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Abstract

Keyword search is a fundamental task to retrieve information that is the most
relevant to the query keywords. Keyword search over graphs aims to find subtrees
or subgraphs containing all query keywords ranked according to some criteria.
Existing studies all assume that the graphs have complete information. However,
real-world graphs may contain some missing information (such as edges or key-
words), thus making the problem much more challenging. To solve the problem
of keyword search over incomplete graphs, we propose a novel model named
KS-GNN based on the graph neural network and the auto-encoder. By considering
the latent relationships and the frequency of different keywords, the proposed
KS-GNN aims to alleviate the effect of missing information and is able to learn
low-dimensional representative node embeddings that preserve both graph structure
and keyword features. Our model can effectively answer keyword search queries
with linear time complexity over incomplete graphs. The experiments on four
real-world datasets show that our model consistently achieves better performance
than state-of-the-art baseline methods in graphs having missing information.

1 Introduction

Keyword search is an important research topic which allows users to provide query keywords and
returns the most relevant results. The keyword search over graph data [1] usually retrieves top-k
subtrees or subgraphs which contain all the query keywords ranked according to some criteria. For
example, He et al. [2] propose a general scoring function considering both graph structure and content,
and they aim to find top-k nodes where each node can reach all query keywords, and the sum of its
shortest path distances to these keywords is as small as possible. This ranking method is commonly
used in later graph keyword search works [3, 4].
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Figure 1: Example of keyword search on incom-
plete graphs

All existing studies assume that the graph data is
complete and has no missing information. How-
ever, real-world graphs usually have some miss-
ing edges [5] and missing attributes on some
nodes [6]. This renders previous graph keyword
search methods unable to find exact answers
when dealing with such incomplete graphs. Fig-
ure 1 shows an example keyword search query
over graphs. Given q={c, e, f}, on the left graph
G with no missing information, the best node
is v4, since it contains keywords c and f , it can
reach v5 containing e, and its sum of the short-
est path distances to all query keywords is the
smallest which is 1 (the shortest distances of v4
to c, e, and f are 0, 1, and 0). However, on the right graph G′ which has a missing edge and a node
with missing attributes, the result becomes v1, v2 or v6, and the subtree consists of {v1, v2, v6}, with
a total distance of 2.

To handle the missing information, one simple idea is to first utilize some state-of-the-art graph
completion models (such as SAT [6]) to predict the missing information and then apply the existing
algorithms (such as BLINKS [2]) to find the answers from the graph with predicted keywords and
edges. However, such a completed graph contains many noises and errors comparing with the original
graph, and thus this method has poor performance as shown in our experimental study. To capture the
latent information of the incomplete graphs, we propose to utilize the graph neural network (GNN) for
graph keyword search. GNN has been widely applied in tasks such as link prediction [7, 8, 9], node
classification [10, 11], and node clustering [6, 12], but existing models cannot be directly applied to
keyword search since they usually embed all the features (keywords) of a node into a single vector
and they cannot obtain the representation for the individual query keywords.

We firstly design two naïve approaches based on GNN and dimension reduction. To achieve better
performance, we propose a novel auto-encoder and GNN-based model using the message passing
mechanism, called KS-GNN. The model mainly consists of three components: an encoder that
transforms the original keyword information to low-dimensional embedding vectors; a decoder
that aims to reconstruct the high-dimensional representation of keywords from the embedding; a
message passing-based aggregation mechanism that preserves the shortest path information between
keywords and the target node. Different from the existing graph keyword search works, we propose to
leverage GNN to obtain representative node embedding that contains the keyword information, taking
the latent graph structure, keyword distribution, and keyword frequency information into account.
Meantime, the proposed KS-GNN is able to encode the input query as a low-dimensional vector by its
learned powerful encoder, and the results are obtained by computing the similarity between the query
embedding and node embeddings. This also speeds up query processing time to linear complexity.

The main contributions of our approach are as follows:

• To our best knowledge, this is the first work on keyword search in graphs with missing
information.

• We propose an auto-encoder and GNN-based model KS-GNN to solve the problem effec-
tively without having to know the complete information of the input graph.

• The experimental results on four real-world datasets show that our proposed model consis-
tently outperforms several baseline methods.

2 Related Work

Keyword Search in Graphs. Keyword search over graph data aims to find the top-k subtrees or
subgraphs according to some ranking criteria. The conventional methods design algorithms assuming
that the graphs have complete information. For example, DBXplorer [13] proposes to utilize the
number of the answer’s edges as the scoring function. BANKS [14] model tuples as nodes in a graph
and then performs keyword search using proximity-based ranking. He et al. [2] propose a general
ranking function considering both graph structure and content. BLINKS also builds an efficient
bi-level index structure to improve efficiency. Kargar and An, motivated by the Steiner tree problem,
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use the total edge weight in ranking answers [15]. There also exists studies on keyword search in
temporal graphs [16], uncertain graphs [17], knowledge graphs [18], RDF graphs [19], etc. However,
real-world graphs may usually be incomplete. As all the state-of-art keyword search methods retrieve
the exact answer, the missing information (keywords or edges) imposes a significant effect on the
query results. To address this issue, we propose a graph representation learning-based solution to
solve the top-k keyword search problem on incomplete graphs.

Graph Neural Networks. As a powerful branch of graph representation learning methods, the
graph neural network has been widely used in recent years due to its excellent performance. The
models in the early years are usually based on the so-called graph convolutional network (GCN) [20,
21, 22], which is based on the Fourier transform theory of graphs developed by Shuman et al. [23].
However, research in recent years has shown that the GCN-based methods can be represented by
the message passing mechanism, which is more consistent with the experimental results [24]. The
Graph Attention Network (GAT) [11] is one of the representatives of graph neural networks based on
the message passing mechanism. GAT introduces the attention mechanism to calculate the attention
coefficient between nodes and then uses it to assign different weights to neighbors’ information.
Based on the auto-encoder and GCN, Graph auto-encoder (GAE) [25] is proposed to reconstruct
the adjacency matrix. Moreover, there are some GNN-based works that aim to predict and impute
missing data to a data matrix [6, 26, 27]. However, all the methods mentioned above cannot directly
handle the graph keyword search problem. To our best knowledge, this is the first work that leverages
GNN to process keyword search on incomplete graphs.

3 Problem Statement

A graph keyword search query q = (wq1 , wq2 , ..., wqm) contains a set of query keywords, and it
searches relevant results from a graph2 G = (V, E ,W), where each node v ∈ V , each edge e ∈ E ,
and each keyword w ∈ W . For each node v, it is associated with a set of keywords {wv

1 , w
v
2 , ..., w

v
n}.

In this work, we study the keyword search problem over an incomplete graph. To alleviate the effect
of the missing information to keyword search over incomplete graphs, we assume that in the original
graph the query results are obtained by applying the BLINKS scheme [2] (a commonly used graph
keyword search method). Given a query q, let s(v, q) denote the score of the node v. According
to [2, 3, 28, 29, 30], s(v, q) =

∑m
i=1 distmin(v, wqi), where distmin(v, wqi) computes the shortest

path distance from node v to a node containing wqi . BLINKS aims to find top-k nodes where each
node can reach all query keywords in the graph, and the scores of the k nodes measured by s(v, q) are
the smallest. E.g., in Figure 1(a), s(v4, q) = distmin(v4, c) + distmin(v4, e) + distmin(v4, f) = 1.

Problem Definition. Given an incomplete graph G′ = (V, E ′,W ′, rw, re), where E ′ ⊆ E ,W ′ ⊆ W ,
and the proportions of nodes with missing keywords and of missing edges in G are denoted by rw
and re, respectively. Given a query q, the incomplete graph top-k keyword search problem aims
to find a set S = (v1, v2, ..., vk) of k nodes from G′ such that for any vertex v′ /∈ S, s(v′, q) ≥
max({s(vi, q)|vi ∈ S}).

4 Proposed Methods

We propose to solve the keyword search problem with an unsupervised graph representation learning
method, since the representative low-dimensional node embeddings can capture the latent information
of the input incomplete graph and thus can help recovering the missing information. In addition, low
dimensional node embeddings can speed up the query processing by comparing the node embedding
with the generated query embedding at the cost of linear complexity. In this section, we first propose
two naïve methods that are based on GNN and dimensionality reduction methods, and then we
introduce our proposed KS-GNN in details.

4.1 Naïve Methods

Conv-OH. Graph convolutional layer has been widely used in GNNs, which enables GNN models
to gather information from neighbor nodes. Our first naïve method Conv-OH utilizes the graph

2For ease of presentation, we focus on the undirected graphs, and it is easy to extend the proposed method in
directed graphs by passing messages along the edges.
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Figure 2: An illustration of the message passing and aggregation of Conv-OH, where v3 is a target
node and it aggregates keyword information from its neighbors.

convolutional layer and takes the one-hot encoding of keywords as the input feature for nodes due
to the scoring function mentioned in Section 3. Conv-OH is able to return the same answer as does
BLINKS [2], if the graph has no missing information and l is large enough.

Frg. 2 shows the message passing and aggregation of Conv-OH. Specifically, with |V| = N and
|W| = M , the one-hot encoding of node v is denoted by x = {0, 1}M with hv,j = 1 if wj is
a keyword associated with v and 0 otherwise. Therefore, the input feature matrix is denoted by
X ∈ {0, 1}N×M . Let Hl denote the output node embedding of the l-th layer and hl

v denote the v-th
row of Hl, we have:

hl+1
v = Aggregate

(
{f(hl

u),∀u ∈ N (v)} ∪ {hl
v}
)
, (1)

where H0 = X, f(·) denotes a transform function and N (v) denotes the neighbors of node v. Using
the combined distance as the scoring function (described in Section 3), Eq. (1) can be written as:

hl+1
v = Ω

(
{1(hl

u) ◦ (hl
u + 1),∀u ∈ N (v)} ∪ {hl

v}
)
, (2)

where Ω(·) denotes the element-wise minimum function which ignores zeros, ◦ denotes the element-
wise product, and 1(·) denotes the indicator function that the element of 1(h) is 1 if the input element
is positive and 0 otherwise. For instance, Ω({[0, 0, 1, 1], [2, 0, 0, 2]}) = [2, 0, 1, 1], and 1([0, 2, 0, 3])
= [0, 1, 0, 1]. With Eq. (2), the output of Conv-OH is an N ×M matrix, denoted by Z. Note that
there is no dimensionality reduction in Conv-OH and thus this method consumes huge space. The
node embedding hl

v of v also represents the shortest path distances between the keywords and v.
Specifically, if hlv,i > 0, it means that the shortest path distance between v and wi is hlv,i − 1, and v
cannot reach wi within l hops if hlv,i = 0.

For the query processing, given q, we can obtain the one-hot encoding of q, denoted by xq . Therefore,
given the output node embedding Z, the sum of graph shortest-path distances between nodes and the
query keywords can be computed with xqZ

>, and the space complexity is O(NM). It is obvious
that Conv-OH cannot deal with the missing information, but it provides some hints to propose more
advanced methods.

Conv-PCA. Principal component analysis (PCA) is a classic dimensionality reduction technique
in multivariate statistical analysis [31]. In order to facilitate data storage and query processing, we
propose another naïve PCA-based method to solve the keyword search problem.

Given the one-hot encoding matrix X as the input feature matrix, PCA is able to keep d principal
components of X with Xp = XU>, where the rows of U ∈ Rd×M form an orthogonal basis for the
d features that are decorrelated [32]. It is worth noting that we can obtain the reconstructed feature
matrix X′ with X′ = XpU. The learning object is to minimize Lpca = ||X′ −X||22, where || · ||2
denotes the L2 norm.
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Figure 3: An illustration of the message passing and aggregation of our KS-GNN model.

Inspired by the graph convolutional layers of Conv-OH, we propose Conv-PCA with the convolu-
tional layers as below:

hl+1
v = max

(
{αhl

u,∀u ∈ N (v)} ∪ {hl
v}
)
, (3)

where α ∈ (0, 1) is a decay parameter used to estimate the shortest path distances in Eq. (3), since
the dimension is reduced from M to d and thus it is difficult to discriminate M keywords within the
d dimensions (d�M ). Specifically, a larger cumulative decay corresponds to a larger shortest path
distance. Conv-PCA takes Xp as the initial node embedding (H0 = Xp). This mechanism performs
better than directly using PCA in experiments as shown in Section 5.3. For the query processing, given
q, we can obtain the query embedding hq = xqU

>. Therefore, given the output node embedding Z,
the similarity scores between nodes and the query keywords can be computed by hqZ

> with linear
space complexity O(dN), where the dimension d is a small constant.

Compared with Conv-PCA, Conv-OH utilizes each element of hv to record the shortest path distance
between keywords and v and cannot reduce the dimension of node embedding. Conv-PCA can more
efficiently process the keyword search query and requires less space than Conv-OH, but neither of
them can well handle the missing information in incomplete graphs.

4.2 KS-GNN

Based on the prior discussions on Conv-OH and Conv-PCA, we present the desiderata that guide the
development of our method for tackling keyword search as follows:

Dimensionality Reduction. Taking the one-hot encoding matrix X as input, it is difficult to afford
the cost of generating an output with size N ×M . Therefore, the model should be able to reduce the
dimensions of the output node embedding M to a lower level.

Key Information Preservation. Some keywords and edges information may be lost in the process of
dimensionality reduction, which affects the performance of keyword search. The model should retain
as much key information as possible to guarantee results quality.

Adaptive Encoding. When generating node embedding, the model should consider the structure
information of the target node centered subgraph and the distribution of keywords on the subgraph,
rather than only considering the keywords of the target node. Specifically, to recover the missing
keywords information in the incomplete graph, the model should be able to capture latent relationships
among different keywords. For instance, a pair of keywords "AI" and "ML" often co-occur on nodes
near to each other (e.g., one-hop neighbors). Given a node containing either "AI" or "ML", it is
natural to assume that the neighbor of this node is more likely to contain the other keyword than the
nodes whose one-hop neighbors do not contain either of the two keywords.

Keyword Frequency Awareness. Based on the scoring function in Section 3, the returned top-k nodes
tend to be decided by the query keywords with low frequency compared to the high-frequency ones.
Thus, for a given keyword, the number of nodes containing it (we denote this by the keywords’
node frequency) can reflect its importance to the query processing, similar to the inverse document
frequency (IDF) used in information retrieval. The keyword set of the whole graph can be regarded
as a corpus and the keyword set of each node can be regarded as a document. Therefore, the model
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should encode keywords taking in consideration of their frequencies, which are measured based on
the keyword node frequency in the whole graph3.

Based on these desiderata, we propose an auto-encoder based Keyword Search Graph Neural Network
(KS-GNN) for tackling the problem in incomplete graphs. An illustration of the message passing and
aggregation mechanism for generating the node embedding h3 with KS-GNN is provided in Fig. 3.

Encoder and Decoder. KS-GNN employs an encoder f to generate low-dimensional node em-
bedding for dimensionality reduction. Recall that in Conv-PCA, the dimension reduction caused
information loss and it is hard to discriminate keywords in the low-dimensional space. To address
this issue, for the sake of key information preservation, KS-GNN employs another decoder g which
aims to reconstruct the input from embedding space. By training f simultaneously with g, the output
embedding of f is able to preserve key information of the input graph. Given the one-hot encoding
matrix X as the input, we define H = f(X) where H ∈ RN×d. For the decoder, it is defined as
X′ = g(H) where X′ ∈ RN×M .

In this work, we utilise the multi-layer perceptron (MLP) with a nonlinear activation layer [33] as
both non-linear encoder and decoder. It is worth noting that MLP can be replaced by a more complex
neural network. Our goal here is to use simple encoder and decoder to show the advantages of the
proposed mechanism. In addition, as a conventional learning objective of the auto-encoder, f and g
are trained to minimize:

L1 =
1

N
||X′ −X||22. (4)

It is worth noting that the representation PCA learns is essentially the same as that learned by a
basic linear auto-encoder. However, the encoder f and the decoder g here are not necessarily linear
functions and thus are able to learn more representative node embeddings than the linear ones.

Message Passing and Aggregation. The message passing and aggregation mechanisms for both
Conv-OH and Conv-PCA are based on the orthogonal basis and decorrelated features. However,
in KS-GNN, its encoder f transforms the input without any basis, and thus we cannot simply
apply the max(·) function to capture the information of the nearest keywords on a node. Thanks
to the reconstruction ability of the decoder g, we can utilise g to reconstruct the M -dimension
encoding during the message passing and then using max(·) at this step. Moreover, if the learned
node embedding contains the latent information of the missing keyword of the incomplete graph, g
can also help recover the missing keywords during the reconstruction. Formally, given the output
node embedding Hl of l-th layer, we have:

hl+1
v = f

(
max

(
{αg(hl

u),∀u ∈ N (v)} ∪ {g(hl
v)}
))

, (5)

where α ∈ (0, 1) is a decay parameter that is the same as the one in Eq. (3). As Eq. (5) shows,
the M -dimension embedding will only be generated by the decoder g during the message passing
and aggregation, while the hidden node embedding and the final output node embedding are both d
dimensions. Therefore, it meets the requirement of dimensionality reduction. The message passing
and aggregation can be processed in parallel, and the time-complexity is acceptable. It is worth noting
that in incomplete graphs, due to the mechanism of message passing and aggregation, nodes without
any keyword information can still be embedded accordingly.

Subgraph keywords-based Node Similarity. To realize adaptive encoding, we propose to train
KS-GNN by a triplet siamese network [34] with a triplet loss [35] according to the subgraph
keywords-based node similarity, which enables KS-GNN to capture the latent missing keyword and
edge information on incomplete graphs. For a node v, we consider the subgraph SGv containing all
the neighbors of v within k hops for measuring node similarity. The one-hot encoding of this subgraph
SGv is denoted by xSGv . For instance in G′ shown in Fig. 1, given k = 1, the 1-hop subgraph of v5
contains keywords {a, c, d, e, f} with the corresponding one-hot encoding xSG′

5
= (1, 0, 1, 1, 1, 1).

Similarly, the one-hot encoding of the subgraphs around v4 and v6 are xSG′
4

= (1, 1, 1, 0, 0, 1) and
xSG′

6
= (1, 1, 1, 1, 1, 1), respectively. Therefore, by counting the number of common keywords as

the similarity scoring function, we can compare the similarity between (v5, v4) and (v5, v6) by

3The multi-occurrence of a keyword on one node only contribute 1 to this keyword’s node frequency.

6



comparing xSG′
5
x>SG′

4
= 3 and xSG′

5
x>SG′

6
= 5. Specifically, xSG′

5
x>SG′

4
< xSG′

5
x>SG′

6
indicates

(v5, v6) are more similar than (v5, v4) in G′.

Given G′, the KS-GNN model denoted by φ, and a sampled batch of triplets T = {t1, t2, ...tn} =
{(vo1, vp1, vq1), (vo2, vp2, vq2), ..., (von, vpn, vqn)}, KS-GNN is trained to minimise:

L2 =
1

|T |
∑
ti∈T

max

(
m− sgn(ti)

(
φ(X)oiφ(X)>pi

− φ(X)oiφ(X)>qi

)
, 0

)
, (6)

where m is a margin hyper-parameter of the hinge loss, sgn(·) denotes a sign function that sgn(ti)
returns 1 if (voi, vpi) are more similar than (voi, vqi) and −1 otherwise. Thus, KS-GNN can learn
the structure and keyword information from the subgraphs involved.

For large-scale datasets, it might be time-consuming to compute sgn(ti). In this case, it is acceptable
to intuitively sample T based on the links. For example, for a sampled node voi , vpi

can be sampled
from the 1-hop neighbors of voi , and vqi can be negatively sampled from unconnected nodes of voi ,
thereby setting sgn(ti) to 1. Eq. (6) still takes both the graph structural information and the keyword
distribution into account by feeding the one-hot encoding of subgraph keywords to KS-GNN. In
addition, minimizing Eq. (6) helps generate similar adaptive embedding for the keywords which
co-occur commonly.

Keyword Frequency-based Regularization. Intuitively, if a keyword appears on many nodes, it
is regarded as less important than the keyword which appears on fewer nodes for query processing.
Therefore, in this work, we consider the keyword node frequency, denoted by ci, that indicates the
number of nodes containing keyword wi. For instance, in G′ shown in Fig. 1, c1 = 2 and c2 = 2 for
keywords a and b, respectively. We propose to enhance the model’s keyword frequency awareness
with a regularization that minimizes:

L3 =
1

M

∑
wi∈W

ci||f(Ii)||2, (7)

where I denotes an M ×M identity matrix, and Ii denotes the i-th row of I. Feeding Ii in f can
return the representation of keyword wi, and minimizing Eq. (7) aims to differentiate the lengths
of keyword embeddings according to their keyword frequencies, thereby being aware of keyword
frequency.

To train KS-GNN, the final learning objective is to minimize:

L = λ1L1 + λ2L2 + λ3L3, (8)

where λ1, λ2 and λ3 are hyper-parameters. By minimizing Eq. (8), we can optimize KS-GNN to
generate informative node embedding which can capture the latent representation of missing keywords
and edges. The superiority of the proposed KS-GNN is validated in Section 5.3.

Query Processing. To process query q, given the one-hot encoding of q as xq , the trained encoder
f and the learned node embedding Z, we can compute the similarity between the nodes and query
with sq = f(xq)Z>, and the top-k answers can be found with the largest scores in sq. In addition,
the space complexity of computing query processing is O(dN).

5 Experiments

In this section, we evaluate the performance of our proposed approach, KS-GNN, on four real-world
datasets, including citation networks (CiteSeer), co-purchase networks (Video & Toy) and co-author
networks (DBLP). The details of datasets, additional experimental results and analysis can be found
in the supplementary materials.

5.1 Baseline Methods

We compare our model against five baseline methods, including a state-of-the-art deep learning
based missing-data completion GNN model. More details on the baseline models are provided in the
supplementary materials.
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• GraphSAGE [10] is a representative GNN-based graph embedding method. We add an
MLP encoder for GraphSAGE to address the keyword search problem for GraphSAGE.

• BLINK+SAT firstly predicts and completes the missing keywords and edges with a state-
of-the-art missing-data completion GNN model SAT [6] and then utilises BLINK [2] to
process keyword search on the new graph.

• PCA is based on the classic dimensionality reduction technique [31].
• Conv-PCA is a naïve method proposed in Section 4.1.
• KS-PCA is a simplified variant of our proposed KS-GNN that replaces the MLP encoder and

decoder with PCA transformations. Specifically, it leverages U to reconstruct M -dimension
embedding from hv .

5.2 Experimental Setup

In our experiments, we compare the proposed method with baseline methods for keyword search
tasks in two kinds of graphs: (1) the graphs with only missing keywords; (2) the graphs with both
missing keywords and edges. For each dataset, to simulate a real-world scenario and quantitatively
control the ratios of missing information, we process the original datasets with two steps: (1) hide the
keywords of randomly sampled nodes with a predefined proportion (denoted by rw) in the graph;
(2) randomly hide a proportion (denoted by re) of the edges in the graph. Let nq = |q| denote the
number of words in the query q, we randomly sample 100 queries as the test set for each value of nq
ranging from 3 to 9 with a step of 2.

In addition, in each incomplete graph, the validation set consists of 100 randomly generated queries
with ground truth answers. We tune the hyper-parameters of compared methods with the grid search
algorithm on the validation set, more details can be found in the supplementary materials. In terms
of the evaluation metric, we use Hits@K, which is a common ranking metric that counts the ratio
of positive edges that are ranked at the K-th place or above. The ground truth is the top-K answers
retrieved by BLINK on the original graph for each dataset. Specifically, we report Hits@100, and
more experimental results (Hits@10 and Hits@50) can be found in the appendix.

5.3 Performance of Keyword Search

Table 1 shows the comparison results in graphs with rw adjusted from 0.3 to 0.7 and nq adjusted
from 3 to 9. As shown in the table, KS-GNN and KS-PCA significantly outperforms the baselines,
and changing rw will not affect its performance. Moreover, the performance of KS-GNN better
when more query keywords are given. As for the baselines, BLINK+SAT cannot maintain good
performance when many keywords are missing. Compared with Conv-PCA, KS-PCA can address
the keyword search in incomplete graphs much more effectively due to the proposed novel message
passing and aggregation mechanism. Although KS-PCA and KS-GNN have similar message-passing
mechanisms, KS-GNN performs better in most cases due to its more representative output node
embeddings. This reveals that the proposed learning objective and auto-encoder-based model are
able to enhance the ability of representation learning. Since PCA focuses on each single node, it
performs well when the query keywords are located on the same node. However, when nq increases,
the query keywords tend to be located on different nodes, and the performance of PCA therefore
decreases because it cannot gather neighbor information. By contrast, although GraphSAGE can
aggregate information from neighbors, it sometimes performs worse than PCA, because only utilizing
the max-pooling operator during the message aggregation cannot well distinguish the information
from each unique keyword. This can be proved by that Conv-PCA performs better than both PCA
and GraphSAGE, which also indicates the superiority of our proposed encoder and decoder-based
message passing and aggregation mechanism.

Table 2 presents the results of the comparison in graphs with both missing keywords and edges, where
re is set to 0.3 and rw is adjusted from 0.3 to 0.7. As the table shows, KS-GNN still outperforms other
compared baseline methods in most cases since it can learn the adaptive embedding and structural
information from the incomplete graph with missing keywords and edges. Compared with Table 1,
Table 2 shows that the effect of missing edges cannot be reflected for the powerless methods, such as
GraphSAGE and BLINK+SAT, because they might gather noisy information from neighbours. For
KS-GNN, the effect of missing edges varies on different datasets. For instance, KS-GNN is more
robust on CiteSeer and DBLP than on Video and Toy.
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Table 1: Method performance by Hits@100 (%) in graphs with only missing keywords.

Datasets rw 0.3 0.5 0.7

nq 3 5 7 9 3 5 7 9 3 5 7 9

CiteSeer

GraphSAGE 6.87 5.64 2.95 3.71 5.15 4.74 3.52 2.07 9.42 8.27 6.05 7.54

BLINK+SAT 8.81 7.23 5.65 4.42 9.14 5.97 5.47 4.88 9.82 8.34 8.75 5.49

PCA 10.26 7.73 6.51 5.19 9.31 6.70 6.28 4.82 7.73 6.40 6.47 4.98

Conv-PCA 8.49 8.43 8.76 7.41 8.92 7.78 11.28 13.58 11.38 9.20 11.44 9.90

KS-PCA 24.91 27.92 33.15 38.35 23.61 25.87 32.84 30.74 20.94 26.18 35.59 33.99

KS-GNN 30.84 37.86 38.07 42.61 31.43 38.79 38.86 42.62 28.69 35.25 35.61 38.64

Video

GraphSAGE 0.49 0.30 0.06 0.03 0.44 0.14 0.00 0.05 0.34 0.35 0.21 0.16

BLINK+SAT 10.21 9.86 10.99 14.87 8.55 6.92 8.63 5.82 1.18 1.15 4.38 3.35

PCA 1.54 0.91 0.55 0.61 1.71 0.72 0.71 0.57 1.66 0.95 0.66 0.55

Conv-PCA 1.81 2.46 1.58 2.38 2.43 1.49 1.66 2.54 2.42 2.37 2.80 3.37

KS-PCA 10.19 12.23 16.15 21.37 11.26 15.62 19.51 23.87 10.66 15.57 19.17 25.36

KS-GNN 21.43 23.36 22.92 26.79 22.54 22.57 30.41 33.41 21.01 16.48 22.01 28.47

Toy

GraphSAGE 0.74 0.88 5.11 4.21 4.24 12.49 6.50 6.10 1.45 4.39 6.71 0.09

BLINK+SAT 6.47 8.17 8.12 10.54 6.79 9.59 10.99 11.93 6.44 8.56 11.55 8.15

PCA 1.15 0.68 0.63 0.51 1.01 0.69 0.51 0.44 0.67 0.47 0.44 0.30

Conv-PCA 21.34 21.99 23.76 25.40 19.17 19.72 20.21 25.22 16.99 21.61 23.95 24.90

KS-PCA 27.23 27.73 31.58 33.79 25.78 28.94 31.04 32.82 18.35 22.03 25.50 26.25

KS-GNN 28.56 29.85 29.55 34.28 24.65 29.16 31.27 33.25 21.78 27.41 25.55 30.17

DBLP

GraphSAGE 0.42 0.49 0.36 0.82 0.29 0.43 0.53 0.05 0.07 0.01 0.01 0.00

BLINK+SAT 3.26 6.09 4.01 6.65 3.49 1.66 5.42 3.95 4.25 2.42 3.12 4.24

PCA 3.78 2.57 2.25 2.38 3.06 2.55 2.21 2.15 2.97 2.51 2.02 1.88

Conv-PCA 9.00 13.24 13.29 16.87 5.93 6.56 7.64 10.62 7.00 10.52 10.03 15.68

KS-PCA 15.28 21.41 25.61 31.64 14.98 20.73 23.21 31.72 12.49 19.49 21.23 28.63

KS-GNN 16.21 24.94 29.55 33.51 16.52 22.73 26.85 30.69 15.57 24.15 27.12 29.06

Table 2: Method performance by Hits@100 (%) in graphs with both missing keywords and edges (re
= 0.3).

Datasets rw 0.3 0.5 0.7

nq 3 5 7 9 3 5 7 9 3 5 7 9

CiteSeer

GraphSAGE 2.04 3.22 2.99 1.72 3.89 2.95 1.03 1.11 9.62 8.26 7.35 7.23

BLINK+SAT 9.19 8.14 5.68 3.71 8.26 6.79 6.04 8.57 7.88 8.33 7.69 8.30

PCA 10.26 7.73 6.51 5.19 9.31 6.70 6.28 4.82 7.73 6.40 6.47 4.98

Conv-PCA 9.61 9.37 8.17 7.68 10.82 9.22 11.83 14.33 11.40 10.17 11.91 9.94

KS-PCA 25.27 27.89 31.47 35.71 22.51 24.92 31.65 30.49 20.72 25.60 35.30 32.81

KS-GNN 30.57 37.88 38.15 41.80 26.80 34.70 34.37 36.75 24.47 31.19 35.82 34.96

Video

GraphSAGE 0.09 0.11 0.02 0.00 0.26 0.05 0.00 0.04 1.65 1.65 2.22 1.29

BLINK+SAT 1.67 1.85 2.48 1.44 0.08 0.99 4.96 2.97 2.19 1.77 0.78 1.21

PCA 1.54 0.91 0.55 0.61 1.71 0.72 0.71 0.57 1.66 0.95 0.66 0.55

Conv-PCA 1.05 1.59 0.83 2.01 1.43 0.81 0.87 1.23 1.25 1.25 1.31 1.38

KS-PCA 3.82 4.13 4.88 7.13 3.96 4.52 5.33 6.11 3.64 4.58 5.17 6.55

KS-GNN 8.08 8.34 12.88 11.82 6.84 7.68 4.18 11.12 6.37 10.31 13.92 10.07

Toy

GraphSAGE 0.04 0.02 0.01 0.00 0.28 0.00 0.01 0.02 0.02 0.18 0.29 0.23

BLINK+SAT 3.69 3.03 4.85 5.66 2.56 1.34 1.86 5.46 1.76 1.39 4.73 4.45

PCA 1.15 0.68 0.63 0.51 1.01 0.69 0.51 0.44 0.67 0.47 0.44 0.30

Conv-PCA 11.64 10.46 11.23 12.29 9.31 9.00 9.08 11.61 6.74 8.87 8.99 9.56

KS-PCA 13.80 13.03 13.55 15.67 11.35 11.03 11.09 13.02 6.84 8.37 9.50 10.43

KS-GNN 13.82 13.28 14.38 15.22 12.51 12.54 12.68 12.59 9.41 8.99 12.83 11.15

DBLP

GraphSAGE 0.51 0.20 0.42 0.34 0.67 0.25 0.40 0.90 0.40 0.05 0.04 0.02

BLINK+SAT 4.78 3.45 6.74 4.58 3.94 3.66 5.05 3.97 2.96 2.75 2.83 7.29

PCA 3.78 2.57 2.25 2.38 3.06 2.55 2.21 2.15 2.97 2.51 2.02 1.88

Conv-PCA 8.35 11.8 12.51 14.51 5.25 6.77 7.03 9.91 6.46 9.59 9.47 14.33

KS-PCA 15.05 19.99 22.61 28.57 13.68 19.19 21.59 28.96 11.67 17.71 18.38 24.51
KS-GNN 15.91 20.49 25.09 29.04 15.79 19.86 22.15 29.71 12.07 17.18 19.23 24.19
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5.4 Ablation Study

In this section, we further investigate how each component in Eq. (8) affects KS-GNN’s performance.
The experiments are conducted in the incomplete graphs with re = 0 and rw = 0.3 on four datasets.
For the queries, the number of keywords is set to nq = 3. Based on Eq. (8), we have three variants
which are trained with different learning objectives, denoted by without L1, without L2 and without
L3, respectively. For instance, the learning objective is λ2L2 + λ3L3 for the variant without L1. The
hyper-parameters are still tuned with the grid search algorithm. The results of Hits@100 scores are
shown in Table 3. As the table shows, among each component in Eq. (8), the average performance
gains for L1, L2 and L3 on four datasets are 12.23%, 6.87% and 10.32%, respectively. The results
also show that these three learning objectives play different roles on different datasets.

Table 3: Hits@100 (%) in the ablation study of KS-GNN.

CiteSeer Video Toy DBLP

without L1 28.17 17.82 24.67 14.62
without L2 29.51 18.86 26.39 15.63
without L3 26.28 17.13 27.01 16.05
KS-GNN 30.84 21.43 28.56 16.21

6 Conclusion

Keyword search in graphs is an important problem with many applications such as network analysis
and recommendation. The keywords and edges in graphs might be lost or incomplete due to some
reasons in real-world applications, such as storage limitation or privacy issues. In this paper, we study
the keyword search problem in incomplete graphs and propose a novel auto-encoder and GNN-based
method, KS-GNN. Compared to existing methods, KS-GNN is able to address the problem when
some nodes have missing keywords or some edges are missing in the input graphs. The results of
extensive experiments on real-world datasets reveal that KS-GNN significantly outperforms the
state-of-the-art baseline methods on the incomplete graph keyword search task.
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