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ABSTRACT

As the size of large language models continue to scale, so does the computational
resources required to run them. Spiking Neural Networks (SNNs) have emerged
as an energy-efficient approach to deep learning that leverage sparse and event-
driven activations to reduce the computational overhead associated with model
inference. While they have become competitive with non-spiking models on many
computer vision tasks, SNNs have proven to be more challenging to train. As a
result, their performance lags behind modern deep learning, and until now, SNNs
have yet to succeed at language generation on large-scale datasets. In this paper,
inspired by the Receptance Weighted Key Value (RWKV) language model, we
successfully implement ‘SpikeGPT’, a generative language model with binary,
event-driven spiking activation units. We train the proposed model on two model
variants: 45M and 216M parameters. To the best of our knowledge, SpikeGPT
is the largest backpropagation-trained SNN model to date, rendering it suitable
for both the generation and comprehension of natural language. We achieve this
by modifying the transformer block to replace multi-head self-attention to reduce
quadratic computational complexity O(T 2) to linear complexity O(T ) with in-
creasing sequence length. Input tokens are instead streamed in sequentially to our
attention mechanism (as with typical SNNs). Our experiments show that SpikeGPT
remains competitive with non-spiking models on tested benchmarks, while main-
taining 32.2× fewer operations when processed on neuromorphic hardware that
can leverage sparse, event-driven activations.

1 INTRODUCTION

Artificial Neural Networks (ANNs) have recently achieved widespread, public-facing impact in
Natural Language Processing (NLP), but with a significant computational and energy consumption
burden across training and deployment. As an example, training GPT-3 was projected to use 190,000
kWh of energy (Brown et al., 2020; Dhar, 2020; Anthony et al., 2020). Spiking neural networks
(SNNs), inspired by neuroscientific models of neuronal firing, offer a more energy-efficient alternative
by using discrete spikes to compute and transmit information (Maass, 1997). Spike-based computing
combined with neuromorphic hardware holds great potential for low-energy AI (Davies et al., 2018;
Merolla et al., 2014; Sun et al., 2022), and its effectiveness in integration with deep learning has been
demonstrated through numerous studies (Roy et al., 2019; Pfeiffer & Pfeil, 2018; Fang et al., 2021;
Eshraghian et al., 2021; Wu et al., 2018; Zhang et al., 2020).

While SNNs have shown competitive performance in computer vision tasks such as classification and
object detection (Barchid et al., 2023; Kim et al., 2020; Cordone et al., 2022), they have yet to attain
similar success in generative models. With respect to language generation, this can be attributed
to several reasons: i) the absence of an effective language encoding technique for SNNs, ii) the
difficulty of training large-scale SNNs due to the extreme constraint on layer-to-layer bandwidth (i.e.,
binarized spike activations) (Eshraghian et al., 2022), and the lack of informative gradient signals in
excessively sparsified models (Eshraghian & Lu, 2022), and iii) the inherent recurrence of SNNs is
incompatible with self-attention, where input token are passed to the model in parallel (Vaswani et al.,
2017). These issues mean that training large-scale SNNs via error backpropagation is extremely
challenging, leading to a lack of performant SNNs in language generation.

Despite the difficulties faced by recurrent networks in NLP, the sequential structure of linguistic data
presents a unique advantage for SNNs. To address these problems, we propose three techniques. First,
rather than using an encoder to project information into an additional temporal dimension, SpikeGPT
aligns the sequence dimension of language with the temporal dimension of SNNs. This eliminates
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the need for an encoder as with most prior attention-based SNNs (Zhou et al., 2023; Li et al., 2022).
Second, we apply autoregressive training rather than accumulating spikes at the output to calculate
the loss, as is common in modern SNNs. Third, although binary activations constrain layer-to-layer
bandwidth, we show that using stateful neurons can greatly reduce the adverse impact of binarization.
By leveraging the capabilities of the RWKV model and integrating these three techniques, we have
developed the SpikeGPT language model. To the best of our knowledge, SpikeGPT is the first
generative SNN language model and the largest SNN trained to date in terms of parameter count,
with the largest version at 216M parameters (3× more than the previous largest SNN) (Zhou et al.,
2023). The implementation of SpikeGPT is based on integrating recurrence into the Transformer
block such that it is compatible with SNNs and eliminates quadratic computational complexity,
allowing for the representation of words as event-driven spikes. Combining recurrent dynamics
with linear attention enables our network to stream incoming data word-by-word, and commence
computation before a sentence has been completed, while still retaining long-range dependencies
present in complex syntactic structures. Our experiments show that SpikeGPT achieves competitive
performance on all tested datasets while consuming significantly less energy compared to traditional
ANN models. Our contributions in the field of NLP and language generation can be succinctly
described as follows: i) we provide the first demonstration of language-generation using direct-SNN
training; ii) we achieve performance comparable to that of ANNs, while preserving the energy
efficiency of spike-based computations and reducing quadratic computational complexity O(T 2) to
linear complexity O(T ); iii) our results demonstrate that a small-scale variant of the SpikeGPT model
with 45 million parameters performs competitively against similar transformer models. Furthermore,
it achieves this performance with an estimated 33.2× less energy consumption on asynchronous
hardware.

2 RELATED WORKS

Although language generation has not previously been achieved with SNNs, this section provides an
overview of how SNNs have been used in basic NLP tasks, and the ways in which transformers have
been adopted for SNNs.

Spiking Neural Networks for Natural Language Processing. Xiao et al. (2022) proposes a bi-
directional SNN for sentiment classification and machine translation tasks. Their approach uses
spiking encoders, which replace costly multiplication operations with much cheaper additive opera-
tions to significantly reduce computational energy consumption. Similarly, Lv et al. (2023) presents
a two-step method to train SNNs for text classification with a simple way to encode pre-trained
word embeddings as spike trains. Their results indicate that converted SNNs achieve comparable
results to their ANN counterparts and are more robust against adversarial attacks. Furthermore,
Diehl et al. (2016) demonstrate the train-and-constrain methodology that enables the mapping of
machine-learned recurrent neural networks (RNNs) on a substrate of spiking neurons. The authors
achieve 74% accuracy on a question classification task using less than 0.025% of the cores on one
TrueNorth chip (Merolla et al., 2014), showcasing the potential for SNNs in classification tasks in
NLP.

Transformer in Spiking Neural Networks. The Transformer model, first introduced in Vaswani
et al. (2017), has shown significant success in various NLP tasks. However, the application of the
Transformer model to SNNs has been relatively limited. The first Spiking Transformer model was
proposed in Zhou et al. (2023), which proposes spiking self-attention to model visual features using
sparse Query, Key and Value matrices. Li et al. (2022) proposes another variant on Transformer-based
SNNs, adopting spatial-temporal attention instead of spatial or temporal-wise attention to better
incorporate the attention mechanism within the Transformer.

While Transformers were initially proposed to solve NLP tasks, SNN-based Transformers have only
succeeded with vision tasks. An additional temporal dimension must be added which increases the
computational complexity from quadratic to the cubic order (O(T 3)), which makes training more
expensive. The additional challenges of extreme sparsity, non-differential operators, approximate
gradients, and single-bit activations that are characteristic of SNNs make training convergence more
challenging. The demonstrated image classification tasks have a far smaller number of output classes,
which shrinks the scale of demonstrated networks. Image classification also does not exploit the
inherent long-range learning capacity of self-attention. Therefore, there is under-explored potential in
the application of Transformer models in other SNN-based applications beyond vision tasks. In the
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Figure 1: Model Architecture. The left portion displays the block-level structure. The middle and
right illustrations demonstrate the Spiking RWKV and Spiking RFFN architectures, respectively.
Spiking RWKV serves as a token mixer and Spiking RFFN functions as a channel mixer. These
components are arranged in a loop with residual connections in a manner akin to a Transformer
architecture.

following sections, we demonstrate how this computational complexity is reduced to enable scaled-up
models that are capable of language generation.
3 METHODS

3.1 LEAKY INTEGRATE-AND-FIRE NEURON

We employ the Leaky Integrate-and-Fire (LIF) neuron as the default spiking neuron of our model,
a widely used model for SNNs often trained via error backpropagation (Maass, 1997). The LIF
dynamics are represented as follows:{

U [t] = H[t] + β(Y [t]− (H[t− 1]− Ureset))
S[t] = Θ(U [t]− Uthreshold)
H[t] = U [t] · (1− S[t])

(1)

where β is a decay factor, U is the membrane potential (or hidden state) of the neuron, S is the
spiking tensor with binarized elements, Y denotes the output of the previous series RWKV block (see
Eq. 7), Θ(·) denotes the Heaviside function, and H represents the reset process after spike emission.
We set Uthreshold = 1, Ureset = 0 and β = 0.5 as done in Zhu et al. (2022) and Yao et al. (2021;
2023).

To overcome the non-differentiable problem during back-propagation caused by the Heaviside
step function Θ(·), we employ the arctangent surrogate function during the backward pass. The
arctangent function σ′(x) = α

2(1+(π
2 αx)2) (a Sigmoid-like shape) is applied as a ‘surrogate gradient’

for backward propagation to provide a biased gradient estimator (Fang et al., 2021; Neftci et al.,
2019).

3.2 MODEL ARCHITECTURE

The high-level architecture of SpikeGPT is shown in Fig. 1. Given an embedded input I ∈ RT×d, we
first use a Binary Embedding (BE) layer to embed the input to a binarized representation, X0 (Eq. 2).
Using Spiking RWKV, X0 is passed to the L-th SpikeGPT layer. Similar to the standard Transformer
block, a SpikeGPT block consists of Spiking RWKV (SRWKV) unit and a Spiking Receptance
Feed-Forward Networks (SRFFN) unit. Residual connections are used in both the SRWKV and
SRFFN blocks using the SEW-ResNet (Fang et al., 2021) configuration, which is a well-established
standard form within the Spiking ResNet framework with sparse integer spikes. Once the data has
traversed through all layers, the model is directed towards the generation head (GH) for the purpose

3



Under review as a conference paper at ICLR 2024

of generating the next token. For natural language understanding (NLU) tasks, the model uses a
classification head instead. Sec. 3.6 provides further information.

X0 = BE (I) , I ∈ RT×d, X0 ∈ RT×d, (2)

X ′
l = SRWKV(Xl−1) +Xl−1, X ′

l ∈ RT×d, l = 1...L (3)

Xl = SRFFN(X ′
l) +X ′

l , Xl ∈ RT×d, l = 1...L (4)
Y = GH(XL). (5)

In Section 3.3, detailed information about Binary Embedding (BE) will be provided. Sec. 3.4 will
primarily focus on the SRWKV block, while Sec. 3.5 will delve into the Spiking Receptance Feed-
Forward Network (SRFFN) block. Finally, in Sec .3.6, we will describe the training and inference
details employed for natural language generation (NLG) and natural language understanding (NLU).
At the commencement of each block, a token-shift is applied which is detailed in Appendix C.1.

3.3 BINARY EMBEDDING

To maintain consistency with the binary activations of SNNs, we propose a binary embedding step
to convert the continuous outputs of the embedding layer into binary spikes. The conversion is
performed using a Heaviside function for feed-forward propagation which maps the continuous
values to binary spikes, This allows us to convert continuous embedding values into spikes using
non-differentiable functions, while still being able to perform backpropagation and update the weights
of the embedding layer (Neftci et al., 2019). During backpropagation, the arctangent surrogate
function is applied as is the case with LIF neurons.

3.4 EFFICIENT PROCESSING OF VARIABLE-LENGTH SEQUENCES USING SPIKING RWKV
In this section, we revisit the self-attention mechanism, which endows Transformers with the ability to
process variable-length sequences, enabling advanced language modeling capabilities. Subsequently,
we highlight a fundamental challenge: the incompatibility of self-attention with SNN language
modeling. Self-attention relies on access to the entire sequence for effective language modeling and
is not inherently recurrent, making it incompatible with SNNs. Furthermore, it involves dynamic
matrix-matrix multiplication operations. The associated computational overhead compromises the
objective of reducing computational costs via SNNs. To address these limitations, we introduce the
Spiking RWKV (SRWKV) module as a replacement for the self-attention module. This module
draws inspiration from the RWKV model (Peng et al., 2023), an RNN model renowned for achieving
Transformer-level proficiency across a spectrum of model sizes. This module serves the same
essential function of facilitating information exchange across token dimensions but achieves this
through element-wise products rather than matrix-matrix multiplication, while also accommodating
the recurrent nature of SNNs.

Recall Self-Attention. In the context of Transformers, the self-attention mechanism operates on
an input sequence denoted as X ∈ RT×d and employs a scaled dot product attention technique.
Mathematically, self-attention is formally expressed as follows:

f(X) = softmax
(
Q(K)T√

dk

)
V,Q = XMQ,K = XMK , V = XMV (6)

Here, MQ ∈ Rd×dk , MK ∈ Rd×dk , and MV ∈ Rd×dv represent linear transformations, while dk
and dv signify the dimensions of the key and value vectors, respectively. This mechanism enables
dynamic information mixing across token dimensions and accommodates sequences of variable
lengths by leveraging dynamic matrix-matrix multiplication (Q(K)T ) and the softmax function
(which necessitates access to the entire sequence).

Nevertheless, in the case of a typical SNN characterized by its event-driven nature, the recurrent
structure of the network poses a challenge. SNNs can only generate spikes based on information
from previous time-steps, making it impossible to access the entire sequence at once, as required
by self-attention. One potential solution involves introducing an additional temporal dimension,
denoted as Tadditional, to allow spiking neurons to feed forward. However, this approach would
substantially increase the model’s size and necessitate additional computations, scaling proportionally
with Tadditional. This is not practical, especially for large-scale language models reaching the scale
of hundreds of billions of parameters. Therefore, the optimal approach is not to introduce a new
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dimension, but to leverage the existing sequence dimension for forward propagation. This is why a
spiking transformer would benefit from a recurrent alternative to self-attention.

Spiking RWKV. To address the challenges posed by self-attention in the context of language
modeling, we introduce the Spiking RWKV, a novel approach that incorporates both recurrent and
block-level spiking features. The foundation of the vanilla RWKV is inspired by the Attention Free
Transformer (Zhai et al., 2021), serving as a replacement for the traditional self-attention mechanism.
For comprehensive information on vanilla RWKV, including its overall structure and parallelization
techniques, please refer to Appendix C.1. In contrast to self-attention, which operates on the entire
sequence dimension, the spiking input of Spiking RWKV is unrolled as X[t] ∈ R1×d, where t
represents the time step index, rather than the entire sequence X ∈ RT×d. Similar to self-attention,
Spiking RWKV initiates by applying linear transformations: R = X[t]MR, K = X[t]MK , and
V = X[t]MV , where MR,MK ,MV ∈ Rd×H , with H indicating the hidden size. Notably, all
inputs to the three MLP layers are in the form of spiking activations. The subsequent step involves
generating the output using the following equation:

Y [t+ 1] = SN
(
σ(R[t])⊙ exp(Wf )⊙ exp(K[t])⊙ (V [t]) +A[t]

exp(Wf )⊙ exp(K[t]) +B[t]

)
(7)

The hidden states A and B are defined as:

A[t] = exp(K[t])⊙ (V [t) + exp(Wd)⊙A[t− 1] (8)

and
B[t] = exp(K[t− 1]) + exp(Wd)⊙B[t− 1] (9)

Here, SN refers to spiking neuron layers, the ⊙ symbol represents element-wise multiplication,
Wd ∈ R1×d and Wf ∈ R1×d are decay vectors, where Wf is responsible for weighting the current
time-step’s information, and Wd plays a role in decaying the influence of information from previous
time-steps. Details of Wd and Wf can be found in Appendix C.3. Notably, Spiking RWKV diverges
from self-attention by not employing matrix-matrix multiplication to dynamically adjust the attention
map according to the input. Instead, it utilizes the learnable vectors Wd and Wf to recurrently blend
the token dimensions of the input. While self-attention dynamically reweights token dimensions
based on the input, Spiking RWKV adopts a continuous decay strategy rather than a dynamic
weighted attention strategy. Because the hidden states A[t] and B[t] encapsulate information from the
previous time-step, this module can effectively blend information across token dimensions, much like
self-attention. Additionally, this approach is particularly well-suited for language modeling. When
using self-attention in casual language models, it’s necessary to mask out half of the attention map to
prevent information leakage. In contrast, Spiking RWKV combines the inherent recurrent properties
of SNN with RWKV, and both naturally operate in a unidirectional manner.

3.5 SPIKING RECEPTANCE FEED-FORWARD NETWORKS (SRFFN)
Each block in our model contains a fully connected feed-forward network with a gating mechanism
(SRFFN), which is applied to normalized and token-shifted outputs of each spiking-RWKV module.
This SRFFN module consists of three linear transformations as follows:

Y ′[t] = SN (σ(MPX[t])⊙MS(Activation(MGX[t]))) (10)

where SN means spiking neuron layers, Y ′[t] denotes the output of SRFFN at time-step t which is
then passed to the spiking neuron (Eq. 1). {MP ,MG,MS} ∈ Rd×H are learnable parameters of the
linear transformations, and Activation represents the activation function. Depending on the specific
SpikeGPT variant being used, we employ either the ReLU2 or SN activation function. SRFFN
is a variant of the Gated Linear Unit (GLU) (Dauphin et al., 2017), which can control the degree
of information flowing into the model by σ(MPX[t]). In order to maintain consistency between
SRFFN and GEGLU parameters (Shazeer, 2020), we set the size of H from the SRFFN to 4d. After
the feedforward process in the SRFFN layer, the resulting output Y ′[t] will be subsequently fed into
a LIF neuron, as depicted in Eq. 1. In this context, Y [t] is replaced with the updated value Y ′[t] to
preserve the block-level spiking and binary characteristics, thereby ensuring the maintenance of the
desired sparsity.

3.6 TRAINING & INFERENCE

Our training procedure consists of two stages. The first stage is pre-training on a large-scale corpus to
build a high-capacity language model, and the next stage is specific fine-tuning to perform downstream
tasks, such as natural language generation (NLG) and natural language understanding (NLU).
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NLG Tasks. We adopt a decoder-only pre-training paradigm similar to GPT to train the model.
Specifically, our model utilizes SRWKV and SRFFN modules to process the input token sequence
and generate an output distribution for each target token. Formally, given a token sequence C =
{c1, c2, · · · , cn}, we use the standard language modeling objective to maximize the following
likelihood:

P(ct) = softmax(Y ′[t]WT
e ) (11)

Lp =

T∑
i=1

logP(ci|c1, c2, · · · , ci−1; Θ) (12)

where WT
e is the token embedding matrix, and Θ is the set of all model parameters.

Shift
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Average Pooling
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(a): Label generation procedure.

(b): SpikeGPT for generation tasks. (c): SpikeGPT for classification tasks.

Figure 2: Training SpikeGPT for NLG and NLU
tasks.

After pre-training the model using the loss in Eq.
12, model parameters are fine-tuned to adapt to
different downstream tasks in NLG and NLU.
For natural language generation tasks, we define
a new dataset DG, where each sample of data
consists of a sequence of input tokens. The con-
sistency between the pre-training process and
the NLG task allows for the fine-tuning proce-
dure to reuse the method and objectives adopted
in the pre-training pipeline (Eq. 11 and Eq. 12),
which maximizes the likelihood of the target to-
ken based on the previous information of the
target position.

NLU Tasks. As for NLU tasks, such as senti-
ment classification, the fine-tuning process re-
quires several modifications to the top-level of
the pre-trained SpikeGPT model to adapt to NLU tasks, as shown in Fig. 2. Specifically, given a new
dataset for the downstream task DU , where each instance consists of a token sequence Ci and label li,
the following objective is maximized:

LNLU =
∑

(Ci,li)

li ∗ logP (Ci) (13)

where P(Ci) is defined as:
P(Ci) = softmax(YWT

m) (14)

WT
m includes the learnable parameters of the MLP module in the top layer, and Y is generated by

passing the input token sequence Ci through the model and then average-pooling the embedding of
each target, which is formalized as:

Y = AvgPooling(XL[1], XL[2], · · · , XL[T ]) (15)

In the inference phase, we directly give a prompt for the NLG task, and let the model continue and
calculate bits-per-character (BPC) and perplexity (PPL) as an evaluation metric. For the NLU task,
we pass the inputs through our model to obtain the embedding over target positions, and then apply a
mean-pooling operation to all embedded tokens to predict the label of each instance.

3.7 THEORETICAL ENERGY CONSUMPTION ANALYSIS

The key attribute of SNNs here is their remarkable energy efficiency due to dynamical sparsity. We
provide a theoretical energy consumption analysis of SpikeGPT’s constituent components, while
evaluating its feasibility for deployment on asynchronous hardware. The block-level theoretical
energy consumption analysis is shown in Tab. 1.

Spiking RWKV. The SRWKV block comprises two integral components: the Spiking MLP layer,
which receives sparse spike inputs, and the full-precision element-wise product. Within the Spiking
RWKV, akin to self-attention mechanisms, the spike input denoted as X undergoes projection through
MLP layers, resulting in three distinct variables, namely, R, K, and V . Notably, all these MLP layers
operate on spike inputs, facilitating the transformation of matrix multiplication into sparse addition.
It is worth highlighting that the non-binary element-wise product, as depicted in Tab. 1, constitutes a
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relatively minor proportion compared to the MLP layers. Importantly, it is essential to note that all
these operations can be efficiently supported by neuromorphic chip technology.

SRFFN. The SRFFN block primarily consists of MLP layers and element-wise product operations.
However, an alternative operation is introduced when employing the ReLU2 activation function
instead of spiking neurons. While ReLU2 activations are not binary, they induce dynamical sparsity.
We can further employ quantization techniques to convert them into integers, a common practice
in LLMs (Liu et al., 2023; Dettmers et al., 2022b;a), where 8-bit activations and weights can be
used with no noticeable loss in performance (Xiao et al., 2023). With regard to integer sparse spikes,
modern neuromorphic chips (Orchard et al., 2021; Parpart et al., 2023) accommodate graded spikes
that support up to 32-bit integer, rendering the entire SRFFN block compatible with neuromorphic
hardware, requiring solely addition operations for its execution.

Table 1: Energy Evaluation: FLMLP represents the Floating-Point Operations (FLOPs) of the MLP
layers in the ANNs, while R̂ denotes the spike firing rates (indicating the proportion of non-zero
elements in the spike matrix) within the spike matrices. In computing operation counts, models are
parameterized with T = 3072, d = 512, R̂ = 0.15, all derived from real test data of SpikeGPT-45M.
Additionally, energy consumption is characterized by assuming EMAC = 4.5pJ and EAC = 0.9pJ
based on Horowitz (2014) and Rathi & Roy (2021). Other than element-wise operation involving dot
products in SpikeGPT, all other module inputs are in spike form, leading to a significant reduction in
operations by a factor of up to 32.2× overall. This is reflected in the Vanilla GPT-to-SpikeGPT (V/S)
ratio.

Vanilla GPT (Radford et al., 2018) SpikeGPT Energy Consumption (pJ) Ratio
(with GLU (Dauphin et al., 2017)) (This work) Vanilla GPT SpikeGPT V/S

Attention

Q/R,K, V EMAC · 3Td2 EAC · R̂ · 3Td2 1.09× 1010 3.25× 108 33.3×
f(Q/R,K, V ) EMAC · 2T 2d EMAC · 6Td 8.50× 107 4.25× 107 2.0×

Scale EMAC · T 2 - 4.25× 107 - -
Softmax EMAC · 2T 2 - 8.50× 107 - -

FFN
Layer 1 EMAC · FLMLP1 EAC · R̂ · FLMLP1 3.62× 109 1.09× 108 33.3×
Layer 2 EMAC · FLMLP2 EAC · R̂ · FLMLP2 1.45× 1010 4.35× 108 33.3×
Layer 3 EMAC · FLMLP3 EAC · R̂ · FLMLP3 3.62× 109 1.09× 108 33.3×

Overall - - - 3.29× 1010 1.02× 109 32.2×

4 EXPERIMENTS

We evaluated SpikeGPT on two major language-related tasks: Natural Language Generation (NLG)
and Natural Language Understanding (NLU). For NLG, we evaluated the text generation performance
of SpikeGPT on three classic text generation datasets: Enwik8 (Mahoney, 2011), WikiText-2 (Merity
et al., 2017), and WikiText-103 (Merity et al., 2017). These datasets are widely used to measure
a model’s ability to perform compression and for benchmarking. For NLU, we evaluated the
performance of SpikeGPT on four classic text classification datasets: MR (Pang & Lee, 2005),
SST-5 (Socher et al., 2013), SST-2 (Socher et al., 2013), and Subj (Pang & Lee, 2004). These datasets
cover sentiment analysis and subjective/objective classification. Our implementation is based on
PyTorch (Paszke et al., 2019) and SpikingJelly (Fang et al., 2020). For detailed information regarding
the datasets, baseline methods, and the experimental settings, and illustrations and discussion on
spike firing patterns, please refer to Appendix A, B, and D.2. Our zero-shot text samples of this
experiment can be found in Appendix E.

4.1 RESULTS ON NATURAL LANGUAGE GENERATING TASKS

A summary of results are provided in Tabs. 2 and 3. This includes the BPC and PPL achieved on
NLG tasks using SpikeGPT trained on Enwik8, WikiText-103, and WikiText-2 compared to several
baselines, including 45M and 216M parameter variants.

As shown in Tab. 2, the generative performance of SpikeGPT has far surpassed that of models with an
LSTM backbone, and can approach or even surpass some simplified variants of the Transformer, such
as Linear Transformer and Synthesizer. However, it should be pointed out that there is still a certain
gap between SpikeGPT and the vanilla Transformer. While increasing the size of T significantly
reduces the training BPC of SpikeGPT, its test BPC has not changed significantly, indicating that
SpikeGPT is potentially suffering from over-fitting.
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Table 2: Enwik8 results. Measured in Bits Per Character (BPC): the lower the better. Baseline compar-
isons are made with Reformer (Kitaev et al., 2020), Synthesizer (Tay et al., 2020), Linear Transformer
(Katharopoulos et al., 2020a), Performer (Choromanski et al., 2020), Stacked LSTM (Graves, 2013)
and SHA-LSTM (Merity, 2019). L, d and T denote the number of blocks (network depth), dimension
of features, and sequence length, respectively. Both Linear Transformer and Performer are imple-
mented with customized CUDA kernels (github.com/idiap/fast-transformers), and
all other models are implemented in native Pytorch.

Method Spiking L d T Train BPC Test BPC Complexity Params.

Transformer ✗ 12 512 1024 0.977 1.137 O(T 2 · d) 43.0M

Reformer ✗ 12 512 1024 1.040 1.195 O(T logT · d) 40.1M
Synthesizer ✗ 12 512 1024 0.994 1.298 O(T · d2) 42.8M
Linear Transformer ✗ 12 512 1024 0.981 1.207 O(T · d2) 43.0M
Performer ✗ 12 512 1024 1.002 1.199 O(T · d2logd) 43.0M

Stacked LSTM ✗ 7 - - 1.420 1.670 O(T · d2) -
SHA-LSTM (no attention) ✗ 4 1024 1024 - 1.330 O(T · d2) -

SpikeGPT 45M ✓ 12 512 1024 1.113 1.283 O(T · d) 45.1M
SpikeGPT 45M ✓ 12 512 3072 0.903 1.262 O(T · d) 45.1M

We also compared the Perplexity of SpikeGPT and GPT-2 based on WikiText-2 and WikiText-103
datasets on text generation tasks. The results are shown in Tab. 3. In the interest of fairly comparing
models of similar scales, we selected GPT-2 small and GPT-2 medium (Radford et al., 2019) with
parameter sizes similar to those of the fine-tuned 216M SpikeGPT. We found that after fine-tuning,
the performance of SpikeGPT on WikiText-2 has surpassed that of GPT-2 series. Unfortunately,
the performance of SpikeGPT on the larger WikiText-103 dataset has fallen behind the GPT-2
series models, which suggests a potential need for refined, and perhaps more sophisticated, training
methodologies for SpikeGPT when dealing with larger scale corpora, e.g., knowledge distillation (Bal
& Sengupta, 2023).

Table 3: Results on WikiText-2 and WikiText-103 measured in token-level perplexity. Lower values
indicate better performance. We report the perplexity when the lowest value was achieved on the
validation datasets. Note that for WikiText-2, we use both the WikiText-103 and WikiText-2 training
sets to extend the training corpus.

Method Parameters
WikiText-103 WikiText-2

Val. Test. Val. Test.

GPT-2 Small (Radford et al., 2019) 124M - 29.41 - 37.50
GPT-2 Medium (Radford et al., 2019) 345M - 26.37 - 22.76

SpikeGPT With Pre-training 216M 39.92 39.75 19.17 18.01

4.2 RESULTS ON NATURAL LANGUAGE UNDERSTANDING TASKS

For NLU tasks, we utilize SpikeGPT as a dynamic embedding generator that constructs embeddings
based on context. We compare SpikeGPT with text classification algorithms of similar scales,
including LSTM (Hochreiter & Schmidhuber, 1997), TextCNN (Kim, 2014), BERT (Kenton &
Toutanova, 2019), and the latest SNN-based text classification algorithm TextSCNN (Lv et al., 2023).
The accuracy on four datasets is shown in Tab. 4. The fine-tuned 216M SpikeGPT achieves the
second-highest performance among the models, only surpassed by BERT. BERT is a bidirectional
Transformer encoder that uses masked training to obtain a high-quality text embedding. However,
unlike SpikeGPT, BERT does not have the capability to generate text directly. Our 45M model
without any fine-tuning also achieves competitive results compared to the baseline models, indicating
the potential of SpikeGPT in NLU tasks. We also analyze the complexity of each method and show
that SpikeGPT can achieve linear complexity by using spiking neurons and a recurrent structure.
Unlike TextSCNN, our model does not require an additional temporal dimension for processing, as it
uses the sequence dimension iteratively during the forward-pass through the spiking neurons.
4.3 ABLATION STUDY

We conducted an extensive ablation study on SpikeGPT, including the vanilla RWKV configuration.
The study encompassed two primary modifications: the utilization of the Heaviside function for

8
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Table 4: Results of NLU tasks on four text classification datasets using both SNN and ANN methods.
Measured in classification accuracy: the higher the better. In the ‘complexity per layer’ column, we
compute the complexity of each method using the following notation: T is sequence length, d is the
embedding dimension, K is the convolution kernel size, and Tadditional is the additional temporal
dimension for feed-forward processing. Our model combines recurrent and spiking features and
does not need an extra temporal dimension for feed-forward processing, as it exploits the inherent
temporal dimension in the language model.

Method Spiking Recurrent Complexity per layer SST-2 SST-5 MR Subj.

TextCNN (Kim, 2014)EMNLP ✗ ✗ O(K · T · d2) 81.93 44.29 75.02 92.20
TextSCNN-Direct Training (Lv et al., 2023)ICLR-2023 ✓ ✗ O(Tadditional ·K · T · d2) 75.73 23.08 51.55 53.30
TextSCNN-ANN2SNN+Fine-tune (Lv et al., 2023)ICLR-2023 ✓ ✗ O(Tadditional ·K · T · d2) 80.91 41.63 75.45 90.60
LSTM (Tai et al., 2015) ✗ ✓ O(T · d2) 84.92 46.43 81.60 -
BERT (Kenton & Toutanova, 2019) ✗ ✗ O(T 2 · d) 91.73 53.21 86.72 -

SpikeGPT 45M ✓ ✓ O(T · d) 80.39 37.69 69.23 88.45
SpikeGPT 216M ✓ ✓ O(T · d) 82.45 38.91 68.11 89.10
SpikeGPT 216M With Pre-training ✓ ✓ O(T · d) 88.76 51.27 85.63 95.30

binarization in place of spiking neurons, and the replacement of the second-MLP activation function
in the SRFFN layer from ReLU2 to the spiking neuron LIF. The results are presented in Tab. 5.

For the Heaviside RWKV variant, we applied the Heaviside function directly to the RWKV layer
for binarization, in lieu of the LIF neuron. Specifically, we employed the Heaviside function for the
feed-forward process, and use the arctangent surrogate function to address the non-differentiable
nature of the Heaviside function during the backward pass, similar to the original SpikeGPT. For
SpikeGPT-S, we substituted the middle activation function in the SRFFN layer (as illustrated in
Eq. 10) with the spiking neuron LIF to introduce layer-level binary spiking.

The results presented in Tab. 5 reveal a stark performance disparity between using Heaviside for
RWKV binarization versus employing LIF. Furthermore, SpikeGPT-S and SpikeGPT-R represent a
pair of models with a slight variation to the activation function in the hidden dense layer in the SRFFN
module: SpikeGPT-S uses a spiking neuron thresholded activation function, whereas SpikeGPT-R
uses a ReLU2 activation function. SpikeGPT-S achieves competitive performance when compared to
SpikeGPT-R, the original SpikeGPT configuration. Notably, SpikeGPT-S exhibits superior training
loss compared to SpikeGPT-R, indicating that spiking neurons can enhance model performance in
certain cases.

Table 5: An ablation study showcases the impact of different architectural modifications on the
performance of SpikeGPT models, with all experiments conducted under the consistent settings of
L = 12, T = 1024, and d = 512. The evaluation includes Vanilla RWKV as the baseline model
without any modifications, Heaviside RWKV, which replaces all spiking neurons with Heaviside
functions, SpikeGPT-S featuring a variation where the middle activation in the SRFFN block is also
a spiking neuron rather than ReLU2, and SpikeGPT-R, representing the default configuration of
SpikeGPT.

Model Vanilla RWKV Heaviside RWKV SpikeGPT-S SpikeGPT-R

Train BPC 1.014 1.318 1.109 1.113
Test BPC 1.201 1.403 1.306 1.283

5 CONCLUSION

Our results demonstrate that event-driven spiking activations are not only capable of language
generation, but they can do so with fewer high-cost operations. We develop techniques that promote
lightweight models for the NLP community, and make large-scale models for the neuromorphic
and SNN community more effective. We demonstrate how large SNNs can be trained in a way that
harnesses advances in transformers and our own serialized version of the attention mechanisms. An
open-source repository for training SpikeGPT, along with a set of fine-tuned models will be made
available online upon conclusion of the anonymous peer review process. These have been included in
the supplementary materials in the meantime. We expect this research can open new directions for
large-scale SNNs.
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APPENDIX

A DATASETS AND BASELINES

A.1 DATASETS

We conducted experiments on two major types of tasks, Natural Language Generation (NLG) and
Natural Language Understanding (NLU).
For NLG tasks, we chose the following 3 classic text classification datasets to evaluate the text
generation performance of SpikeGPT: Enwik8 (Mahoney, 2011), WikiText-2 (Merity et al., 2017)
and WikiText-103 (Merity et al., 2017).

• Enwik8. The Enwik8 dataset is a subset of the English Wikipedia XML dump from March
2006. It contains the first 100 million bytes of the dump and is typically used to measure a
model’s ability to compress data. The dataset is based on the Hutter Prize, a competition for
lossless compression of human knowledge. We split the tokens into three subsets: 90% for
training, 5% for validation, and 5% for testing.

• WikiText-2. WikiText-2 is a natural language dataset comprising a collection of 2 million
tokens derived from Wikipedia articles. This dataset is commonly utilized for benchmarking
various natural language processing models.

• WikiText-103. The Wikitext-103 dataset is a large collection of text extracted from Wikipedia
articles that are verified as Good or Featured. It contains over 100 million tokens and covers
a wide range of topics and domains. The dataset is suitable for language modeling tasks that
require long-term dependencies and rich vocabulary. The Wikitext-103 dataset is a larger
and more diverse version of the Wikitext-2 dataset.

For NLU tasks, we chose the following 4 classic text classification datasets to evaluate the performance
of our proposed SpikeGPT: MR (Pang & Lee, 2005), SST-5 (Socher et al., 2013), SST-2 (Socher
et al., 2013), Subj. (Pang & Lee, 2004)

• MR (Pang & Lee, 2005). It consists of movie review files, labeled based on their overall
sentiment polarity (positive or negative) or subjective rating.

• SST-5. The Stanford Sentiment Tree Library 5 includes 11855 sentences extracted from
movie reviews for sentiment classification (Socher et al., 2013). There are 5 different
categories (very negative, negative, neutral, positive, and very positive)

• SST-2 (Socher et al., 2013). It is a binary version of SST-5, with only two classes (positive
and negative).

• Subj (Pang & Lee, 2004). Classify sentences in the dataset as subjective or objective.

The sample sizes and text lengths of these datasets vary. If there is no standard training test segmenta-
tion, we will follow Lv et al. (2023) and randomly select 10% of the samples from the entire dataset
as the test set.

A.2 BASELINES

To verify the effectiveness on NLG and NLU tasks of our proposed SpikeGPT, we compare it with
the following representative baselines:

For NLG, we list the baselines that we have selected as follows:

• Stacked LSTM. A model architecture that stacks multiple LSTM modules together.

• SHA-LSTM (Merity, 2019). An LSTM model that follows by a single attention head layer.

• Transformer (Vaswani et al., 2017). Transformer is a state-of-the-art neural network archi-
tecture, leveraging self-attention mechanisms to capture global dependencies of sequential
data.

• Reformer (Kitaev et al., 2020). Reformer is an extensible variant of the Transformer model.
By introducing the invertible sheaf and using the local sensitive hash mechanism, it solves
the problem of low memory and computing efficiency of the traditional Transformer, and
realizes efficient processing of long sequences.
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• Synthesizer (Tay et al., 2020). Synthesizer is also a variant of Transformer, which is a
model that learns to synthesize attention weights without token-token interaction.

• Linear Transformer (Katharopoulos et al., 2020b). Linear Transformer is a lightweight
variant of Transformer that uses linear transformation layers to construct a self attention
mechanism.

• Performer (Choromanski et al., 2020). A variant of Transformer that does not depend on
sparsity or low-rankness assumptions and could use linear complexity to accurately estimate
attention weights.

• GPT-2 (Radford et al., 2019). GPT-2 is a transformer-based language model that specifi-
cally functions as a decoder. It is an extensively trained, large-scale generative model using
the autoregressive paradigm. To ensure compatibility with the parameter sizes of SpikeGPT,
we selected GPT-2 medium and GPT-2 small as suitable alternatives.

For NLU, the baselines we have selected are as follows:

• LSTM (Hochreiter & Schmidhuber, 1997). LSTM model is a type of recurrent neural
network with the ability to capture and utilize long-term dependencies in input sequences.

• TextCNN (Kim, 2014). TextCNN is a convolutional neural network architecture specifically
designed for text classification tasks, leveraging convolutional layers to capture local patterns
and features in textual data.

• TextSCNN (Lv et al., 2023). A variant of TextCNN model that combines spiking neural
networks.

• BERT (Kenton & Toutanova, 2019). BERT is a bidirectional language model based on the
Transformer Encoder-only architecture and an auto-encoding training paradigm.

B EXPERIMENT SETTINGS

We test two variants of the 45 million parameter model; one where T = 1, 024 and another where
T = 3, 072. We used the Enwik8 dataset to conduct both training and testing in 45M scale, and our
most extensive model with 216 million parameters was trained using the OpenWebText2 (Gao et al.,
2020) corpus for pre-training. In our 45M model, we employ a character-level tokenizer, as has been
done in previous works Zhai et al. (2021). To evaluate the performance of our model, we calculate its
BPC metrics. To mitigate the issue of overfitting, we incorporate dropout after the output of each
SRFFN block and set the dropout ratio to 0.03. In our 216M model with pre-training, we employ the
Byte Pair Encoding (BPE) tokenizer and share the same hyper-parameters as GPT-NeoX (Black et al.,
2022). Due to the availability of sufficient data for pre-training, we do not incorporate dropout as we
did in our 45M model and remove the binary embedding but use the first layer neurons for encoding.
To facilitate better convergence, we utilize a warmup technique during the first 500 training steps. For
both the 45M and 216M models, we use the Adam optimizer, and set the learning rate to 6× 10−4

and 4× 10−4, respectively. All experiments were conducted on four NVIDIA V100 graphic cards.
For the models of 45M and 216M, we trained them for 12 and 48 hours respectively.

C DETAILS OF RWKV
C.1 TOKEN SHIFT

Given an input X , we perform a token shift operation on it as follows:

Xs = ZeroPad[0,0,−1,1](X)

Wshift =

[
(
i

E
)n/N

]
, i = 1, · · · , E

X = Wshift ⊙X + (1−Wshift)⊙Xs

(16)

where ZeroPad1 denotes the zero padding operation, Wshift represents a learnable shift mask, E is
the embedding size of each token, t is the current block, and T is the total number of blocks.

1The subscript [0, 0,−1, 1] is written with PyTorch syntax in mind, where −1 clips the top row and 1
zero-pads the bottom row.
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C.2 GENERAL RWKV
Inspired by the Attention Free Transformer (Zhai et al., 2021), RWKV acts as a replacement for
self-attention. It reduces computational complexity by swapping matrix-matrix multiplication with
a convolution that sweeps along the time dimension. We subsequently modify this step to instead
operate recurrently on input data. This modification enables compatibility with recurrent SNNs, thus
making it more manageable to run on limited resources.

Given an input token-shifted embedding vector X , similar to self-attention, RWKV first applies a
linear transform R = XMR, K = XMK , V = XMV

2. X is a time-varying embedding (varying
over the sequence), and so R,K, V are also time-varying. Fig. 1 depicts the sequence unrolled into a
set of 2-D matrices.

MR, MK and MV consist of learnable parameters, where K and V can be likened to the key and
value matrices of self-attention. R is referred to as the receptance matrix, where each element
indicates the acceptance of past information.

Next, the following operation is applied:

Yt = σ(Rt)⊙
∑t

i=1 exp(W(T+i−t))⊙ exp(Ki)⊙ Vi∑t
i=1 exp(W(T+i−t))⊙ exp(Ki)

(17)

where ⊙ is the element-wise product, T is the sequence length, σ is the non-linearity applied to
R with the default being Sigmoid; W ∈ RT×E is the positional weight decay matrix (represented
as a vector unrolled over time in Fig. 1). W encodes the sequential importance of a given word
on subsequent words. It is not directly learnable, but it varies over time with learnable dynamics.
Long-range dependence can be captured when the dynamics are learnt to decay slowly.

Intuitively, as time t increases, the vector Yt is dependent on a longer history, represented by the
summation of an increasing number of terms.

For the target position t, RWKV performs a weighted summation in the positional interval of [1, t], and
takes the Hadamard product of the weighted result with the receptance σ(Rt). By taking the Sigmoid
of Rt, the receptance acts as a ‘forget gate’ by eliminating unnecessary historical information.

C.3 POSITIONAL WEIGHT DECAY

The positional weight bias matrix W is determined by three matrices, Wd, Wc and Wf , parameterized
as follows:

Wd = ln(Ws),Ws ∈ RE×1 (18)

Wc = [(−T + 2) (−T + 3) (−T + 4) · · · −1 0] ∈ R1×(T−1) (19)

Wf = [ln(pk) ln(pk) · · · ln(pk)] ∈ RE×1 (20)

where Ws is a pre-calculated matrix dependent on the layer and size of E, the vector Wd contains the
decay factors for each time-step, Wc is an indicator of time-step, and Wf is the initial decay factor to
avoid the constant decay phenomenon of RNNs. Wd and Wf are both learnable, and Wc is a static,
pre-calculated matrix based on training time-step. pk is a hyperparameter, which is set to 0.3 in this
paper.

C.4 PARALLELIZE RWKV USING 1-D CONVOLUTION

Eq. 17 only calculates the weighted summation across target positions t. On the basis of Eq. 17, the
values of all target positions can be represented as a 1-D convolution:

Y = σ(R)⊙ exp(W )⊗ (LeftPad(exp(K)⊙ V ))

exp(W )⊗ LeftPad(exp(K))
(21)

where ⊗ denotes the 1-D convolution operation, LeftPad applies zero-padding to all columns preced-
ing the T − 1th position.

2{MR,MK ,MV } ∈ RE×H , where H denotes hidden size. In RWKV, we set E = H .
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Figure 3: Construction of the weight decay matrix W . Wd is the decay factor vector and uses Wc to
obtain the actual decay value at each time-step. Wf is the decay factor of the initial time-step, and is
concatenated with the previous decay factor to derive the final weight decay W . The weight decay
W is represented as a vector unrolled over time into a matrix.
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Figure 4: A demo of Parallelize RWKV, where we set the sequence length N = 4, embedding size
E = 3.

First, we concatenate the matrices Wd and Wf into a larger convolutional kernel denoted as W , as
illustrated in Fig. 3. Consider W to be a large convolutional kernel, performing a convolution with
the matrix exp(K) (or exp(K) ⊙ V ). The computational complexity of the complete convolution
is O(ET 2) (assuming the number of filters matches the sequence length, and E is the embedding
size). This can be further optimized by adopting the Fast Fourier Transform (FFT ) to reduce the
time complexity of the whole convolution operation to O(ET logT ).

As shown in Fig. 4, given a text sequence N with length of 4, set the embedding size E to 3. The
RWKV parallel process is a 1-d convolution process with eW as the large convolution kernel and
eKV as the feature.

D FURTHER DISCUSSIONS

D.1 SELF-ATTENTION AND RWKV

Recall Self-Attention. The self-attention operation lies at the heart of Transformers. In Transformers,
self-attention takes an input sequence X , and applies a scaled dot product attention. Formally,
self-attention is defined as:

f(X) = σ

(
Q(K)T√

dk

)
V, s.t. Q = XMQ,K = XMK , V = XMV (22)
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where MQ ∈ Rd×dk , MK ∈ Rd×dk , MV ∈ Rd×dv are linear transformations, and σ is the non-
linearity function by default set as the softmax (applied to each row of a matrix). dk, dv are dimensions
for key and value, respectively. Self-attention enables the model to learn the dependencies between
any two tokens in a sequence.

Similarity to Multi-Headed Self-Attention. Distinct from the method of calculating the matching
degree3 between tokens by the self-attention mechanism, RWKV decomposes the calculation of
matching degree into: αij = σ(Ri)⊙ exp(WT−i+1)⊙ exp(Kj), where αij ∈ RE is a vector. Each
element in αij , that is αijk, represents the matching degree at the k-th position of the embedding of
the i-th and j-th tokens. In other words, it can be seen as a multi-headed RWKV with E heads, each
of which has a hidden size=1, which is similar to the multi-headed self-attention (MHA) mechanism.

D.2 VISUALIZATION OF SPIKE AND MEMBRANE POTENTIAL

(a): Membrane potential of SRFFN layer. (b): Membrane potential of spiking RWKV layer.

(c): Spike output of SRFFN layer. (d): Spike output of spiking RWKV layer.

Figure 5: Visualization of spike and membrane potential of neurons. Figure (a) and (b) depict the
membrane potential of the SRFFN layer, while figure (c) and (d) display the spike patterns observed
in the SRFFN layer, where each dot represents a spike event.

To gain a more comprehensive understanding of SpikeGPT, we conducted visualizations of the spike
and membrane potential patterns in the Spiking RWKV layer and Spiking Receptance Feed-Forward
Networks (SRFFN) layers (Fig. 5). These visualizations clearly reveal distinct differences between the
Spiking RWKV and SRFFN layers, indicating diverse information representation patterns. Notably,
the SRFFN layer exhibits a higher firing rate, suggesting that it may retain more information similar
to Transformer FFN layers (Geva et al., 2021). It is worth noting that in various studies, outliers in
Transformer-based language models have been shown to significantly impact performance, making
them a crucial concern in the quantification of large language models (Wei et al., 2022). Therefore,
understanding and addressing the implications of outliers in SpikeGPT are of utmost importance,
particularly in the context of optimizing its overall performance and reliability. However, due to
the binary nature of SNNs, these outliers cannot be expressed in activation values as in ANNs.
Nevertheless, a notable observation is the presence of prominent outliers in the membrane potential
of individual neurons, many of which are negative. This finding suggests that SpikeGPT employs a
different approach to accommodate and preserve outliers.

3A scalar in self-attention, αij = QiK
T
j
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E GENERATION EXAMPLES

Context → Who are you?
I am the AI.
Who are you?
I am Jack.
Who are you?
I am a woman.
Who are you?

----- Generated Answer 1 ----- ----- Generated Answer 2 -----

Amy. I am the woman who is,
The amazing thing is, in my book.
you can tell the stories about what happened to me.

Figure 6: Example of text generated by SpikeGPT. The model is trained on OpenWebText2.

Context → <start>

----- Generated Answer -----
”so what do you think of me? ”
I asked.
he was standing behind me, still looking at the posters,
and I suddenly knew what he was asking.
“ what do you think of me? ”
I looked up at him , the corners of his lips pressed together.
”I don’t know.”
he looked at me and I was staring at him, not even realizing what he was doing.
all I could do was watch him,
look at him, listen to his voice,
and then I would fall back to the stage and look at him.

Figure 7: Example of text generated by SpikeGPT. The model is trained on BookCorpus.

Context →
In a shocking finding, scientist discovered a herd of dragons living in a remote,
previously unexplored valley, in Tibet. Even more surprising to the researchers was
the fact that the dragons spoke perfect Chinese.

----- Generated Answer -----

In a separate case, they found that their earliest ancestor were extinct. They did
not have the physical condition of the tree. The discovery of a Chinese zoo was
the latest study by archaeologist Peter Horowitz, who led the researchers at the
University of Texas, who made the discovery a great example. The researchers also
examined the significance of the artifacts of the bones, the humanoid skeleton, the
skull, the cell parts and the outer jaws. The species is believed to be located
in the mountains and to provide information about the artifacts of the island. The
discovery shows that this is a large area in the surrounding area of a local island,
which has a huge influx of the populations.

Figure 8: Example of text generated by SpikeGPT. The model is trained on OpenWebText2.
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Context →
Pinky
The pink ghost’s AI is designed to ”feel” opposite of the red ghost’s behavior.
Pinky actually attempts to get out in front of Pac-Man. This is accomplished by
setting the target 4 tiles ahead of Pac-Man’s current location in the direction that
Pac-Man is travelling. One exception to this is when Pac-Man is traveling up. Due
to an overflow bug in the code, the calculation includes a left offset equal to the
expected up offset.

----- Generated Answer -----
This is where the AI is able to see how much the AI is still in motion. This is
because the player can control the location of the player in the real world. It
can also predict the movement of the player by moving the screen forward towards the
player. This is why the game is so powerful when it comes to setting the target up.
This means that the player can be able to see what is happening in the world, but not
exactly where the player is. This allows the player to see where they are at and
how far the player is heading. The game can also be used to track the location of
the player, and even track the location of the player. In addition to this, the game
can also track the location of enemies in the sky and detect targets. It can also
also monitor the location of enemies in the area, such as the locations of buildings,
schools, schools, or even buildings where a player is in a situation where the player
can see the world around them.
One of the most interesting features of the game is the ability to control the
direction of the player. This allows players to choose between the location of the
player they want to fly, or the distance of the enemy location. This allows players
to see the direction of the player, as well as where they want to go. The game also
supports navigation, and can also track the location of vehicles in the sky.

Figure 9: Example of text generated by SpikeGPT. The model is trained on OpenWebText2.

Context →
Aaron loves mint chocolate cake, but he requires that it be paired with mini
chocolate chips, so I threw some of those in between the layers. I also had a few
Peppermint Jo Jos on hand so I crushed them up and threw some of those in along with
some crushed meringue cookies because, why not? It’s a total smorgasbord of minty
chocolate chippy cookie crunchy goodness. I didn’t measure how much of each topping
I used, but after I tasted the finished product, I wish I had added more. You can
add anything you want- crushed candy canes, peppermint bark, etc. And don’t be
afraid to use a heavy hand. Texture = good.

----- Generated Answer -----
Pour out of the cupcake, cut out some vanilla butter, then add sugar and vanilla.
Remove from heat until thick and smooth, then place into the pan for 10 minutes until
golden brown. Turn on and off, stirring until the cake’s browned, as if it were
black chocolate and orange syrup.

Figure 10: Example of text generated by SpikeGPT. The model is trained on OpenWebText2.
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Context →
Corporal Michael P. Goeldin was an unskilled laborer from Ireland when he enlisted in
Company A in November 1860. Goldein survived the war. Corporal Patrick O’Neal, also
from Ireland, first enlisted in 1854 and served with Company L, 3d U.S. Artillery, in
Oregon. He returned to the East Coast and enlisted in the company in 1860. O’Neal
served until 1874, when he was named superintendent of the National Cemetery at
Willets Point, New York. Corporal Benjamin Browne was a shoemaker from Orange
County, New York. In August 1862, he enlisted in the newly formed 124th New York
Volunteers, and was one of sixty-one men who transferred into Company A that October.
Browne reenlisted in the company in February 1864 while it was camped at Brandy
Station. He returned to civilian life after completing his enlistment in 1867. On
10 June, Artificer William Collins was promoted to corporal, probably to fill a
combat leadership void for the crossing of the James River. Collins’s service record
does not reflect the qualities he demonstrated to earn this promotion, but he had
obviously overcome some serious problems. Born in Sacketts Harbor, New York, Collins
enlisted in the company in December 1853 at the age of twenty-two, and reenlisted in
December 1858. Just a month before the war began in April 1861, Collins went ”over
the hill” and was not caught until three years later. Returned to the company on 22
March 1864,

----- Generated Answer -----

he was tried for possession of marijuana and attempted first degree murder.
For more information on Collins on Twitter visit www.facebook.com/JoeCollins
In April 1879, Collins was sentenced to life in prison for two counts of first degree
murder: first degree first degree first degree murder, second degree second degree
second degree murder,

Figure 11: Example of text generated by SpikeGPT. The model is trained on OpenWebText2.

Context →
Prehistoric man sketched an incredible array of prehistoric beasts on the rough
limestone walls of a cave in modern day France 36,000 years ago. Now, with the help
of cutting-edge technology, those works of art in the Chauvet-Pont-d’Arc Cave have
been reproduced to create the biggest replica cave in the world. The manmade cavern
named the Caverne du Pont-d’Arc has been built a few miles from the original site
in Vallon-Pont-D’arc in Southern France and contains 1,000 painstakingly-reproduced
drawings as well as around 450 bones and other features... Cavemen and women
sketched an incredible array of prehistoric beasts on the rough limestone walls of
a cave 36,000 years ago and now a replica has been created (pictured) that show how
beautiful the cave was in the 70s and 80s

----- Generated Answer -----

Scroll down for video
Growth of a rare cave on a cliff near the river level near the Great Wall of
Barcelona (pictured right): The world’s oldest stone cave in Italy has been
discovered in part because of ancient cave erosion.
It has become a key part of modern archaeology to determine how the pyramids lived
before the Stone Age.
In an open letter dated 19 June, archaeologists from the University of Barcelona say
they found the excavation and excavation on the site ’significant’.

Figure 12: Example of text generated by SpikeGPT. The model is trained on OpenWebText2.

21


	Introduction
	Related Works
	Methods
	Leaky Integrate-and-Fire Neuron
	Model Architecture
	Binary Embedding
	Efficient Processing of Variable-Length Sequences Using Spiking RWKV
	Spiking Receptance Feed-Forward Networks (SRFFN)
	Training & Inference
	Theoretical Energy Consumption Analysis

	Experiments
	Results on Natural Language Generating Tasks
	Results on Natural Language Understanding Tasks
	Ablation Study

	Conclusion
	Datasets and Baselines
	Datasets
	Baselines

	Experiment Settings
	Details of RWKV
	Token Shift
	General RWKV
	Positional Weight Decay
	Parallelize RWKV using 1-D Convolution

	Further Discussions
	Self-Attention and RWKV
	Visualization of Spike and Membrane Potential

	Generation Examples

