.3233 0.3998 0.4027
Ours(T=30) 0.4007 0.4268 0.3484 0.3371 0.4337 0.3642 0.2933 0.3564 0.3845 0.3562 0.4350 0.4168
Ours(T=50) 0.3813 0.4281 0.3487 0.3272 0.4415 0.3809 0.3358 0.3725 0.3989 0.3459 0.4246 0.4241

BLEU-F1↑

Ours w/o Dis (T=50) 0.3842 0.4228 0.3490 0.3148 0.4310 0.3709 0.3284 0.3653 0.3850 0.3287 0.4093 0.3986

Table 3: Text quality analysis in terms of test-BLEU and BLEU-F1 score. T is the topic number.

Methods APNEWS IMDB BNC PTB Yelp15
LDA 0.125 0.084 0.106 0.118 0.087

TDLM 0.149 0.104 0.102 - -
Topic-RNN 0.134 0.103 0.102 - -

TCNLM 0.159 0.106 0.114 - -
TGVAE 0.157 0.105 0.113 - -
TATGM 0.171 0.121 0.115 - 0.114

Ours 0.159 0.099 0.114 0.148 0.135
Ours w/o Dis 0.155 0.092 0.109 0.130 0.123
Ours w/o Linfo 0.165 0.084 0.118 0.142 0.127

Table 4: NPMI scores for topic coherence evaluation.

on VAE requires vast amount of resources). Among400

all forementioned baselines, the rGBN-RNN model401

performs currently the best in terms of text quality402

metrics, and the TATGM model reaches state-of-403

the-art values on metrics about topic coherence.404

3.3 Evaluations and Analysis405

3.3.1 Text Perplexity406

One important role our model plays is language407

model. For any language model, quality of its gen-408

erated sentences is of priority. We adopted text per-409

plexity (PPL) to evaluate the model at the content410

level (whether the content is relevant and grammati-411

cal). The perplexity values of the baselines and our412

TA-VAE across four evaluation sets are shown in413

Table 1. We also present experiments demonstrat-414

ing the performance of our methods with different415

layer settings in Table 2. From these tables, (1) TA-416

VAE outperforms other baselines across all bench-417

mark datasets; (2) Householder flow in sequence418

latent level improves the PPL value by over 10419

absolute points on both IMDB and PTB. Besides,420

with the increase of flow layers, the PPL value 421

gradually decrease; (3) Our models without flow 422

parametrization can still reach competitive PPL re- 423

sults on IMDB and PTB compared with baselines, 424

which yields convincing effectiveness of the model 425

design. The flow layer number was chosen to 10 426

for the rest experiments, more discussions are in 427

Appendix A.5.1. 428

3.3.2 BLEU 429

Following Wang et al. (2019); Guo et al. (2020), 430

we used test-BLEU to evaluate the quality of gen- 431

erated sentences with a set of texts from the test 432

sets as reference, and self -BLEU to evaluate the 433

diversity of generated contents (Zhu et al., 2018). 434

It is well known that, there intrinsically exists a 435

trade-off between text quality and text diversity. 436

Motivated by Gu et al. (2018); Li et al. (2020b), we 437

proposed to employ BLEU-F1 score to evaluate the 438

overall metric involving text quality and diversity 439

simultaneously: 440

BLEU-F1 =
2× test-BLEU × (1− self-BLEU )

test-BLEU + (1− self-BLEU)
.

(9) 441

For the baseline methods, three VAE-based topic 442

language models were selected, among which 443

VAE+HF and TGVAE are two systems utilizing 444

Householder flow like the proposed TA-VAE does. 445

Since BLEU-related indexes require specific word 446

output and comparison, we believe the discrimina- 447

tor can play a more important role in this process, 448

because it is optimized on the word-token-level, we 449

report model performances with or without it. For- 450
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Models APNEWS IMDB BNC PTB
LDA VB(T=10) 2.29* 2.29* 2.30* 1.75
VRTM(T=10) 2.15* 1.56* 1.76* 1.70
Ours(T=10) ↓ 1.32 1.46 1.59 1.46

LDA VB(T=30) 3.39* 3.39* 3.39* 2.91
VRTM(T=30) 2.82 2.98 2.88 2.77
Ours(T=30) ↓ 2.57 2.73 2.68 2.84

LDA VB(T=50) 3.90* 3.90* 3.90* 3.53
VRTM(T=50) 3.30 3.40 3.39 3.34
Ours(T=50)↓ 3.01 3.26 3.13 3.25

Ours(T=50) w/o Dis ↓ 3.00 3.32 3.17 3.28
Ours(T=50) w/o Linfo ↓ 3.02 3.30 3.15 3.26

Ours(T=50) w/o HF 3.25 3.40 3.31 3.32

Table 5: Inferred document topic entropy. Statistics
with * are from Rezaee and Ferraro (2020).

mally, we carried out all the BLEU-related experi-451

ments using benchmark tool Texygen (Zhu et al.,452

2018). From the test-BLEU and BLEU-F1 scores453

in Table 3, we could see that our TA-VAE model454

is superior to the baselines in terms of BLEU-F1455

as well as test-BLEU in most cases, and the dis-456

criminator is a strong performer in improving457

text quality (higher test-BLEU values in all circum-458

stances). Moreover, values of TA-VAE on BLEU-459

F1 change much smoother than others from B-2460

to B-3. One possible reason is that TA-VAE pro-461

duces more coherent texts (under the framework462

of n-gram language model) than other baselines463

do. The full statistics, discussions, experimental464

settings are available in Appendix A.5.2.465

3.3.3 Normalized PMI466

Chang et al. (2009) argued that metrics for text467

quality (e.g., PPL, BLEU) are not suitable for mea-468

suring topic inference ability due to its low correla-469

tion with attribute knowledge. Hence we followed470

Lau et al. (2017) and tested our topic model using471

normalized PMI (NPMI). Detailed setup can be472

found in Appendix A.3.5. The numbers of topics473

remained 50 among all baselines. The flow layer474

number was 10 for all TA-VAE models. From Ta-475

ble 4, we find that the discriminator gives more476

improvement than Linfo does. It is because NPMI477

calculation requires explicit topic word outputs,478

which indicates that discriminator is more adept at.479

While informative penalty is an implicit optimized480

proposal, that is, Linfo helps reinforce the topic481

model in the latent spaces with more efficiency482

than the direct output of topic modeling part.483

Though the primary goal of the proposed model484

is to generate sentences with matching attributes in-485

stead of topic words production (Wang et al., 2019).486

Model zt zs z

VAE N/A N/A 27.2
LDA N/A N/A 30.44

DVAE N/A N/A 42.4
TATGM 34.36 35.37 46.03

Ours(T=10) 43.81±0.78 46.97±0.29 47.28±0.58
Ours(T=30) 45.28±0.85 46.56±0.48 47.81±0.47
Ours(T=50) 46.25±0.59 48.09±0.38 48.75±0.42

Ours(T=50) w/o Dis 47.09±0.27 46.56±0.84 48.06±0.84
Ours(T=50) w/o Linfo 43.22±0.45 45.69±0.63 47.12±1.13

Table 6: Latent classification accuracy on Yelp15. N/A
means not applicable for the current method.

Our model exhibits competitive scores compared 487

with baselines. In result, the topic modeling com- 488

ponent as an independent topic model to be a side 489

product of our model is qualified. 490

3.3.4 Document-Level Topic Entropy 491

Topic entropy (Rezaee and Ferraro, 2020) reflects 492

the concentration degree of a topic model. By cal- 493

culating the entropy value of the topic latent rep- 494

resentations, we can obtain the focus intensity of 495

the topic modeling part with different documents. 496

The lower entropy is, the less topics a topic model 497

infers for one document, i.e., the higher concentra- 498

tion level for one script. From Table 5, we find that 499

our model performs well among different baselines. 500

Besides, both advanced objectives make efforts to 501

form the topic modeling component a more dedi- 502

cated one. To verify the validity of conditioning zt 503

on expressive zs, we additionally display topic en- 504

tropy value without flow approximation. It is very 505

obvious that, flexible zs largely prompts topic ex- 506

pression of the model. All in all, these make clear 507

that TA-VAE is competent to provide consistent 508

and accurate topic analyses. 509

3.3.5 Latent Codes Classification 510

Do latent codes really distinguish different text 511

attributes? To answer that question, we conducted 512

a supervised classification task on latent variables 513

of various types on Yelp15. Higher the accuracy is, 514

more precise topic guidance TA-VAE captures. 515

Specific experimental setting can be found in 516

Appendix A.3.6. From Table 6 we can draw the 517

following conclusions: firstly, the proposed TA- 518

VAE model under different settings takes top posi- 519

tions regarding to the test accuracy, which demon- 520

strates the advantage of our model to learn attribute 521

knowledge from its latent spaces. Secondly, both 522

topic-aware objectives contribute to distinct senti- 523
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#1 #2 #3 #4 #5 #6 #7 #8 #9
gay iraq 57-year plane tea rain deputies mark museum

marriage soldier 19-year crashed gop rains deputy staff art
anti syria collision miles nomination snow commissioners clinton festival

ruling troops 21-year wildfire democrat unemployment maricopa lead music
congress forces tractor engine challenger storms patrol elections zoo

Table 7: Top-5 topic words from nine topics generated by 50 topic TA-VAE models on APNEWS (cherry-picked).

Int. 1 •ok . the waiter was rude to us , we did n’t know what we wanted to do with our food ... we were told that they
were not busy at all

Int. 2 •very disappointing . the only thing that was not the best thing about this place is that they do n’t care about the
quality of the food ! ! ! we were not impressed with the service , food was bad , service was horrible .

Int. 3
•not very disappointed . the only thing that was not the best thing about this place is that they do n’t care about
the quality of the food ! ! ! we were not impressed with the service , food was good , service was horrible . we
will be back to try their <unk>

.

Int. 4
•not bad . the food was not bad , we had to ask for the <unk>sauce . we were told that they were not only to be
able to get our food to be delivered . we were told that they were n’t even busy , but we were not impressed with
the service . we will be back to try this place again !

Int. 5
•not bad . the food was not bad , but the <unk>was not too salty . we were told that they were n’t even able to
get our food to be delivered to the kitchen . we were told that they were n’t even busy . we had a great time to go
to this place , the service was great !

Int. 6 •not bad at all ! the food was not bad at all ! the only thing i would say was that the service was great . we
were greeted by the owner and he was very friendly and helpful . we will be back for sure .

Int. 7
•not sure what i wanted to say about this place but the service was great . we were in the area for a few minutes
and they were very nice . they were very friendly and helpful . i would recommend this place to anyone who
likes the <unk>

.

Int. 8 •this place is amazing and the breakfast is delicious and the staff is very friendly . i will be back .
Int. 9 •this starbucks is my favorite breakfast spot , i have been to a few times . i have a good time and i have a good

time . the coffee is very good and the staff is very friendly . i will be back .

Table 8: Text style transfer generation from negative to positive by traversing learned topic representation.

ments in sentences, but the implicit informative524

penalty devotes more, which can be ascribed525

to the direct devotion in latent spaces of Linfo.526

Moreover, statistics with only topic latent codes are527

sometimes inferior to accuracy inferred from se-528

quence latent representations. We argue that, since529

labels in Yelp15 dataset are specified as sentiment530

attributes, a positive sentence may only differ from531

a negative sentence by several non-topic words (i.e.,532

“happy” and “not happy”), which is more correlated533

with the sequential expression. Finally, different534

topic numbers give different outcomes. Models535

with 50 topic numbers reach the highest accuracy536

in three settings. While results with only topic rep-537

resentations get improved with the increase of topic538

numbers, results with only sequence latent seem to539

be less effected in this process. This can be natu-540

rally explained as a greater information capacity of541

zt with a larger topic number.542

3.3.6 Sentiment Transfer & Topic Words543

Generation544

We expect each dimension of the latent representa-545

tions derives a topic in texts. As a result, we con-546

ducted sentence generation tasks via latent traversal547

and interpolation to demonstrate the capability of548

learned knowledge of TA-VAE. As shown in Table549

8, there is a sentiment transformation from nega- 550

tive to positive by traversing latent codes. Adjacent 551

sentences share a similar context structure while 552

gradually converted sentiment, that is to say, by 553

manipulating expressive learned latent spaces, we 554

could obtain effective implicit guidance for context 555

generation while maintaining consistent structure. 556

More textual examples are presented in Appendix 557

A.4 due to the page length limit. Besides, we also 558

selected 9 dimensions in the topic representation, 559

and printed the top-5 topic words in Table 7. 560

4 Conclusion 561

We have proposed an unsupervised conditional text 562

generation model TA-VAE, with theoretical justifi- 563

cation on feasibility and remarkable empirical per- 564

formance. TA-VAE proves a better generalization 565

ability for language modeling with learned topic 566

guidance based on the efficient latent dependency 567

assumption and inference method of Householder 568

flow. More importantly, TA-VAE demonstrates its 569

superiority on validating the effectiveness of topic 570

enhanced modifications with promising results in 571

related tasks, and it can further derive meaningful 572

learning representations to guide text generation. 573
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A Appendix788

A.1 Proofs789

We do the mathematical proof of reconstruction790

process in the topic modeling part, decomposition791

of I(X; zt | zs) and the separation of KL diver-792

gence of two modeling parts in this section.793

A.1.1 Reconstruction Process in the Topic794

Modeling Part795

We assume X is the input text data, α is the796

document-level topic parameter, Y is the output797

of the topic modeling component. Then the recon-798

struction of topic modeling part is:799

p(X | α) = p(Y ) =∫
zt

∫
zs

p(zt)

(
m∏
i=1

p(yi | zt)p(zt | zs)p(zs)

)
dzsdzt

=

∫
zt

∫
zs

p(zt)

(
m∏
i=1

p(yi, zs | zt)

)
dzsdzt

=

∫
zt

∫
zs

p(zt)p(Y , zs | zt)dzsdzt

=

∫
zt

∫
zs

p(Y , zs, zt)dzsdzt

=

∫
zt

∫
zs

p(X, zs, zt | α)dzsdzt,

(10)800

The relation between X and Y is Y = X | α.801

The second equation above can stand because of802

the approximation method of the marginal prob-803

ability of a word in documents: p(yi | zt)p(zt |804

zs)p(zs) = p(yi | zt)p(zt, zs) = p(yi, zs | zt).805

A.1.2 From the Overall KL to Separate806

Modes807

We will give a more intuitive explanation of the808

derivation of KL terms from separate modeling809

component (sequence and topic) in TA-VAE. The810

overall KL term of TA-VAE model under the811

paradigm of two VAEs can be modeled as:812

DKL(q(zt, zs | X)∥p(zt, zs)), (11)813

where we treat two different latent representations814

as one and calculate its regularization penalty using815

KL divergence. However, Eq.(11) can be factorized816

into two terms with regard to sequence and topic817

latents respectively, that is: 818

DKL(q(zt, zs | X)∥p(zt, zs))
= q(zt, zs | X) log [q(zt, zs | X)]− log [p(zt, zs)]

= q(zt, zs | X) log

[
q(zt, zs,X)

q(zs,X)
· q(zs,X)

q(X)

]
− q(zt, zs | X) log

[
p(zt, zs)

p(zt)
· p(zt)

]
= q(zt, zs | X){log [q(zt | zs,X)]− log [p(zt | zs)]}
+ q(zs | X){log [q(zs | X)]− log p(zs)}

= q(zs | X)q(zt | zs,X) log
q(zt | zs,X)

p(zt | zs)

+ q(zs | X) log
q(zs | X)

p(zs)

= Eq(zt|X) [DKL(q(zt | X, zs)∥p(zt | zs))]︸ ︷︷ ︸
KL Term in Topic Modeling Component

+ DKL(q(zs | X)∥p(zs))︸ ︷︷ ︸
KL Term in Sequence Modeling Component

.

(12) 819

The third equation can stand because we replace 820

q(zt, zs | X) with q(zs | X) in the second term 821

for the third equation. At last, we discover that the 822

overall KL term of the system is well approximated 823

by two distinct KL penalties related to components 824

in TA-VAE model. 825

A.1.3 Decomposition of I(X; zt | zs) 826

To avoid inferring meaningless latent representa- 827

tions with regard to the true data X , we add a 828

mutual information maximization term between 829

X and topic latent code zt. In practice, topic la- 830

tent space is conditioned on sequence latent rep- 831

resentation zs in TA-VAE setup. So we calculate 832

I(X; zt | zs) instead. 833

I(X;zt | zs)

=

∫
X

∫
zt

q((zt | zs),X) log
q((zt | zs),X)

q(zt | zs)q(X)
dztdX

=

∫
X

∫
zt

q(zt | zs,X)p(X) log
q(zt | zs,X)

q(zt | zs)
dztdX

=

∫
X

∫
zt

q(zt | zs,X)p(X)

[
log

q(zt | zs,X)

p(zt | zs)

]
dztdX

−
∫
X

∫
zt

q((zt | zs),X)

[
log

q(zt | zs)

p(zt | zs)

]
dztdX

= Ep(X)

[∫
zt

q(zt | zs,X)

[
log

q(zt | zs,X)

p(zt | zs)

]
dzt

]
−
∫
zt

q(zt | zs)

[
log

q(zt | zs)

p(zt | zs)

]
dzt

= Ep(X) [DKL(q(zt | X,zs)∥p(zt | zs))]

− DKL(q(zt | zs)∥p(zt | zs)).
(13) 834
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The whole continued equality can stand because835

we make the following assumption: we assume836

the observed data X has no direct impact on837

latent variable zs, which can explain the sec-838

ond decomposition equation. This is also the839

main reason for adding the auxiliary mutual in-840

formation maximization between observed data841

and latent codes for effective inference. Be-842

sides, we approximate KL term in topic modeling843

part (Eq(zt|X) [DKL(q(zt | X, zs)∥p(zt | zs))])844

by the first KL penalty in the last equation from845

Eq.(13), which helps upgrade the holistic model846

ELBO in a uniform way. Finally the holistic ELBO847

of TA-VAE model is848

Linfo = DKL(q(zt | zs)∥p(zt | zs)),
L = LS + LT + λDLD − λinfoLinfo.

(14)849

850

A.2 Introduction of Flow-based VAE and851

Householder Transformation852

A.2.1 Flow-based VAE853

In recent years, normalizing flow (NF) (Rezende854

and Mohamed, 2015) as a practical framework to855

approximate flexible posterior distributions by start-856

ing with a relatively simple one (e.g., Gaussian)857

has been widely employed to generative models858

(Dinh et al., 2014, 2016). Formally, given an ini-859

tial distribution D0 and a data point z0 ∼ D0,860

we aim to find the true and complex distribution861

DK of data by orienting a specific variable zK862

from it. This process should be accomplished863

by an invertible and intuitively complex function864

f(·), such that f(z0) = zK . To build the pow-865

erful modeling function f(·), a series of invert-866

ible transformations F = {fi}Ki=1 are stacked867

into a chain and applied on z0. Methodologically,868

they play the same role as f(·) with D0, that is:869

f(z0) = zK ≜ fK(...f2(f1(z0))). The last it-870

erate gives a random variable zK with more flex-871

ibility. For a VAE-based generative model, the872

normalizing flow can be used to enrich the poste-873

rior of it with small or even none modifications in874

the architecture of the encoder and the decoder.875

Constant invertible transformations on a data876

point are equivalent to coordinate changes of the877

system. As a result, once we choose the transforma-878

tion f(·) for which the Jacobian-determinant can879

be computed, the training objective from Eq. (1)880

should be refactored as follow: 881

log p(X)

≥ Eq(z0|X)

[
log p (X | zK) +

K∑
k=1

log

∣∣∣∣det ∂fk
∂zk−1

∣∣∣∣
]

− DKL (q (z0 | X) ∥p (zk)) ,
(15) 882

here the original latent code z is replaced by zK , 883

which is more competent to build a flexible poste- 884

rior distribution. 885

A.2.2 Householder Transformation 886

The Householder transformation (Householder, 887

1958) is defined as follows. For a given vector 888

zk−1, the reflection hyperplane can be defined by 889

a vector vk ∈ Rn (also known as Householder vec- 890

tor), which is orthogonal to the hyperplane. Then 891

the reflection of zk−1 to zk regard to the hyper- 892

plane can be described as (Tomczak and Welling, 893

2016): 894

zk = Hk · zk−1 = (I − 2
vkvk

T

∥vk∥2
) · zk−1,

(16) 895

where Hk = I−2vkvk
T

∥vk∥2 is called the Householder 896

Matrix. Householder matrix is orthogonal, so the 897

absolute value of its Jacobian determinant is al- 898

ways 1. This property also makes a Householder 899

transformation to be volume-preserving. 900

A.3 Experimental Details 901

A.3.1 Dataset Details 902

We evaluated the performance of TA-VAE on five 903

public corpora, namely APNEWS1, IMDB (Maas 904

et al., 2011), BNC (Consortium et al., 2007), PTB 905

(Marcus et al., 1993) and Yelp152. The first three 906

corpora are the same datasets including the train, 907

validation and test splits, as used by prior works, 908

which are publicly available3 and widely used. For 909

the first four datasets (APNEWS, IMDB, BNC, 910

PTB), we fixed the maximum sequence length to 911

80 and maximum vocabulary size to 40, 000. For 912

Yelp15, we followed the work in (Tang et al., 2019) 913

and set the maximum sentence length to 150 while 914

maximum vocabulary size to 20, 000. In the pre- 915

process procedure, we first used the publicly pro- 916

vided tokenizer and followed past works (Lau et al., 917

2017; Xiao et al., 2018; Tang et al., 2019) to low- 918

ercase all texts, then mapped the most frequent 919

1https://www.ap.org/en-gb/
2https://www.yelp.com/dataset
3https://github.com/jhlau/

topically-driven-language-model
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Dataset #SM. Voc #TM. Voc #Training Docs #Val. Docs #Test Docs #Avg. Len
APNEWS 22,760 7,498 50k 2k 2k 21.4

IMDB 27,764 5,829 75k 12.5k 12.5k 22.5
BNC 22,154 7,700 15k 1k 1k 22.6
PTB 9,733 4,498 42k 3.8k 3.4k 24.8

Yelp15 20,004 7,575 74k 7.4k 7.4k 75.3

Table 9: Statistical summary of five datasets.

Dataset #1 #2 #3 #4 #5 #6 #7 #8 #9

IMDB

reviewers poorly debut oscar finished toronto happened twice grade
ridiculous cinematography finest terrific remote independent screening yesterday sub

total romance beautifully poorly aged maker makers funniest flicks
considering dialogue stage independent maker oscar camera cable fu

highly directing romance talented pre debut reviewers viewed kung

BNC

yesterday council conservation voice award africa international england environmental
night britain environmental yesterday pounds pacific east cup pollution
today environmental pollution night ref council european voice conservation
young meeting council daily research asia europe britain council

just title species post holder east british league environment

PTB

cost composite mortgages gains futures nov benchmark tuesday nasdaq
fiscal counter adjustable rise traders oct points notes counter

spending volume capped inflation short priced priced october s&p
budget ounce yields orders gains mature treasury september activity
senate pence rise percentage selling dec point oct decline

Yelp15

casino avec massage beers matcha min spa cons rooms
hotels c’est pedicure buffet milk mins tub pros suite
strip des gel tap bagel tip shower buffet amenities
mgm en nail burgers vanilla dirty pool rooms stayed
rooms que polish bartender cupcake 40 massage rental pool

Table 10: Top-5 topic words from nine topics generated from 50 topic TA-VAE models (cherry-picked).

and infrequent words (those in the top 0.03% of920

frequency and appear less than 100 documents)921

to a special token (i.e. ⟨UNK⟩ token). We set922

the minimum frequency to 2 for all corpus except923

BNC, which was 8 to avoid over-fitting (Dieng924

et al., 2016) and expedite training process. The full925

statistics of datasets is presented in Table 1.926

A.3.2 Overall Model Settings927

We used pre-trained GloVe (Pennington et al.,928

2014) word vector to initialize the 200-dimensional929

word embedding layer. Bag-of-Word (BoW) en-930

coder was a 2-layer feedforward neural network931

with 200 hidden units. The sequential encoder level932

Bi-LSTM had 2× 300 hidden states, while the de-933

coder LSTM had 300. Weight decay was set as934

10−5 with dropout ratio 0.2 for all RNNs. The size935

of zs was fixed to 32. We employed the Adam936

(Kingma and Ba, 2014) optimizer using a batch of937

32 training samples and learning rate of 10−4 for all938

the model training. All models were trained for 80939

epochs except the ones on BNC (100 epochs for ad-940

equate training) on a single GeForce GTX 1080Ti941

GPU. We set the max clip norm of gradient to 5.0942

for avoiding gradiant explosion. Moreover, to take943

full advantage of learned latent knowledge as well 944

as making topic modeling part to be more concen- 945

trated, we trained the model with λS : λT = 1 : 3 946

and used cyclical schedule (Fu et al., 2019) with 4 947

cycles through all training epochs for KL anneal- 948

ing. The weight of discriminator λD and infor- 949

mative penalty λinfo were 0.3 and 500 respectively 950

followed infoVAE (Zhao et al., 2017a). As for 951

Householder flow implementation, we formally fol- 952

lowed the experimental settings in (Tomczak and 953

Welling, 2016), but with the change that q(zs(0)) 954

was a simple Gaussian with full covariance matrix. 955

Finally, we assigned the pre-defined parameter τ 956

in discriminator to 0.02 during training and 1.0 at 957

inference stage as described in (Tang et al., 2019). 958

In the generation procedure, we calculated text per- 959

plexity as the negative exponential value of the 960

negative log-likelihood (NLL) averaged over the 961

sum of words. We adopted models that perform the 962

best on validation sets and reported results on test 963

sets. 964

A.3.3 Implementation of Discriminator 965

In detail, we employ Gumbel-Softmax (Jang et al., 966

2016) for the implementation because of the inhos- 967
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Dataset Sampled Sentences

APNEWS

•virginia ’s largest school system is getting ready to raise a new tax increase .
•red cross - area residents are being hit by the winter storm .
•san francisco police officers are investigating a suspected of marijuana and a car that killed
a man and injured two others in a rural area of san diego county .
•plant destroyed and wind gusts of winter weather .
•wounded castle county police are looking for a missing boater .

IMDB

•in the late 1980 ’s , i was never able to say that the film industry made a great deal .
•so bad - the plot line was very bad , to me , i know what this is about .
•a thoroughly entertaining thriller from beginning , i have no idea what the hell .
•it made that a great cast - like this , well - acted film .
•this movie reminds more kind of sort of science fiction of an <unk>of science fiction and
science fiction of crap .

BNC
•when rail comes to the <unk>world cup qualifying <unk>at the end of the season .
•europe albania <unk>, political correspondent the government ’s largest government has
been launched.
•award title : the structure of <unk>and social services, award type : research
grant ( project ), award ref no : <unk>/ <unk>, award holder : dr r <unk>

PTB
•the company had been working with the state and financial services ’ plan
•this is n’t more efficient for people who want to get out
•a spokesman said it would be able to reduce the tax rate on the market

Yelp15

•avoid this place ! ! ! ! i will never go back .
•great place ! the best part of the strip is the free . the price is reasonable .
•a great selection of beers . they have a lot of options .
•server was rude , rude owner was rude , rude and unhelpful . i would n’t recommend this
place to anyone looking for a good chinese food , but i would n’t go back to this place .
•really good ! i would recommend this place to anyone looking for a quick car wash and a
great price for a quick bite and will be back !

Table 11: Generated sentences on five datasets from trained TA-VAE models (randomly sampled).

Int. 1 •have been here twice , and i have never had a bad experience . i had the chicken salad with
garlic knots . the salad was delicious ! ! ! ! ! ! ! ! ! ! !

Int. 2 •i have been here twice , and i have never had a bad experience . i had the shrimp taco salad ,
which was delicious . i will be back ! ! ! ! ! ! ! ! ! !

Int. 3 •i have been here twice and have never been disappointed . the food was delicious , the fish
tacos were delicious . i had the shrimp tacos , and the chicken was cooked perfectly .

Int. 4 •i have been to this location twice and have never been disappointed . the service is very
friendly and helpful .

Int. 5 •i have n’t been to this location twice . the <unk>is very nice and helpful . the <unk>is located
in the middle of the strip mall .

Int. 6 •i have n’t been to this location twice . pros : <unk>and <unk>. the <unk>was very nice and
the service was great . i was in the area for a few days and it was n’t a bad experience .

Int. 7 •i have n’t been to this location twice . the <unk>was very nice and the service was great . i
was n’t sure what to expect .

Int. 8 •i have n’t been to this location twice . i would have given a lot of money in the future , but i ’m
not sure why the prices are reasonable .

Int. 9 •i think it ’s a bit overpriced . pros : <unk>:

Table 12: Text style transfer generation from positive to slightly negative by traversing learned topic representations
(cherry-picked).
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Type Sentences
Org. I •the company and its executives deny the charges

Rec. I •the company had been working with the state and
financial services and the government ’s plan

Int. 1 •the company had no comment on the other hand
and the state department said

Int. 2 •the company wants to keep the entire computer
system says the agency

Int. 3 •these guys are a good idea he says

Int. 4 •these guys is an important and financial services
he says

Rec. II •you have a lot more efficient than he says
Org. II •our doors are open an nbc spokesman says

Table 13: Generated sentences by interpolating latent
codes.

pitality of discrete tokens for backpropagation. Our968

choice of discriminator can be depicted as follow:969

• Gain the conditional probability of at the i-th970

time step p(x̂i | x̂1:i, z) = [p1, p2, ..., pn],971

• Obtain ai =
exp(log(pi)+gi)/τ∑n

j=1 exp(log(pj)+gj)/τ
,972

• Approximate the i-th reconstructed word by973

x̂i = aTWb,974

here gi and gj are separately drawn from a Gumbel-975

Softmax distribution between 0 and 1. Parameter τ976

is set in advance during both training and inference977

stages. a = {ai}ni=1 is the vector for token approx-978

imation, while Wb denotes the BoW input from979

topic encoder. This setting has technical advan-980

tage compared with the discriminator in Tang et al.981

(2019), which transfers tokens by word embedding982

and inevitably demands the same size between the983

hidden layers of topic encoder and word embed-984

ding.985

A.3.4 Implementation of Mutual Information986

Maximazation987

In practice, we followed previous explorations, and988

replaced KL divergence in DKL(q(zt | zs)∥p(zt |989

zs)) with another divergence Maximum-Mean990

Discrepancy (MMD) (Gretton et al., 2012; Li991

et al., 2015) that can be efficiently optimized over.992

Maximum-Mean Discrepancy efficiently quantifies993

the distance between two distributions using the994

kernel trick. For the given distributions q, p, and995

variables drawn from them z ∼ p, z′ ∼ q we ap-996

proximated MMD term with the Gaussian kernel,997

that is: 998

DMMD(p, q) = Ep(z)p(z′)[k(z, z
′)]

+ Eq(z)q(z′)[k(z, z
′)]

− Ep(z)q(z′)[k(z, z
′)],

(17) 999

where the function k(·) is a Gaussian kernel. 1000

A.3.5 NPMI Details 1001

Given the top-n words of a topic, coherence is com- 1002

puted based on the sum of pairwise NPMI scores 1003

between topic words. We averaged topic coherence 1004

over the top 5/10/15/20 topic words. To aggregate 1005

topic coherence scores, we calculated the mean co- 1006

herence over topics (Dieng et al., 2016; Lau et al., 1007

2017; Wang et al., 2019; Tang et al., 2019). 1008

A.3.6 Classification Details 1009

For any model to be tested, we first obtained the 1010

latent representations from a well-trained TA-VAE 1011

model with 10 flow layers of the training sets, then 1012

randomly sampled 2, 000 examples to train a 2- 1013

layer feedforward neural network with softmax 1014

function. As for final classification results, we 1015

recorded the model with highest accuracy on valida- 1016

tion set for final result. We trained the classifier five 1017

times with every setup and reported the averaged 1018

classification accuracy as well as its standardized 1019

deviation. 1020

A.4 Texts & Topic Words Generation 1021

A.4.1 Generated Topics 1022

For topic word generation, we used the decoder 1023

of topic modeling part to produce probability of 1024

each token in a corpora, and sorted words with the 1025

highest five probabilities as top-5 topic word output. 1026

We selected nine channels from TA-VAE models 1027

with 50 topic latent dimensions. And generated 1028

top-5 topic words from them severally. Results are 1029

shown in Table 10. 1030

A.4.2 Sampled Texts 1031

We randomly sampled sequence latent code zs 1032

from its prior N(0, I), and generated sentences 1033

from it on well-trained TA-VAE models on five 1034

datasets. Textual results are presented in Table 11. 1035

A.4.3 Style Transfer Generation and 1036

Interpolated Sentences 1037

For well-expressive attribute representation spaces, 1038

we expect they contain distinct attribute and can be 1039

easily manipulated. For sentence generation with 1040

transferred styles, we traversed the value in one 1041
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latent dimension of latent variables from −10.01042

to 10.0 by a step size of 2.0. Results in Table 121043

show a transformation from positive sentiment to1044

relatively negative (i.e., with negative expressions1045

“n’t been ... twice”, “overpriced”). For interpolation1046

task. We used linear interpolation strategy, this1047

process can be specified as follows:1048

1. Given two samples xi, xj from train set.1049

2. Obtain their sequential latent code1050

and topic latent code respectively1051

(zs(i), zt(i)), (zs(j), zt(j)).1052

3. For both types of latent variables we use lin-1053

ear interpolation ztype = ztype(i) · (1 − τ) +1054

ztype(j) · τ where ztype ∈ {zs, zt} and τ in-1055

creases from 0 to 1 by a step size of 0.2.1056

We can see there is a maintenance from the original1057

text key phrases or structure (e.g., “the company”,1058

“lawmakers are consider”, inverted form) and se-1059

mantics (e.g., positive, business, law) as well as a1060

transformation between two given examples. We1061

can observe smooth and sensible interpolation re-1062

sults for almost arbitrary input pairs. This demon-1063

strates our TA-VAE model learns meaningful latent1064

spaces.1065

A.5 Full Statistical Results1066

A.5.1 Text Perplexity and KL Divergence1067

We present PPL values of models with varied flow1068

layer numbers also with or without two auxiliary1069

objectives respectively, as well as KL values of1070

both modeling components (sequence and topic)1071

from a top-down order in Table 15. For PPL results,1072

our model outperforms all baselines on different1073

settings. However, when flow layers are not elabo-1074

rately designed (i.e., flow layer that is shallow for1075

5 layers or too deep for 20 layers), models with the1076

proposed two auxiliary functions do not noticeably1077

outperform models without them. As for observed1078

KL values, firstly, models with medium-sized flow1079

layers are more likely to reach a lower KL value in1080

zt, which is equivalent to a more competent topic1081

modeling part. Secondly, sequential KL values are1082

much lower than topic KL values. On the one hand,1083

this can be attributed to a more powerful fitting tool1084

(i.e., Householder flow) for sequential posterior to1085

approximate the true distribution of its represen-1086

tation. On the other hand, as mentioned in (Tang1087

et al., 2019), the topic information reveals much1088

of the diversity of texts, which leads to higher KL1089

values.1090

Type Sentences

Org. 1
•lawmakers are considering restrictions on
harvesting a hawaii seafood <unk>
known as <unk>.

Rec. 1
•lawmakers are considering a bill that would
link at least two dozen dogs dead inside a
local airport .

Int. 1
•lawmakers are considering a bill that would
link the south carolina town of marine corps
on sunday night .

Int. 2
•the state ’s government will be held on a las
vegas strip - based weapons ring that killed in
the u.s . house , but it does n’t have a chance .

Int. 3
•the city of a florida man who died after being
held by a fellow military veterans affairs in the
nation ’s largest valley .

Int. 4 •the man who died in a shooting that killed
a tennessee valley business .

Rec. 2
•the man who shot a man in a downtown
philadelphia house is now that he has received
a plea deal .

Org. 2
•a man who barricaded himself in his
omaha home has surrendered without
incident .

Table 14: Generated sentences by interpolating latent
codes.

A.5.2 Full Results of BLEU 1091

We used benchmark tool Texygen (Zhu et al., 2018) 1092

to do all the BLEU-related calculations. We show 1093

results of our model only with or without discrim- 1094

inator, which we believe is more important for 1095

token-level upgrade, because the mutual informa- 1096

tion term is directly optimized in the topic latent 1097

space zt, rather than in sequence embedding zs or 1098

token level like the discriminator does. From the 1099

full results in Table 16, we can see that our model 1100

outperforms all baselines in test-BLEU metric, yet 1101

is only superior to other models on self-BLEU un- 1102

der B-2 in major cases. This phenomenon demon- 1103

strates that the proposed model is qualified to pro- 1104

duce texts with high quality, but has difficulty in 1105

generating texts with high diversity. Nevertheless, 1106

the overall metric BLEU-F1 shows the superior- 1107

ity of TA-VAE model in a well weighted trade-off 1108

between text quality and diversity. 1109

16



Model APNEWS IMDB BNC PTB
PPL KL PPL KL PPL KL PPL KL

LSTM LM 64.13 - 72.14 - 102.89 - 116.2 -
LSTM+LDA 57.05 - 69.58 - 96.42 - - -
Topic-RNN 56.77 - 68.74 - 94.66 - 97.3 -

TDLM 53.00 - 63.67 - 87.42 - - -
LSTM VAE 71.60 0.83 86.16 2.78 105.10 0.13 79.8 9.6

TCNLM 52.75 - 63.98 - 87.98 - - -
TGVAE 48.73 3.55 57.11 5.02 87.86 4.57 - -
DVAE - - - - - - 33.4 23.3

TATGM 47.23 2.90 52.01 3.87 80.78 2.54 - -
8.18 9.34 7.76 -

rGBN-RNN 42.71 - 51.36 - 79.13 - - -
VRTM 47.78 - 51.08 - 86.33 8.64 55.82 1.64

Ours(F=5) 36.48 0.20 37.48 0.16 78.11 2.30 27.40 0.28
4.86 13.9 23.00 13.74

Ours(F=5) w/o Dis 36.50 0.20 37.25 0.15 80.25 2.70 26.84 0.30
7.59 10.9 31.85 9.82

Ours(F=5) w/o Linfo 37.11 0.20 37.87 0.16 79.44 2.18 27.76 0.30
5.24 13.1 26.91 11.88

Ours(F=10) 36.35 0.20 36.53 0.14 76.34 4.68 27.25 0.26
5.31 12.3 9.58 8.18

Ours(F=10) w/o Dis 36.11 0.23 37.26 0.16 78.31 2.88 27.67 0.30
5.75 8.73 17.17 10.07

Ours(F=10) w/o Linfo 36.42 0.24 37.09 0.15 79.60 2.71 26.98 0.25
8.71 11.7 16.32 7.78

Ours(F=20) 36.08 0.21 35.75 0.12 78.45 2.88 26.94 0.27
5.58 8.18 9.45 13.04

Ours(F=20) w/o Dis 36.09 0.22 34.95 0.12 79.93 2.97 26.96 0.35
9.36 7.03 10.40 9.67

Ours(F=20) w/o Linfo 36.42 0.23 35.92 0.13 77.49 2.36 26.74 0.33
4.30 9.21 9.52 11.78

Table 15: Text quality analysis in terms of perplexity and KL value. Sequence and topic KL values are arranged in
the top-down order.
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