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Abstract

Classifying and understanding semantic speci-001
ficity is essential for enhancing various com-002
putational tasks, such as recommendation sys-003
tems, by enabling them to deliver more targeted004
and relevant content. This paper introduces a005
novel unsupervised learning approach for clas-006
sifying the semantic specificity of text, elim-007
inating the need for extensively labeled data.008
The results highlight the potential for robust,009
scalable, and adaptable NLP systems capable010
of accurately classifying text by semantic speci-011
ficity without heavily relying on ample amounts012
of labeled data.013

1 Introduction014

Classifying and understanding semantic specificity015

or "scope" is increasingly crucial for many com-016

putational tasks. The ability to discern whether017

textual content is "general" or "specific" benefits018

advanced systems, such as recommendation en-019

gines, to deliver more targeted and relevant content.020

Semantic specificity can also give NLP systems a021

nuanced understanding of text.022

This paper expands upon prior work in classi-023

fying semantic specificity with the development024

of novel unsupervised techniques for classifying025

the semantic specificity of text without relying on026

vast amounts of labeled data. By embedding tex-027

tual data and applying heuristic clustering based on028

linguistic and syntactic cues, the methodology in029

this paper addresses the absence of unsupervised030

methods for classifying the specificity of text.031

2 Background and Motivation032

2.1 Existing Gaps in Semantic Specificity033

Current methods for computing semantic speci-034

ficity make use of supervised learning frameworks035

that require extensive labeled datasets. These meth-036

ods may not fully capture the range of semantic037

nuances specific to certain tasks, a significant limi- 038

tation for classifying the specificity of text in dif- 039

ferent domains. Unsupervised learning methods, 040

which do not rely on labeled data, remain underuti- 041

lized for determining semantic specificity despite 042

their potential for scalability and adaptability in 043

applications like recommendation systems. 044

Prior work has explored clustering and dimen- 045

sionality reduction techniques to group similar 046

texts or reduce the feature space of datasets. Li 047

and Nenkova’s "SPECITELLER" demonstrates the 048

potential of semi-supervised approaches for pre- 049

dicting specificity, highlighting the importance of 050

readability and comprehension (Li and Nenkova, 051

2015). Their findings required the usage of pre- 052

existing datasets that were labelled in order to eval- 053

uate specificity. This encouraged our exploration 054

into unsupervised methods to assess text specificity 055

when labelled data isn’t available. 056

2.2 Creative Ideation Recommendation 057

System 058

The Supermind Ideator (Heyman et al., 2024) is 059

one of a number of creative ideation applications 060

that guide users through "Moves" that help them 061

assess their problem and generate solutions. While 062

reflecting on this work, it became clear that a rec- 063

ommendation system to suggest the next best move 064

to users would be valuable. We realized that effec- 065

tive recommendation required understanding of the 066

user’s current phase in the creative process. 067

The creative ideation process, often beginning 068

with broad, divergent thinking and moving towards 069

more focused, convergent thinking as solutions and 070

problem definitions are formulated (aka. the Dou- 071

ble Diamond method of ideation (Council, 2024)). 072

Reflecting upon this convergent-divergent fram- 073

ing of stages of ideation, we developed an unsuper- 074

vised method to accurately classify "scope" of text 075

leading to our new method in calculating semantic 076

specificity. 077
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3 Methodology078

When engaging in ideation, the “scope” of an idea079

can be described as General and Specific. General080

ideas contain the main elements of a topic with-081

out going into thorough detail. Specific ideas are082

clearly defined and pertain to a particular topic.083

This definition allows humans to interpret084

whether a statement is general or specific, where085

general scope relates to divergent ideas and specific086

scope to convergent ideas.087

4 Unsupervised Method for Assessing088

Semantic Specificity089

4.1 Embedding and Clustering of Data090

To determine specificity, we first embed text using091

the Doc2Vec model, which captures the seman-092

tic meaning of entire documents (Le and Mikolov,093

2014). This also standardizes input sizes for consis-094

tent modeling. Following embedding, the vector-095

ized texts are clustered into thematic groups using096

KMeans.097

4.1.1 Sub-Clustering for Detailed Analysis098

After clustering into general topics, a secondary099

clustering pass groups into sub-topics. This sub-100

clustering enables a more granular exploration of101

the thematic landscape, helping to pinpoint more102

specific content within broad topics.103

4.2 Application of Dimensionality Reduction104

Uniform Manifold Approximation and Projection105

(UMAP) is used to visualize the clustering. UMAP106

helps in preserving both local and global data struc-107

tures, facilitating a consistent representation of re-108

lationships within clusters (see Fig 1).109

Figure 1: UMAP visualizations, with main and sub
clusters on the left and right, respectively

5 Heuristic-Based Clustering110

5.1 Heuristic Feature Representation111

We build upon the topic clusters, extracting the fol-112

lowing heuristic features to refine clustering further113

and determine specificity of textual content:114

Flesch-Kincaid Reading Ease: evaluates how 115

easily a text can be understood, integrating average 116

sentence length and syllable count to classify texts 117

by general or specific scope. A higher readability 118

score suggests content suitable for a broader au- 119

dience, while a lower score indicates specialized, 120

niche content (Solnyshkina et al., 2017). 121

Unique Word Count and Lexical Diversity: as- 122

sess the richness and thematic concentration. A 123

higher count of unique words and greater lexical 124

diversity could indicate a wide range of topics cov- 125

ered, implying a general scope. Conversely, lower 126

counts suggest a focused thematic presence, char- 127

acteristic of a specific scope (Treffers-Daller et al., 128

2018; Zhang and Wu, 2021). 129

Numerical Data Frequency: occurrence of nu- 130

merical data hints at its precision and technical 131

nature. Texts with frequent numerical data typi- 132

cally have a narrow focus, which could suggest the 133

text has a specific scope (Susoy, 2023). 134

Average Sentence Length: Longer sentences con- 135

tain more complex structures and advanced vocab- 136

ulary. This identifies texts with a specific, narrow 137

scope aimed at specialists (Bestgen, 2023). 138

Named Entity Recognition (NER): using the 139

spaCy ‘en-core-web-lg’ model, this identifies and 140

categorizes key nouns and proper nouns, highlight- 141

ing topics and themes in the text. Entities identified 142

serve as markers for the thematic structure, aiding 143

in clustering of content (Schmitt et al., 2019). 144

5.2 Clustering and Scope Determination 145

Using these heuristic features, text are re-clustered 146

into binary classes to determine their scope. Text 147

that fall into the minority heuristic class are deemed 148

“specific” in scope while those in the majority class 149

are “general”. 150

In summary, our unsupervised approach: 151

1. Embeds the text using the Doc2Vec embed- 152

ding model. 153

2. Clusters text by topic and then by sub-topic 154

through the use of the KMeans. 155

3. Assesses each text within its own topic cluster 156

(to only compare text from the same topic clus- 157

ter), transforming each into a feature vector 158

based on our heuristic feature representation. 159

4. Uses KMeans with the new heuristic feature 160

representation to cluster once more. 161

5. Labels the majority cluster members as “gen- 162

eral” and the minority cluster members as 163

“specific”. 164
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This unsupervised, heuristic-driven methodol-165

ogy circumvents the limitations of labeled datasets166

and introduces a scalable, adaptable framework for167

real-time text analysis.168

6 Human Feedback Integration169

6.1 Integration of Human Labeling to170

Validate and Refine the Unsupervised171

Model172

Human feedback was collected to validate and en-173

hance the accuracy of the unsupervised model. Hu-174

man participants (n=32) recruited from Prolific re-175

viewed text samples (n=88) and classified them as176

"general", "specific", or "don’t know" by leverag-177

ing their intuition about the text’s context. Texts178

were pre-classified by the model, using thematic179

clustering to group up text in batches before being180

evaluated. The following instructions were given181

to users at the beginning of the survey:182

“This survey will present you with several lists183

of problem statements that have been written by184

people before they try to come up with creative185

solutions to their problems. Your task is to rate186

each of these problem statements as either being187

General (meaning "containing the main features188

or elements of something") or Specific (meaning189

"precise and clearly defined"). If you are unsure,190

you can select Don’t Know.”191

6.2 Analysis of Human Labels and Their192

Integration with the NLP System193

The collection of human evaluation was imple-194

mented through Qualtrics where participants rated195

the same batches in a randomized and counter-196

balanced fashion.197

6.3 Statistical Insights from Human Feedback198

Human evaluation revealed several key insights199

into the model’s performance and areas for im-200

provement:201

Balanced Label Distribution: Results indicated a202

balanced distribution between ’General’ and ’Spe-203

cific’ labels. This suggests participants were confi-204

dent in their classifications (95.93% selected either205

’General’ or ’Specific’).206

Alignment with Model Labels: Logistic regres-207

sion showed a significant tendency for human clas-208

sifications to agree with the model’s predictions,209

with ’General’ classifications being particularly ac-210

curate.211

Consensus Validation: When a majority consen- 212

sus was present, the model’s predictions matched 213

human judgments in 62 out of 88 cases, resulting 214

in a statistically significant chi-squared test out- 215

come (p = .0001). This agreement demonstrates 216

our model’s capability to reflect human consensus 217

accurately. 218

Intraclass Correlation Coefficient (ICC): An 219

ICC of .83 demonstrated high consistency among 220

raters, underscoring the reliability of human judg- 221

ments and the validity of the experimental ap- 222

proach. 223

6.4 Incorporating Human Labels to Refine 224

Clustering 225

The initial unsupervised model achieved a consen- 226

sus accuracy of 70.45% with human classifications. 227

Using the insights from this human ground truth 228

labelling drove us to focus on refining model ac- 229

curacy and consistency. While the present model 230

aligns well with human judgments for ’General’ 231

statements, improvement was needed in precision 232

of ’Specific’ statements. We adjusted the sensitiv- 233

ity of the KMeans algorithm’s initial conditions 234

by assessing different starting seed values to im- 235

prove performance. This enhanced the model’s 236

accuracy, bringing a closer alignment to human 237

judgments. Although there is an argument that this 238

approach overfits to the human labels, there is in- 239

herent randomness involved in KMeans based on 240

starting points for clustering and this approach is 241

used to show the system’s range of accuracy and 242

ability to have higher accuracy with particular ini- 243

tial seeds. The following statistics illustrate varying 244

approaches to creating heuristic (“scope”) labels on 245

the problem statement data, where “Match Percent- 246

age” is the number of heuristic labels generated by 247

the system that match human consensus labels. 248

Method Mean (%) Std (%) Best (%)
Heur. Only 44.32 0.00 44.32
Main+Heur. 69.14 2.19 71.59
Main+Sub+Heur. 72.58 3.10 80.64

Table 1: Results showing mean, std. dev., and best
match percentages for different optimization strategies.

The optimal method combined main and sub- 249

clustering (based on topics) with heuristic feature 250

clustering. This approach emphasizes the impor- 251

tance of topic coherence in clustering, contrast- 252

ing with less structured heuristic clustering that 253
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lacks topical context. Variability in results due254

to the starting seed highlights the inherent non-255

determinism of KMeans, impacting the standard256

deviation of accuracy metrics (Ahmed et al., 2020).257

7 Discussion258

7.1 Interpretation of Results and Implications259

for Future Research260

Results show that utilizing unsupervised methods261

for determining semantic specificity is viably ac-262

curate. This also reduces a reliance on pre-labeled263

datasets. Our contribution opens prospects for264

more robust NLP systems capable of applications265

across dynamic settings and domains.266

Two core areas for future work to extend and267

further enhance this contribution could be:268

Enhanced Methodologies: Investigate mixed-269

method approaches that blend machine learning270

with human-like flexibility, potentially exploring271

new heuristic features or diverse unsupervised mod-272

els.273

Broader Applications: Extend these methods to274

other NLP applications like sentiment analysis, au-275

tomated summarization, and personalized content276

delivery.277

7.2 Scalability and Adaptability of the278

Approach to Different NLP Applications279

The unsupervised method described in this work280

shows promise in scalability and adaptability, po-281

tentially being highly applicable across diverse282

NLP tasks that need to classify semantic speci-283

ficity:284

Scalability: The model efficiently processes285

large data volumes without predefined labels, im-286

proving over time in accuracy when further tuned287

with human labels. This allows the model to up-288

date with new content, such as user-generated text289

on social media platforms and customer feedback290

systems.291

Adaptability: The model can adapt to different292

themes and text types by analyzing thematic clus-293

ters before tuning to syntactic representations, en-294

hancing utility across domains.295

8 Conclusion296

8.1 Summary of Key Findings297

The unsupervised approach presented here for clas-298

sifying semantic specificity is currently being ap-299

plied within a proof of concept recommendation300

engine. It appears to offer a versatile framework for301

advancing classification methods without relying 302

heavily on labeled data. Our unsupervised learning 303

methods were validated and enhanced by human 304

feedback to accurately classify text by semantic 305

specificity or "scope." 306

By combining unsupervised learning techniques 307

(Doc2Vec and KMeans clustering) with heuristic- 308

based clustering we can effectively classify texts as 309

"general" or "specific." Furthermore, by employing 310

a two-tiered clustering approach (initial topic clus- 311

tering followed by heuristic-based clustering) we 312

enhanced the precision of the model. This proved 313

effective in handling thematic and semantic nu- 314

ances within large datasets. 315

These findings are particularly relevant to the 316

broader NLP community as they demonstrate the 317

potential of unsupervised methods to support com- 318

plex semantic tasks typically reserved for super- 319

vised approaches. This work appears most promis- 320

ing in environments where labeled data is scarce or 321

difficult to obtain. 322

8.2 Proposals for Future Work 323

While this study focused on the creative ideation 324

process, applying this unsupervised approach to 325

using semantic specificity in other domains could 326

reveal broader applicability. 327

Further exploring the use of this approach within 328

other NLP tasks such as sentiment analysis, intent 329

detection, and automatic summarization could led 330

to more nuanced text scope understanding. 331

Future work might explore how to combine this 332

approach with other machine learning methods, 333

such as deep learning or transfer learning, in order 334

to enhance understanding of unsupervised methods 335

in NLP applications, helping craft models with 336

capability for complex semantic distinctions. 337

Finally, the approach might be adapted to work 338

with non-English languages by modifying heuristic 339

features and clustering to suit different linguistic 340

contexts, potentially through the use of multilingual 341

embedding models. 342

Ultimately, we believe this research underscores 343

the potential of advancing machine learning ap- 344

proaches with human cognitive processes to im- 345

prove the accuracy and functionality of NLP appli- 346

cations in classifying semantic specificity. 347
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9 Limitations348

9.1 Dataset Limitations349

The dataset used in this study, while effective350

for demonstrating the viability of unsupervised351

learning methods combined with human feedback,352

possesses several limitations that could impact the353

generalizability and scalability of the findings.354

355

Scope of Data: The dataset primarily encom-356

passed text inputs from users engaging with the357

Ideator platform. This specificity means the data358

is somewhat homogeneous, primarily reflecting359

the language and concerns of individuals focused360

on creative problem-solving. As a result, the361

linguistic features and thematic elements are362

not as varied as they might be in a more diverse363

corpus. This limitation could affect the model’s364

ability to perform as effectively across different365

domains or broader NLP applications where366

the text characteristics and user intentions vary367

significantly.368

369

Volume of Data: Although the dataset includes a370

substantial number of entries, the overall volume371

may still be insufficient for training more complex,372

deep learning models that require vast amounts373

of data to generalize effectively. The size of the374

dataset could restrict the model’s ability to capture375

more subtle linguistic or thematic nuances that376

only emerge from larger, more varied datasets.377

378

Depth of Semantic Annotation: The dataset379

lacks deep semantic annotations that would allow380

for more fine-grained analysis and classification381

of text. The binary classification of text into382

"general" or "specific" is a simplification that may383

overlook intermediate levels of specificity or the384

multifaceted nature of how text can be interpreted385

based on context.386

387

Representation Bias: Given that the data was388

collected from a specific type of user interaction389

(i.e., problem-solving within a creative ideation390

tool), there is a potential bias towards certain391

types of expressions and thematic content. This392

bias might limit the model’s effectiveness in393

environments with different types of text, such as394

more formal or technical documents.395

396

Evolution of Language: The dataset is static and397

might not fully account for the evolving nature of398

language use over time, including new slang, termi- 399

nology, or changes in the common use of phrases. 400

This evolution could necessitate continual up- 401

dates to the dataset and model to maintain accuracy. 402

403

Addressing these limitations in future studies 404

would involve expanding the dataset to include a 405

broader array of text sources, increasing the vol- 406

ume of data, and incorporating richer semantic an- 407

notations. Exploring these areas could enhance 408

the model’s robustness and applicability to a wider 409

range of NLP tasks and environments. 410
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