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Abstract

Pretrained language models (LMs) perform well on many tasks even when learning
from a few examples, but prior work uses many held-out examples to tune various
aspects of learning, such as hyperparameters, training objectives, and natural
language templates (“prompts”). Here, we evaluate the few-shot ability of LMs
when such held-out examples are unavailable, a setting we call true few-shot
learning. We test two model selection criteria, cross-validation and minimum
description length, for choosing LM prompts and hyperparameters in the true
few-shot setting. On average, both marginally outperform random selection and
greatly underperform selection based on held-out examples. Moreover, selection
criteria often prefer models that perform significantly worse than randomly-selected
ones. We find similar results even when taking into account our uncertainty in a
model’s true performance during selection, as well as when varying the amount
of computation and number of examples used for selection. Overall, our findings
suggest that prior work significantly overestimated the true few-shot ability of LMs
given the difficulty of few-shot model selection.

1 Introduction

Major progress in language model (LM) pretraining has led to the idea that LMs can learn a new task
using a small number of examples only, i.e., few-shot learning [1–3]. Few-shot learning overcomes
many challenges with data-rich supervised learning: collecting labeled data is expensive, often
requires experts, and scales poorly with the number of tasks. However, the few-shot performance of
LMs is very sensitive to the textual task description [“prompt”; 3–6], order of training examples [6–8],
decoding strategy [9, 10], and other hyperparameters [3, 5, 9, 11, 12], as well as the learning algorithm
itself [3, 12]. Thus, effective model selection is crucial for obtaining good few-shot performance.

There are issues with how recent work approaches model selection in few-shot learning, however.
Prior work uses large train or held-out sets with many examples to choose prompts [2, 12, 13] and
hyperparameters [12]. Other work claims to use no validation set for hyperparameter selection [3,
11, 14] but does not describe how they design other aspects of their learning algorithm (e.g., training
objectives). It is unlikely that no validation examples were used, given the sophisticated nature of the
proposed algorithms. In this work, we examine if prior few-shot learning methods still perform well
when using only the provided examples for model selection, a setting we term true few-shot learning.

We find that true few-shot model selection yields prompts that marginally outperform random selection
and greatly underperform selection based on held-out examples. Our result shows that prior work
may have greatly overestimated the few-shot ability of LMs. In other words, one reason that prompts
are so effective [“worth many examples”; 15] is that they are often tuned using many examples. We
evaluate two standard model selection criteria – cross-validation (CV) and minimum description
length (MDL) – finding that both obtain only limited improvements over random selection and
perform much worse than selection using held-out examples. For prompt selection, our observation
holds for 9 LMs ranging over 3 orders of magnitude in size [1, 2, 16] on 3 classification tasks and 41
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tasks in the LAMA benchmark [17]. For choosing hyperparameters, true few-shot selection causes
performance to drop by 2-10% across 8 tasks for ADAPET [12], a state-of-the-art few-shot method.
Furthermore, true few-shot model selection has high variance in performance; selected models often
do much worse than randomly-chosen ones. We find similar results when varying the number of
examples used, amount of computation, and conservativeness of our selection criterion. Altogether,
our results suggest that model selection is a fundamental roadblock to true few-shot learning.

2 Can We Do Model Selection in Few-Shot Learning?

Prior work uses the phrase “few-shot learning” in multiple senses, raising questions about what it
means to do few-shot learning. We categorize few-shot learning into three distinct settings, each of
which assumes access to different data. Here, we formally disambiguate between these settings to
help future work avoid inadvertently comparing few-shot methods that operate in different settings.

Consider the supervised learning scenario where we have a dataset of inputs x1:N and labels y1:N ,
sampled from a distribution over datasets D. We aim to determine the learning algorithm A∗ ∈
A1, . . . ,AA with the smallest generalization loss L at predicting y given x on unseen validation
examples Dval ∼ D after learning on training examples Dtrain ∼ D. We say that an algorithm
A(Dtrain, R) maps a training dataset Dtrain and various random factors R that influence training to
a function that predicts y given x. A specifies, e.g., the model architecture, hyperparameters, and
prompt. R includes random factors that impact the results of a learning algorithm, such as parameter
initialization and the order of training examples for online learning algorithms like stochastic gradient
descent. We say that A obtains a generalization loss L(A(Dtrain, R), Dval) on a given validation set
Dval. We aim to find the A∗ that minimizes the expected loss across training and validation sets:

EL(A, R) = EDtrain,Dval

[
L
(
A(Dtrain, R);Dval

)]

In data-rich supervised learning, EL(A, R) is usually evaluated with a single train-validation split
(Dtrain, Dval). Since large Dtrain and Dval are not always available, the traditional few-shot setting
evaluates EL(A, R) with many small (Dtrain, Dval) drawn from many, distinct distributions D [see,
e.g., work in meta-learning 18–21]. Each distribution D is sampled from D∗, a distribution over
distributions (e.g., of similar tasks), so we call this setting multi-distribution few-shot learning.

Recent work does not assume access to data from other distributions, performing few-shot learning
using only a few examples from a single distribution to update a pretrained LM [2, 12]. These papers
use a large validation set Dval to tune the learning algorithm A, a setting we term tuned few-shot
learning. For example, Brown et al. [2] try prompts with different phrasings and numbers of training
examples to improve the validation accuracy of GPT-3. Tam et al. [12] choose the early stopping
iteration, prompt, and other model-specific hyperparameters based on validation performance. Tuned
few-shot learning relies on many labeled examples, so we argue that tuned few-shot learning does not
qualify as few-shot learning. If many validation examples are available, they could be incorporated
into the training set and trained on using data-rich supervised learning. Tuned few-shot learning
algorithms should be compared against data-rich supervised learning algorithms that use the same
amount of total data |Dtrain|+ |Dval|.
In this work, we evaluate the success of tuned few-shot learning methods when no large Dval is
available, a setting we term true few-shot learning. Formally, we aim to choose a learning algorithm
A with low expected loss EL(A, R) using only a small training set Dtrain drawn from a single
distribution. Here, we must choose A by approximating EL(A, R), e.g., using cross-validation.
Several papers claim to circumvent the need to estimate EL(A, R) by choosing hyperparameters
based on an educated guess [3, 9, 14]. However, the proposed learning algorithms themselves are
quite sophisticated, and it is unclear how they were designed if not by using validation performance.
Other work chooses the learning algorithm and hyperparameters using one or multiple other datasets
before evaluating on the target dataset [5, 11]. Such approaches fall under multi-distribution few-shot
learning and cannot be directly compared to methods that attempt to perform true few-shot learning,
even though prior work has made such comparisons [14].

In what follows, we describe two model selection criteria – cross-validation and minimum description
length – which we use to evaluate tuned few-shot methods in the true few-shot setting.
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2.1 Cross-validation

Cross-Validation (CV) [22–24] is one of the most widely used methods for estimating generalization
loss [25]. CV has also been used in prior work on multi-distribution few-shot learning [26, 27]. CV
randomly partitions Dtrain into K equally-sized folds F (Dtrain)1, . . . , F (Dtrain)K and evaluates the
average loss on a validation fold F (Dtrain)k when training on the remaining data F (Dtrain)¬k:

CV(A, R, F ) = Ek∼Unif(1,K)

[
L
(
A(F (Dtrain)¬k, R);F (Dtrain)k

)]
In this way, CV forms K train-validation splits out of the pool of labeled examples. CV with one
example per fold (K = N folds) is commonly referred to as leave-one-out CV (LOOCV).

2.2 Minimum description length

We may also form train-validation splits in a different manner than CV, drawing inspiration from work
on the Minimum Description Length (MDL) principle [28]. MDL can be estimated by evaluating the
average loss on a fold F (D)k when training on the previous folds F (D)1:k−1:

MDL(A, R, F ) = Ek∼Unif(1,K)

[
L
(
A(F (Dtrain)1:k−1, R);F (Dtrain)k

)]
This procedure is referred to as “online coding” [29, 30], as it evaluates the generalization loss of the
algorithm as it learns “online” from more and more data.1 There are other ways to evaluate MDL [see
31, for an overview]. We use online coding as it has been shown to be an effective way to estimate
MDL, especially for deep learning methods [32].

MDL measures generalization because it evaluates how much a learning algorithm compresses the
labels y1:N given the inputs x1:N , and because better compression implies better generalization [33].
Recent work has used MDL to determine which learning algorithms are most effective at explaining
the given data [Rissanen Data Analysis; 10, 34].

2.3 Variance matters

We evaluate the generalization loss of the algorithm chosen by CV (likewise for MDL):

L(ACV(Dtrain, R), Dval), where ACV = argmin
A

ER,F [CV(A, R, F )].

The above loss should be low in expectation, across different datasets Dtrain ∼ D, Dval ∼ D,
and random factors R,F : EDtrain,Dval,R,F [L(ACV(Dtrain, R), Dval)]. The loss should also be low
in variance: VDtrain,Dval,R,F [L(ACV(Dtrain, R), Dval)]. Low variance implies that CV/MDL reliably
choose an algorithm that generalizes toDval when trained with a givenDtrain and random factorsR,F .
Reliability is important for many practical or commercial applications where worst-case performance
is important, such as image recognition [35, 36], dialogue systems [37, 38], and robotics [39, 40].

We also experiment with explicitly taking into account an algorithm’s variance during model selection,
choosing ACV to minimize a conservative estimate of CV, CVα(A), chosen such that the probability
PrR,F [CV(A, R, F ) < CVα(A)] is high:

CVα(A) = ER,F [CV(A, R, F )] + α
√

VR,F [CV(A, R, F )]

where α is a hyperparameter set based on the desired probability. In particular, if CV(A, R, F )
follows a normal distributionN when samplingR,F , then CV(A, R, F ) ≤ CVα(A) with probability∫ α
−∞N (µ = 0, σ = 1) for a given R,F . CVα(A) resembles the Watanabe Akaike Information

Criterion [41], which estimates the generalization of a model trained with A using the expected loss
from a model trained with A plus the variance in training loss across models trained with A.

1Online coding formally computes a sum over L(.) rather than the expectation, which differs by a constant
factor. The two are equivalent for our purposes (ranking A).
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2.4 Other model selection criteria

Prior work has developed other model selection criteria such as the Akaike Information Criterion [AIC;
42], Watanabe-Akaike Information Criterion [WAIC; 41], and Mallows’ Cp [43]. These methods
often rely on assumptions or quantities that are not available in the context of deep learning (AIC,
Mallows’ Cp) or are approximations of LOOCV (WAIC). Since state-of-the-art few-shot learning
methods tend to be based on deep learning, we focus on CV and MDL as our model selection criteria.
In Appendix §B, we also test several other criteria that are applicable to deep learning methods.

Selection criteria can be optimized automatically, e.g. with bayesian optimization [44–46],
evolutionary methods [45, 47, 48], reinforcement learning [49], or gradient descent [50–53]. Such
methods aim to match the performance of exhaustive search, the optimal approach (used in our work).

3 True Few-Shot Prompt Selection

Recent work on LMs performs few-shot learning by providing training examples as input in the form
of a natural language “prompt” [2, 3, 9]. For example, for a question-answering task, Brown et al. [2]
prepend input examples with “READING COMPREHENSION ANSWER KEY” before providing
them to GPT-3 (see Appendix Table 2 for more examples). They then have the LM complete the
remaining words in the prompt, conditioning on earlier words (including various input examples),
following the LM’s pretraining objective (next word prediction). No parameter updates are involved.
It is not obvious a priori which prompts will generalize well for a given LM, and there is high variance
in how well different prompts generalize [3, 6], even between prompts with minor differences [e.g.,
one comma; 5]. Effective prompt selection is thus crucial for true few-shot learning.

3.1 Experimental setup

In what follows, we test on LAMA [17], a benchmark for retrieving facts with LMs, for which
prior work has developed many strategies for designing prompts [4, 54–56]. LAMA evaluates the
accuracy of LMs at choosing the correct target object for various (subject, relation, object)
triples present in knowledge bases, such as (Dante, born-in, Florence). We use the “TREx”
split [57], which consists of 41 relations (up to 1k examples each). Petroni et al. [17] design a prompt
for each relation, which an LM completes to predict an answer (e.g., “The birthplace of Dante was
_”). Some relations have multiple valid target entities, so LAMA evaluates how often one of the true
answers matches the top-predicted token (out of 20k candidates). We only use examples from the
LAMA-UnHelpfulNames subset [LAMA-UHN; 58] which filters out easy-to-guess examples (e.g.,
“The Apple Watch was created by _” with the answer Apple). We test the 5-shot accuracy of 9 popular
LMs of various sizes: GPT-3 [175B, 13B, 6.7B, 2.7B parameter models; 2], GPT-2 [1.5B, 782M,
345M, 117M models; 1], and DistilGPT-2 [16], a distilled, 82M parameter version of GPT-2 117M.2
The supplementary material contains the code to reproduce all results and plots in our paper.

Prompts To form our set of candidate prompts A1, . . . ,AA, we rely on LAMA as well as the LM
Prompt And Query Archive [LPAQA; 4]. For each relation, we use the manually-written prompt from
LAMA, plus LPAQA prompts formed by (1) paraphrasing the manual prompt with back-translation
(2) mining from Wikipedia, and (3) paraphrasing the top mined prompt. For each relation, we use up
to 16 prompts with a mean of 12 prompts (see Appendix §E.1 for details on the prompts we use).

Computing CV and MDL As the loss function L, we use the negative log-likelihood (NLL) of the
label given the input over all held-out examples

∑
(x,y)− log p(y|x). We use NLL as in prior work

on MDL [32, 61, 10], to retain MDL’s property as a measure of label compression. For CV, NLL
avoids ties between prompts that arise from using accuracy in the context of such limited data (e.g., 5
examples). We use K = N folds (where N is the number of training examples) for both MDL and
CV (here, LOOCV). Here, N -fold CV requires N forward passes to evaluate the loss on each of the
N examples when conditioning on the N − 1 other examples. N -fold MDL can be computed using a

2We use OpenAI’s API for GPT-3 (https://beta.openai.com/) and HuggingFace Transformers [59] via
PyTorch [60] for GPT-2/DistilGPT-2. OpenAI does not disclose API model sizes, so following [6, 7], we assume
that the 4 API models are the 4 largest from [2]. We will update our paper should OpenAI release model sizes.
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Figure 1: Left: LAMA-UHN accuracy of CV/MDL-chosen prompts vs. accuracy of the worst,
average (randomly-selected), and best prompt (prior work). Right: The average accuracy gain from
using CV/MDL-chosen prompts instead of randomly-chosen ones, relative to the gain from the best
prompt. We plot mean/std. err. across 5 runs with different training sets. CV/MDL-chosen prompts
obtain only small improvements over randomly-chosen ones and do far worse than the best prompts.

single LM forward pass to compute the loss on each example conditioned on the previous examples.
This feature makes MDL more computationally efficient than CV.

Marginalizing out example order The order of training examples impacts the generalization of
LMs [7], so we treat order as a random factorR that we marginalize over to evaluate the generalization
of a prompt A. We compute the exact ER,F [CV(A, R, F )] and ER,F [MDL(A, R, F )] by averaging
over all N ! training example orders. We use N = 5 examples to limit N !. We estimate the average
test accuracy on N ! = 120 examples in LAMA, excluding the training examples, by evaluating on
one test example per permutation of training examples. We compute CV, MDL, and test accuracy
with N ! = 120 forward passes in total by appending a test example to each permutation of training
examples, and we compute all selection criteria using the same set of N ! = 120 forward passes to
maximize comparability across different methods. We show the test accuracy from CV/MDL-chosen
prompts, averaged over all relations. For comparison, we show the test accuracy of always choosing
(1) the best prompt, chosen using held-out accuracy as in prior work, (2) the worst prompt, as a lower
bound, and (3) random prompts (we show the mean accuracy over all prompts).

3.2 How well does prompt selection do in true few-shot learning?

Fig. 1 (left) shows the results; prompt selection obtains marginal improvements over random selection
across model sizes ranging over 3 orders of magnitude. Prompts chosen by CV and MDL alike
underperform the best prompt (chosen using held-out performance) by 5-7% absolute on average. In
fact, prompts chosen based on held-out performance often outperform larger models whose prompts
are chosen in a true few-shot manner. CV and MDL do tend to choose better-than-average prompts,
but only close the gap between the average and best prompts by 20-40%, as shown in Fig. 1 (right).
We find similar results for several other tasks (§3.7) and selection criteria (Appendix §B).

Fig. 2 (left) shows that CV/MDL struggle to choose the prompt with the highest test accuracy. Poor
top-prompt selection is especially prevalent for larger models like GPT-3 175B that have spurred
interest in prompt design (only 21% accuracy for CV vs. 9% for random chance). In Appendix §A,
we show that CV/MDL-chosen prompts differ from the best prompts not only in accuracy but also in
how effectively they transfer to models of different sizes. Altogether, our results show that optimal
prompt selection is difficult in the true few-shot setting, and that prior work overestimated the ability
of LMs by using held-out examples for prompt selection.

3.3 How reliably does prompt selection improve over the average prompt?

If the average improvement from prompt selection is small, can we at least obtain an improvement
with high probability for a given task and train set? Fig. 1 (left) shows that the worst prompts do far
worse than average, so it would be useful if prompt selection helped to avoid the worst prompts. We
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Figure 2: Left: CV/MDL have low accuracy at choosing the best prompt (mean/std. err. across 5 runs
with different train sets). Middle: The chance of various accuracy gains over the average prompt,
when using prompts chosen by CV, and (Right) conservative estimates of CV that also minimize
variance in CV; CV often chooses worse-than-average prompts, even with conservative selection.

examine the probability with which prompt selection obtains various accuracy gains over the average
prompt and show results in Fig. 2 (middle) for CV (and similar results in Appendix §C for MDL).

CV/MDL-chosen prompts show high variance in test accuracy relative to the average prompt. For
most model sizes (.1B-6.7B), the chance of improving over the average, randomly-chosen prompt is
only ∼56% for CV and ∼55% for MDL. The performance of prompt selection forms a long-tailed
distribution; there is a ∼27% chance that prompt selection causes an accuracy drop of ∼13% for all
model sizes and CV/MDL alike. Furthermore, the tails grow heavier as model size increases. For
the largest model (GPT-3 175B), CV/MDL-chosen prompts sometimes do far worse than average,
e.g., 40% worse, 5% of the time. Our results suggest a troubling trend: as models grow bigger and
generalize better, our ability to reliably choose good prompts degrades. One possible explanation
is that larger models have the capacity to draw more complex decision boundaries, requiring more
examples to estimate the true expected loss on unseen examples; we may need to scale validation sets
along with model size. In §3.7, we show similar results for several other tasks. Overall, the limited
average-case gains from prompt selection cannot be expected with any reasonable confidence in the
true few-shot setting, a problem that will only become worse with larger models.

3.4 Can we increase the likelihood of improved performance from prompt selection?

As we have shown, CV and MDL do not reliably choose better-than-average prompts. Here, we
explore the extent to which we can reduce the variance in generalization by explicitly preferring
prompts with low variance (§2.3). For the largest model (GPT-3 175B), we choose prompts based on
a conservative estimate of generalization loss, CVα (§2.3). We show the test accuracy for the prompt
chosen with various levels of confidence α ∈ {1, 2, 3} and with CV (α = 0).

As shown in Fig. 2 (right), all α lead to a similar distribution of performance gain as CV. For example,
CV outperforms the average prompt 50% of the time vs. 51% for α = 2. These results suggest that
it is non-trivial to choose prompts that reliably perform better than random selection, even when
explicitly minimizing variance in generalization.

3.5 Does prompt selection improve with more labeled examples?

The poor performance of prompt selection methods may be due to using such a small number of
labeled examples. As the number of labeled examples increases, we expect prompt selection methods
to improve. Thus, true few-shot prompt selection may be possible with a few dozen examples (though
it is not always possible to use more examples, due to limits on input length for LMs like GPT). We
therefore examine the test accuracy of CV/MDL-chosen prompts as we use an increasing number of
labeled examples N ∈ {5, 10, 15, 20, 30, 40}. For N ≥ 10, it is not feasible to marginalize over all
possible training example permutations, so we randomly sample 120 permutations (to match N = 5)
such that each example occurs the same number of times in each position (i.e., to use each example
as the held-out CV fold the same number of times). We run the experiment for ≤6.7B parameter
models, since it is prohibitively costly to run with larger models via the OpenAI API.

As shown in Fig. 3, there is no consistent trend in the performance of prompt selection, both in terms
of task performance (left) and in terms of accuracy at choosing the highest accuracy prompt (right).
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Figure 4: For N ∈ {5, 10, 30} -shot learning, increasing the compute used to estimate CV/MDL does
not notably improve the accuracy of chosen prompts beyond a certain point (1 forward pass for MDL,
N forward passes for CV). Mean/std. err. across 5 runs for GPT-3 6.7B.

Even in higher-data regimes (40 examples), CV/MDL struggle to choose effective prompts and do not
consistently, across model sizes, perform better than choosing examples based on 5 examples. Our
findings are surprising, because the true-few shot setting is where prompt design has been thought
most promising, due to the scarcity of training data [15]. However, the true few-shot setting is also
one in which prompt selection is hardest, greatly undermining the potential value of prompts.

3.6 Does prompt selection improve with more computation?

In the preceding sections, we computed ER,F [CV(A, R, F )] using a fixed number of samples for
R. Can we improve prompt selection by using more samples, at the cost of increased computation?
To answer this question, we vary the number of samples of R (and thus LM forward passes) used
to compute the above expectation and choose prompts as described in §2.3. To estimate CV with a
single forward pass, we sample a single fold k (here, a single example) and evaluate accuracy on fold
k when conditioning the LM on all others folds. Fig. 4 shows the results for N ∈ {5, 15, 30} training
examples using the largest model from §3.5 (GPT-3 6.7B).

Computation is not the bottleneck in prompt selection, as test accuracy roughly plateaus after one
forward pass for MDL and N forward passes for CV. This observation holds across N , as well as all
models with <6.7B parameters (omitted for space). Our results suggest that true few-shot prompt
selection is fundamentally limited by the number of examples available.

3.7 Is Prompt Selection Challenging on Other Tasks?

We now examine the extent to which our results on LAMA tasks hold on other kinds of NLP tasks. We
examine three classification tasks for which prior work has designed various prompts: Recognizing
Textual Entailment (RTE), CommitmentBank (CB), and Word-in-Context (WiC). RTE and CB involve
detecting whether one sentence entails or contradicts another, and WiC involves determining if a
polysemous word is used with the same sense in two sentences (e.g., “Room and board” and “He
nailed boards across the windows.”); See Appendix§E.2 for further task details. We evaluate the
accuracy of GPT models when using prompts chosen by CV, MDL, and test accuracy, as we did
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for LAMA. For each task, we evaluate held-out accuracy using the full validation set when using 5
training examples randomly sampled from the task train set, while ensuring that we include at least
one example per class. We evaluate the mean/std. error over 5 train sets. As our set of prompts,
we use the manually-written prompts from [2] and [9] – 3 prompts for RTE/CB and 4 prompts for
WiC. Schick and Schütze [9] designed prompts for bidirectional LMs, so when necessary, we modify
their prompts to be suitable for left-to-right LMs (see Appendix §E.2 for prompts). Fig. 5 shows the
accuracy of the chosen prompts on each task.

We observe as similar trend as before, that across tasks and model sizes, the CV/MDL-chosen prompt
almost always obtains lower average accuracy than choosing based on test accuracy. The trend holds
even when choosing between fewer prompts (here, 3-4). CV/MDL-chosen prompts vary greatly in
test accuracy across tasks and model sizes, often choosing worse-than-average prompts (e.g., on CB).

We examine the variance in chosen prompt accuracy in more detail, by showing the chance that
selection obtains various accuracy gains over the average prompt. Here, we choose prompts with CV
using N forward passes (one evaluation per fold), as it represents a good tradeoff between compute
and accuracy that is likely to be used in practice. As shown in Fig. 6, accuracy gains are again highly
dispersed, often negative, and not consistently achieved. For CB, there is a 20% change of a 15%
accuracy drop for GPT-3 175B. Model sizes vary greatly in how often the CV-chosen prompt leads to
improvement, e.g., from 38-82% for WiC and 1-83% for CB. Overall, our earlier findings carry over
to other kinds of tasks, indicating that prompt selection is challenging in general.

4 True Few-Shot Hyperparameter Selection

Having shown that true few-shot prompt selection is difficult, we now study the effectiveness of
model selection in the context of hyperparameter selection more generally. We examine the ADAPET
model [12], as it is open-source3 and currently the top-performing few-shot model according to
SuperGLUE [62], a standard NLP benchmark. ADAPET finetunes the pretrained ALBERTxxlarge-v2
LM [63] to (1) classify each label as correct/incorrect given the input and (2) to predict randomly

3https://github.com/rrmenon10/ADAPET
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BoolQ CB COPA RTE WiC WSC MultiRC ReCoRD Avg
Acc Acc/F1 Acc Acc Acc Acc EM/F1 EM/F1

Worst 75.04.8 79.52.3/67.37.8 76.82.2 63.24.0 49.01.3 77.21.8 38.57.4/80.02.9 76.21.8/86.51.2 69.41.5
Mean 79.01.5 85.92.3/74.511.0 81.12.9 70.82.5 51.51.8 82.52.7 44.26.6/82.32.7 78.31.3/87.80.8 73.91.2
MDL 76.55.8 85.75.6/74.813.4 82.02.9 70.48.5 52.23.0 82.03.1 39.78.1/80.63.2 78.90.7/88.20.4 73.42.8
CV 78.92.4 83.95.3/69.210.3 80.53.3 68.77.0 51.11.6 83.12.6 41.97.2/81.43.1 78.71.6/88.11.0 73.02.1
Best 80.91.0 89.83.1/79.813.4 84.84.5 76.71.8 54.12.3 86.61.8 46.86.9/83.42.9 80.41.1/89.20.7 77.20.9
ADAPET [12] 80.3 89.3 / 86.8 89.0 76.5 54.4 81.7 39.2 / 80.1 85.4 / 92.1 77.3
iPET [9] 80.6 92.9 / 92.4 95.0 74.0 52.2 80.1 33.0 / 74.0 86.0 / 86.5 76.8
PET [9] 79.4 85.1 / 59.4 95.0 69.8 52.4 80.1 37.9 / 77.3 86.0 / 86.5 74.1
GPT-3 [2] 77.5 82.1 / 57.2 92.0 72.9 55.3 75.0 32.5 / 74.8 89.0 / 90.1 73.2

Table 1: ADAPET results on SuperGLUE validation when choosing early stopping checkpoint and
masked LM rate using CV/MDL vs. the worst/mean/best hyperparameters chosen with validation
(meanstd. dev. over four 32-shot train sets). On all tasks, CV/MDL-chosen hyperparameters perform
similar to or worse than average, and several points below the best hyperparameters.

masked out input tokens given the label and unmasked input tokens, similar to Masked LM [64].
ADAPET was developed in the context of tuned few-shot learning, as ADAPET’s hyperparameters
were chosen using validation examples. We examine how ADAPET does in the true few-shot setting.

We choose two hyperparameters in a true few-shot manner: the early stopping checkpoint and
fraction of words masked for the masked LM objective. ADAPET performs T = 1000 gradient
updates on batches of 16 examples and chooses the checkpoint at T ∈ {250, 500, 750, 1000}
with the highest validation accuracy. ADAPET also chooses the best masking fraction M ∈
{0.075, 0.10, 0.105, 0.15}. Following ADAPET, we evaluate on SuperGLUE, a suite of 8 NLP
tasks. SuperGLUE consists of four question-answering tasks (BoolQ, COPA, MultiRC, ReCoRD), a
coreference resolution task (WSC), two entailment detection tasks (RTE, CV), and a commonsense
reasoning task (WiC); see Appendix §E.2 for task details. We use CV/MDL to choose T and M (out
of 16 total combinations) and then train a model on the full dataset with the chosen T and M . We use
FewGLUE [9], the 32-example subset of SuperGLUE used in prior work on few-shot learning. We
also use 3 other 32-example subsets that we randomly sample from SuperGLUE, to estimate variance
in performance across training sets. ADAPET uses a prompt during fine-tuning, choosing the prompt
based on validation examples. To avoid using validation-tuned prompts, we use the first prompt for
every task as the authors do for ablation studies. Since training ADAPET is expensive, we evaluate
CV/MDL with K = 8 folds.4 We show results in Table 1.

Results Across all SuperGLUE tasks, CV/MDL hyperparameter selection performs similar to
or worse than average (randomly-chosen) hyperparameters and several points worse than the best
hyperparameters. In the true few-shot setting, the average SuperGLUE performance of ADAPET
drops below that of earlier methods (PET and iPET), highlighting how the use of validation examples
can give the false appearance of progress in few-shot learning. On MultiRC, CV/MDL choose
hyperparameters that give similar performance to the worst hyperparameters, another indication that
model selection methods do not consistently prevent worst-case behavior in the true few-shot setting.
Preliminary analysis in Appendix §D suggests that choosing better-than-average hyperparameters
requires several thousand examples. Overall, our results indicate that it is not just prompt selection
but model selection in general that is challenging in very low-data regimes.

5 Conclusion and Future Work

Our work shows that it is challenging to make even the most basic decisions about few-shot learning
algorithms using only a few labeled examples. Instead, it may be more promising to make additional
assumptions. The meta-learning setting assumes access to data from many other tasks in order to
perform learning and model selection [20, 21, 65, 66]. Transfer learning and multitask learning
assume access to data that is directly related to the task with limited data [67–70]. Data augmentation
techniques assume there is a viable way to create more data from limited data [71–74]. Other
approaches assume unlabeled data and develop unsupervised model selection techniques [75–77].
When labeled data is cheap, the simplest approach is to assume more examples for validation—

4See Appendix §E.4 for details on how we evaluate MDL on different SuperGLUE tasks.

9



in which case we might be better off training on the additional examples. Unless we make such
assumptions explicit, we cannot make meaningful comparisons between few-shot learning algorithms.
We find the above avenues to be more promising future directions than true few-shot learning given
the challenge of model selection.

Inspired by prior work [78–81], we offer recommendations for future work in true few-shot learning:

• Report all hyperparameters (prompts) considered and the hyperparameter selection criteria.

• Include validation examples in the number of examples used by a few-shot learning
algorithm. Validation examples include all examples used to decide on any aspect of learning:
hyperparameters, prompts, training objectives, decoding strategies, model architecture, etc.

• Once you have decided on the learning algorithm, submit your model for test evaluation
directly, without first evaluating on validation. Report the total number of test evaluations
conducted (ideally, just one). Use the validation set only after test evaluation for any
ablations you report, to avoid making decisions about your algorithm with the validation set.

• Do not rely on hyperparameters from prior work that were tuned using validation examples
for the same benchmark (e.g., SuperGLUE), to avoid indirectly benefiting from validation
examples. Instead, re-tune such hyperparameters using only the given few-shot examples.

The above protocols are strict but mimic how a true few-shot learning algorithm would be used in a
real, low-data setting. To ensure researchers comply with such strict protocols, future benchmarks
may need to keep large test sets private while releasing only a few labeled examples.

Given our negative results on true few-shot learning, a major question remains: is it possible to
select models in a true zero-shot setting? Prior work uses LMs for zero-shot learning by choosing
an arbitrary prompt [17, 82] which requires no data but is suboptimal [4]. Other efforts try multiple
prompts and choose between them via trial and error alongside manual evaluation [1], effectively
leveraging human supervision. CLIP [13] achieves high zero-shot accuracy on ImageNet after
extensively tuning prompts and label names using ImageNet’s training set (1.28M examples), as we
noticed from the open-source code.5 The authors report a 5% accuracy gain from tuning prompts
alone, but the training examples used for tuning are not available in true zero-shot learning. Without
any labeled data, the problem of model selection is even more challenging than in the true few-shot
case. Overall, our work provides guidance for future work in few-shot learning by clarifying the
assumptions made by the true few-shot setting and empirically demonstrates that model selection is a
major roadblock to true few-shot learning.

6 Limitations and Broader Impact

We facilitate fair comparisons between few-shot methods in future work by disambiguating between
three few-shot settings: multi-distribution, tuned, and true few-shot learning. We highlight that
one setting, tuned few-shot learning, gives up the practical advantage of few-shot learning by using
many labeled examples. Furthermore, we show that several tuned few-shot learning algorithms work
significantly worse in the true few-shot setting, without tuning on many examples. While we explored
CV, MDL, and several other criteria (Appendix §B), it is possible that effective true few-shot model
selection is possible using other criteria (§2.4) or heuristics not explored here. In this event, our work
will have discouraged work on a few-shot learning setting with applications to low-data settings, e.g.,
that involve low-resource languages or expert annotation. Overall, however, we believe our work will
redirect future work to few-shot settings with more practical applications.

We show that it is hard to detect when a small input change hurts an LM’s generalization, even
when the change appears reasonable to human readers. We argue that practitioners will benefit from
knowing such limitations, but they may also be discouraged from deploying LMs in many useful
contexts, such as question-answering, hate speech detection, automatic translation, and commercial
dialogue systems. Our findings may also encourage adversaries to target LM-based applications and
highlight which models are most susceptible to attack (e.g., larger models). By shedding light on the
shortcomings of (few-shot) LMs, we hope to spur future work to address these shortcomings.

5https://github.com/openai/CLIP/blob/main/notebooks/Prompt_Engineering_for_
ImageNet.ipynb
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