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Abstract

Reward design in reinforcement learning (RL) is often overlooked, with the as-
sumption that a well-defined reward is readily available. However, reward functions
can be challenging to design and prone to reward hacking, potentially leading to
unintended or dangerous consequences in real-world applications. To create safe
RL agents, reward alignment is crucial. We define reward alignment as the process
of designing reward functions that preserve the preferences of a human stakeholder.
In practice, reward functions are designed with training performance as the primary
measure of success; this measure, however, may not reflect alignment. This work
studies the practical implications of reward design on alignment. Specifically,
we (1) propose a reward alignment metric, the Trajectory Alignment coefficient,
that measures the similarity between the preference orderings of a human stake-
holder and the preference orderings induced by a reward function, (2) use this
metric to quantify the prevalence and extent of misalignment in human-designed
reward functions, and (3) examine how misalignment affects the efficacy of these
human-designed reward functions in terms of training performance.

1 Introduction

In reinforcement learning (RL), the reward hypothesis states “all of what we mean by goals and
purposes can be well thought of as maximization of the expected value of the cumulative sum of a
received scalar signal (reward)” [1]. More generally, this means that RL can be used to solve a task
given a reward function that properly specifies this task. However, the reward hypothesis does not
address the practical challenges of designing fully specified reward functions. In practice, reward
design is a difficult and error-prone process carried out by human engineers [2–4], in which reward
hacking may be a common occurrence. Reward hacking occurs when an RL agent discovers and
exploits unintended shortcuts in the reward function. CoastRunners is a prominent example, in which
the designed reward encouraged RL agents to collect power boosts at the expense of crashing into
other boats [5]. While CoastRunners is just a game, shortcuts can have dangerous consequences for
real-world applications of RL, such as autonomous driving or water treatment.

To ensure safe and effective RL, reward alignment, wherein reward functions encode the preferences
of a human stakeholder, is essential. However, a common approach to reward design involves an
ad-hoc trial-and-error process, where RL practitioners iterate through different reward functions and
evaluate their effectiveness based on the algorithm’s training performance [3]. It has been reported
that 92% of surveyed RL experts and 100% of the RL practitioners in an autonomous driving survey
used this method [3, 6]. Additionally, large language models for reward design often rely solely
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on training/testing accuracy as their evaluation metric [7]. Overall, reward alignment is not often
explicitly considered in reward design. Therefore, given the prevalence of ad-hoc reward design
methods, such as trial and error, it is important to understand their consequences for reward alignment.

To that end, we propose the Trajectory Alignment coefficient, a novel reward alignment metric based
on the similarity of humans’ preference orderings to those induced by a given reward function
and discount factor. Unlike prior work [4, 8, 9], our metric is: (1) expressive, as it quantifies the
degree of reward alignment rather than only detecting misalignment, and (2) capable of evaluating
reward alignment solely based on human preferences, eliminating the need for a ground-truth reward
function. We then use our proposed metric to analyze human-designed reward functions and find
regular occurrences of misalignment. Overall, our goal is to highlight the prevalence of misalignment
in human-designed reward functions and to encourage researchers to prioritize reward alignment in
the reward design process.

2 Related Work

Early alignment research often focused on directly training agents to align with human preferences
[10]. Recent efforts have added a focus on evaluating the quality of both engineered and learned
reward functions. For example, one line of research has identified empirical investigations to
understand the shortcomings of current reward design practices and evaluation schemes [3, 6, 11]. A
second line in reward learning has developed metrics to quantify the differences between learned and
ground truth reward functions [8, 9]. These metrics allow for a direct comparison of reward functions
without the need for computationally expensive policy evaluations. However, a key limitation is
that to assess reward alignment, these metrics require access to a ground truth reward function that
accurately reflects the preferences of a human stakeholder. A third research direction has focused on
verifying the alignment of an RL agent’s behavior [12] where reward functions are defined as aligned
if and only if they induce the same set of optimal policies. We argue that defining alignment only
with respect to optimal policies can be limiting, particularly in online learning settings where one
cares about the agent’s lifetime performance. Our work closely relates to recent work on specifying
human-aligned RL objectives [4]. This prior work developed approaches to identifying misalignment
in RL objectives and outlined common causes of misalignment. Importantly, our work differs in that
we propose a more expressive metric that captures the degree of reward function alignment rather
than solely confirming its existence. Our metric offers a more nuanced assessment of the quality of
the reward function, enabling more effective reward design. Lastly, while LLM alignment is also
a prominent field, it is beyond the scope of this work due to its broad focus, which can include
mitigating adversarial attacks, detecting bias, and ensuring interpretability.

3 Background

In RL, at every time-step t, the agent takes an action at in state st, transitions to state st+1, and then
receives reward rt+1. A trajectory τ is a sequence of states and actions, with a return defined as the
sum of discounted future rewards: G(τ) =

∑|τ |−1
t=0 γtrt+1 with discount factor γ ∈ [0, 1). The agent

attempts to learn a policy, π : S → A, to maximize the expected return.

3.1 Reward Functions Induce Preference Orderings

Let us first consider the deterministic case, by which preferences are based on individual trajectories.
In this case, given a fixed reward function and discount factor, a preferred trajectory is one that yields
a greater return:

τA ≻ τB ⇐⇒ G(τA) > G(τB) (1)

We now shift to the stochastic setting, which considers probability distributions over trajectories1.
This arises when the environment or the agent’s behavior is stochastic. Let ηA, ηB ∈ H be probability
distributions over all possible trajectories. In this case, given a reward function and discount factor:

ηA ≻ ηB ⇐⇒ Eτa∼ηA [G(τa)] > Eτb∼ηB [G(τb)] (2)

1Note that the stochastic case inherently subsumes the deterministic case.
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Intuitively, equations 1 and 2 state that reward function and discount factor pairs naturally induce a
preference ordering over trajectories (or trajectory distributions) based on the expected return. To illus-
trate these concepts, consider the simple autonomous driving task [4] in Figure 1. Suppose there exists
only three trajectories {τsuccess, τidle, τcrash}, and a trajectory distribution η. τsuccess consists of safe driv-
ing. τcrash consists of a car crashing, and τidle consists of a car remaining parked. ηsuccess-crash samples
τsuccess with a 90% probability, and τcrash with a 10% probability. Next, consider a reward function and
discount with return values: G(τsuccess) = 10, G(τidle) = 0, G(τcrash) = −50, G(ηsuccess-crash) = 4.
Based on equations 1 and 2, the resulting preference ordering is τsuccess ≻ ηsuccess-crash ≻ τidle ≻ τcrash.

Best

Worst

Return
Human

stakeholder

Mismatch in 
preferences

0

4

-50

10

90% 10%

Trajectory 
Alignment 
Coefficient 

< 1

Figure 1: This figure provides an example of the trajectory alignment coefficient in the case of a
simple autonomous driving scenario.

4 Characterizing Reward Alignment

This section first provides a formal definition for Total Trajectory Alignment, a concept rooted in prior
work on policy preferences [13]. Next, we introduce a practical measure of total trajectory alignment.

Definition 1. Given trajectory distribution η ∈ H induced by an environment e and policy π, we say
a reward function r is total trajectory aligned if the human stakeholder prefers

ηi ≻ ηj ∀i, j ⇐⇒ Eτ∼ηi [G(τ)] ≻ Eτ∼ηj [G(τ)] ∀i, j (3)

Intuitively, definition 1 states that a reward function is total trajectory aligned if and only if it induces
the same preference ordering over all possible trajectory distributions as the human stakeholder. We
further note that this definition of total trajectory alignment can be extended to evaluating alignment
between two reward functions. Specifically, two reward functions (and discounts) are total trajectory
aligned if and only if the respective preference orderings over all possible trajectory distributions are
identical.

Kendall’s Tau to Measure Total Trajectory Alignment Definition 1 can determine whether a
human-designed reward is total trajectory aligned. However, to effectively compare and improve
reward functions, we need a quantitative metric that measures the degree of alignment between
a reward function and a human stakeholder. To that end, we propose the Trajectory Alignment
coefficient, a reward alignment measure based on Kendall’s Tau correlation. Kendall’s Tau is a
non-parametric measure that quantifies the level of agreement between two sets of ranked data [14]2.
Its output is a scalar value ∈ [−1, 1], indicating levels of agreement: 1 for perfect agreement (e.g.,
identical preference orderings) and −1 for complete disagreement (e.g., reverse preference orderings).
The trajectory alignment coefficient then measures the similarity among preference orderings over all
possible trajectory distributions. By definition 1, only a trajectory alignment coefficient of 1 signifies
total trajectory alignment.

Trajectory Alignment Coefficient in Practice Total trajectory alignment and the trajectory align-
ment coefficient can, in theory, entail an intractably large ordering over trajectory distributions.
Therefore, to practically apply the trajectory alignment coefficient as a reward alignment measure,

2We use Kendall’s Tau-b variant.
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we must consider tractable-sized subsets of these trajectories. This requires specifying the number of
trajectories to rank and the trajectory sampling method. To demonstrate this concept, consider the
autonomous driving task in Figure 1 again. The toy reward function, discount factor pair produced a
preference ordering of τsuccess ≻ ηsuccess-crash ≻ τidle ≻ τcrash. However, a human stakeholder would
likely prefer remaining parked over possibly crashing: τsuccess ≻ τidle ≻ ηsuccess-crash ≻ τcrash. This
results in a trajectory alignment coefficient < 1, highlighting some misalignment in the reward.

5 Analysis of Human-Designed Reward Functions

To analyze the alignment of human-designed reward functions, we consider the open-sourced reward
data from a human subject study of 18 self-identified RL experts [3]. In this study, participants
engaged in the reward design for a simple 4×4 grid-world called Hungry-Thirsty [15]. See Appendix
A for environment details. To simplify the reward design process, participants selected weights for
the four state features within a predetermined interval. Participants were instructed to select a reward
function, algorithm, and hyperparameters to train an RL agent capable of solving the given task. A
clearly defined evaluation metric (i.e., ground truth reward) was also provided to the participants
that measured task success. After configuring the RL components, participants trained their agent
and observed its performance based on both the evaluation metric and the chosen reward function.
Ad-hoc trial-and-error reward design was a common practice amongst the participants, with each
participant testing an average of 4.1 unique reward functions. Our analysis considers only the final
reward function submitted (per participant).

Experiment Details For experimental purposes, we assume that the task evaluation metric repre-
sents the preferences of a fictitious human stakeholder. Note that this assumption simplifies our reward
analysis and is not a fundamental limitation of our method. We evaluated the alignment between
the reward functions designed by participants and this metric. To calculate the trajectory alignment
coefficient, we select 75 trajectories and rank them using both the human-designed reward functions
and the task evaluation metric. We select trajectories from low, medium, and high-performing policies
(e.g., based on average return under the evaluation metric). See additional details on, and justification
for, the trajectory selection procedure in Appendix B.2.

(a) (b)

Figure 2: In these figures, we analyze the extent of misalignment among 18 human-designed reward
functions when considering different types of trajectories. Vertical lines indicate the 25th quartile
(Q1), the median (Mdn), and the 75th percentile (Q3), respectively. The horizontal line indicates the
interquartile range.

How Aligned are Human-Designed Reward Functions? To better understand the alignment
across all human-designed reward functions, we measured the trajectory alignment coefficient using
four different sets of trajectories: low-return only, medium-return only, high-return only, and all
trajectories. The corresponding results are visualized in violin plots in Figure 2.

Across all our analyses, trajectory alignment coefficients ranged from 0.29 to 1.0, indicating a
substantial degree of misalignment. Only 1 out of 18 participants successfully crafted a reward
function that aligned with the evaluation metric. This means that in the other 94% of cases, the
designed reward function led to preferences over the trajectories that differed from the preferences of
the evaluation metric. These findings highlight that designing trajectory-aligned reward functions
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is a significant challenge, even in simple grid worlds. This further emphasizes the need to consider
reward alignment in the design pipeline, as trial-and-error approaches can be insufficient.

Moreover, in Figure 2b, we found that considering low-return trajectories (blue violin plot) produced
significantly lower trajectory alignment coefficients than high-return trajectories (purple violin plot).
These findings reveal two useful insights. Firstly, approaches focusing solely on optimal or high-return
trajectories for evaluating reward alignment, such as Brown et al. [12], may not provide a complete
picture of alignment. This is evident in the stark differences observed in the distribution of trajectory
alignment scores when considering low-return and high-return trajectories separately. If high-return
trajectories were sufficient for assessment, the distributions of scores should be similar. Secondly,
prioritizing an understanding of how reward functions influence sub-optimal trajectories could be
advantageous during the reward refinement process. The trajectory alignment coefficients were lowest
for low-return trajectories, which indicates that the designed reward functions and evaluation metric
had the greatest mismatch in preferences when considering these trajectories. This suggests that these
reward functions may be incorrect in assessing sub-optimal state-action pairs. Adjusting these reward
functions to better align sub-optimal trajectories with the evaluation metric could lead to significant
gains in overall reward function alignment and, consequently, improve performance.

Figure 3: This figure highlights the relationship between the trajectory alignment coefficient and
performance. We observe that less-aligned reward functions produce poor RL policies.

Is Reward Alignment Related to Policy Performance? RL seeks to learn high-performing policies.
Therefore, it is critical to understand whether more aligned reward functions help achieve this goal.
To do so, we trained one Q-Learning agent with each human-designed reward function for 10,000
episodes. We then performed rollouts using the final policies learned and evaluated the performance
with the task evaluation metric. Figure 3 visualizes the trajectory alignment coefficient (using all
10,000 trajectories) versus the respective performance across all participant reward functions. Our
findings indicate a moderate correlation between trajectory alignment coefficients and evaluation
performance, with a coefficient of determination of 0.51. We also found that this relationship holds
when considering the other trajectory subsets; see Appendix C.2. This suggests that RL practitioners
prioritizing reward alignment are more likely to achieve high-performing policies.

6 Conclusion

To ensure the safe deployment of RL agents, it is important to design reward functions that align
with human preferences. However, reward alignment is often overlooked in reward design in favor of
other performance metrics. Therefore, this work investigates the consequences of practical reward
design on alignment. By introducing a novel reward alignment measure, the trajectory alignment
coefficient, we found that human-designed reward functions tend to be misaligned. We also found a
correlation between reward alignment and performance, suggesting that prioritizing reward alignment
can contribute to the effectiveness of RL agents. Future work should focus on incorporating reward
alignment into the design pipeline and developing best-practice approaches to designing aligned
rewards.
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Appendix

A Environment Details

We use a modified Hungry-Thirsty domain [15]. It is a 4× 4 grid-world with a fixed time horizon of
200 steps. In this environment, there is food and water placed at random corners of the grid. We note
that the food and water locations changes per seed/run, not per episode. The state space consists of
four dimensions: the agent’s x and y coordinates, and two Boolean variables representing hunger and
thirst. The action space is one dimensional which includes the following options: moving up, down,
left or right, eat, or drink. The goal is to maximize the time spent without experiencing hunger. The
agent is hungry if and only if it did not eat in the previous time step. However, the agent can only eat
if it is located at a food source and is not thirsty. Otherwise, if the agent chooses the eat action, then
the agent will remain hungry. In addition, on every time-step the agent will randomly become thirsty
with probability= 0.10. The evaluation metric for this task is based on the number of time-steps the
agent is not hungry: Eval[τ ] =

∑200
i=1 ¬(hungry). In the the open-sourced reward data [3], the reward

functions take the form:

r(hungry, thirsty) = a

r(hungry, not thirsty) = b

r(not hungry, thirsty) = c

r(not hungry, not thirsty) = d

(4)

Participants then selected values for a, b, c, d ∈ [−1, 1] by increments of 0.05.

Figure 4: Hungry-Thirsty Environment
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B Experiment Details

B.1 RL Training

An overview of the hyperparameters used for training the Q-Learning algorithm is provided in Table 1.

Table 1: Hyperparameters for Q-Learning algorithm.
Hyperparameter Value

number of training episodes 10000
number of seeds 10
learning rate 0.05
exploration strategy epsilon-greedy
epsilon 0.15
discount 0.99

B.2 Trajectory Sampling Protocol

To use our trajectory alignment coefficient as a reward alignment measure, two parameters must be
specified: the number of trajectories to rank and the trajectory sampling method. For experiments in
Section 5, we decided to select trajectories from three different policies, low-return, medium-return,
and high-return. We used the following protocol to gather such trajectories and calculate the trajectory
alignment coefficient:

1. Train a Q-Learning agent for 10000 episodes. After each episode, perform offline evaluation
(i.e., policy roll out with no exploration). Store the corresponding trajectory and return under
the evaluation metric.

2. Using the return values across all 10000 episodes, calculate the bottom 20th and top 80th
percentile. See Table 2 for the respective scores.

3. Group the 10000 trajectory, return pairs by the return values. More specifically, if the return
is less than the bottom 20th percentile, the trajectory is placed in the low-return group. If
the return is greater than the top 80th percentile, the trajectory is placed in the high-return
group. Otherwise, the trajectory is placed in the medium-return group.

4. Randomly sample 75 trajectories from each group.

5. For each group of trajectories, calculate the trajectory alignment coefficient.

6. Repeat steps 1-4 for each of the 10 seeds.

7. For each group, average the trajectory alignment coefficient across the 10 seeds. This result
is what is shown in Figure 2 from Section 5.

We used this sampling strategy for two primary reasons. First, we wanted to understand how the
trajectory set influences the trajectory alignment coefficient. Considering different sets of trajectories
in the analysis provides possible insight on where more or less misalignment is occurring within a
human-designed reward function. For example, we found more misalignment (with respect to our
trajectory alignment coefficient) when using low-return trajectories as compared to higher-return
trajectories. This might suggest that when refining the human-designed reward functions in the
dataset [3], it is useful to prioritize understanding the affect of the reward functions on sub-optimal
trajectories. Our second objective was to analyze the relationship between policy performance and
alignment. Therefore, we aimed to determine whether our proposed metric consistently identifies
such a relationship across different trajectory subsets.

C Additional Results

C.1 Effect of Trajectory Count on the Trajectory Alignment Coefficient

In this experiment, we measured the trajectory alignment coefficient using the four different sets of
trajectories: low-return only, medium-return only, high-return only, and a combination of trajectories
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Table 2: Return values corresponding to the bottom 20th and top 80th percentile.
Seed 20th Percentile 80th Percentile
0 59.0 89.0
1 1.0 52.0
2 1.0 53.0
3 4.0 54.0
4 57.0 89.0
5 4.0 37.0
6 12.80 87.0
7 23.0 65.0
8 59.0 89.0
9 6.0 37.0

sampled from all three groups. This is the same setup as in Section 5. However, this experiment
ablates over the number of trajectories sampled. We choose from the set ∈ [6, 300]. In particular,
we wanted to determine whether we observed similar findings as in Figure 2, when using a small
number of trajectories. A smaller trajectory budget becomes increasingly important when we require
a human stakeholder to perform the ranking. In Figure 5a, we found that even when we only sample
6 trajectories, we still observe similar trajectory coefficients as compared to sampling 300 trajectories
in Figure 5b.

(a) Sampling Size=6 (b) Sampling Size=300

Figure 5: In these figures, we analyze the effect of trajectory sampling size on the observed trajectory
alignment coefficient.

C.2 Effect of Trajectory Type on the Alignment-Performance Relationship

In this analysis, our goal is to understand whether the trajectory alignment coefficient is robust to
the type of trajectories used in its calculation. More specifically, does the correlation between policy
performance and the trajectory alignment coefficient hold when we consider different trajectory types.
In Figures 6-8, we found that human-designed reward functions that achieved higher evaluation
scores also had higher trajectory alignment coefficients.
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Figure 6: The x-axis is final performance of a Q-Learning trained with each human-designed reward
function and evaluated with the ground truth reward. The y-axis is the trajectory alignment coefficient
when only considering 75 low-return trajectories.

Figure 7: The x-axis is final performance of a Q-Learning trained with each human-designed reward
function and evaluated with the ground truth reward. The y-axis is the trajectory alignment coefficient
when only considering 75 mid-return trajectories.
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Figure 8: The x-axis is final performance of a Q-Learning trained with each human-designed reward
function and evaluated with the ground truth reward. The y-axis is the trajectory alignment coefficient
when only considering 75 high-return trajectories.
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