Published as a conference paper at MathAI 2025

THE APPLICATION OF A GRAPH NEURAL NETWORK
TO FORECAST THE RECIPROCAL IMPACT OF WELLS
WITHIN AN OIL FIELD

CONFERENCE SUBMISSIONS

Yamkin M.A.% Kugaevskikh A.V. Koshkin T.A. ¥
Department of Software Engineering Department of Integrated Asset Modeling
ITMO University Engineering and technology service
Saint Petersburg, Russia Saint Petersburg, Russia

ABSTRACT

The objective of this paper is to explore a novel approach for predicting the inter-
dependencies between production and injection wells. The method under exami-
nation involves the application of graph neural networks.

The significance of this research stems from the necessity to understand the overall
impact of enhanced oil recovery methods on field production, rather than focusing
solely on the individual well where the activity is implemented. Currently, there
is a lack of accurate, rapid, and cost-effective methods for identifying inter-well
influences. Given the pressing nature of the challenge in determining mutual in-
fluences between wells, the authors have opted to address it through the utilization
of graph neural networks.

The focus of this study is on various architectures of graph neural networks.
Research methodology involves the development of a graph neural network de-
signed to predict the mutual influence between wells by extracting weights from
the trained model.

As a result, several neural network architectures have been successfully trained,
with the GraphSAGE architecture utilizing a long-short term memory (LSTM)
aggregation function achieving the highest accuracy. The performance metrics for
this neural network are as follows: 12 - 0.97, MSE - 171.39, MAE - 5.46, RMSE -
13.09, based on an average oil flow rate of 272.33.

In conclusion, this study demonstrates the promising potential of employing graph
neural networks for predicting the mutual influence between wells.

Keywords: Well interconnection, graph neural networks, GraphSAGE, LSTM,
GGNN, oil flow rate.

1 INTRODUCTION

1.1 PURPOSE AND OBJECTIVES OF THE WORK

The objective of this paper is to examine a novel approach for predicting the mutual influence be-
tween production and injection wells, specifically through the application of graph neural networks.

To achieve this aim, the following objectives have been established:

1. Analyze existing methods for assessing well-to-well interference, identifying their respective
advantages and disadvantages;

2. Represent the data in a graphical format and design a neural network architecture to address the
problem;

*makson.yamkin @mail.ru
favkugaevskikh@itmo.ru
tkoshkin.ta@gazprom-neft.ru



Published as a conference paper at MathAI 2025

3. Determine the performance metrics of the developed neural network

1.2 RELEVANCE

Assessing the interaction between production and injection wells presents a significant challenge
within the oil and gas sector. When implementing enhanced oil recovery methods, it is crucial to
understand the overall impact on field production rather than solely on the individual well under-
going intervention. To ascertain this effect on the entire field, it is essential to comprehend the
interconnections among the wells.

Currently, the following methods are employed to ascertain the degree of interconnectivity between
wells:

1. Tracer studies. This method for determining the interdependencies between wells is elaborated
upon inRaspopov A.V./(2022). The essence of tracer studies involves injecting fluid with indicators
into injection wells. These indicators are transported to production wells through filtration flows,
after which the relationship between production and injection wells is analyzed [Raspopov A.V.
(2022) . The primary disadvantages of this method include: high study costs and a lengthy duration
(results are typically obtained after an average of six months) Raspopov A.V.[(2022) ;

2. Hydro listening. This method for determining the relationship between production and injection
wells is detailed in Gumerova A.A.[(2022). The principle of hydro listening is to monitor pressure
changes at wells when the operational mode of other wells is altered |Gumerova A.A.| (2022)). The
main drawbacks of this method are: high costs, challenges in interpreting study results, and low
accuracy (Gumerova A.A.[(2022);

3. Statistical methods. These methods are described in detail in Romanenkov A.V./(2017),Khasanov:
et al.| (2021)), [Tyrsin et al.| (2023). The essence of statistical methods consists in application of
hydrodynamic modelling and estimation of mutual influence between wells by means of analysis
of field data [Khasanov et al.| (2021). Current method suffers from limitations such as high costs,
lengthy analysis periods, interpretive difficulties, variable accuracy (ranging from 3 percent to 50
percent error), reliance on simplifying assumptions (e.g., invariant development systems), and the
need for precise reservoir pressure data at all wells Romanenkov A.V/(2017). Furthermore, some
methods are only applicable to individual well clusters, not the entire field [Tyrsin et al.| (2023)).

4. Utilizing neural networks to ascertain the interconnections between wells presents a significant
advancement [Zhao-Qin et al.| (2024)), [Leding et al.| (2022)). However, the primary drawback of the
currently employed methodologies lies in their reliance on available data regarding the filtration and
capacitance characteristics of the reservoir, which are often incomplete and unreliable. Furthermore,
these approaches fail to incorporate the temporal aspect essential for accurately predicting the mutual
influence between wells, a critical factor when analyzing field data. In addition, some of the modern
research is based on tracer studies and petrophysical research, which are not always carried out at
the field and not cost-effective. All of these are significant drawbacks.

Given the absence of a precise and cost-effective method for assessing the interrelationships among
wells, particularly in the context of the oil and gas industry, the authors have undertaken a thorough
analysis of this issue. In this study, the authors explore the application of graph neural networks to
forecast the reciprocal influence between wells. Throughout the course of this research, the authors
have developed several innovative neural network architectures.

2 RESEARCH METHODS

2.1 PROBLEM STATEMENT

The target variable, which represents the coefficient of mutual influence between wells, is absent in
the initial dataset. Consequently, the designed neural networks were trained to predict an indirect
parameter: the oil flow rate of producing wells.

By training the neural network to predict this parameter, it will acquire sufficient knowledge regard-
ing the graph properties and its topology. Upon completion of the training, the weights of the neural
network will be extracted, serving as the coefficients of mutual influence between wells, grounded
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in the theory of graph neural networks|Sun et al.|(2024), Groh et al.|(2023), Kuo et al.|(2024). These
coefficients will illustrate the extent to which the graph nodes (wells) influence one another Sun
et al. (2024), |Groh et al.| (2023), Kuo et al.| (2024)).

2.2 FEATURES

The authors utilized field data from the N field, situated in Western Siberia, to evaluate the approach
of predicting mutual influence between wells through neural networks. The reservoir of this field is
terrigenous. A specific section of this field was selected for testing, where 28 wells were drilled.

The initial data were represented in the form of a graph: the nodes of the graph correspond to wells,
with each node characterized by a specific embedding—a set of features for each well (the nodes of
the graph will be of two types, as there are both producing and injection wells at the site in question);
the edges of the graph represent connections between wells. For the initial approximation, the wells
are considered to be strongly connected—meaning all wells are interconnected (producing wells to
producing wells, injection wells to injection wells, and producing wells to injection wells)—as all
wells exert influence on one another Romanenkov A.V/(2017), Khasanov et al.[(2021]), Tyrsin et al.
(2023). A graph was generated for each date present in the training sample, with data provided for
the years 2020-2024. A total of 1821 graphs were included in the dataset, reflecting the number of
wells in the field on a given date. Each graph includes all wells and their embeddings for different
time periods. The training and test samples were divided in a 90:10 ratio.

The initial data are fed into a graph neural network, which predicts the oil flow rate for each node
representing a producing well. Subsequently, weights are extracted from the trained neural net-
work, which serve as coefficients characterizing the degree of mutual influence between wells. The
calculated coefficients are assigned to each edge of the graph.

The following features were selected to train the graph neural network:

1. For production wells: water cut, electric submersible pump frequency, bottomhole pressure,
reservoir pressure, gas flow rate, and wellhead pressure. The target attribute is the oil flow rate;
2. For injection wells: wellhead pressure and injected fluid flow rate. The target attribute is not
applicable for these wells, as they do not produce oil.

Additionally, a common attribute for all wells was utilized: well type.

These data were selected due to their frequent analysis by oil and gas specialists when examining
the mutual influence between wells Romanenkov A.V.|(2017), Khasanov et al|(2021)), Tyrsin et al.
(2023).

2.3 NEURAL NETWORK ARCHITECTURES

To achieve the objectives of this paper, various graph neural network architectures have been ex-
plored.

Given that oil field data is dynamic, i.e., it changes over time, it is essential to employ graph neural
networks that account for the temporal component.

2.3.1 TEMPORAL GRAPH CONVOLUTIONAL NETWORKS

Temporal Graph Convolutional Networks (TGCN) facilitate the processing of a graph by utilizing
aggregated information from the neighbors of each node |Sun et al.|(2024)). This network comprises
two components: Graph Convolutional Networks (GCN)—a graph neural network that processes
the graph—and Gated Recurrent Unit (GRU)—a recurrent neural network that models temporal
dynamics.

2.3.2 GATED GRAPH NEURAL NETWORK

Gated Graph Neural Network (GGNN) also integrates the principles of recurrent and graph neural
networks |Groh et al.| (2023). In the initial stage, information from the neighbors of each node is
aggregated using convolutions |Groh et al.| (2023). Subsequently, the state of each node is updated
using GRU, which allows for dynamic storage or forgetting of information Groh et al.|(2023).
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2.3.3 GRAPHSAGE

This network facilitates the modification of node embeddings by employing an aggregation function
that considers a specified number of neighbors. The following functions may serve as aggregation
methods: mean, long-short term memory (LSTM), or pooling Kuo et al.|(2024). Given that the task
involves time series analysis, it is imperative to utilize LSTM aggregation.

2.3.4 GRAPH ATTENTION NETWORKS
Graph Attention Networks (GAT) leverage attention mechanisms to identify the most significant

neighbors, thereby circumventing the processing of redundant information [Zhao et al.| (2021). An
additional recurrent layer, LSTM, is incorporated to account for the temporal component.

2.4 EXTRACTING WEIGHTS FROM THE MODEL

Upon the completion of training for each neural network, the weights were extracted from the neural
networks and placed in correspondence with the edges of the graph.

3 RESULTS OF THE STUDY
3.1 FEATURE PROCESSING

Visualization of a graph with embeddings and edge information
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Figure 1: Graphical representation of the northern section of the field. Blue circles denote wells; the
edges signify interconnections. The number on each edge indicates the distance between the wells.
The “embedding” field encompasses the features selected for training the model.

To visualize the data upon which the neural network is trained, the authors has crafted a graphical
representation illustrating the northern section of the field (Figure [I)).
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Table 1: Summary of used neural network architectures

Architecture Number of epochs Learning rate

GraphSAGE 180 200
TGAT 200 200
GGNN 150 200
TGCN 800 200

Table 2: Metrics of used neural network architectures

Architecture r2 MSE MAE RMSE
GraphSAGE | 0.97 | 171.39 5.46 13.09
TGAT 0.88 | 759.18 | 12.30 | 27.55
GGNN 0.96 | 215.49 5.84 14.68
TGCN 0.31 | 2501.09 | 33.16 | 50.01

3.2 TRAINING OF NEURAL NETWORKS

A total of four neural network architectures were trained: GraphSAGE, TGAT, GGNN, and TGCN.
For each architecture, the mean squared error (MSE) function was employed as the loss function,

given that the problem at hand is a regression issue. The Adam optimizer was utilized.
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Figure 2: Loss function for each neural network architecture.

Figure 2| shows the plots of the loss function for each network.
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Table [T] summarizes the fundamental information regarding the neural network architectures em-
ployed.

Table [2] presents the metric values on the test sample for each architecture. The following metrics
were selected for accuracy assessment: mean absolute error (MAE), MSE, root mean squared error
(RMSE), and 12. These metrics were chosen due to their prevalence in evaluating the accuracy of
regression problems.
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Figure 3: Correspondence of predicted and actual flow rates (GraphSAGE).

It is evident from the table that the GraphSAGE neural network architecture demonstrates the highest
accuracy. The average flow rate for all wells is 272.33. For enhanced visualization, the authors
provide graphs illustrating the correlation between the predicted flow rates and the actual ones using
the GraphSAGE and GGNN models (Figure 3{4).

4 DISCUSSION OF THE RESULTS OF THE STUDY

4.1 FEATURES

During the feature selection process, the authors conducted heatmap analysis for producer and injec-
tor wells (Figure 5H6) and feature importance analysis (Figure[7). This was performed to eliminate
unnecessary features prior to training if they exhibited high correlation, and post-training if they
proved unimportant for model training. No importance analysis was conducted for injection wells,
as they lack a target feature, specifically the oil flow rate. The mapping of feature names in the
model for training is illustrated in Table 3]

Other attributes may be utilized in the future. Given that, based on Figure [ the gas flow rate
attribute holds significant importance, it may be feasible to substitute the water cut attribute with the
water flow rate.
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Figure 4: Correspondence of predicted and actual flow rates (GGNN).

Table 3: Summary of used neural network architectures

Feature Feature in model
Wellhead pressure phead
Gas flow rate gasflow
Reservoir pressure pplast
Downbhole pressure pdown
Electrical submersible pump pressure freq
Water cut watercut
Oil flow rate / injected flow rate flow
Type of well welltype

Additionally, in certain columns of the initial data, the features were populated using the following
methods: linearization (thus filling in the gaps in the water cut feature) and carrying forward the first
value (thereby addressing the gaps in the wellhead pressure, frequency, and bottomhole pressure
features). These methods of feature imputation are employed by specialists in 0il and gas companies,

which is why they were selected [Orlova et al| (2023).

In this task, a graph with two types of nodes was processed: production and injection wells. Each
type of node possesses a distinct number of features, necessitating specialized processing. For the
initial approximation, the missing values in the embeddings of the injection wells were filled with
zeros. Since these values will not be processed by the neural network (multiplication by zero yields
no result), this method is deemed feasible. However, there are plans to implement alternative pro-
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Figure 5: Heatmap analysis of production wells.

cessing methods for different types of nodes in the graph in the future, such as encoding with a
Variational Autoencoder (VAE) neural network or a Multilayer Perceptron (MLP) neural network.

All features were normalized using the StandardScaler function from the sklearn library. In the

future, it may be possible to explore other normalization functions or to conduct model training
without normalization.

4.2 NEURAL NETWORK ARCHITECTURES

The authors implemented training using batches, with a batch size of 40. A test sample comprising
10 percent of the entire dataset was designated to assess the presence or absence of overfitting. All
metric values presented in Table [2] were derived from the test dataset, confirming that overfitting is
absent across all models.

Simultaneously, based on the loss function plots (Figure [2) and the metric values from the test
dataset (Table [2), the authors conclude that the TGCN model failed to adequately approximate the
data. This network does not account for the significance of neighboring nodes, in contrast to other
architectures such as GraphSAGE and its counterparts. This oversight may lead to the processing of
residual information, resulting in the network’s inability to approximate the data effectively.

In contrast, the other neural network architectures (GraphSAGE, TGAT, GGNN) demonstrated com-
mendable performance, as evidenced by the favorable metric values in Table 2} The GraphSAGE
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Figure 7: Analysis of the importance of the features of producing wells.

model achieved the highest metric values, indicating that this architecture is the most promising for
future applications.
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Looking ahead, the authors intend to explore additional neural network architectures to enhance
prediction accuracy. For instance, the Spatio-Temporal GAT (ST-GAT) architecture, which consid-
ers both the temporal dynamics of graph data and the spatial positioning of graph nodes, shows
significant promise.

4.3 DETERMINATION OF MUTUAL INFLUENCE COEFFICIENTS

The trained neural network accurately predicts the production well flow rate, indicating that it has
effectively discerned the graph topology and its properties.

The decision to predict well flow rate was made because it serves as the primary parameter for
assessing whether changes in a well are influenced by neighboring wells [Raspopov A.V. (2022),

Gumerova A.A (2022), Romanenkov A.V] (2017). Consequently, variations in flow rate can be
utilized to identify the factors affecting it (e.g., changes in flow rate at an injection well or an in-

crease in withdrawal rate at another production well) Raspopov A.V](2022), Gumerova A.A | (2022),
[Romanenkov A.V]@2017).
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Figure 8: Analysis of the reciprocal impact of wells (wells that influence well number 0).

After training all models, weights were extracted and assigned to the edges. All weights were
normalized using the MinMaxScaler function from the sklearn library to scale the mutual influence
coefficients between 0 and 1. As previously described, these extracted weights can be referred to as
mutual influence coefficients, as they reflect the significance of neighboring nodes for each graph
node. Consequently, for each well, it is feasible to identify the other wells that exert the greatest
influence upon it (Figure . Given that the neural networks (GraphSAGE, TGAT, GGNN) exhibit
high metric values, their accuracy in predicting mutual influence between wells is correspondingly
high.

Each neural network architecture comprised several layers. Weights were extracted from the first
layer of each network, as this information is the least generalized. In contrast, the last layer aggre-
gates information from the entire graph at each node, which is inappropriate since nodes that are
more distant from the node in question should not be considered.

10
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5 CONCLUSION

The study successfully achieved all its objectives:

1. A comprehensive analysis of current approaches to identifying well-to-well interference was
conducted, revealing the relevance of the problem due to the lack of an accurate, cost-effective, and
rapid method for determining mutual influence.

2. The data was formatted appropriately for the problem, leading to the design of four neural network
architectures, each tailored to the specifics of the problem, including nodes of varying types and the
dynamic nature of the graph.

3. The GraphSAGE neural network exhibited the highest metric values, with the following metrics:
2 -0.97, MSE - 171.39, MAE - 5.46, RMSE - 13.09, based on an average oil flow rate of 272.33.

Weights were extracted from each neural network, representing the coefficients of mutual influence
between wells. These extracted weights demonstrated high accuracy when compared to the actual
values of the mutual influence coefficients.

The approach examined for predicting the interdependence between wells shows great promise for
practical application. This method is distinguished by its high accuracy and efficiency. It now
enables the assessment of how an enhanced oil recovery operation at one well will impact other
wells and the overall production from the entire field.

Looking ahead, there are plans to refine the application of neural networks for predicting the mutual
influence between wells by exploring alternative feature processing techniques and different neural
network architectures.
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