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Abstract
Semi-supervised learning has made remarkable
strides by effectively utilizing a limited amount
of labeled data while capitalizing on the abundant
information present in unlabeled data. However,
current algorithms often prioritize aligning im-
age predictions with specific classes generated
through self-training techniques, thereby neglect-
ing the inherent relationships that exist within
these classes. In this paper, we present a new ap-
proach called OTMatch, which leverages seman-
tic relationships among classes by employing an
optimal transport loss function to match distribu-
tions. We conduct experiments on many standard
vision and language datasets. The empirical re-
sults show improvements in our method above
baseline, this demonstrates the effectiveness and
superiority of our approach in harnessing seman-
tic relationships to enhance learning performance
in a semi-supervised setting.

1. Introduction
Semi-supervised learning occupies a unique position at the
intersection of supervised learning and self-supervised learn-
ing paradigms (Tian et al., 2020; Chen et al., 2020a). The
fundamental principle behind semi-supervised learning lies
in its ability to leverage the latent patterns and structures
of a substantial amount of unlabeled samples to collaborate
with conventional supervised learning on labeled samples.
It has demonstrated remarkable performance without the
need for extensive human efforts in data collection (Sohn
et al., 2020; Zhang et al., 2021; Wang et al., 2022d).

Pseudo-labeling-based methods have dominated the re-
search in semi-supervised learning. It dynamically assigns
labels to unlabeled samples to prepare an extended dataset

1Department of Mathematical Sciences, Tsinghua University
2MIFA Lab, Qing Yuan Research Institute, SEIEE, Shanghai Jiao
Tong University 3Shanghai AI Laboratory. †Correspondence to:
Weiran Huang <weiran.huang@outlook.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

with labeled samples for model training (Lee et al., 2013;
Tschannen et al., 2019; Berthelot et al., 2019b; Xie et al.,
2020; Sohn et al., 2020; Gong et al., 2021; Zhang et al.,
2021; Wang et al., 2022d), allowing the model to bene-
fit from the potential knowledge contained in these unla-
beled samples. Typically, pseudo-labels are derived from
the neural network’s confidence, and the cross-entropy loss
is used to align the prediction on the strongly augmented
image view with the generated pseudo-labels. Following
this paradigm, recent works have achieved state-of-the-art
performance (Zhang et al., 2021; Wang et al., 2022d) in
semi-supervised learning. However, it has been demon-
strated that the overconfidence of models can be observed
when assigning pseudo labels during training (Chen et al.,
2022). This means that the model could confidently assign
samples to incorrect categories, due to the limited labeled
samples in semi-supervised learning. Such unreliability in
confidence is particularly pronounced when dealing with ex-
tremely limited labeled samples. As a result, those misclas-
sified samples can misguide the model’s learning process,
resulting in a decrease in performance.

In this work, we propose a novel solution to alleviate the is-
sue of overconfidence in the model in pseudo-labeling-based
methods by incorporating inter-class semantic relationships.
Particularly, we find that a key issue lies in simply employ-
ing the traditional cross-entropy loss to train the model with
the pseudo-labeled samples. In the cross-entropy loss, the
representation of a sample is aligned with a single cate-
gory. However, when a sample is assigned an incorrect
pseudo-label, this leads the model to learn the represen-
tation in the wrong direction. To address this issue, for
pseudo-labeled samples, we propose to incorporate compre-
hensive inter-class relationships for regularization, instead
of a single-category target, to guide model training, hence
offering improved robustness. Particularly, we use optimal
transport to tackle this problem as the predicted probability
and pseudo labels are naturally two distributions that need
to be matched, and semantic information can be injected
into the cost matrix in optimal transport loss.

The paper is organized in the following manner: We present
a new perspective on current semi-supervised learning meth-
ods that rely on pseudo-labeling. We view these methods
as aiming to align the semantic distribution captured by
the teacher and student models, motivated by (Shi et al.,
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2023). We further improve this by proposing a novel train-
ing algorithm OTMatch, where we bootstrap the cost in op-
timal transport from the class embedding throughout model
training, thus fully capitalizing on semantic relationships
between classes. The diagram of OTMatch is presented in
Figure 1.

Our contributions can be summarized as follows:

• We provide a novel understanding of current pseudo-
labeling-based semi-supervised learning methods by
viewing them as matching the distribution of seman-
tics obtained by the teacher and student models using
(inverse) optimal transport. We also extend this frame-
work to analyze algorithms in self-supervised learning.

• We propose OTMatch, a novel semi-supervised learn-
ing algorithm that exploits the semantic relationship
between classes to alleviate the issue of model over-
confidence caused by limited labeled samples.

• We carry out experiments on well-known vision
datasets such as CIFAR 10/100, STL-10, and Ima-
geNet, noting that our method shows improvements,
particularly in challenging situations with very few la-
beled samples. Additionally, we perform experiments
in the language modality, discovering that our method
is effective there as well.

2. Related Work
Semi-supervised learning, aiming to enhance model perfor-
mance through the utilization of abundant unlabeled data,
has attracted considerable attention in recent years (Chen
et al., 2020b; Assran et al., 2021; Wang et al., 2021; Zhang
et al., 2023b; Chen et al., 2023b; Nassar et al., 2023; Huang
et al., 2023). The invariance principle serves as the foun-
dation for many effective semi-supervised algorithms. Es-
sentially, this principle posits that two semantically similar
images should yield similar representations when processed
by a same backbone.

Consistency regularization. Consistency regularization,
initially introduced in the Π-Model (Rasmus et al., 2015b),
has emerged as a prevalent technique for implementing the
invariance principle. This method has gained widespread
adoption in subsequent research (Tarvainen & Valpola,
2017; Laine & Aila, 2016; Berthelot et al., 2019b). Consis-
tency regularization entails the generation of pseudo-labels
and the application of appropriate data augmentation strate-
gies (Tschannen et al., 2019; Berthelot et al., 2019b; Xie
et al., 2020; Sohn et al., 2020; Gong et al., 2021). Pseudo-
labels are created for unlabeled data and utilized in subse-
quent training iterations (Lee et al., 2013). The conventional
approach involves minimizing the cross-entropy objective
to align the predicted pseudo-labels of two distorted im-

ages, typically obtained through data augmentation (Ras-
mus et al., 2015b; Laine & Aila, 2016; Tarvainen & Valpola,
2017). Extensive research has recently focused on generat-
ing efficient and informative pseudo-labels (Hu et al., 2021;
Nassar et al., 2021; Xu et al., 2021; Zhang et al., 2021; Li
et al., 2022; Wang et al., 2022b), achieving state-of-the-art
performance. SimMatch (Zheng et al., 2022) and CoMatch
(Li et al., 2021) also investigate contrastive learning for
consistency regularization. The efficacy of consistency reg-
ularization has been demonstrated as a simple yet effective
approach, serving as a foundational component in numerous
state-of-the-art semi-supervised learning algorithms.

Improving pseudo-label quality. In the realm of semi-
supervised learning, the current discourse surrounding con-
sistency regularization primarily revolves around augment-
ing the quality of pseudo-labels. SimPLE (Hu et al., 2021)
introduces a paired loss function that diminishes the statisti-
cal discrepancy between confident and analogous pseudo-
labels, thereby enhancing their quality. Dash (Xu et al.,
2021) and FlexMatch (Zhang et al., 2021) propose dynamic
and adaptable filtering techniques for pseudo-labels, which
are better suited for the training process. CoMatch (Li et al.,
2021) advocates for the integration of contrastive learning
within the framework of semi-supervised learning, enabling
the simultaneous learning of two representations of the train-
ing data. SemCo (Nassar et al., 2021) takes into account
external label semantics to safeguard against pseudo-label
quality deterioration for visually similar classes, employing
a co-training approach. FreeMatch (Wang et al., 2022d) pro-
poses a self-adjusting confidence threshold that considers
the learning status of the models, allowing for improved con-
trol over pseudo-label quality. MaxMatch (Li et al., 2022)
presents a consistency regularization technique that mini-
mizes the most substantial inconsistency between an origi-
nal unlabeled sample and its multiple augmented versions,
accompanied by theoretical guarantees. NP-Match (Wang
et al., 2022a) employs neural processes to amplify the qual-
ity of pseudo-labels. SEAL (Tan et al., 2023a) introduces
a methodology that facilitates the concurrent learning of
a data-driven label hierarchy and the execution of semi-
supervised learning. SoftMatch (Chen et al., 2023a) ad-
dresses the inherent trade-off between the quantity and qual-
ity of pseudo-labels by utilizing a truncated Gaussian func-
tion to assign weights to samples based on their confidence.

Unlike previous works focusing on enhancing pseudo-label
quality, we address the issue of overconfidence in mod-
els from an orthogonal perspective by incorporating inter-
class relationships as constraints. Taherkhani et al. (2020);
Tai et al. (2021) also explore using optimal transport in
semi-supervised learning. However, they still use optimal
transport for pseudo-label filtering. In contrast, we employ
optimal transport theory to provide a novel understanding
of current pseudo-labeling methods. We further improve

2



OTMatch: Improving Semi-Supervised Learning with Optimal Transport

Model

Model

Class weight

OT Loss
Cost  

update

CE Loss

Strong 
augmentation

Weak  
augmentation

Pseudo label

Probability

Unlabeled data
Classifier

EMA

Figure 1. To obtain a pseudo-label, a model is fed with a weakly augmented image. Then, the model predicts the probability of a strongly
augmented version of the same image. The loss includes cross-entropy and optimal transport loss, which considers the probability and
pseudo-label. The cost used in optimal transport is adjusted based on the model’s classification head weight.

this by extracting inter-class semantic relationships from the
model’s learning dynamic to update the cost matrix, which
has never been explored before.

3. Preliminary
3.1. Problem setting and notations

Throughout a semi-supervised learning process, it is cus-
tomary to have access to both labeled and unlabeled data.
Each batch is a mixture of labeled data and unlabeled data.
Assume there are B labeled samples {(xli ,yli)}Bi=1 and
µB unlabeled samples {xui

}µBi=1 in a mixed batch, where
µ is the ratio of unlabeled samples to labeled samples. We
adopt the convention in semi-supervised learning (Zhang
et al., 2021; Wang et al., 2022d) that there will be a teacher
and student network that shares the same architecture. The
teacher network does not update through gradient but by
exponential moving average (EMA) instead. There will also
be two sets of augmentations of different strengths, namely
weak augmentation ω(·) and strong augmentation Ω(·).

For labeled data, the loss is the classical cross-entropy loss
as follows:

Lsup =
1

B

B∑
i=1

H(yli ,Pr(ω(xli))), (1)

where Pr(ω(xli)) denotes the output probability and H(·, ·)
denotes the cross-entropy loss.

The unsupervised loss Lun is usually the main focus of
improving semi-supervised learning. FixMatch (Sohn et al.,
2020) introduces the idea of using a fixed threshold τ to
only assign pseudo labels to those samples with enough
confidence. Later, a line of works like FlexMatch (Zhang

et al., 2021) and FreeMatch (Wang et al., 2022d) seeks to
improve the threshold selection strategy. This loss can be
formally described as follows:

Lun1 =
1

µB

µB∑
i=1

I(max(qui) > τ)H(q̂ui ,Qui), (2)

where qui
is the probability of (the teacher) model on the

weakly-augmented image, Qui is the probability of (the
student) model on the strongly-augmented image, and q̂ui

denotes the generated one-hot hard pseudo label.

FreeMatch (Wang et al., 2022d) also introduces a fairness
loss to make the class distribution more balanced. The loss
is given as follows:

Lun2 = −H(SumNorm(
p1

h1
),SumNorm(

p2

h2
)), (3)

where p1 and h1 denote the mean of model predictions
and histogram distribution on weakly-augmented images
respectively, p2 and h2 is defined on the pseudo-labeled
strongly-augmented images. As the prediction on the
weakly-augmented image is more accurate, using cross-
entropy loss here mimics the maximization of entropy.

3.2. Optimal transport

The Kantorovich formulation of discrete optimal transport
(Kantorovich, 1942), also known as the transportation prob-
lem, provides a mathematical definition for finding the op-
timal transportation plan between two discrete probability
distributions. Let’s consider two discrete probability distri-
butions, denoted as µ and ν, defined on two finite sets of
points, X = {x1,x2, . . . ,xm} and Y = {y1,y2, . . . ,yn},
respectively. The goal is to find a transportation plan that
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minimizes the total transportation cost while satisfying cer-
tain constraints. The transportation plan specifies how much
mass is transported from each point in X to each point in
Y. This is achieved by defining a transportation (plan) ma-
trix T = [Tij ], where Tij represents the amount of mass
transported from point xi to point yj .

For ease of notation, we present the definition in the follow-
ing form:

min ⟨C,T⟩
s.t. T ∈ U(µ, ν) = {T ∈ Rm×n

+ | T1n = µ,TT1m = ν},

where C denotes the cost matrix and ⟨C,T⟩ =
∑

ij CijTij

is the inner product between matrices.

In this formulation, cij represents the cost between point
xi and point yj . It could be any non-negative cost function
that captures the transportation cost between the points. The
objective is to minimize the total cost, which is the sum of
the products of the transportation amounts Tij and their
corresponding costs cij . We denote the optimal transport
distance as W(µ, ν).

The constraints ensure that the transportation plan satisfies
the conservation of mass: the total mass transported from
each point in X should be equal to its mass in distribution
µ, and the total mass received at each point in Y should
be equal to its mass in distribution ν. Additionally, the
transportation amounts Tij are non-negative.

The solution to this optimization problem provides the op-
timal transportation plan, which specifies how much mass
is transported from each point in X to each point in Y to
minimize the total cost. Algorithms, such as the Hungarian
algorithm (Kuhn, 1955) can be applied to solve this problem
with the complexity of O(m2n).

The computational complexity to solve the general optimal
transport problem is relatively high. Cuturi (2013) proposes
an entropic regularized version of the optimal transport
problem as follows:

min ⟨C,T⟩ − ϵH(T)

subject to T ∈ U(µ, ν),

where ϵ > 0 is a hyperparameter and H(T) =
∑

i,j(1 −
logTij)Tij .

This regularized problem can be solved by the Sinkhorn
algorithm efficiently with a complexity of O(mn

ϵ ). It can
be shown that this regularized version approximately solves
the initial discrete optimal transport problem.

4. Understanding FreeMatch via Optimal
Transport

In this section, we start by using the view of semantic match-
ing of distributions to understand the state-of-the-art pseudo-
labeling-based semi-supervised learning methods. The main
tool we will use is the optimal transport. Without loss of
generality, we take the state-of-the-art method FreeMatch
(Wang et al., 2022d) as an example. For simplicity, we ab-
breviate the exponential moving average (EMA) operation.

We find that a natural semantic distribution naturally arises
in (semi-) supervised learning, which is the semantic distri-
bution between samples and classes. Specifically, denote
µ = 1

m1m, then the following set of matrices can be seen
as the semantic distribution between m samples and K
classes (Because each row of T captures the semantic of the
sample’s relationship to each class, the bigger the semantic
distribution, the bigger the values.):

U(µ) = {T ∈ Rm×K
+ | T1K = µ},

where 1K is an all one vector.

The above observation is also noticed in the setting of super-
vised learning setting by (Shi et al., 2023). In the following,
we will first recap the derivation in their paper for super-
vised loss, where (Shi et al., 2023) introduces the framework
of inverse optimal transport (IOT).

IOT aims to infer the cost function from the observed empir-
ical semantic distribution matrix. It usually parameterizes
the cost matrix into a learnable matrix Cθ and solves the
following optimization problem:

min KL(T̄∥Tθ)

subject to Tθ = argmin
T∈U(µ)

⟨Cθ,T⟩ − ϵH(T), (4)

where T̄ is a given semantic distribution matrix and the KL
divergence is defined as follows.

Definition 4.1. For any two positive measures (distribu-
tions) P and Q on the same support X , the KL divergence
from Q to P is given by:

KL(P∥Q) = −
∑
x∈X

P(x) log
P(x)

Q(x)
−
∑
x∈X

P(x)+
∑
x∈X

Q(x).

(5)

Shi et al. (2023) show that

Tij =
1

m

exp (−Cij/ϵ)∑K
k=1 exp (−Cik/ϵ)

(6)

is the closed-form solution to the optimization problem (7):

argmin
T∈U(µ)

⟨C,T⟩ − ϵH(T). (7)
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Then consider a batch of labeled data is {(xi,yi)}Bi=1,
where xi represents the i-th image in the dataset and yi

is the label for this image. We can construct a “ground truth”
semantic distribution matrix T̄ by setting T̄ij =

1
B δyi

j .

Denote the logits generated by the neural network for each
image xi as lθ(xi). By setting the cost matrix Cθ

ij =
c − lθ(xi)j (c is a large constant), simplifying the trans-
port matrix (6) by dividing the same constant exp(−c/ϵ),
assuming there are a total of K labels, the transportation
matrix is given by:

Tθ
ij =

1

m

exp(lθ(xi)j/ϵ)∑K
k=1 exp(lθ(xi)k/ϵ)

. (8)

It is then straightforward to find that the loss in problem (4)
is reduced as follows:

L = −
B∑
i=1

log
exp(lθ(xi)j/ϵ)∑K

k=1 exp(lθ(xi)k/ϵ)
+ Const,

which exactly mirrors the supervised cross-entropy loss in
semi-supervised learning with a temperature parameter ϵ.

Next, we delve into comprehending the more challenging
unsupervised loss. We introduce a lemma that is very useful
afterward in analyzing the unsupervised loss.

Lemma 4.2.
∑m

i=1 si
m is the unique solution of the optimiza-

tion problem:

min
x

W(δx,

m∑
i=1

1

m
δsi),

where the underlying cost is the square of l2 distance.

FreeMatch employs an adaptive threshold for pseudo-
labeling. It is essentially equivalent to generating the thresh-
old based on the semantic distribution matrix of (the teacher)
model from equation (8). In particular, we start by analyzing
the global threshold in FreeMatch, which aims to modulate
the global confidence across different classes. Given that,
each row of the matching matrix indicates the estimated
probability qui

over the K classes. An intuitive idea is to
associate each unlabeled sample ui with a real number indi-
cating the prediction confidence, thus we can take max(qui

)
as a representative. Consequently, the general prediction
confidence over the unlabeled data can be represented by
a probability distribution

∑µB
i=1

1
µB δmax(qui

) that captures
the full knowledge of the predictions. By identifying the
global threshold τ with a probability distribution δτ and
using Lemma 4.2, the global threshold can be calculated as

τ =

∑µB
i=1 max(qui)

µB
.

Since the global threshold does not accurately reflect the
learning status of each class, we can refine the global thresh-
old by incorporating the learning information for each class.
Note the prediction qui

not only provide the “best” confi-
dence max(qui

), but also suggest the confidence on each
class k (1 ≤ k ≤ K).

By aggregating all confidences of unlabeled data for class
k and organizing them into a probability distribution∑µB

i=1
1

µB δqui
(k), we can calculate the local importance

p1(k) =
∑µB

i=1
qui

(k)

µB using a similar argument in the
global threshold case. By adjusting the relative threshold
according to the importance, we can finally derive the (local)
threshold as follows:

τ(k) =
p1(k)

maxk′p1(k′)

∑µB
i=1 max(qui

)

µB
.

When dealing with unlabeled data, there is no “ground
truth” semantic distribution matrix like the supervised cases.
Therefore, we use the semantic distribution matrix after
threshold filtering to serve as a “ground truth”. It’s impor-
tant to highlight that both the teacher and student models
share a similar format of the semantic distribution matrix
given by equation (8). Consequently, unlabeled samples
filtered by the teacher model are also excluded from the
student model to avoid transferring predictions with low
confidence. We use different ϵ for the teacher and student
models (student use ϵ = 1) as they have different confi-
dences, when the ϵ for the teacher model is approaching
zero, equation (8) will recover the one-hot pseudo label.

Thus the reduced semantic distribution matrices of teacher
and student models are no longer probability matrices. As
they still form positive matrices, by converting each row of
the teacher model’s predictions into pseudo labels and using
the definition of KL divergence in equation (5) for positive
distributions (measures). We find that the KL divergence be-
tween the teacher and student semantic distribution matrices
recovers exactly the unsupervised loss Lun1. The fairness
loss Lun2 can be similarly understood according to Lemma
4.2.

Remark: More algorithms derived from the framework of
using optimal transport to match semantics can be found in
Appendix B.

5. OTMatch: Improving Semi-Supervised
Learning with Optimal Transport

From the derivation in section 4, we found that the perfor-
mance of student models depends on the semantic distribu-
tion given by the teacher model. As teacher model generates
one-hot pseudo labels, which makes it more likely to be over-
confident in its predictions. This overconfidence leads to
misclassifications and hampers the model’s performance.
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Algorithm 1 OTMatch training algorithm at t-th step
1: Input: Number of classes K, labeled sam-

ples {(xli ,yli)}Bi=1, unlabeled samples {xui}
µB
i=1,

FreeMatch loss weights w1, w2, and EMA decay m,
OT loss balancing weight λ, normalized classification
head vectors {vi}Ki=1.

2: FreeMatch loss:
3: Calculate Lsup using equation (1)
4: τt = mτt−1 + (1−m) 1

µB

∑µB
i=1 max(qui)

5: p̃t = mp̃t−1 + (1−m) 1
µB

∑µB
b=1 qui

6: h̃t = mh̃t−1 + (1−m)HistµB (q̂ui
)

7: for c = 1 to K do
8: τt(c) = MaxNorm(p̃t(c)) · τt
9: end for

10: Calculate Lun1 using equation (2)
11: p = 1

µB

∑µB
i=1 I (max (qui

) ≥ τt(argmax (qui
))Qui

12: h = HistµB(I
(
max

(
qui

)
≥ τt(argmax

(
qui

))
Q̂ui

))
13: Calculate Lun2 using equation (3)
14: LFreeMatch = Lsup + w1Lun1 + w2Lun2
15: Cost update:

Ct(i, j) = mCt−1(i, j) + (1−m)(1− ⟨vi,vj⟩)
16: OT loss:

Lun3 = 1
µB

∑µB
i=1 I(max(qui

) > τt(argmax(qui
)))∑K

k=1 Ct(argmax(qui), k)Qui(k)
17: OTMatch loss:

LOTMatch = LFreeMatch + λLun3

To tackle this issue, we propose a novel solution that incor-
porates inter-class semantic relationships to alleviate model
overconfidence in pseudo-labeling-based methods. Optimal
transport is also a suitable tool here because the pseudo-label
and the predicted probability given by the student model are
two distributions. By considering comprehensive inter-class
relationships instead of relying on a single-category target,
we aim to improve the model’s robustness and accuracy.

The cost function in optimal transport plays an important
role. Frogner et al. (2015) construct cost using additional
knowledge like word embedding. This approach may not
be problem-specific and incorporates additional knowledge.
Unlike previous works, we propose that the cost matrix
can actually be effectively bootstrapped from the model
itself. The basic idea is to “infer” the cost from the learn-
ing dynamic of the model. Since the model parameters are
updated from (the stochastic) gradient descent method, our
initial step involves analyzing the gradients. To simplify
the analysis, assume the feature extracted by the model as
unconstrained variables. Suppose the last layer of the neu-
ral network weights are denoted by W = [w1w2 · · ·wK ].
Define the predicted probability matching for the image x

as follows:

pk(fθ(x)) =
exp

(
fθ(x)

Twk

)∑K
k′=1 exp (fθ(x)

Twk′)
, 1 ≤ k ≤ K.

Then we can calculate the loss’s gradient for each image
embedding with a label (or pseudo label) k as follows:

∂L
∂fθ(x)

= − (1− pk(fθ(x)))wk +

K∑
k′ ̸=k

pk′(fθ(x))wk′ ,

where L is the supervised loss Lsup or unsupervised loss
Lun1.

As the goal is to push fθ(x) to the direction of wk, the
updated score U(x) along wk during SGD on fθ(x) can be
calculated as:

U(x) = ⟨− ∂L
∂fθ(x)

,wk⟩

= (1− pk(fθ(x))) ⟨wk,wk⟩ −
K∑

k′ ̸=k

pk′(fθ(x))⟨wk′ ,wk⟩.

(9)

Note U(x) reflects the hardness of classifying image x into
class k. Thus we would like our expected cost of classifi-
cation C(x) to be proportional to U(x). Using the law of
probability, we can decompose C(x) as follows:

C(x) = Ek(Cost | x) =
K∑

k′=1

Ckk′pk′(fθ(x)).

When ∥wi∥2 = 1, by setting Ckk′ = 1−⟨wk,wk′⟩ we can
demonstrate that C(x) = U(x).

Hence, it is evident that inter-class semantic relationships
are indeed the core of the construction of an effective cost.
Taking the fluctuation of batch training into consideration,
we finally derive the cost update formula as follows:

Ckk′ = mCkk′ + (1−m)(1− ⟨vk,vk′⟩),

where the cost is initialized by discrete metric, m is the
momentum coefficient, and vk = wk

∥wk∥2
.

The computation cost of calculating the optimal transport
cost is relatively high, which hinders its application. We
present a lemma that shows under some mild conditions in
semi-supervised learning, optimal transport can be calcu-
lated in complexity O(K).

Lemma 5.1. Suppose two probability distributions µ and ν
support on X and suppose | X |= K. Suppose the cost is
generated by a metric and there exists k such that µ(i) ≤
ν(i) for any i ̸= k. Then W(µ, ν) =

∑K
i=1 Cik(ν(i) −

µ(i)).
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Table 1. Error rates (100% - accuracy) on CIFAR-10/100, and STL-10 datasets for state-of-the-art methods in semi-supervised learning.
Bold indicates the best performance, and underline indicates the second best.

Dataset CIFAR-10 CIFAR-100 STL-10

# Label 10 40 250 400 2500 40 1000

Π Model (Rasmus et al., 2015a) 79.18±1.11 74.34±1.76 46.24±1.29 86.96±0.80 58.80±0.66 74.31±0.85 32.78±0.40
Pseudo Label (Lee et al., 2013) 80.21± 0.55 74.61±0.26 46.49±2.20 87.45±0.85 57.74±0.28 74.68±0.99 32.64±0.71
VAT (Miyato et al., 2018) 79.81± 1.17 74.66±2.12 41.03±1.79 85.20±1.40 46.84±0.79 74.74±0.38 37.95±1.12
MeanTeacher (Tarvainen & Valpola, 2017) 76.37± 0.44 70.09±1.60 37.46±3.30 81.11±1.44 45.17±1.06 71.72±1.45 33.90±1.37
MixMatch (Berthelot et al., 2019b) 65.76± 7.06 36.19±6.48 13.63±0.59 67.59±0.66 39.76±0.48 54.93±0.96 21.70±0.68
ReMixMatch (Berthelot et al., 2019a) 20.77± 7.48 9.88±1.03 6.30±0.05 42.75±1.05 26.03±0.35 32.12±6.24 6.74±0.17
UDA (Xie et al., 2020) 34.53± 10.69 10.62±3.75 5.16±0.06 46.39±1.59 27.73±0.21 37.42±8.44 6.64±0.17
FixMatch (Sohn et al., 2020) 24.79± 7.65 7.47±0.28 5.07±0.05 46.42±0.82 28.03±0.16 35.97±4.14 6.25±0.33
Dash (Xu et al., 2021) 27.28± 14.09 8.93±3.11 5.16±0.23 44.82±0.96 27.15±0.22 34.52±4.30 6.39±0.56
MPL (Pham et al., 2021) 23.55± 6.01 6.93±0.17 5.76±0.24 46.26±1.84 27.71±0.19 35.76±4.83 6.66±0.00
FlexMatch (Zhang et al., 2021) 13.85± 12.04 4.97±0.06 4.98±0.09 39.94±1.62 26.49±0.20 29.15±4.16 5.77±0.18
FreeMatch (Wang et al., 2022d) 8.07± 4.24 4.90±0.04 4.88±0.18 37.98±0.42 26.47±0.20 15.56±0.55 5.63±0.15

OTMatch (Ours) 4.89± 0.76 4.72± 0.08 4.60± 0.15 37.29± 0.76 26.04± 0.21 12.10± 0.72 5.60± 0.14

Thus we can finally obtain our optimal transport-based un-
supervised loss as follows:

Lun3 =
1

µB

µB∑
i=1

I(max(qui) > τ(argmax(qui)))W(q̂ui ,Qui).

When combining our method with FreeMatch, we obtain our
final OTMatch loss as LOTMatch = LFreeMatch+λLun3, where
λ is a hyperparameter. This loss considers incorporating
semantic information to distinguish two distribution q̂ui

and Qui
. The whole process of our method is outlined in

Algorithm 1.

Interestingly, the loss Lun3 can also be interpreted using
the view of self-attention (Vaswani et al., 2017). Setting
fθ(x) as query, wj (1 ≤ j ≤ K) as keys and vj (1 ≤
j ≤ K) as values, recall the definition of self-attention,∑K

i=1 pi(fθ(x))vi is exactly the representation generated
by self-attention.

For an unlabeled image x with pseudo label k,
the loss can be reformulated as: W(δk,Pr(x)) =∑K

i=1 CikPr(i | x) =
∑K

i=1(1 − ⟨vi,vk⟩)pi(fθ(x)) =

1−⟨
∑K

i=1 pi(fθ(x))vi,vk⟩. Thus intuitively, the loss Lun3
seeks to align the representation generated by the self-
attention mechanism with the classification head vector vk.

6. Experiments
6.1. Setup

Based on previous studies (Sohn et al., 2020; Zhang et al.,
2021; Wang et al., 2022d), we evaluate our method on
widely used vision semi-supervised benchmark datasets,
including CIFAR-10/100, STL-10, and ImageNet. Our
approach (OTMatch) incorporates the optimal transport
loss with the calculation of the unsupervised loss within
FreeMatch. Our experiments primarily focus on realistic

Table 2. Error rates (100% - accuracy) on ImageNet with 100 labels
per class.

Top-1 Top-5

FixMatch (Sohn et al., 2020) 43.66 21.80
FlexMatch (Zhang et al., 2021) 41.85 19.48
FreeMatch (Wang et al., 2022d) 40.57 18.77
OTMatch (Ours) 39.29 17.77

Table 3. Comparisons with state-of-the-art semi-supervised learn-
ing methods on Amazon Review and Yelp Review. Error rates
(100% - accuracy) are reported.

Amz Review Yelp Review
# Label 250 1000 250 1000

FixMatch (Sohn et al., 2020) 47.85 43.73 50.34 41.99
CoMatch (Li et al., 2021) 48.98 44.37 46.49 41.11

Dash (Xu et al., 2021) 47.79 43.52 35.10 30.51
AdaMatch (Berthelot et al., 2022) 46.75 43.50 48.16 41.71

SimMatch (Zheng et al., 2022) 47.27 43.09 46.40 41.24

FlexMatch (Zhang et al., 2021) 45.75 43.14 46.37 40.86
OTMatch (Ours) 43.81 42.35 43.61 39.76

scenarios with limited labeled data. We utilize SGD as the
optimizer with a momentum of 0.9 and a weight decay of
5 × 10−4. The learning rate follows a cosine annealing
scheduler, initialized at 0.03. The batch size is set to 64,
except for ImageNet where it is 128. The ratio of unlabeled
data to labeled data is 7. We report results over multiple
runs over seeds. Regarding the choice of backbones, we use
the Wide ResNet28-2 for CIFAR-10, Wide ResNet-28-8 for
CIFAR-100, Wide ResNet-37-2 for STL-10, and ResNet-50
for ImageNet. Our training process consists of 220 total
training iterations, where each step involves sampling an
equal number of labeled images from all classes. For the
hyperparameter settings of our method, we set λ = 0.5
for CIFAR-10, λ = 0.15 for STL-10 and CIFAR-100, and
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Table 4. Ablation studies on the chosen cost in the optimal trans-
port loss. Error rates (100% - accuracy) on CIFAR-10 with 4 labels
per class are reported.

Top-1

Binary Cost 5.20
Cost Based on Covariance 4.88
OTMatch Cost (Ours) 4.72

Figure 2. Hierarchical clustering results of the learned cost matrix
on CIFAR-10.

λ = 0.01 for ImageNet. The momentum coefficient of the
cost update is set to 0.999.

6.2. Results

Performance improvements. In our evaluation, we com-
pare our approach to a wide range of representative semi-
supervised learning methods, including Π-Model (Rasmus
et al., 2015a), Pseudo-Label (Lee et al., 2013), VAT (Miyato
et al., 2018), MeanTeacher (Tarvainen & Valpola, 2017),
MixMatch (Berthelot et al., 2019b), ReMixMatch (Berthelot
et al., 2019a), UDA (Xie et al., 2020), Dash (Xu et al., 2021),
MPL (Pham et al., 2021), FixMatch (Sohn et al., 2020), Flex-
Match (Zhang et al., 2021), and FreeMatch (Wang et al.,
2022d). The results are reported in Table 1 and 2.

It’s evident that OTMatch outperforms previous methods
across the board and notably enhances performance. This
improvement is particularly pronounced in scenarios with
limited labeled samples such as STL-10 with 40 labels and
CIFAR-10 with 10 labels, which indeed aligns with our mo-
tivation. It is important to note that in CIFAR-10 cases, fully
supervised has achieved an error rate of 4.62 (Wang et al.,
2022d). Thus, our method further closes the gap between
semi-supervised learning and fully supervised learning.

Furthermore, as optimal transport can be incorporated wher-
ever cross-entropy is used, our method can seamlessly in-

tegrate with recent and future techniques thereby achiev-
ing greater performance enhancements. The computa-
tional complexity is only O(K), making it computationally
friendly even as the number of labels scales. This high-
lights optimal transport as a useful regularizer with minimal
computation overhead.

6.3. Analysis

Results on data from other modalities. To demonstrate the
utility of our approach, we further extend our evaluations to
encompass USB datasets (Wang et al., 2022c) of language
modality. Specifically, the results in Table 3 demonstrate
that on both Amazon Review and Yelp Review, when our
approach is integrated with Flex-Match (current state-of-
the-art), we have achieved an improvement, reaching a new
state-of-the-art. This also validates the fact that, beyond the
compatibility with FreeMatch, our approach actually can be
effortlessly integrated with various existing methods.

Ablations of the cost. The cost plays a crucial role in the
optimal transport loss, we conduct further ablation studies
to investigate its effect. The binary cost c1(x, y) = Ix̸=y is
a straightforward cost option. However, it does not take into
account the relationships between classes. Additionally, we
explore an alternative cost formulation that considers class
relationships. In this regard, we update the cost based on
the covariance matrix of predicted probabilities for strongly
augmented images. We compare the performance of these
costs on CIFAR-10 with 40 labels benchmark and summa-
rize the results in Table 4. It is clear that the cost used in our
method achieves the best performance.

In addition, we also demonstrate the hierarchical cluster-
ing results of the final cost matrix in Fig. 2, revealing that
correct inter-class semantic relationships are learned. Specif-
ically, In the hierarchical clustering, we can observe that
various classes that denote non-living things such as air-
plane, truck, and ship are clustered closely together, while
classes that denote living things (animals) like cat, dog,
frog, bird, deer, and horse are also clustered closely together.
More interestingly, we can also observe more fine-grained
clustering effects, such as the proximity between car and
truck, cat and dog, as well as deer and horse.

7. Conclusion
In this paper, we present a fresh perspective for semi-
supervised learning, going beyond the previous efforts on
solely improving the quality of pseudo-labels. We introduce
a novel algorithm, OTMatch, that harnesses the inherent
relationships between classes with inverse optimal trans-
port. We also demonstrate the superiority of OTMatch in
our experiments.

By introducing OTMatch, we not only contribute to the
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advancement of semi-supervised learning techniques but
also pave the way for future research by promoting the
incorporation of optimal transport loss in a versatile manner.

Acknowledgment
Weiran Huang is supported by 2023 CCF-Baidu Open Fund
and Microsoft Research Asia.

We would also like to express our sincere gratitude to the
reviewers of ICML 2024 for their insightful and constructive
feedback. Their valuable comments have greatly contributed
to improving the quality of our work.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Assran, M., Caron, M., Misra, I., Bojanowski, P., Joulin,

A., Ballas, N., and Rabbat, M. Semi-supervised learning
of visual features by non-parametrically predicting view
assignments with support samples. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 8443–8452, 2021.

Berthelot, D., Carlini, N., Cubuk, E. D., Kurakin, A., Sohn,
K., Zhang, H., and Raffel, C. Remixmatch: Semi-
supervised learning with distribution alignment and aug-
mentation anchoring. arXiv preprint arXiv:1911.09785,
2019a.

Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N.,
Oliver, A., and Raffel, C. A. Mixmatch: A holistic ap-
proach to semi-supervised learning. Advances in neural
information processing systems, 32, 2019b.

Berthelot, D., Roelofs, R., Sohn, K., Carlini, N., and
Kurakin, A. Adamatch: A unified approach to semi-
supervised learning and domain adaptation. In ICLR,
2022.

Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P.,
and Joulin, A. Unsupervised learning of visual features
by contrasting cluster assignments. Advances in neural
information processing systems, 33:9912–9924, 2020.

Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J.,
Bojanowski, P., and Joulin, A. Emerging properties in
self-supervised vision transformers. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, pp. 9650–9660, 2021a.

Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J.,
Bojanowski, P., and Joulin, A. Emerging properties in
self-supervised vision transformers. In Proceedings of
the International Conference on Computer Vision (ICCV),
2021b.

Chen, H., Tao, R., Fan, Y., Wang, Y., Wang, J., Schiele, B.,
Xie, X., Raj, B., and Savvides, M. Softmatch: Addressing
the quantity-quality trade-off in semi-supervised learning.
International Conference on Learning Representations
(ICLR), 2023a.

Chen, M., Du, Y., Zhang, Y., Qian, S., and Wang, C. Semi-
supervised learning with multi-head co-training. In AAAI,
pp. 6278–6286, 2022.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. arXiv preprint arXiv:2002.05709, 2020a.

Chen, T., Kornblith, S., Swersky, K., Norouzi, M., and
Hinton, G. E. Big self-supervised models are strong
semi-supervised learners. Advances in neural information
processing systems, 33:22243–22255, 2020b.

Chen, X. and He, K. Exploring simple siamese represen-
tation learning. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
15750–15758, 2021.

Chen, Y., Tan, X., Zhao, B., Chen, Z., Song, R., Liang, J.,
and Lu, X. Boosting semi-supervised learning by exploit-
ing all unlabeled data. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 7548–7557, 2023b.

Cuturi, M. Sinkhorn distances: Lightspeed computation
of optimal transport. Advances in neural information
processing systems, 26, 2013.

Frogner, C., Zhang, C., Mobahi, H., Araya, M., and Poggio,
T. A. Learning with a wasserstein loss. Advances in
neural information processing systems, 28, 2015.

Gong, C., Wang, D., and Liu, Q. Alphamatch: Improv-
ing consistency for semi-supervised learning with alpha-
divergence. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 13683–
13692, 2021.
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Appendix

A. More on proofs
A.1. Proof of lemma 4.2

Proof. By using the definition of Wasserstein distance. We find that W(δx,
∑m

i=1
1
mδsi) =

1
m

∑m
i=1(x− si)

2. As this is a
quadratic function of x, we can immediately derive that the unique minimizer is

∑m
i=1 si
m .

A.2. Proof of lemma 5.1

Proof. Note µ(i) ≤ ν(i) for any i ̸= k, Thus by the probability constraints we know that µ(k) ≥ ν(k). As the cost is
generated by a metric, we know that Ckk = 0. Consider transporting mass from ν to µ, as the cost from k to k is 0, ν will
transport all ν(k) to µ(k). For any i ̸= k, if ν transport ∆ > 0 mass to point j (j ̸= k). Then as ν(j) ≥ µ(j), ν can only
transport the mass ∆ to the unique point where ν has smaller mass than µ. From triangular inequality Cik ≤ Cij +Cjk,
this is costly than transporting directly from i to k. Thus the optimal plan is to transport all the residual mass ν(i)− µ(i) to
node k. Thus the conclusion follows.

B. More algorithms derived from semantic-distribution matching with optimal transport
Shi et al. (2023) show that SimCLR (Chen et al., 2020a) and MoCo (He et al., 2019) can be understood by the optimal
transport viewpoint. We would like to show that many other import algorithms can also be derived from optimal transport.
Other understandings of self-supervised learning can be found in (Tan et al., 2023c;b; Zhang et al., 2023a).

B.1. Cross-entropy based contrastive methods

SimMatch (Zheng et al., 2022), CoMatch (Li et al., 2021), ReSSL (Zheng et al., 2021), SwAV (Caron et al., 2020) and
DINO (Caron et al., 2021a) adopt the teacher student setting and use KL divergence in their loss (consider the effect of
stop-gradient, the cross-entropy is equivalent to KL divergence). Similar to the derivation in Section 4, the teacher (student)
matching matrices are generated by setting the cost matrix using the (negative) similarity of query samples between buffer
samples (SimMatch, ReSSL), class prototypes (SwAV), other samples in a batch (CoMatch) or classification head weights
(DINO). The derivation is similar to Section 4.

While both our OTMatch and contrastive learning-based methods consider the relationship between classes, there are
some crucial distinctions. Our OTMatch focuses on aligning the class classification probabilities of two augmented views,
following the line of work such as FixMatch, FlexMatch, and FreeMatch. In contrast, contrastive learning-based methods
emphasize the consistency between two batches of augmented views. To be more specific, our OTMatch calculates each
optimal transport loss exclusively involving the two augmented views. In contrast, contrastive learning-based methods such
as SimMatch and CoMatch align the two batches by utilizing the representation similarity between samples in the batch. As
a result, contrastive learning-based methods necessitate an additional branch, apart from the one calculating sample-wise
consistency. Therefore, our OTMatch is orthogonal to contrastive learning-based methods and can be combined with them.

B.2. CLIP

CLIP (Radford et al., 2021) is a multi-modal learning algorithm. For a batch of image text pairs {(Ii, Ti)}Bi=1, the image to
text loss is as follows:

LI→T = −
B∑
i=1

log
exp(⟨fI(Ii), fT (Ti)⟩/τ)∑B

k=1 exp(⟨fI(Ii), fT (Tk)⟩/τ)
, (10)

where fI is the image encoder and fT is the text encoder and τ is the temperature.

The loss can be retrieved by setting the cost matrix as Ci,j = ∥fI(Ii)− fT (Tj)∥22 and the ground truth matching matrix
T̄ = diag 1

B1B . By noticing the fact that representations are normalized and using equation (8), calculating the loss in IOT
will give the loss LI→T . Different from the uni-modal case where there will only be transportation between the single
modality. In multi-modal cases, there will also exist a symmetric transportation loss LT→I , which can be explained by
optimal transport similarly.
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B.3. SupCon

SupCon (Khosla et al., 2020) is a supervised learning method that generates compact representations of images by
incorporating label information. Suppose I a batch of augmented images and A(i) = I−{i}. Denote zi as the representation
of image i, its label is ỹi.

LSupCon =
∑
i∈I

− 1

|P (i)|
log

∑
p∈P (i)

exp (zi · zp/τ)∑
a∈A(i) exp (zi · za/τ)

. (11)

Here, P (i) ≡ {p ∈ A(i) : ỹp = ỹi} is the set of indices of all positives in the batch.

By setting Cii = +∞ and Cij = c− zi · zj . Noticing that the i-th row of ground truth matching matrix T̄ij =
1

I|P (i)|δ
ỹj

ỹi
.

By noticing the fact that representations are normalized and using equation (8), calculating the loss in IOT will give the
SupCon loss.

B.4. BYOL and SimSiam

BYOL (Grill et al., 2020) and SimSiam (Chen & He, 2021) uses the MSE loss between two augmented views. For a batch of
images {xi}Bi=1, we usually apply different augmentations to the images and get two batches of representations {z(1)i }Bi=1

and {z(2)i }Bi=1.

Take µ = 1
B1B , Shi et al. (2023) using the optimal value of the following optimization problem 12 to explain SimCLR

and MoCo. We consider first change the inner minimization of the entropic regularization problem in 12 into the common
optimal transport problem and get optimization problem 13. However, this bi-level optimization problem is still hard to
solve. Thus we then relax the problem into an optimization problem 14.

Take the ground-truth matching matrix as T̄ = diag 1
B1B . The cost matrix Ci,i = ∥z(1)i − z

(2)
i ∥22 and Ci,j = c+ ∥z(1)i −

z
(2)
i ∥22 (j ̸= i), where c is a large constant.

Then the optimization problem will be Const.+ 1
B

∑
i − logTii+λ

∑
i(Ci,iTi,i+

∑
j ̸=i(c+Ci,i)Ti,j). Using the constraint

of U(µ) and simplifying the constant out, the objective function will be 1
B

∑
i(−BcλTi,i − logTi,i) + λ

∑
i Ci,i +

cλ
B .

As T ∈ U(µ), the optimal value is Const. + λ
∑

i Cii. This exactly recovers the MSE loss.

min KL(T̄∥Tθ)

subject to Tθ = argmin
T∈U(µ)

⟨Cθ,T⟩ − ϵH(T). (12)

min KL(T̄∥Tθ)

subject to Tθ = argmin
T∈U(µ)

⟨Cθ,T⟩. (13)

min KL(T̄∥T) + λ⟨C,T⟩
subject to T ∈ U(µ). (14)

B.5. Integrating OTMatch with self-supervised learning method

We also provide a solution for applying our training algorithm to self-supervised learning methods like DINO (Caron et al.,
2021b). Given probability distributions p (teacher distribution) and q (student distribution), the cross-entropy (CE) loss is
defined as −

∑
pi log qi. As p uses sharpening, the proxy losses can be defined in the following way:

K∑
i=1

Cik | pi − qi |,where k = argmax p.

13
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Table 5. Accuracy (%) on CIFAR-10.
DINO 88.06

DINO+OTMatch 88.20

Table 6. Per-iteration running time
FreeMatch 0.23 s

OTMatch 0.25 s

where C represents the cost in optimal transport. The results are shown in Table 5.

C. Analysis of the running time
We calculate the per-iteration running time of FreeMatch and OTMatch on CIFAR-10 with 40 labels. From Table 6, it can
be observed that our method introduces a small computation overhead.
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