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Abstract

Bayesian optimization (BO) offers an efficient pipeline for optimizing black-box
functions with the help of a Gaussian process prior and an acquisition function
(AF). Recently, in the context of single-objective BO, learning-based AFs witnessed
promising empirical results given its favorable non-myopic nature. Despite this,
the direct extension of these approaches to multi-objective Bayesian optimization
(MOBO) suffer from the hypervolume identifiability issue, which results from the
non-Markovian nature of MOBO problems. To tackle this, inspired by the non-
Markovian RL literature and the success of Transformers in language modeling, we
present a generalized deep Q-learning framework and propose BOFormer, which
substantiates this framework for MOBO via sequence modeling. Through extensive
evaluation, we demonstrate that BOFormer constantly achieves better performance
than the benchmark rule-based and learning-based algorithms in various synthetic
MOBO and real-world multi-objective hyperparameter optimization problems.

1 Introduction

Bayesian optimization (BO) offers a sample-efficient pipeline for optimizing black-box functions
in various practical applications, such as hyperparameter optimization [1–3], analog circuit design
[4, 5], and automated scientific discovery [6, 7]. Notably, these real-world engineering tasks usually
involve multiple objective functions, which are potentially conflicting. To search for the set of
candidate solutions under a sampling budget, multi-objective BO (MOBO) integrates the following
two components: (i) MOBO utilizes Gaussian processes (GP) as a surrogate function prior for
capturing the underlying structure of each objective function and thereby offering posterior predictive
distributions in a compact manner; (ii) MOBO then iteratively determines the samples through an
acquisition function (AF), which induces an index-type strategy based on the posterior distributions.
The existing AFs are built on various design principles, such as maximizing one-step expected
improvement [8, 9] and maximizing one-step information gain [10–12]. However, the existing AFs
for MOBO are mostly handcrafted and myopic, i.e., greedily optimize a one-step surrogate and lack
long-term planning capability. With that said, one important and yet under-explored challenge of
MOBO lies in the design of non-myopic AFs.

In single-objective BO (SOBO), one promising non-myopic approach is to recast BO as a reinforce-
ment learning (RL) problem, and several RL-based algorithms [13–15] have recently witnessed
competitive empirical results. Specifically, AFs could be parameterized by neural networks and
learned by either actor-critic [13] or valued-based RL [14], where the state-action representation
consists of the posterior mean and variance of a candidate point as well as the best function value
observed so far, and the reward is defined as a function of negative simple regret, as shown in Figure
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Figure 1: Left: In SOBO, an RL-based AF (e.g., FSAF [14]) takes the posterior mean and standard
deviation (µt(x), σt(x)) and the best function value observed so far y∗t as input and then outputs the
AF value Υt(x). An direct extension to MOBO simply takes into account the same set of information
about all the K objective functions. Right: The hypervolume identifiability issue can be illustrated by
comparing the hypervolume improvement incurred by the sample x3 in the two different scenarios
above. Clearly, despite that the AF inputs at x3 are the same in both scenarios, the increases in
hypervolume upon sampling x3 are rather different. Hence, the increase in hypervolume is not
identifiable solely based on the AF input (µ(i)

t (x), σ
(i)
t (x)), y

(i)∗
t )i∈[K] of the existing RL-based AFs.

1. However, a direct extension of these single-objective RL-based AFs to MOBO could suffer from
the fundamental hypervolume identifiability issue. To better illustrate this, we provide a motivating
example in Figure 1, which shows that one can construct a pair of scenarios that cannot be distin-
guished based solely on the current posterior distributions and the current best values. This example
also highlights that the identifiability issue actually results from the inherent non-Markovianty in
MOBO as the improvement in hypervolume is history-dependent. Note that this identifiability issue
is much milder in the SOBO setting since a good candidate point (i.e., with a high function value)
remains good regardless of the history. As a result, there remains one important open challenge in
MOBO:

How to learn a non-myopic AF for MOBO without suffering from the above identifiability issue?

To tackle the above challenge, we propose to rethink MOBO from the perspective of non-Markovian
RL via sequence modeling. Specifically, motivated by the optimality equations in the general non-
Markovian RL [16], we tackle the hypervolume identifiability issue by presenting the non-Markovian
version of deep Q-network termed Generalized DQN, which extends the standard Markovian DQN
[17] by learning the generalized optimal Q-function defined on the history of observations and
actions. To implement Generalized DQN, inspired by the significant success of the Transformers
in language modeling, we propose BOFormer, which leverages the sequence modeling capability
of the Transformer architecture and thereby minimizes the generalized temporal difference loss. As
a general-purpose multi-objective optimization solver, the proposed BOFormer is trained solely on
synthetic GP functions and can be deployed to optimize unseen testing functions. Moreover, to
facilitate the training process, we present several useful and practical enhancements for BOFormer:
(i) Q-augmented observation representation: Regarding the representation of per-step observation,
we propose to use the posterior of the candidate point augmented with its Q-value, which serves as
an informative indicator of the prospective improvement in hypervolume. Under this design, the
representation is completely domain-agnostic and memory-efficient in the sense that it does not
increase with the domain size. (ii) Prioritized trajectory replay buffer and off-policy learning: To
improve convergence and data efficiency during training, we utilize a prioritized trajectory replay
buffer, which can be viewed as a generalization of the typical replay buffer of vanilla DQN. Through
this buffer, BOFormer naturally supports off-policy learning and more flexible reuse of training data.
(iii) Demo-policy-guided exploration: While randomized exploration (e.g., epsilon-greedy) remains
popular in many RL algorithms, this exploration scheme can be very inefficient as the sampling
budget in BO is usually much smaller than the domain size (i.e., the number of actions). To achieve
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efficient exploration, we propose to collect part of the training trajectories through a helper demo
policy. In practice, one can resort to a policy induced by any off-the-shelf rule-based AFs, such as
Expected Hypervolume Improvement [8].

Notably, as a general-purpose multi-objective optimization solver, BOFormer enjoys the following
salient features: (i) No hypervolume identifiability issue: Built on the proposed Generalized DQN
framework, BOFormer systematically addresses the identifiability issue such that it can approximately
recover the Pareto front under a small sampling budget. (ii) Zero-shot transfer: BOFormer is trained
solely on synthetic GP functions and can achieve zero-shot transfer to other unseen testing functions.
With that said, it does not require any fine-tuning or any metadata during inference at deployment. (iii)
Cross-domain transfer capability: BOFormer nicely supports cross-domain transfer in the sense that
the domain size and dimensionality of the black-box functions for training can be different from those
of the testing functions. (iv) No Monte-Carlo estimation needed during inference: As a learning-based
AF, BOFormer completely obviates the need for the computationally heavy Monte-Carlo estimation
required by many rule-based AFs and thereby enjoys efficient inference during deployment. The
main contributions could be summarized as follows:

• We identify the critical hypervolume identifiability issue due to the inherent non-Markovianity in
learning the AFs for MOBO. To resolve this, inspired by the literature of general RL, we present
the Generalized DQN framework for non-Markovian environments.

• To substantiate the Generalized DQN framework, we propose BOFormer, which leverages the
Transformer architecture and reinterprets MOBO as a sequence modeling problem. To the best of
our knowledge, BOFormer serves as the first RL-based AF for MOBO. Moreover, several practical
enhancements are proposed to facilitate the training of BOFormer.

• We evaluate the proposed BOFormer on a variety of black-box functions, including both synthetic
optimization functions and real-world hyperparameter optimization problems. We demonstrate that
the proposed AF significantly outperforms both the existing rule-based AFs and other Transformer-
based RL benchmark methods.

2 Related Work

2.1 Multi-Objective Bayesian Optimization

Random Scalarization: To leverage the plethora of AFs for SOBO in the MOBO setting, random
scalarization addresses MOBO via iteratively solving single-objective BO subproblems under a
scalarization function, such as a direct weighted sum or the Tchebycheff scalarization function
[18]. Notably, random scalarization was originally developed for recovering the Pareto front under
evolutionary methods, such as the celebrated ParEGO [19], MOEA/D [20], and RVEA [21], and has
been subsequently adapted to solving MOBO [22, 23]. Despite its simplicity, as random scalarization
enforces exploration mainly by the random sampling of the scalarization parameters, this approach
is known to be sensitive to the scale of the different objective functions and could suffer under
high-dimensional search spaces [24].

Improvement Maximization: Another popular class of AFs is built on the maximization of
improvement-based metrics, such as the expected one-step improvement in hypervolume (EHVI) in
[8, 25, 26, 9] (also known as the S-metric in [27, 28]), sequential uncertainty reduction [29], and
the hypervolume knowledge gradient [30]. However, evaluating the one-step expected improvement
typically involves a multi-dimensional integral, which is difficult to derive directly and hence needs
to be approximated by the costly Monte Carlo estimation. Accordingly, to tackle the above computa-
tional complexity issue, differentiable methods have recently been developed to enable fast parallel
evaluations of these AFs, such as qEHVI [31, 32] and qNEHVI [33] in the BoTorch framework [34].

Information-Theoretic Search Methods: Various information-theoretic criteria have been utilized
in the context of MOBO. For example, Hernández-Lobato et al. [10] proposes Predictive Entropy
Search for MOBO (PESMO), which selects the candidate point with maximal reduction in the entropy
of the posterior distribution over the Pareto-optimal input set, and is subsequently extended to the
constrained setting [35]. Subsequently, Belakaria et al. [11] propose MESMO, which extends the
Max-value Entropy Search approach [36] to the principle of output space entropy search for MOBO,
i.e., utilizes the information gain about the Pareto-optimal output set as a more computationally
tractable sampling criterion [37]. Suzuki et al. [38] propose Pareto-Frontier Entropy Search, which
utilizes information gain of the Pareto front in the AF design. Moreover, Joint Entropy Search (JES)
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further takes into account the joint information gain of the Pareto-optimal set of inputs and outputs
[12, 39]. On the other hand, USeMO [40] uses the volume of the uncertainty hyper-rectangle as an
alternative uncertainty measure for sampling.

Despite the plethora of AFs developed for MOBO, most of them are built on optimizing one-step
information-theoretic metrics and do not explore the possibility of multi-step look-ahead policies.
By contrast, the proposed BOFormer takes the overall long-term effect of each sample into account
through non-Markovian RL and sequence modeling.

2.2 Single-Objective Black-Box Optimization via Learning

Several recent attempts have tackled SOBO problems from the perspective of RL-based AFs. Volpp
et al. [13] propose MetaBO, which leverages actor-critic RL to learn AFs from GP functions for
transfer learning. Subsequently, Hsieh et al. [14] proposes a meta-RL framework termed Few-Shot
Acquisition Function (FSAF), which learns a Bayesian deep Q-network as a differentiable AF and
adapts the Bayesian model-agnostic meta-learning [41] in order to enable few-shot fast adaptation to
various black-box functions based on metadata. [15] proposes to solve SOBO through a combination
of transformer-based deep kernels and RL-based acquisition functions. Despite the above, the existing
solutions all focus on SOBO under the standard RL formulation and therefore cannot be directly
applied to the non-Markovian problem of MOBO. Moreover, as optimization of single-objective
black-box functions is essentially a sequential decision making problem, several recent attempts
manage to learn sequence models in an end-to-end manner. For example, Chen et al. [42] propose
OptFormer, which focuses on hyperparameter optimization (HPO) and leverages Transformers
through fine-tuning on an offline dataset to enable adaptation to the HPO tasks. More recently,
Maraval et al. [43] propose Neural Acquisition Process (NAP), which is a multi-task variant of Neural
Process (NP) simultaneously learning an acquisition function and the predictive distributions, without
using the surrogate GP model. To the best of our knowledge, our paper offers the first learning-based
solution to MOBO.

Remarks on Application Scope and Objectives: Notably, there are two salient differences between
BOFormer and the above two works: (i) Application scope: BOFormer is positioned as a general-
purpose multi-objective black-box optimization solver with superior cross-domain capability (i.e., the
size and the dimensionality of the input domains can be different between the training and deployment
phases). In contrast, OptFormer is designed specifically for HPO, and NAP is built on the idea of
transfer learning in BO and has limited cross-domain transferability. (ii) Multiple objectives: Both
OptFormer and NAP focus on single-objective problems and are not readily applicable to recovering
the Pareto front in the multi-objective setting. By contrast, BOFormer directly tackles multi-objective
optimization and addresses the inherent identifiability issue. Therefore, we consider the above
OptFormer and NAP as orthogonal directions to ours. Moreover, the proposed BOFormer can also
benefit from the learned neural process in NAP and other variants of NPs [44, 45] as surrogate models
beyond GPs.

Due to the page limit, we defer the related works on sequence modeling for RL to Appendix B.2.

3 Preliminaries

In this section, we present the formulation of MOBO and the background of general RL. Throughout
this paper, we let ∆(Z) denote the set of all probability distributions over a set Z and use [K] as a
shorthand for {1, · · · ,K}.

3.1 Multi-Objective Bayesian Optimization

The goal of MOBO is to design an algorithm that sequentially takes samples from the input domain
X ⊂ Rd to jointly optimize a black-box vector-valued function f : X → RK , under a sampling budget
T ∈ N. For ease of exposition, we also write f(x) := (f1(x), · · · , fK(x)) as the tuple of the K
scalar objective functions, for each x ∈ X. At each step t, the algorithm selects a sample point xt ∈ X
and observes the corresponding function values yt := (y

(1)
t , · · · , y(K)

t ), where y(i)t = fi(xt)+ εt,i is
the noisy observation of the i-th entry of the function output and εt,i’s are i.i.d. zero-mean Gaussian
noises. For notational convenience, we use F t := {(xi,yi)}i∈[t] to denote the observations up to t.
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Pareto Front and Hypervolume: To construct a (partial) ordering over the points of the input
domain, we say that f(x) dominates f(x′) if fi(x) ≥ fi(x

′) for all i ∈ [K] and fj(x) > fj(x
′) for

at least one element j. For simplicity, we write x ≻ x′ if f(x) dominates f(x′). Based on this, the
Pareto front (denoted by X ∗) is defined as the subset of X that cannot be dominated by any other
point in X, i.e., X ∗ := {x ∈ X|x′ ⊁ x, ∀x′ ∈ X}. An alternative description of the goal of MOBO
is to discover the Pareto front. Accordingly, MOBO algorithms are typically evaluated from the
perspective of hypervolume, which offers a natural performance metric for capturing the inherent
trade-off among different objective functions. Specifically, given a reference point u ∈ RK and any
subset X ⊆ X, the hypervolume of X is defined as [46]:

HV(X ;u) := λ

( ⋃
y∈RK

{
x′∣∣f(x) ≻ y ≻ u, x ∈ X

})
,

where λ(·) is the K-dimensional Lebesgue measure. In practice, the reference point can be configured
as u = (minx∈X f1(x), · · · ,minx∈X fk(x)). To evaluate a policy, we consider the simple regret
defined as R(t) := HV(X)−HV(X t), which measures the overall performance of the samples up to
time step t. For brevity, we simply use HV(X ) as a shorthand for HV(X ;u) in the sequel.

Gaussian Process as a Surrogate Model: To maximize hypervolume in a sample-efficient manner,
MOBO imposes a function prior through GP, which serves as a surrogate probabilistic model for
capturing the underlying structure of the objective functions. Specifically, as a Bayesian approach,
the GP assumes that for each objective function fi(·), the function values at any set of input points
form a multivariate Gaussian distribution, which can be fully characterized by a mean function
and a covariance kernel. Therefore, under a GP prior, given the observations F t up to time t,
the posterior predictive distribution of each fi(x) (x ∈ X) remains Gaussian and can be written
as N (µ

(i)
t (x), σ

(i)
t (x)2), where µ

(i)
t (x) := E[fi(x)| F t] and σ

(i)
t (x) :=

√
V[fi(x)| F t] can be

derived in closed form through matrix operations [47]. For notational convenience, we let µt(x) :=

(µ
(1)
t (x), · · · , µ(K)

t (x)) and σt(x) := (σ
(1)
t (x), · · · , σ(K)

t (x)).

Acquisition Functions: With the help of GPs, one natural way to address BO is through planning as
in optimal control (e.g., via dynamic programming). However, finding the exact optimal policy for BO
(either single- or multi-objective) is known to be computationally intractable in general due to the curse
of dimensionality. To tackle this issue, BO resorts to index-type strategies induced by an acquisition
function Υ(µt(x),σt(x)), which takes the posterior mean and variance as input and outputs an
indicator for quantifying the usefulness of each potential candidate sample point x ∈ X, typically
based on some handcrafted design criteria. For example, the celebrated Expected Hypervolume
Improvement (EHVI) method constructs an AF as ΥEHVI(µt(x),σt(x)) := E[HV(X t ∪{x}) −
HV(X t)| F t], which involves a multi-dimensional integral with respect to the posterior distribution
characterized by µt(x) and σt(x).

3.2 General RL in Non-Markovian Environments

To achieve RL without Markovianity, several generalizations of the standard Markov decision process
(MDP) have been proposed, such as the classic partially-observable MDPs [48, 49], the early works
on general RL [50–52], and the more recent attempts on RL for arbitrary environments [16, 53, 54].
In this paper, we consider the general RL formulation in [16, 53] to address policy learning beyond
Markovianity.
Environment: The general interaction protocol of the agent and the environment can be described as
follows. Let A and O denote the set of actions and observations, respectively. At each time t ∈ N,
the agent first receives a new observation Ot ∈ O from the environment and takes an action At ∈ A
based on the history Ht := (A0, O1, A1, · · · , At−1, Ot) observed so far. For simplicity, we let the
initial history H0 be empty. We also define the set of all n-step histories as H(n) := (A×O)n

and accordingly define the set of all finite histories as H :=
⋃

n≥0 H
(n). The transition dynamics

of the environment is captured by the transition function p : H×A → ∆(O), which determines
the transition probability p(o|h, a) ≡ P(Ot+1 = o|Ht = h,At = a) of observing o upon applying
action a under history h. Moreover, let r : H×A×O → [−rmax, rmax] denote the reward function.
Notably, the reward function r in non-Markovian environments is allowed to be history-dependent
and hence better suits the MOBO problems. Let γ ∈ [0, 1) denote the discount factor for the rewards.
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Policies and Value Functions: The agent specifies its strategy through a policy π : H → ∆(A),
which maps each history to a probability distribution over the action set. Let Π denote the set of all
policies. Similar to the MDP setting, we define value functions that reflect the long-term benefit of
following a policy π. Given a τ -step history h ∈ H,

V π(h) := Eπ

[ ∞∑
t=τ

γt−τr(Ht, At, Ot+1)
∣∣∣Hτ = h

]
,

Qπ(h, a) := Eπ

[ ∞∑
t=τ

γt−τr(Ht, At, Ot+1)
∣∣∣Hτ = h,Aτ = a

]
.

Moreover, we extend the definitions of the optimal value functions in MDPs to the non-Markovian
setting as

V ∗(h) := sup
π∈Π

V π(h), Q∗(h, a) := sup
π∈Π

Qπ(h, a). (1)

The proposition below offers a generalized version of the Bellman optimality equations and charac-
terizes V ∗ and Q∗.
Proposition 3.1 (Dong et al. [16]). The pair of (V ∗, Q∗) is the unique solution to the following
system of equations:

V (h) = max
a′∈A

Q(h, a′) (2)

Q(h, a) = Eo∼p(·|h,a),h′≡(h,a,o)

[
r(h, a, o) + γV (h′)

]
, (3)

where V : H → R and Q : H×A → R are bounded real-valued functions.

4 Methodology

4.1 Generalized DQN for Non-Markovian Problems

Motivated by the optimality equations in (2)-(3), we convert these fundamental properties into a
learning algorithm.

Loss Function: To learn Q∗, we adapt the loss function of the standard DQN to the generalized
non-Markovian version by minimizing the residual of the optimality equation. Let Qθ(h, a) denote
the parameterized Q-function. Then, the loss function of the generalized DQN is designed as

E(h,a,o)∼D

[(
r(h, a, o) + γmax

a′∈A
Qθ̄(h

′, a′)−Qθ(h, a)
)2

]
, (4)

where D is the underlying distribution of the observed histories during training, h′ = (h, a, o) is the
history for the next Q-value, and Qθ̄ is a copy of Qθ with parameters frozen.
Remark 4.1. The above loss function bears some resemblance to that of the POMDP variant of
DQN, such as Deep Recurrent Q-Networks (DRQN) in [55]. Despite this, one fundamental difference
is: The POMDP formulation presumes that there exists a hidden true state, which determines the
transitions and the reward function, and the hidden state is to be learned and deciphered by recurrent
neural networks in DRQN. By contrast, Generalized DQN does not make this presumption and
involves only the history of observations and actions.

Direct Implementation of Generalized DQN: To implement (4), one natural design is to leverage
sequence modeling (e.g., Transformers) and directly use the full observations as the input of the
sequence models. This design principle is widely adopted in Transformer-based RL [56–58] for
various popular RL benchmark tasks (e.g., locomotion and robot arm manipulation in MuJoCo [59]).
In the context of learning AFs for MOBO, one can apply this design principle and extend the
representation design of AF for SOBO (cf. Figure 1) to the MOBO setting, and this amounts to
taking the posterior distributions of all K objective functions at all the domain points along with
{y(i)∗t := argmaxj≤t−1 y

(i)
j }Ki=i the best function values observed so far as the per-step observation,

i.e., o ≡ {µ(i)(x), σ(i)(x), y(i)∗}x∈X ,i∈[K]. While being a natural variant of Transformer-based
RL, this implementation of the Generalized DQN framework can be problematic in MOBO for
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two reasons: (i) Limited cross-domain transferability: As the observation representation is domain-
dependent under this design, the learned model is tied closely to the training domain and has very
limited transferability. As a result, retraining or customization is needed for every task at deployment.
(ii) Scalability issue in sequence length and memory requirement: Under this design, the sequence
length would grow linearly with the number of domain points and pose a stringent requirement on
the hardware memory for training. Indeed, the domain size is at least on the order of thousands in
practical BO problems (e.g., circuit design [4] and hyperparameter optimization [1]).

To tackle the above issues, we propose an alternative design that better substantiates the Generalized
DQN framework for MOBO with domain-agnostic representations and several practical enhance-
ments, as detailed in Section 4.2.

4.2 BOFormer: An Enhanced Implementation of Generalized DQN

BOFormer (Target)

BOFormer (Policy)

Figure 2: BOFormer comprises two distinct networks as
shown above: The upper network functions as the policy
network, utilizing the historical data and the Q-value
predicted by the target network to estimate the Q-values
for action selection. The lower network serves as the
target network, responsible for constructing Q-values for
past observation-action pairs.

To avoid the issues of the direct imple-
mentation, we propose BOFormer, which
is built on the following enhancements.
The pseudo code is in Algorithm 1 in the
Appendix.

Q-Augmented Representation: Define

y
(i)∗
t := argmax

1≤j≤t
y
(i)
i ,∀i ∈ [1, · · · ,K]

as the best observed function value of j-th
objective at time t. Moreover, for each
domain point x ∈ X, let ot(x) denote the
observation for x as

ot(x) ≡
{
µ
(i)
t (x), σ

(i)
t (x), y

(i)∗
t ,

t

T

}
i∈[K]

.

Moreover, in BOFormer, we use the nor-
malized hypervolume improvement as the
reward, i.e.,

rt :=
HV(Xt)− HV(Xt−1)

HV(X ∗)− HV(Xt)
.

Then, ht, the history up to time t, is the concatenation of past observation-action pair representation
defined as follows:

ht =
{
µ
(i)
j (xj), σ

(i)
j (xj), y

(i)∗
j−1, j/t, ri, Qθ̄

}
i∈[k],j∈[t−1]

. (5)

Notably, under this design, the representation is domain-agnostic and memory-efficient in the sense
that its dimension does not increase with the domain size.
BOFormer as an Acquisition Function for MOBO: The model structure of BOFormer is provided
in Figure 2. Denote Qθ(·) : H(t−1) ×O → R to be the function of BOFormer parameterized
by θ and let θ̂ represent the parameters of BOFormer. The selected point xt satisfies that xt :=
argmaxx∈X Qθ̂ (ht, ot(x)).

Then, Qθ̄ considered in ht can be implemented by a target network, as is commonly done in Deep
Q-learning. In non-Markovian version, Qθ̄ can be defined recursively, where

Qθ̄(ht, ot(xt)) := Qθ̄

(
{oi(xi), ri, Qθ̄(hi−1, oi−1(xi−1))}t−1

i=1 , ot(xt)
)
.

Off-Policy Learning and Prioritized Trajectory Replay Buffer: We extend the concept of Priori-
tized Experience Replay (PER) [60] and introduce the Prioritized Trajectory Replay Buffer (PTRB).
The detailed modifications are as follows: (i) Elements pushed into this buffer are entire trajectories
τ = {oi(xi), ri}Ti=1. (ii) The TD-error considered in PER is replaced by δ(Qθt , τ), which is the
summation of the TD-error of the policy network for all transitions in this trajectory, i.e.,

δ(Q, τ) :=

T−1∑
i=1

(
Q (hi, oi(xi))−

(
ri + γmax

x∈X
Qθ̄(hi+1, oi+1(x))

))2
. (6)
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Let B denote the batch sampled from PTRB. The loss function of BOFormer is defined as L(θ) :=∑
τ∈B δ(Qθ, τ).

5 Experiments

In this section, we evaluate the proposed BOFormer against popular MOBO methods on both synthetic
and real hyperparameter optimization problems in YAHPO Gym [61]. Unless stated otherwise, we
report the average attained hypervolume over 30 evaluation episodes in the main text. Due to the space
limit, all the statistics (including percentiles and standard deviation) are provided in the Appendix.

Popular Benchmark Methods. We compare BOFormer with various classic and state-of-the-art
benchmark methods, including: (i) Rule-based methods: NEHVI [33], ParEGO [19], NSGA-II [62],
HVKG [30], and JES [12, 39]. Regarding NEHVI, ParEGO, and HVKG, we use the differentiable
Monte-Carlo version, namely qNEHVI, qParEGO, and qHVKG, provided by BoTorch [34]. (ii)
Learning-based methods: Given that BOFormer is the first learning-based MOBO method, we
consider the direct multi-objective extension of FSAF [14], which achieves state-of-the-art results in
SOBO. To showcase the design of BOFormer, we also adapt a popular RL Transformers, namely
Decision Transformer (DT) [56], to the MOBO setting. Moreover, we also include Q-Transformer
(QT) [58], a more recent Transformer design RL that uses a similar DQN loss (termed Autoregressive
Discrete Q-Learning in their paper) and can be viewed as a variant of BOFormer without Q-augmented
representation. To further demonstrate the competitiveness of BOFormer, we also compare it
with OptFormer [42], a recent Transformer-based method designed specifically for hyperparameter
optimization. All the learning-based methods are trained on GP functions under with the lengthscales
drawn randomly from [0.1, 0.4] for fairness. The detailed configuration is provided in Appendix A.

Q: Does BOFormer achieve sample-efficient MOBO on a variety of optimization problems?

Synthetic Functions: We answer this question by first evaluating BOFormer extensively on a diverse
collection of synthetic black-box functions: (i) Combinations of functions with many local optima,
including Ackley-Rastrigin (ARa) and Ackley-Schwefel-Rastrigin (ASRa); (ii) Combination of smooth
functions, including Branin-Currin (BC) and Dixon-Rosenbrock (DR); (iii) Combination of non-
smooth and smooth functions, including Ackley-Rosenbrock (AR) and Ackley-Rosenbrock-Sphere
(ARS). Figure 3 shows the averaged hypervolume on synthetic problems. Based on Figure 3, we can
observe that BOFormer constantly achieves the smallest or among the smallest regrets among all
methods and demonstrates a faster convergence rate in the early stages of testing. In the cases of
Branin and Currin, the performance of BOFormer is not as expected, which we attribute to the larger
length scales of these functions compared to others. Then, QT, a variant of the generalized DQN but
without Q-augmented representation, does not perform well. This indicates that sequence modeling
itself does not necessarily guarantee an efficient search for the Pareto front, and Q-augmented
representation are needed for solving MOBO, as showcased by the proposed BOFormer. Please see
Appendix D for the standard deviation and the percentiles of the final hypervolume.

Real-World Multi-Objective Hyperparameter Optimization: We proceed with evaluations on
four benchmark problems provided in the YAHPO Gym [61], including: (i) LCBench, introduced by
[63]. (ii) Random Bot V2 with classifier glmnet (rbv2-glmnet). (iii) Random Bot V2 with classifier
svm (rbv2-svm). (iv) Random Bot V2 with classifier xbgboost (rbv2-xbgboost), where the objective
functions of (i) are testing accuracy and negative cross entropy, and the objective functions of (ii-iv)
are testing accuracy and the area under ROC curve. Again, from Figure 4, we can observe that
BOFormer remains the best or among the best in all the tasks. This result demonstrates the wide
applicability of the proposed BOFormer. The detailed standard deviation and the percentiles of the
final hypervolume for YAHPO dataset is provided in Appendix D.

Q: The comparison between BOFormer and OptFormer. From Figures 3-4, we observe that the
performance of BOFormer surpasses that of OptFormer. We conjecture that the reasons are two-
fold: (i) OptFormer takes a supervised learning perspective to learn the context that describes the
HPO information while BOFormer leverages non-Markovian RL for better long-term planning. (ii)
OptFormer reinterprets HPO as a language modeling problem in a text-to-text manner. This approach
necessitates that the training dataset closely resembles the testing domain, and this requirement does
not hold here (e.g., dimensionality of the training domain differs from that of the testing domain).
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Q: A Study on the Effect of Sequence Length on BOFormer. We also conducted an ablation study
comparing the Markovian BOFormer (window size ω = 1) and non-Markovian BOFormer (window
size ω > 1) in Appendix D.3.

Q: A Study on Computational Efficiency. We provide computation times per step in Table 1.
BOFormer and qHVKG are competitive in final hypervolume (Tables 2-5), with BOFormer having
shorter computation time.
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Figure 3: Averaged attained hypervolume under synthetic objective functions.
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Figure 4: Averaged attained hypervolume under the YAHPO Gym datasets.

6 Conclusion

In this paper, we address MOBO problems from the perspective of RL-based AF by identifying and
tackling the inherent hypervolume identifiability issue. We achieve this goal by first presenting a
generalized DQN framework and implementing it through BOFormer, which leverages the sequence
modeling capability of Transformers and incorporates multiple enhancements for MOBO. Our
experimental results show that BOFormer is indeed a promising approach for general-purpose
multi-objective black-box optimization.
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A Detailed Training Configuration

A.1 Environment

In each testing or training episode, the agent interacts with the environment for a total of T = 100
time steps, and the observed function values are subject to noise ϵ ∼ N(0, 0.1). For learning-based
algorithms, the environment consists of K GP functions and returns the GP posterior mean and
variance after each sampling. The kernel is randomly chosen from the RBF or Matérn-5/2, and the
length scale is sampled from Uniform(0.1, 0.4).

During testing, the environment computes the log marginal likelihood based on all domain points
and the corresponding K function values. The function value benchmark and real-world function are
scaled by perturbation noise, which is sampled from N(0, 0.1).

A.2 Hyperparameter of Learning-Based Approaches

• BOFormer: hidden size: 128, learning rate: 10−5, weight decay: 10−5, rdemo: 5, batch size:
8, # of attention layer: 8, # of head of attention layer: 4, window size w = 31, dropout: 0.1,
buffer size: 64.

• DT*: hidden size: 128, learning rate: 10−4, weight decay: 10−4, batch size: 16, # of
attention layer: 3, # of head of attention layer: 2, embed dim: 500, dropout: 0.1, warmup
steps: 10, max length: 100.

• QT: hidden size: 128, learning rate: 10−5, weight decay: 10−5, rdemo: 5, batch size: 8, # of
attention layer: 8, # of head of attention layer: 4, window size w = 21, dropout: 0.1, buffer
size: 64.

• FSAF: alpha: 0.8, hidden size: 100, learning rate: 0.01, batch size: 128, few shot step: 5, #
of particles: 5, total task: 3, size of meta data: 100, use demo: True, early terminate: False,
select type: average.

• OptFormer: string length: 128, learning rate: 10−2, weight decay: 10−2, batch size: 1,
window size w = 10

• Common Hyperparameter: optimizer: Adam [64], ϵ-greedy rate: 0.1

A.3 Hyperparameter of Rule-Based Approaches

• qEHVI: q: 1
• qParEgo: q: 1, acquisition function: Expected Improvement
• JES: # of samples: 64, estimation type: LB
• NSGA-II: population size: 10, # of generations: 10, sampling: random
• USeMO: acquisition function: Expected Improvement, batch size: 1

B Additional Related Work

B.1 Transformers and Sequence Modeling for RL

Given the success of sequence-to-sequence models in language processing, RL has recently been
addressed through the lens of sequence modeling, especially transformers. For example, Chen et al.

*We reuse the open source implementation from https://github.com/jannerm/trajectory-transformer.
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[56] propose Decision Transformer (DT), which addresses offline RL by mapping return-to-go to
actions via transformers and thereby substantiating the concept of Upside Down RL [65]. The design
of DT has been subsequently extended to various settings, including online RL [66], multi-game
setting [67], and general information matching [68]. Concurrently, to tackle offline RL, Janner et al.
[57] propose Trajectory Transformer (TT), which serves as a predictive dynamics model and uses
beam search as a trajectory optimizer. More recently, Chebotar et al. [58] introduced Q-Transformer
(QT), which is trained by offline temporal difference updates and achieves scalable representation for
Q-functions by discretizing action dimensions as tokens on a Transformer, with a focus on robotic
tasks. By contrast, the proposed BOFormer is built on the (online) generalized DQN framework and
designed for addressing MOBO based on multiple enhancements.

B.2 A More Detailed Comparison to Q-Transformer

Q-Transformer (QT) [58] similarly incorporates the idea of utilizing a Transformer in learning the
Q-function. Despite this high-level design resemblance, the proposed BOFormer is different from
QT in multiple aspects:

• Problem Setting: QT is designed mainly to address offline RL, where the performance is highly
correlated to the quality of prior data, as a robotic learning approach and required to address
high-dimensional action spaces. By contrast, our work introduces BOFormer, which is trained to
solve MOBO by learning a generalized Q function based on the online interactions with synthetic
GP functions, and hence this can be viewed as an instance of online RL.

• Network Architecture: QT uses state-action sequences as the input of the Transformer. By
contrast, to resolve the hypervolume identifiability issue and achieve cross-domain transferability
simultaneously, the proposed transformer of BOFormer implements a generalized DQN and uses
the Q-augmented observation representation as the input of the transformer. This approach can
better address the non-Markovian property in MOBO.

• Training Algorithm: Compared to QT, the proposed BOFormer incorporates multiple practical
enhancements, including Q-augmented representation, reward normalization, and demo policy and
prioritized trajectory replay buffer for off-policy learning.

C Pseudo Code and Additional Implementation Details of BOFormer

C.1 Pseudo Code

The detailed pseudo code of the training processes for BOFormer under off-policy learning and
on-policy learning setting are provided in Algorithms 1 and 2, respectively.

C.2 Additional Implementation Details of BOFormer

Reward Signal With Normalization: In the MOBO setting, one natural reward design is the
one-step improvement in hypervolume, i.e., r̂t := HV(Xt)− HV(Xt−1). However, as the achieved
hypervolume increases, the reward signal r̂t can get weaker in the later stage of an episode, making it
difficult to recover the whole Pareto front. To address this, we construct rt, which is r̂t but scaled by
the difference between the current hypervolume and optimal hypervolume, as the reward signal for
RL in MOBO, i.e.,

rt :=
HV(Xt)− HV(Xt−1)

HV(X ∗)− HV(Xt)
. (7)

Remark C.1. The information about HV(X ∗) in (7) is used only during training and can be easily
pre-computed or approximated given the knowledge about the domain and the black-box functions.
Demo-Policy-Guided Exploration: To facilitate the off-policy learning of BOFormer, one natural
approach is to adopt a behavior policy with randomized exploration (e.g., epsilon-greedy) for
collecting trajectories from the environment. However, such a randomized exploration scheme can be
very inefficient as the sampling budget in MOBO is usually much smaller than the domain size (i.e.,
the number of actions). To better guide the exploration, we propose to use a demo policy, which is
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possibly sub-optimal but of sufficient strength in exploring regions near the Pareto front. In practice,
we set rdemo to be the probability of using a demo policy induced by an off-the-shelf AF for MOBO
(e.g., EHVI) in this training episode. The training processes of BOFormer for off-policy learning and
on-policy learning are provided in Algorithms 1 and 2, respectively.

Algorithm 1 Off-Policy BOFormer
1: Input: θ1, Training Episodes E, Time Horizon T , Demo Rate rdemo, Target Rate rtarget, Target

Network Qθ̄, Batch Size B, Replay buffer B, environment E .
2: for e = 1, 2, · · · , E do
3: E .reset()
4: se1 = E .state
5: demo = random.binomial(rdemo)
6: πe

t = ExpectedHypervolumeImprovement
7: for t = 1, 2, · · · , T do
8: if demo then
9: xe

t = πe
t (s

e
t )

10: else
11: for i = 1, 2, · · · , t− 1 do
12: Compute Qθ̄(h

e
i , o

e
i (x

e
i )) = Qθ̄

({
oej(x

e
j), r

e
j , Qθ̄(h

e
j−1, o

e
j−1(x

e
j−1))

}i−1

j=1
, oei (x

e
i )
)

.
13: end for
14: Select xe

t := argmaxx∈X Qθ̂ (h
e
t , o

e
t (x))

15: end if
16: set+1, r

e
t = E .step(xe

t )
17: end for
18: if e mod rtarget == 0 then
19: Qθ̄ = Qθe

20: end if
21: B.append(τe = {oei (xe

i ), r
e
i }Ti=1)

22: Sample B batches from B.
23: for b = 1, 2, · · · , B do
24: Compute Qb

θ̄
(hb

1, o
b
1(x

b
1)) = Qθ̄

(
ob1(x

b
1)
)

25: for i = 1, 2, · · · , T − 1 do
26: Compute Qb

θ̂
(hb

i , o
b
i (x

b
i )) = Qθ̂

({
obi (x

b
j), r

b
j , Qθ̄(h

b
j−1, o

b
j−1(x

b
j−1))

}i−1

j=1
, obi (x

b
i )
)

.

27: Compute Qb
θ̄
(hb

i , o
b
i (x

b
i )) = Qθ̄

({
obj(x

b
j), r

b
j , Qθ̄(h

b
j−1, o

b
j−1(x

b
j−1))

}i−1

j=1
, obi (x

b
i )
)

.
28: end for
29: end for

30: Loss(θ) =
∑B

b=1

∑T−1
t=1

(
Qb

θ̂
(hb

i , o
b
i (x

b
i ))− (rbt +max

x∈X
Qb

θ̄
(hb

i , o
b
i (x)))

)2

31: θe+1 = argmin
θ

Loss(θ)

32: end for

D Detailed Experimental Results

Due to the space limit, in this section, we provide all the detailed experimental results as follows:

D.1 Final hypervolume of Synthetic and YAHPO Problems

Final hypervolume of Synthetic Problems: The detailed results of final hypervolume of the six
synthetic problems are shown in Table 2-3. We can observe that BOFormer constantly achieves the
smallest or among the highest final hypervolume among all the MOBO algorithms.

Final hypervolume of YAHPO Problems: The detailed results of final hypervolume of the four
YAHPO problems are shown in Table 4-5. Again, we can observe that BOFormer constantly achieves
the smallest or among the smallest simple regret among all the MOBO algorithms throughout the
sampling episode.
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Algorithm 2 On-Policy BOFormer
1: Input: θ1, Training Episodes E, Time Horizon T , environment E ,
2: for e = 1, 2, · · · ,E do
3: E .reset()
4: s1 = E .state
5: for t = 1, 2, · · · , T do
6: Select xt := argmaxx∈X Qθt (ht, ot(x))
7: ot+1(x), rt = E .step(xt)

8: θt+1 = argmin
θ

(
Qθ (ht, ot(xt))− (rt + γmax

x∈X
Qθt

(ht+1, ot+1(x)))

)2

9: end for
10: end for

D.2 Detailed Regret Statistics

Due to the space limit, in this section, we further provide all the detailed statistics of the final simple
regrets:

Regret Statistics of Synthetic Problems: The results are provided in Table 2-3.

Regret Statistics of YAHPO Gym Problems: The results are provided in Table 4-5.

D.3 A Study on the Effect of Sequence Length on BOFormer

As mentioned in the main text, we also conduct an experiment on evaluating how the sequence
length would affect the hypervolume performance of BOFormer. Figure 5 below shows that the
hypervolume of non-Markovian BOFormer is better than Markovian BOFormer.
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Figure 5: Difference length of transformer used in BOFormer

D.4 A Study on Computational Efficiency

In this experiment, we provide the computation time per step for each method in Table 1. We observed
that both BOFormer and qHVKG are competitive methods in terms of final hypervolume as shown in
Table 2-5, with BOFormer demonstrating lower computation time than qHVKG.
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Table 1: Average inference time for one trial

Algs time(s)
BOFormer 0.3540
qNEHVI 0.1005
JES 0.3776
FSAF 0.0428
DT 0.0201
NSGA-II 0.00016
qParEGO 0.0906
OptFormer 7.5222
qHVKG 2.8061
QT 0.3518

Table 2: Mean, standard deviation, and the percentiles of final hypervolume for learning-based
methods under synthetic functions. The best value among all the learning-based and rule-based
methods is highlighted in bold and underlined.

AR ARa BC DR ARS ASR
BOFormer Mean 0.5880 0.7046 0.4160 0.9693 0.6226 0.4384

Std. 0.0608 0.1067 0.0208 0.0635 0.0695 0.0691
Q.90 0.6673 0.7939 0.4374 1.0536 0.7058 0.5012
Q.75 0.6239 0.7789 0.4269 1.0123 0.6801 0.4894
Q.50 0.5977 0.7587 0.4188 0.9560 0.6282 0.4716
Q.25 0.5768 0.5717 0.4006 0.9283 0.5939 0.3620
Q.10 0.4844 0.5374 0.3900 0.9066 0.5073 0.3359

FSAF Mean 0.4454 0.4861 0.4164 0.9100 0.4972 0.3518
Std. 0.0647 0.0834 0.0264 0.0985 0.1175 0.0685
Q.90 0.5310 0.5989 0.4459 0.9776 0.6152 0.4428
Q.75 0.4889 0.5351 0.4349 0.9589 0.5773 0.3885
Q.50 0.4521 0.4785 0.4134 0.9225 0.4718 0.3319
Q.25 0.3996 0.4338 0.3983 0.9007 0.4294 0.3071
Q.10 0.3627 0.3967 0.3909 0.8495 0.3694 0.2892

OptFormer Mean 0.4752 0.4938 0.4124 0.9336 0.4387 0.2807
Std. 0.0703 0.0890 0.0269 0.0677 0.0623 0.0532
Q.90 0.5432 0.5380 0.4501 1.0125 0.5100 0.3284
Q.75 0.5106 0.5263 0.4322 0.9810 0.4661 0.3093
Q.50 0.4760 0.4949 0.4056 0.9397 0.4276 0.2736
Q.25 0.4561 0.4305 0.3930 0.9057 0.3933 0.2508
Q.10 0.3791 0.3923 0.3821 0.8343 0.3673 0.2243

DT Mean 0.4207 0.4935 0.4105 0.9241 0.4469 0.3045
Std. 0.0797 0.0756 0.0206 0.0504 0.0787 0.0535
Q.90 0.5005 0.5953 0.4382 0.9870 0.4918 0.3473
Q.75 0.4860 0.5321 0.4252 0.9626 0.4736 0.3252
Q.50 0.4336 0.4876 0.4073 0.9211 0.4466 0.3058
Q.25 0.3434 0.4702 0.3929 0.8824 0.4091 0.2673
Q.10 0.3192 0.3666 0.3895 0.8592 0.3579 0.2447

QT Mean 0.4519 0.4989 0.4217 0.9035 0.4686 0.3218
Std. 0.0573 0.0855 0.0259 0.0527 0.0841 0.0537
Q.90 0.5241 0.5961 0.4502 0.9569 0.5891 0.3972
Q.75 0.4844 0.5386 0.4382 0.9272 0.5309 0.3389
Q.50 0.4475 0.4700 0.4237 0.9128 0.4425 0.3115
Q.25 0.4226 0.4436 0.4018 0.8771 0.4078 0.2896
Q.10 0.3773 0.4259 0.3926 0.8325 0.3646 0.2690
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Table 3: Mean, standard deviation, and the percentiles of final hypervolume for rule-based methods
under synthetic functions. The best value among all the learning-based and rule-based methods is
highlighted in bold and underlined.

AR ARa BC DR ARS ASR
qHVKG Mean 0.5956 0.7029 0.4795 0.9402 0.6275 0.4284

Std. 0.0478 0.0708 0.0208 0.0480 0.0644 0.0533
Q.90 0.6564 0.7828 0.5094 1.0041 0.7092 0.4763
Q.75 0.6252 0.7422 0.4897 0.9802 0.6676 0.4574
Q.50 0.5899 0.7122 0.4725 0.9402 0.6147 0.4464
Q.25 0.5586 0.6640 0.4676 0.9037 0.5921 0.4032
Q.10 0.5387 0.6138 0.4611 0.8824 0.5642 0.3669

NSGA2 Mean 0.5106 0.7132 0.4385 0.9578 0.5774 0.3840
Std. 0.1327 0.1084 0.0433 0.0452 0.0984 0.1087
Q.90 0.6426 0.8250 0.4944 1.0179 0.7055 0.5032
Q.75 0.6082 0.7897 0.4772 0.9835 0.6208 0.4652
Q.50 0.5247 0.7274 0.4331 0.9527 0.5938 0.4057
Q.25 0.4585 0.6606 0.4050 0.9276 0.5487 0.3038
Q.10 0.3177 0.6183 0.4009 0.9102 0.4340 0.2037

qNEHVI Mean 0.5507 0.6368 0.4911 0.9301 0.5865 0.4210
Std. 0.0487 0.0740 0.0210 0.0447 0.0572 0.0439
Q.90 0.6067 0.7222 0.5151 0.9866 0.6522 0.4866
Q.75 0.5823 0.6864 0.5062 0.9633 0.6144 0.4477
Q.50 0.5514 0.6716 0.4937 0.9245 0.5926 0.4148
Q.25 0.5230 0.5815 0.4789 0.9042 0.5609 0.3862
Q.10 0.4967 0.5378 0.4629 0.8660 0.5114 0.3721

JES Mean 0.5206 0.6676 0.4607 0.9197 0.5706 0.3883
Std. 0.0774 0.0781 0.0232 0.0535 0.0662 0.0565
Q.90 0.6057 0.7587 0.4827 0.9731 0.6628 0.4678
Q.75 0.5702 0.7042 0.4735 0.9495 0.6030 0.4247
Q.50 0.5300 0.6786 0.4645 0.9156 0.5628 0.3840
Q.25 0.4978 0.6224 0.4432 0.8899 0.5359 0.3467
Q.10 0.4425 0.5716 0.4327 0.8706 0.5217 0.3186

qParEGO Mean 0.5412 0.6212 0.4675 0.9228 0.5626 0.3884
Std. 0.0633 0.0704 0.0258 0.0507 0.0341 0.0563
Q.90 0.6113 0.7155 0.4978 0.9656 0.6093 0.4664
Q.75 0.5929 0.6669 0.4886 0.9484 0.5852 0.4233
Q.50 0.5449 0.6225 0.4665 0.9147 0.5572 0.3734
Q.25 0.5073 0.5680 0.4563 0.8983 0.5361 0.3483
Q.10 0.4738 0.5321 0.4329 0.8649 0.5250 0.3230
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Table 4: Mean, standard deviation, and the percentiles of final hypervolume for learning-based
methods under hyperparameter optimization scenarios. The best value among all the learning-based
and rule-based methods is highlighted in bold and underlined.

lcbench rbv2-xgboost rbv2-svm rbv2-glmnet
BOFormer Mean 0.1064 0.3495 0.1403 0.2364

Std. 0.0003 0.0041 0.0005 0.0013
Q.90 0.1168 0.3974 0.1538 0.2535
Q.75 0.1161 0.3923 0.1532 0.2524
Q.50 0.1120 0.3697 0.1494 0.2479
Q.25 0.1033 0.3357 0.1363 0.2396
Q.10 0.0932 0.2813 0.1183 0.2142

FSAF Mean 0.1007 0.3186 0.1331 0.2231
Std. 0.0002 0.0024 0.0005 0.0012
Q.90 0.1095 0.3523 0.1466 0.2403
Q.75 0.1085 0.3500 0.1450 0.2374
Q.50 0.1060 0.3332 0.1401 0.2351
Q.25 0.0986 0.3020 0.1290 0.2218
Q.10 0.0860 0.2787 0.1188 0.2054

OptFormer Mean 0.0996 0.3316 0.1309 0.2200
Std. 0.0003 0.0025 0.0004 0.0013
Q.90 0.1101 0.3625 0.1438 0.2386
Q.75 0.1080 0.3590 0.1428 0.2368
Q.50 0.1057 0.3468 0.1358 0.2337
Q.25 0.0982 0.3273 0.1273 0.2242
Q.10 0.0839 0.2959 0.1155 0.1893
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Table 5: Mean, standard deviation, and the percentiles of final hypervolume for rule-based methods
under hyperparameter optimization scenarios. The best value among all the learning-based and
rule-based methods is highlighted in bold and underlined.

lcbench rbv2-xgboost rbv2-svm rbv2-glmnet
qHVKG Mean 0.1035 0.3448 0.1380 0.2292

Std. 0.0003 0.0032 0.0004 0.0014
Q.90 0.1140 0.3801 0.1511 0.2500
Q.75 0.1127 0.3786 0.1488 0.2472
Q.50 0.1089 0.3671 0.1447 0.2406
Q.25 0.1020 0.3350 0.1355 0.2328
Q.10 0.0881 0.2810 0.1224 0.2037

NSGA2 Mean 0.1048 0.3514 0.1376 0.2336
Std. 0.0002 0.0022 0.0004 0.0009
Q.90 0.1153 0.3796 0.1501 0.2497
Q.75 0.1136 0.3762 0.1485 0.2480
Q.50 0.1092 0.3683 0.1431 0.2439
Q.25 0.1032 0.3450 0.1354 0.2334
Q.10 0.0870 0.2904 0.1140 0.1957

qNEHVI Mean 0.1076 0.3532 0.1395 0.2364
Std. 0.0003 0.0033 0.0005 0.0014
Q.90 0.1176 0.3913 0.1509 0.2540
Q.75 0.1170 0.3871 0.1493 0.2525
Q.50 0.1146 0.3739 0.1469 0.2477
Q.25 0.1092 0.3436 0.1384 0.2392
Q.10 0.0905 0.2984 0.1260 0.2185

JES Mean 0.1061 0.3529 0.1394 0.2328
Std. 0.0003 0.0032 0.0005 0.0015
Q.90 0.1177 0.3935 0.1531 0.2532
Q.75 0.1141 0.3885 0.1520 0.2505
Q.50 0.1108 0.3736 0.1476 0.2453
Q.25 0.1039 0.3438 0.1358 0.2332
Q.10 0.0915 0.2970 0.1198 0.2025

qParEGO Mean 0.1062 0.3537 0.1402 0.2338
Std. 0.0003 0.0030 0.0006 0.0015
Q.90 0.1178 0.3874 0.1545 0.2530
Q.75 0.1174 0.3838 0.1528 0.2522
Q.50 0.1137 0.3724 0.1489 0.2478
Q.25 0.1020 0.3489 0.1409 0.2351
Q.10 0.0848 0.2970 0.1113 0.1965
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