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Abstract
Recent work by Mania et al. (2019) has proved that certainty equivalent control achieves nearly op-
timal regret for linear systems with quadratic costs. However, when parameter uncertainty is large,
certainty equivalence cannot be relied upon to stabilize the true, unknown system. In this paper, we
present a dual control strategy that attempts to combine the performance of certainty equivalence,
with the practical utility of robustness. The formulation preserves structure in the representation of
parametric uncertainty, which allows the controller to target reduction of uncertainty in the parame-
ters that ‘matter most’ for the control task, while robustly stabilizing the uncertain system. Control
synthesis proceeds via convex optimization, and the method is illustrated on a numerical example.
Keywords: Dual control, linear systems, convex optimization

1. Introduction

Since the initial formulation of the ‘dual control’ problem by Feldbaum (1960) in the 1960s, learn-
ing to make decisions in uncertain and dynamic environments has remained a topic of sustained
research activity. However, recent years have witnessed a resurgence of interest in such problems,
inspired perhaps in part by the dramatic success of reinforcement learning, cf. Mnih et al. (2015);
Silver et al. (2016). Specifically, linear systems with quadratic costs, a.k.a. ‘the linear quadratic reg-
ulator’, have been the subject of intense recent study, cf. Matni et al. (2019). Such research typically
focuses on two main aspects: i) performance, usually measured in terms of bounds on regret, and
ii) robustness, i.e., stability of the closed-loop system, which is often important in practical applica-
tions. Concerning the former, the work of Mania et al. (2019) has proved that ‘certainty equivalent’
(CE) control (nearly) achieves the optimal regret bound; provided that this controller stabilizes the
system, which is the case when parameter uncertainty is sufficiently small. Inspired by this result,
the present paper attempts to combine the performance of certainty equivalence with the practical
advantages of robustness. Specifically, we propose a dual control strategy, for linear systems with
quadratic costs, that optimizes for performance of the nominal, i.e., most likely, system (as in CE
control), while robustly stabilizing the system in the presence of parametric uncertainty. The dual
controller performs ‘targeted exploration’, attempting to reduce uncertainty in the parameters that
‘matter most’ for control, while balancing the exploration-exploitation tradeoff.

The contributions of this paper are twofold. In §3.2, we present a convex formulation of opti-
mization of quadratic cost, for a nominal linear system, subject to robust stability guarantees under
parametric uncertainty. This extends the existing system level synthesis (SLS) framework, cf. Wang
et al. (2019b), by preserving structure in the representation of system uncertainty. In §3.3, we build
upon this formulation to present an (approximate) dual control strategy, exploiting the preservation
of structure to perform exploration that targets uncertainty reduction in the specific parameters that
are ‘preventing’ certainty equivalent control from stabilizing the uncertain true system.

c© 2020 J. Umenberger & T.B. Schön.
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Related work Of greatest relevance to the present paper is the work of Mania et al. (2019), which
proves that certainty equivalence, i.e., estimating model parameters via online least squares and then
applying LQR, achieves (nearly optimal) Õ(

√
T ) regret. This result holds when the parameter error

is sufficiently small so as to ensure closed-loop stability of the true system, which does not always
hold in practice, e.g., Dean et al. (2017). Many recent works have addressed the issue of robustness
in adaptive control, cf. Dean et al. (2017, 2018, 2019); Cohen et al. (2018). The work of Umenberger
et al. (2019), cf. also Ferizbegovic et al. (2019); Iannelli et al. (2019), attempts to do ‘targeted-
exploration’ by prioritizing uncertainty reduction in the system parameters to which performance is
most sensitive. These methods consider worst-case costs to bound performance on the true system,
and as such, can be conservative in practice. It is the ambition of this paper to combine the benefits
of ‘targeted exploration’ with a more ‘optimistic’ CE strategy, that optimizes for performance of
the nominal, rather than worst-case, system. Other recent work on adaptive linear quadratic control
includes Thompson sampling (e.g. Ouyang et al. (2017); Abeille and Lazaric (2017, 2018)), model-
free (e.g. Fazel et al. (2018); Malik et al. (2018)) and partially model-free (e.g. Agarwal et al.
(2019a,b)) methods, as well as the ‘optimism in the face of uncertainty’ heuristic (e.g. Abbasi-
Yadkori and Szepesvári (2011); Ibrahimi et al. (2012); Faradonbeh et al. (2019)).

2. Problem statement

In this section we describe in detail the problem addressed in this paper. Notation is largely stan-
dard. ⊗ denotes the Kronecker product. Sn denotes the space of n × n symmetric matrices. w.p.
means ‘with probability’. χ2

n(p) denotes the value of the Chi-squared distribution with n degrees of
freedom and probability p. The space of real, proper (strictly proper) transfer matrices is denoted
RH∞ (1zRH∞). With some abuse of notation, [t1, t2] for t1, t2 ∈ N denotes {t1, . . . , t2}.

Dynamics and modeling We are concerned with control of linear time-invariant systems

xt+1 = Axt +But + wt, wt ∼ N
(
0, σ2wInx

)
, x0 = 0, (1)

where xt ∈ Rnx , ut ∈ Rnu and wt ∈ Rn denote the state (which is assumed to be directly
measurable), input and process noise, respectively, at time t. We assume that the true parameters
{Atr, Btr} are unknown; as such, all knowledge about the true system dynamics must be inferred
from observed data, Dn := {xt, ut}nt=1. We assume that σw is known, or has been estimated, and
that we have access to initial data, denoted (with slight notational abuse) D0, obtained, e.g. dur-
ing a preliminary experiment. Given data Dn we define a model Mδ(Dn) = {Â, B̂,D}, where
(Â, B̂) := arg minA,B

∑n−1
t=1 |xt+1 − Axt − But|2 denote nominal parameters given by the ordi-

nary least squares estimates of (Atr, Btr), andD ∈ Snx+nu is a matrix that quantifies the uncertainty
in our nominal parameter estimate. Specifically, given a user-specified tolerance 0 < δ < 1,

D := 1
σ2
wcδ

∑n−1
t=1

[
xt
ut

] [
xt
ut

]>
, where cδ = χ2

n2
x+nxnu

(δ), defines a 1−δ probability credibility

region for the true parameters as follows:

Lemma 1 (Umenberger et al. (2019)) Given data Dn from (1) with true parameters A = Atr and
B = Btr, and a user-specified 0 < δ < 1, define the set

Θm(Mδ(Dn)) := {A, B : X>DX � I, X = [Â−A, B̂ −B]>}. (2)

where {Â, B̂,D} =Mδ(Dn). Then {Atr, Btr} ∈ Θm(Mδ) w.p. 1− δ.
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Lemma 1 is a consequence of the fact the posterior distribution of parameters A,B (for a uni-
form prior) is Gaussian for models of the form (1), cf. e.g. Umenberger and Schön (2018). Similar
credibility regions have been attained using results from high-dimensional statistics in recent works
such as Dean et al. (2017).

Control objective Our objective is to design a feedback control policy ut = φ(x1:t, u1:t−1) so as
to minimize the cost function

∑T
t=1 c(xt, ut), where c(xt, ut) = x>t Qxt+u

>
t Rut for user-specified

positive semidefinite matrices Q and R. When the parameters of the true system, {Atr, Btr}, are
known this is the well-known LQR problem. As discussed, we do not assume knowledge of the true
parameters; as such, the controller must regulate and learn the system simultaneously. To this end,
we partition the total ‘control time’ [1, T ] into two intervals: [1, Te] and [Te + 1, T ] for Te ∈ N. At
time t = 1, given initial data D0, a policy φ1 is designed and applied to the system for t ∈ [1, Te].
Then, at time t = Te + 1, a new policy φ2 is designed, based on D0 and data DTe collected under
φ1. Policy φ2 is then applied for t ∈ [Te + 1, T ]. We can write this control task as:

min
φ1,φ2

E
∑T

t=1
c(xt, ut), s.t. dynamics in (1) with A = Atr, B = Btr, (3)

ut = φ1(·), t = 1, . . . , Te, ut = φ2(·), t = Te + 1, . . . , T.

One can think of the first interval, [1, Te], as an ‘exploration’ or ‘learning’ period where the data
collected is used to design an improved controller, φ2, applied during the second interval [Te+1, T ],
which could be considered an ‘exploitation’ period. However, the task is to minimize the total cost
therefore, it is important to balance exploration and exploitation. The decision to nominate a specific
time, Te, at which the control policy will be ‘updated’ requires some justification. A more natural
formulation might update the controller whenever new data becomes available. We shall discuss this
aspect of the formulation in more detail in §3.4, where alternative formulations are considered. For
now, suffice to say that this formulation, i) simplifies the presentation of the technical developments
to follow, and ii) still captures the importance of balancing ‘exploration’ with ‘exploitation.’

Observe that the control task in (3) depends on the true, but unknown, system parameters
Atr, Btr, as we want to optimize for performance on the true system. In place of the true system
parameters, we will optimize for our ‘best guess’ of the parameters, i.e., the nominal parameters
Â, B̂ from least squares corresponding to the mode of the posterior distribution. To ensure reason-
able behavior of the true system in closed-loop, we also require the controllers to stabilize the true
system with high probability. Let SCL(A,B, φ) denote the closed loop system formed by combining
(1) with the policy φ. The problem addressed in this paper is as follows:

min
φ1,φ2

E
∑T

t=1
c(xt, ut) (4a)

s.t. xt+1 = Â1xt + B̂1ut + wt, {Â1, B̂1} =Mδ(D0), ut = φ1(·), t ∈ [1, Te] (4b)

xt+1 = Â2xt + B̂2ut + wt, {Â2, B̂2} =Mδ(D0 ∪ DTe), ut = φ2(·), t ∈ [Te + 1, T ], (4c)
SCL(A,B, φ1) is stable ∀{A,B} ∈ Θm(Mδ(D0)) (4d)

SCL(A,B, φ2) is stable ∀{A,B} ∈ Θm(Mδ(D0 ∪ DTe)), wt ∼ N
(
0, σ2wInx

)
∀t. (4e)

3. Controller synthesis

In this section, we present an approximate solution to the problem presented in (4). In what follows,
bold symbols denote the z-transform of time domain signals, e.g., the z-transform of x is denoted
x.
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3.1. Preliminary results from System Level Synthesis

In this section we review some essential results from the System Level Synthesis (SLS) framework
proposed by Wang et al. (2019b); for a comprehensive tutorial, cf. Anderson et al. (2019). Consider
the closed-loop behavior of (1) under the stabilizing controller u = Kx; in particular, consider the
transfer functions Φx and Φu from disturbance w to state x and control u, respectively. This can

be expressed as
[

x
u

]
=

[
Φx

Φu

]
w. Following in the spirit of the Youla parameterization, rather

than designing the controller K to obtain the closed-loop responses Φx = (zI − A − BK)−1 and
Φu = KΦx, in SLS one designs the closed-loop responses directly, and then recovers the controller
as K = ΦuΦx

−1. The following theorem characterizes the space of all closed-loop responses
achievable by a stabilizing controller.

Theorem 2 (Anderson et al. (2019), Theorem 4.1) The affine subspace defined by[
zI −A −B

] [ Φx

Φu

]
= I, Φx,Φu ∈

1

z
RH∞, (5)

parametrizes all closed-loop responses achievable by a stabilizing controller. Further, the response
is achieved by the controller K = ΦuΦx

−1.

The following theorem considers a ‘perturbed’ version of the constraints in (5), that is useful for
synthesizing robust controllers, e.g., when the system parameters A,B are uncertain.

Theorem 3 (Anderson et al. (2019), Theorem 4.3) Suppose that Φx,Φu,∆ satisfy[
zI −A −B

] [ Φx

Φu

]
= I + ∆, Φx,Φu ∈

1

z
RH∞. (6)

Then the controller K = ΦuΦx
−1 stabilizes system (1) with parameters A,B if and only if (I +

∆)−1 is stable.

While the preceding theorems define affine subspaces (i.e. (5) and (6)) that are convenient to op-
timize over, the decision variables Φx and Φu are infinite dimensional transfer matrices. As is
common in the SLS framework, we will work with finite impulse response (FIR) approximations:

Φx(z) =
∑F

k=0
Φk
xz
−k, Φu(z) =

∑F

k=0
Φk
uz
−k. (7)

Henceforth, we will restrict our attention to policies of the form φ(z) = Φu(z)Φx(z)−1.

3.2. Robust control formulation

In this section, we present a convex formulation of the following problem: (approximately) optimize
the infinite-horizon quadratic cost, for a given nominal model {Â, B̂}, while robustly stabilizing
all models {A,B} in the model set Θm(Mδ). This result extends existing SLS formulations, by
preserving the structure in the representation of uncertainty captured by D.

Following straightforward calculations, cf. e.g. (Anderson et al., 2019, §2.2.2), the infinite
horizon cost function can be written as

lim
τ→∞

1

τ

τ∑
t=1

E[c(xt, ut)] = E

∥∥∥∥∥
[
Q

1
2 0

0 R
1
2

] [
x
u

]∥∥∥∥∥
2

F

= σ2w

∥∥∥∥∥
[
Q

1
2 0

0 R
1
2

][
Φx

Φu

]∥∥∥∥∥
2

H2

(8)
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subject to the affine constraints in (5) with the nominal parameters Â, B̂, i.e.,

[
zI − Â −B̂

] [ Φx

Φu

]
= I. (9)

By making use of the FIR approximation in (7), the rightmost side of (8) can be written as:

JH2 = σ2w

∥∥∥∥∥
[
Q

1
2 ⊗ IF 0

0 R
1
2 ⊗ IF

] [
Φ̄x

Φ̄u

]∥∥∥∥∥
2

F

, (10)

where Φ̄x =
[
Φ>x (0) . . .Φ>x (F )

]> and Φ̄u =
[
Φ>u (0) . . .Φ>u (F )

]>, denote the FIR parameters
from (7), stacked vertically. Note that (10) is a convex quadratic function of Φ̄x and Φ̄u.

To ensure robustness of the policy on the true, unknown system (as in, e.g., (4d)), we make use
of Theorem 3. Specifically, as Φx and Φu are constrained to satisfy (9), we can express ∆ in (6)
as ∆ = (Â− Atr)Φx + (B̂ − Btr)Φu, by substituting (9) into (6), with A = Atr and B = Btr. By
Theorem 3, the controller ΦuΦx

−1 will stabilize the true system, if and only if (I+∆)−1 is stable.
Of course, ∆ is defined in terms of Atr, Btr, which are unknown; however, by Lemma 1, they are
known to lie in Θm(Mδ) with high-probability. A sufficient condition for stability of (I +∆)−1 is
given by the small gain theorem: ‖∆‖H∞

≤ 1 implies stability of (I + ∆)−1. The H∞-norm of a
transfer matrix can be computed/constrained as follows:

Lemma 4 (Dumitrescu (2007)) Let H(z) =
∑F

i=0H(i)z−i, withH ∈ Rp×m and H̄ =
[
H(0)> . . . H(F )>

]>.
Then ‖H‖H∞

≤ γ iff there exists P ∈ Sp(F+1) satisfying

P =


P00 P01 · · · P0F

? P11 · · · P1F

? ?
. . .

...
? ? ? PFF

 ,
F∑
i=0

Pii = γI,
F−k∑
i=0

Pi(i+k) = 0, k = 1, . . . , F, (11a)

[
P H̄
H̄> I

]
� 0. (11b)

We can now present the main contribution of this section.

Theorem 5 Given a modelMδ = {Â, B̂,D}, a convex upper bound for minφ limτ→∞
1
τ

∑τ
t=1 E[c(xt, ut)]

for a system (1) with parameters A = Â and B = B̂, subject to the constraint that the controller φ
stabilizes all models in Θm(Mδ), is given by J∗∞(Mδ) = minφ J∞(φ,Mδ), where

J∞(φ,Mδ) :=

{
JH2(Φx,Φu) | (9), ∃P, λ ∈ R s.t. (11a),

 P 0 Φ̄
0 (1− λ)I 0
Φ̄> 0 λD

 � 0

}
(12)

where Φ̄ =

[
Φx(0) . . . Φx(F )
Φu(0) . . . Φu(F )

]>
, and φ can be realized as φ = ΦuΦx

−1.

5



OPTIMISTIC ROBUST DUAL CONTROL

Proof The convex program minΦx,Φu,P JH2(Φx,Φu) s.t. (9) optimizes the infinite-horizon cost.
All that remains is to ensure robust stability: a sufficient condition is ‖∆‖H∞

≤ 1. This sufficient,
but not necessary, condition is the source of the conservatism, i.e., the reason we only have an upper
bound. ‖∆‖H∞

≤ 1 can be enforced by combining Lemma 4 with the following lemma:

Lemma 6 (Luo et al. (2004)) The data matrices (A,B, C,P,F ,G,H) satisfy, for all X with I −
X>PX � 0, the robust fractional quadratic matrix inequality

[
H F + GX

(F + GX)> C +X>B + B>X +X>AX

]
� 0, iff

 H F G
F> C − λI B>
G> B A+ λP

 � 0,

(13)

for some λ ≥ 0.

Note that ∆> = [Φx
>, Φu

>][Â − Atr, B̂ − Btr]
> = [Φx

>, Φu
>]X where X is defined in (2).

Furthermore, ‖∆‖H∞
≤ 1 ⇐⇒

∥∥∆>∥∥H∞
≤ 1. Let H(z) (from Lemma 4) denote ∆>, then the

(11b) can be put in the form of the MI on the left in (13) by choosing H = P , G = Φ̄, C = I , and
A,B,F all zero. Further, by choosing P = D in Lemma 6, the condition I � X>PX is equivalent
to {Atr, Btr} ∈ Θm(Mδ), cf. (2). The final constraint (LMI) in (12) is then equivalent to the second
LMI in (13), which implies that

∥∥∆>∥∥H∞
≤ 1 for the true model parameters w.p. 1− δ.

Observe that this formulation preserves the structure in the uncertainty representation, as en-
coded in the matrix D. This is in contrast to other SLS methods, e.g., Dean et al. (2017, 2019), that
reduce model uncertainty to a single (or at most two) scalar quantities, e.g., ‖Â−Atr‖2 ≤ εA.

3.3. Robust dual control formulation

In this section we return to the dual control problem outlined in (4), namely: minimize cost over
[1, T ], via an initial policy φ1, designed using data D0, and applied for t ∈ [1, Te], followed by a
second policy φ2, designed using additional data DTe , and applied for t ∈ [Te + 1, T ]. The key idea
is dual control: φ1 affects not only the cost, but also the data DTe available for the design of φ2.

Infinite-horizon approximation In what follows, we will approximate the cost
∑N

t=1 Ec(xt, ut)
by the infinite-horizon (i.e. stationary value) N × limτ→∞

1
τ

∑τ
t=1 Ec(xt, ut). Such an approxima-

tion can be expected to be valid when the horizon N is sufficiently long, so as to allow the system
to reach the stationary distribution. Alternatives to this approximation are discussed in §3.4. With
the infinite horizon approximation, we can express (4) as

min
φ1

Te × J∞(φ1,Mδ(D0)) + (T − Te)× J∗∞(Mδ(D0 ∪ DTe)). (14)

Note the dependence of the cost during [Te, T ] on DTe . Note also that φ2 is defined implicitly by
J∗∞, cf. (12). Problem (14) cannot be solved exactly, as it depends on DTe which is not available at
time t = 1. As such, we must predict the influence that φ1 will have on ‘future’ data DTe .

Propagating uncertainty To approximately solve (14), we require an approximation ofMδ(D0∪
DTe), i.e., M̃(φ1) ≈ E[Mδ(D0 ∪DTe)|D0, φ1]. LetMδ(D0) = {Â1, B̂1, D1}. We then define the
approximate model as M̃(φ1) =: {Â1, B̂1, D̃}. First, note that we approximate the predicted nom-
inal parameters by the current estimates. Updating these estimates based on the expected value of

6
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future data involves difficult integrals that must be computed numerically, which would destroy con-
vexity, cf. Lobo and Boyd (1999). The predicted ‘uncertainty matrix’ D̃ is defined as follows. Given

DTe , D at time Te can be computed as D1 + 1
σ2
wcδ

∑Te
t=1

[
xt
ut

] [
xt
ut

]>
. We can approximate the

empirical covariance with stationary distribution over x and u; i.e., as with the stationary approxi-

mation of the cost in (8), we have:
∑Te

t=1

[
xt
ut

] [
xt
ut

]>
≈ TeE

[
xt
ut

] [
xt
ut

]>
= Teσ

2
wΦ̄
>Φ̄.

We then define D̃ := D1 + Te
cδ
Φ̄>Φ̄.

Convex relaxation of dual control By substituting the approximate model M̃(φ1) forMδ(D0 ∪
DTe) in (14), we can remove the dependence of the cost on unknown future data. Furthermore,
observe that (for fixed λ) the LMI constraint in (12) is linear inD. This implies that we can optimize
over D and φ jointly, as a convex program. Unfortunately, D̃ in M̃(φ1) is a quadratic function of
φ1, and so directly substituting D → D̃ results in a non-convex matrix inequality.

To circumvent this difficulty, we introduce the following linear approximation of D̃:

D` := D1 +
Te
cδ

(
Φ̄>Φ̄nom + Φ̄>nomΦ̄− Φ̄>nomΦ̄nom

)
, Φ̄nom = arg min

K
J∞(K,Mδ(D0)). (15)

D` is nothing more than a first-order approximation of D̃, linearized at Φ̄nom. We could linearize at
any arbitrary point; however, the solution Φ̄nom to the nominal robust control problem given D0 is a
natural choice. Furthermore,D` � D̃, as (Φ̄−Φ̄nom)>(Φ̄−Φ̄nom) � 0 ⇐⇒ Φ̄>Φ̄ � Φ̄>Φ̄nom +
Φ̄>nomΦ̄− Φ̄>nomΦ̄nom. We now present the main contribution of this section: given the initial model
Mδ(D0) = {Â1, B̂1, D1}, the problem minφ1 Te × J∞(φ1,Mδ(D0)) + (T − Te)× J∗∞(M̃(φ1))
admits the following convex upper bound:

min
Φx

1,Φu
1,Φx

2,Φu
2,P 1,P 2,λ1

Te × JH2(Φx
1,Φu

1) + (T − Te)× JH2(Φx
2,Φu

2) (16a)

s.t. {Φx
1,Φu

1} and {Φx
2,Φu

2} each satisfy (9) with A = Â1, B = B̂1 (16b)

P 1, P 2 each satisfy (11a) (16c) P 1 0 Φ̄1

0 (1− λ1)I 0
(Φ̄1)> 0 λ1D1

 � 0,

 P 2 0 Φ̄2

0 (1− λ2)I 0
(Φ̄2)> 0 λ2D`

 � 0 (16d)

where Φ̄i is defined analogously to Φ̄ in Theorem 5, for i = 1, 2. As D` � D̃, the feasible set
for (16) with D` (in (16d)) is smaller than that of the program with (quadratic) D̃. Therefore, (16)
constitutes an upper bound. Notice that (16) is only convex for fixed λ2, due to bilinearity with D`.
In practice, one has to grid search over the scalar parameter λ2.

3.4. Discussion

In this section, we discuss the partitioning of [1, T ] into two sub-intervals. A downside of this ap-
proach is that it requires the user to explicitly specify the ‘exploration’ period, i.e., select Te. The
proposed approach could also be considered a ‘one-step-look-ahead’ dual control, as there is only a
single period of exploration ([1, Te]), before a single period of exploitation ([Te, T ]). Such a draw-
back can be partially mitigated by adopting a ’multistep-look-ahead’ strategy, as in Umenberger
et al. (2019). In such a framework, the current period of exploration is followed by further explo-
ration, rather than pure exploitation. This approach also requires the user to select ‘epoch times’,
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at which the controller will be updated. To circumvent this, one could adopt a model predictive
control (MPC) strategy, with SLS as in Wang et al. (2019a), but exploiting the dual control effect, as
in Lobo and Boyd (1999). The major obstacle to extending the proposed approach to the multistep
or MPC setting is the need to search over more than one multiplier, λ2, cf. (16d). Such extensions
represent interesting directions for future research. At any rate, the method proposed in this paper
could be used (with fixed multipliers) as a convex means of providing sub-optimal initialization for
local search methods.

4. Numerical illustration

In this section we illustrate the proposed method with a numerical example. Consider the linear
control problem with parameters:

Atr =

[
0.5 1.1
0 0.8

]
, Btr =

[
1 0
0 1

]
, Q =

[
1 0
0 0.001

]
, R =

[
103 0
0 103

]
, σw = 1, δ = 0.1

Initial dataD0 is generated by simulating (1) open-loop with ut ∼ N (0, I) for t = 6 timesteps; this
is repeated 10 times. For control, T = 100, Te = 10, and F = 12. We compare three methods: i)
nominal control: φ1 = arg minφ J∞(φ,Mδ(D0)) and φ2 = arg minφ J∞(φ,Mδ(D0 ∪DTe)), i.e.,
no explicit exploration; ii) dual control: as proposed in this paper; iii) greedy control: φ1 is given
by u = Kx + e where K is the nominal controller (i), and e ∼ N (0, σI). σ is tuned (a posteriori)
to give the same exploration cost as dual control on the true system, and represents a ‘greedy strat-
egy’ of injecting as much ‘exploration signal’ e into the input as possible, as opposed to targeting
uncertainty reduction in specific parameters. φ2 is given by the nominal control, synthesized with
the additional data collected during exploration. This experiment is repeated 1000 times, with the
results presented in Fig. 1. The greedy strategy performs slightly better than the nominal controller
during exploitation, but this cannot offset the increased cost of exploration, leading to worse perfor-
mance in terms of total cost (total cost is the sum of cost during exploration and exploitation). Dual
control balances exploration and exploitation to achieve the lowest total cost among all methods
compared: although it incurs the same exploration cost as the greedy strategy (due to the tuning
of σ in the greedy algorithm), it achieves significantly lower exploitation cost, as the exploration is
targeted towards reducing uncertainty in the parameters that ‘matter most’ for the task at hand.

dual control greedy

1

1.2

1.4

1.6

co
st

exploration

dual control greedy

0.85

0.9

0.95

1

co
st

exploitation

dual control greedy

0.9

0.95

1

co
st

total

Figure 1: Costs during exploration (t ∈ [1, Te]), exploitation (t ∈ [Te, T ]), and the total cost (explo-
ration + exploitation). Costs are normalized by the cost of the nominal control (i.e. unity
implies the same cost as the nominal control). Dual control exhibits best performance.

8



OPTIMISTIC ROBUST DUAL CONTROL

Acknowledgments

We would like to thank the anonymous reviewers for their many useful comments in improving the
quality of this manuscript. We regret that we were not able to incorporate all their suggestions, due
to space restrictions. This research was financially supported by the National Science Foundation
(Award No. EFMA-1830901), the Department of Navy, Office of Naval Research (Award No.
N00014-18-1-2210), the Swedish Foundation for Strategic Research (via the project ASSEMBLE,
Contract No. RIT15-0012) and the Swedish Research Council (via the project NewLEADS - New
Directions in Learning Dynamical Systems, Contract No. 621-2016-06079).

References
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