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FusionVLAD: A Multi-View Deep Fusion Networks
for Viewpoint-Free 3D Place Recognition

Peng Yin“, Lingyun Xu

Abstract—Real-time 3D place recognition is a crucial technology
to recover from localization failure in applications like autonomous
driving, last-mile delivery, and service robots. However, it is chal-
lenging for 3D place retrieval methods to be accurate, efficient, and
robust to the variant viewpoints differences. In this letter, we pro-
pose FusionVLAD, a fusion-based network that encodes a multi-
view representation of sparse 3D point clouds into viewpoint-free
global descriptors. The system consists of two parallel branches: a
spherical-view branch for orientation-invariant feature extraction,
and the top-down view branch for translation-insensitive feature
extraction. Furthermore, we design a parallel fusion module to
enhance the combination of region-wise feature connection between
the two branches. Experiments on two public datasets and two gen-
erated datasets show that our method outperforms state-of-the-art
with robust place recognition accuracy and efficient inference time.
Besides, FusionVLAD requires limited computation resources and
makes it extremely suitable for low-cost robots’ long-term place
recognition task.

Index Terms—Recognition, SLAM, visual learning.

I. INTRODUCTION

APPING and localization are fundamental capabilities

for mobile robotics, and researchers have extensively
studied this area over the past two decades. In many robot
applications such as autonomous vehicles, search-rescue robots,
delivery robots, and warehouse automation, localization failures
can cause severe problems in navigation and decision making,
which requires an accurate and real-time 3D place recognition.
However, it remains a challenging task in many real scenarios,
especially in complex outdoor and GPS-denied environments.
Generally, 3D place recognition is considered as a searching
problem to find the most similar place on the map by measuring
the similarity of correspondences.

Recent studies on 3D feature learning (PointNet [1], Point-
Net++ [2]) have brought light to the 3D place recognition
task. PointNet-based place recognition methods, such as Point-
NetVLAD [3], LPDNet [4], PCAN [5], can extract place de-
scriptors directly from the 3D point cloud, which allows them to
achieve robust place recognition performance on public datasets.
This direct matching is either robust but intractable on the mobile
platform, or optimized for efficiency but fragile. The main
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Fig. 1. Fusion enhanced place recognition. We generate multi-view projec-
tions from 3D point cloud, which are then fed into the proposed FusionVLAD
network to extract global descriptors. Different projections (spherical view,
top-down view) can capture different perspectives of the original 3D map.

drawback of PointNet-based methods is that they are sensitive to
orientation differences, which are the typical situations in large-
scale place recognition tasks. As depicted in Fig. 1, long-term
odometry drift will introduce massive orientation differences.
In this letter, we propose FusionVLAD, a parallel fusion
network structure to learn the point cloud representations from
multi-view projections, and embed them into viewpoint-free
low-dimensional place descriptors for efficient global recogni-
tion. As depicted in Fig. 1, FusionVLAD includes two parallel
branches: the spherical-view encoding (SVE) branch and top-
down view encoding (TVE) branch. As we can see in Fig. 2,
the SVE branch can encode the spherical projections into an
orientation-invariant feature descriptor. In the top-down view
perspective, it has a higher tolerance to local translation differ-
ences, which benefits our TVE branch for translation-insensitive
feature extraction. To further enhance the extracted place de-
scriptor inherits orientation- and translation- invariant proper-
ties, we design a “parallel fusion” layer between SVE and TVE,
which enables the end-to-end training and inferencing for the
global place descriptors.
The key contributions of this letter are summarized as follows:
® We propose a viewpoint-free 3D place recognition sys-
tem, FusionVLAD. Compared with current state-of-the-art
methods, our method show better place recognition ability
in most cases under variant viewpoint differences.
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Fig. 2. Different representations from local dense map. Second and third
row represent the same area under locally translation or orientation difference
respectively. Different columns show the dense local map, the top-down and the
spherical projections.

® Wedesign a parallel multi-views fusion network, which can
simultaneously encode spherical and top-down projections
for robust place description learning.

e Based on traditional triplet loss in place recognition, we
design a lazy viewpoint-free metric to enhance the learnt
descriptors to viewpoint-invariant place recognition.

® We design the experiments with both public and self-
recorded datasets to evaluate the place recognition per-
formance of our method under variant translational and
rotational differences.

Notably, with public odometry datasets and collected datasets
from our hardware platform, the experiment results show that
our method is remarkably more robust to viewpoint differences
than other methods. Additionally, our FusionVLAD consumes
less GPU memory and can inference each place within 18 ms,
making it suitable for low-cost robot systems in large-scale
mapping applications.

II. RELATED WORK

Place recognition has been widely applied in SLAM and
navigation tasks. In this letter, we focus on 3D LiDAR-based
large-scale place recognition. In this section, we will briefly
review the relative works for 3D place recognition.

Unlike SIFT [6] and SURF [7] in image fields, handcrafted
features for the 3D point-cloud did not achieve great success.

Distance and angle based feature ESF [8], structure based
Scan-Context [9], and histogram-based feature SHOT [10] are
both focused on local areas and not suitable for extracting global
descriptors. Fast Histogram [11] uses a histogram to represent
the entire point-cloud distribution. M2DP [12] projects all points
to several planes, and they can obtain a global descriptor. These
methods are robust to the orientation differences but sensitive to
the translation differences.

Traditional LiDAR-based place recognition methods [13]
usually rely on a global, off-line, high-resolution map, and
can achieve centimeter-level localization, but at the cost of
time-consuming off-line map registration and data storage re-
quirements. Recently, learning-based point-cloud descriptors
have shown outstanding performance and gradually replacing
handcrafted features. Instead of extracting raw LiDAR points
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in the current scan for geometry matching, SegMatch [14]
proposed a matching-by-segmentation method where static ob-
jects are segmented out as landmarks to reduce the matching
complexity. However, the 3D point-level segmentation process
is computational expensive and the assumption of enough static
objects is not always a satisfied in the real world. Based on
the PointNet-based [1], [2] feature learning techniques, recent
3D place recognition approaches [3]-[5] have made significant
progress. In [3], the authors combined the feature extraction
ability of PointNet [1] and VLAD-based [15] feature aggrega-
tion to obtain translation-invariant 3D place descriptor. Com-
pared with traditional approaches, the extracted features from
PointNetVLAD [3] is robust to locally translation differences.
Based on Mikaela’s work, LPDNet [4] further improved place
recognition accuracy by enhancing the local feature extraction
ability with PointNet++ [2], which is designed to capture differ-
ent scaled point features. PCAN [5] further improve the place
recognition accuracy by modifying the VLAD layer with addi-
tional attention module, which can evaluate the point weighting
in the feature aggregation.

III. PROPOSED METHOD

As shown in Fig. 3, our method include two modules: a
multi-view generation to obtain different perspectives, and the
deep fusion network to deeply fuse the multi-view features
into a global place descriptor. The single LiDAR scan may
effect the place recognition accuracy, our multi-view generation
module can generate dense and stable top-down and spherical
projections by accumulate LiDAR scans and taking account of
updating noises. Different projections share different properties.
Fig. 2 shows the geometry changes of the dense local map,
top-down view and spherical-view, under locally translation or
orientation differences. As we can see that, under the local trans-
lation difference, the geometry structure of top-down views are
relative stable than spherical-views; with orientation difference,
the geometry changes in spherical-view will not change the
local feature extraction via convolution networks, while it will
affect the feature extraction in the top-down view branch. Our
fusion operation can enhance the learnt feature capturing both
translation-insensitive propriety of top-down view features and
rotation-invariant propriety of spherical-view features.

A. Multi-View Generation

We utilize the octree structure to cache the local map. Fol-
lowing the original Octomap [16], we apply a log-odds function
L(n) to describe a probability distribution P(n),n € R?, where

LHs). As stated in [16], if the initial
occupancy P(n) is set to 0.5, the log-odds L(n|z1.;) can be
estimated by,

L(n|z1.4) = L(n|z1:¢-1) + L(n|2) ()

In the measurement updating step, observation uncertainty
may introduce additional occupancy noise. We cope with such
noise by modifying the log-odds updating function. For each
node updating factor L(n|z;), we define a weighting function
W(z¢|pe, ¢p, ) to measure the points’ dynamic property,

we have L(n) = log|

e llpe—ap, |2 /20°

1
W(ze|pe, pe—1) = 5 2)

2
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The network structure of our method. Our FusionVLAD mainly includes two modules: Multi-view Generation module and Deep Fusion Networks

module. With the given sequence of LiDAR scans, the first module can generate multi-view representations with the consideration of observation and odometry
errors. The Deep Fusion Networks can parallel encode the top-down view and spherical-views, and tightly coupled the output features.

where p; is point within current LiDAR scan St, and g, is the
nearest point of p; in the last LiDAR scan S7_1, o is a constant
parameter. The original log-odds updating function Eq. (1) is
transformed into,

L(n|z1:t) = L(n|z1.4-1) + L(n|zt) - W(ze|pes @p,) ()

In the motion updating step, the occupancy of each leaf node
(from map Mr_1 to map Mr) is updated with a motion error
model NV (0, o). The covariance o, can be evaluated based on
the LiDAR odometry [13] estimation. Thus, we can update the
log-odds during the motion updating step by

L(n|z1:t) = L(n[21:¢) - Nm (0, 0¢,) “)

The above mechanisms enhance the robot setting a higher
belief when the observation is relative accurate and odometry is
more stable, or lower belief on the contrary. Then, as shown in
Fig. 2 we can generate multi-view representation by projecting
the 3D point-cloud from the octree map into the top-down view
and the spherical-view respectively.

1) Top-Down View Projection: The top-down view projec-
tion is encoded with height and intensity values, where the
intensity can reflect the materials’ properties. To avoid the pitch
and roll difference in top-down projections, we first estimate the
major 2D plane on the z-axis via RANSAC [17], and project the
3D points onto the major plane with 1™~ m resolution level. For
each grid on the 2D plane, we use the maximum height of the
points within this grid as the height feature, and average intensity
as the intensity feature.

2) Spherical View Projection: For the spherical projections,
we encode the geometry information on the spherical-views.
However, different from single LiDAR scan, the point cloud we
used are cached into a dense 3D map via the octree data structure.
Given a 3D point p = (x, y, 2), the relative Zenith and Azimuth
angle on the spherical-view can be estimated by,

Rz = arctan(y, x) Q)

R4 = arctan(z, /22 + y?) (6)

Within the same range of spherical projection, we may en-
counter points with different distances. To capture more abun-
dant geometric structures from the 3D environment, the point
cloud is divided equally into M slices based on the points’

ranges. In our current configuration, the maximum point’s dis-
tance is 30 meters and M = 5. Thus the points within range
0 ~ 6 are projected on m1, and points within range 24 ~ 30
are projected on ms. Similar to [18], given a desired resolution
K, we generate the 3D grids with size of [K x K x M]. On
the grid (Rz;, Ra,), we set d(Rz;, R4 ;) as distance to nearest
points within this grid. We also compute the angle o(Rz;, R4 ;)
between the ray and the surface normal at the intersecting face.
Thus, for each grid, we get two channels to extract the geometric
features on the spherical view.

B. Deep Fusion Networks

The overall of our FusionVLAD network is shown in Fig. 3.
We use two separate 2D convolution networks to extract the local
features. Both top-down view ([K x K x 2]) and spherical-
view ([ x K x M x 2]) are fed into the convolution layers.
In our application, we set K =64 and M = 5. In both the
spherical-view encoding (SVE) and the top-down view encoding
(TVE) branch, the convolution operation for each branch are
following the convolution layers in VGG16. By utilizing the
VLAD layer [15], we extract the 512-dimension place features
from top-down view ( ft,,,) and Spherical view (f;,) separately.
To combine information from different representations, we de-
sign a tightly coupled fusion network between the top-down
and spherical views. As we can see in Fig. 3, with the extracted
place features from different perspectives, we obtain the joint
feature fjoomt by applying the fully connected layer F'C'; on
the concatenate features [ frops fsph]. Based on the joint feature

[9oint» we utilize two fully connected layer FC?,, and F° Cfph

to estimate the feature mapping function Fjp,( ft0p| fiops fsph)
and Fpp( fsph | ftop, fspn)- To keep the recognition property in
top-down and spherical feature respectively, we use the same
shared weights fully connected networks FC?, and FC’fph in
the top-down and spherical branches respectively. For the fully
connected networks FC,,, FC?, , FC! , and FC! , , both in-
put and output filter size is 512. For the fully connected networks
FCysions FCFusion they have the same input filter at 1024,
but different output filter sizes (1024 and 512 respectively).
Learning place descriptor differences from the joint feature
distributions [ f;op, fspn] is more complicated than from isolated

perspectives. In the training procedure, our share-weights fully
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© Query Frame & Positive Frames Pull Towards Query

© Rotated Query Frame A Negative Frames w=m) Push Against Query

Fig. 4. Lazy Viewpoint-free metric enhance place feature learning. The
proposed “lazy viewpoint” loss can enhance the margin 1) between the query
frame and rotated-query frames, and the margin o between the positive frames
(with small translation difference) and negative frames (with large translation
difference).

connected layers can build the inter-connections between the
isolated top-down/spherical feature distribution and joint feature
distribution. In the next section, we will introduce the metric
loss that helps the fusion branch learn viewpoint-invariant place
descriptors.

C. Lazy Viewpoint Learning Metric

We propose a novel supervision objective Lazy viewpoint-free
loss metric to learn the viewpoint-invariant and distinguishable
place descriptors. For convenience of illustrating the loss func-
tions, some necessary definitions are first described in following.
As we can see in Fig. 4, each training tuple consists of four
components: S = [Sy, {Srot }, {Spos}s {Sneg } }], where S is
the query frame of a local 3D scan, {S,.} is the rotated
query set obtained by rotating S, with random heading angles
([0°,30°,...330°]). Similar to the PointNetVLAD [3], {Sp0s}
denotes a set of local map representations of 3D scans (“posi-
tive””) whose mapping center to {.S, } is within 5 m; and {S,,¢4 }
denotes a set of 3D scans (“negative”) whose mapping center to
{S,} is beyond 10 m. To reduce feature difference between .5,
and S,,;, we define the following “lazy rotation” triplet loss,

LLazyRot (8)

= max([y) + d(f(Sy), f( rot)) = d(f(Sq), F(S)os))

= H:E;qu + 6iot - 61];05]+) (7)

here f(.) is the function that encodes LiDAR representations
into the global descriptors. d(-) denoted the squared Euclidean
distance between features, and [.] ;- denotes the hinge loss. ) is a
constant parameter to mark corresponding margin between Sy,
and S),,. The above triplet1oss L 4.y rot can also combine with
d(f(Stor): (S,)) and d(f(SL,,), f(SE,,)) to further extend
the orientation-invariant property. Similarly to NetVLAD [15],
we also apply a transitional triplet loss to reduce feature differ-
ence between f(S,) and f(Spes) by,

LLazyTrans (8)
= max([or +d(f(S,), F(Spos)) = d(f(Sq), F(Sieq))
= Hzlgx([a + 5;?)05 - 63169]"") (®)
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where « is constant threshold to control the relative margin. Thus
the “lazy viewpoint™ loss function L 4.4V e can be written as,

LLazyView = LLazyTrcms + LLa,zyRot (9)

In the training procedure, we can train the FusionVLAD in
the deep version: applying the “lazy viewpoint” loss either
all branches (top-down view-, spherical view-, and fusion-
branches); or non-deep version: only applying the “lazy view-
point” loss on the Fusion branch. In the experiment part, we
will investigate the performance of different FusionVLAD con-
figurations. We use the Adam as the optimizer with the initial
learning rate at le — 4.

IV. EXPERIMENTS

In this section, we compare the proposed method with the
current state-of-the-art in learning-based 3D place recogni-
tion on both public and self-recorded datasets. To generate
our datasets, we designed a data recording mobile platform.
The platform contains a LiDAR device (Velodyne-VLP 16),
an inertial measurement unit (Xsense MTi 30, 0.5° error in
roll/pitch, 1° error in yaw, 550"mW), a mini PC (Intel NUC
i7, 3.5 GHz, 28 W) and an embedded GPU device (Nvidia
Xavier, 8 G memory). We trained our network model on a GPU
server with a Ubuntu 18.04 system with a single Nvidia 1080Ti
GPU and 64 G RAM. In the rest of this section, we will first
describe both the public and self-recorded datasets. Then we
analyze the place recognition performance and efficiency of our
methods, other state-of-the-art learning-based methods [3]-[5],
and non-learning based methods [10], [12], [19], [20]. Finally,
in the ablation study section, we also analyze our methods’
performance under different network configurations.

Datasets: Our evaluation datasets include two public datasets
and two self-recorded datasets:

e KITTI odometry datasets, which consists of 21 trajectories
generated with Velodyne-64 LiDAR scanner, around the
mid-size city of Karlsruhe. We use trajectory {1 ~ 8} for
network training, and {9, 10} for evaluation.

e NCLT datasets, which consists of 103 trajectories gener-
ated with Velodyne-32 LiDAR scanner, around the mid-
size city of Karlsruhe. We use trajectory {1 ~ 8} for net-
work training, and {9, 10} for evaluation.

e Campus dataset, we created a Campus dataset with 11
trajectories by driving our data generating mobile platform
to traverse a 2 km outdoor route around the campus of
Carnegie Mellon University.

¢ City dataset, we created a City-scale dataset by mounting
our data generating system on the top of a car and repeatly
traversing 11~ km trajectories in the city of Pittsburgh. We
collected 12 trajectories, and we use trajectories {1 ~ 10}
for network training, and {11, 12} for evaluation.

To provide training/evaluation data, we first generate the
global map with all the LIDAR sequences through a traditional
LiDAR odometry method [13]. We generate the local LiDAR
maps given the ground truth trajectories on each datasets, and
separate them into training and evaluation datasets with shuffled
index. The train/inference datasets are gathered individually, and
we only train the network with the specific training dataset in
each dataset. We also prepare the corresponding position for
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TABLE I
DATASET FRAMES NUMBER IN TRAINING/EVALUATION ON THE FOUR DATASETS

KITTT  NCLT _ CAMPUS __ CITY

Train 13,070 15,971 13,830 10,972

Eval (test/refer) 3,268 3,993 3,458 2,744
TABLE II

PLACE RECOGNITION EVALUATION ON DIFFERENT AREAS OF CMU

Refer Test Distance
NSH 1,523 1,489 1.5km
Hamburg Hall 1,830 1,865 1.8km
Gates 2,023 1,948 2.0km

each local map, which is necessary to calculate the position
{Spos} and negative {S,,c,} samples for each query data S,.
Table I shows the data separation in training/evaluation on the
four datasets. Especially, to verify the generalization ability
of different methods in the evaluation step, we generate the
testing data with random delta translation ([0,2,4,6,8,...]m
on 2D-XY plane) or delta orientation ([0,45,90135,...]° in
yaw) differences comparing the ground truth trajectory.

On the other hand, to verify the place recognition performance
of two slightly different trajectories within the same area, we also
record the testing/reference sequence data from different areas
on the campus area as we can see in the Table II. The ground truth
positions of testing/reference sequence queries are obtained with
an offline ICP-based point cloud registration method, where each
frame will take around 200 ~ 500 ms with accuracy around 0.1
~02m.

Methods: To evaluate our approach’s performance, we
firstly compared it with the current state-of-the-art methods of
learning-based place recognition methods, PointNetVLAD [3],
which are re-implied from the Github.! For the non-learning
based method, we also compare the frame-level descriptors
Fast Histogram [20] and M2DP [12] from the Github,> and
3D keypoint-based methods ESF [19] and SHOT [10] in the
PCL library. For all the above approaches, we provide the dense
local maps generated by our local mapping module, as shown
in Section III-A. For the all the learning-based method, we use
the same data configuration on each datasets and same training
epochs, and training the new network models on each of four
datasets. To inference different real trajectories in the Campus
(Table II), we use the pre-trained model on the joint Campus
dataset.

Evaluation Manners and Metrics: We evaluate the place
recognition accuracy under two different matching manners:
single-scan and sequence-scan based place recognition. The
first manner retrieves corresponding places by evaluating feature
similarity with K-nearest neighbor search. The second manner
follows sequence-matching based place recognition in SeqS-
LAM [21]. Here we only use the sequence matching steps in
the original SeqSLAM. For both manners, similar to Point-
NetVLAD [3], we use the Average Recall, Precision-Recall
Curve and Average Precision Score (AP score) to assess the
place recognition accuracy between the relative reference and
testing sequence trajectories.

Uhttps://github.com/mikacuy/pointnetvlad
Zhttps://github.com/LiHeUA/M2DP
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Fig. 5. Sub-map generation. Each sub-map (the highlighted area) is gen-
erated from the global map Map;. In the evaluation step, both testing and
reference queries are extracted with local viewpoints differences in translation
([0,2,4,6,...]Jm on 2D-XY plane) and orientation ([0, 45,90135,...]°) in
yaw.

TABLE III
AVERAGE RECALL AT TOP @5 ON FOUR DATASETS UNDER VARIANT
VIEWPOINT DIFFERENCES FOR BOTH NON-LEARNING/LEARNING METHODS

Method | KITTI [ NCLT | Campus [ CITY
Non-Learning Methods
M2DP 83.83% 27.88% 72.50% 60.59%
ESF 81.84% 82.38% 84.66% 82.67%
Fast-histogram 35.07% | 17.05% | 24.09% | 24.69%
SHOT 42.84% 41.77% 53.86% 58.89%
Learning Methods

PointNetVLAD 32.13% 33.56% 35.48% 32.35%
Fusion (top-down) 78.88% 82.15% 78.05% 75.54%
Fusion (spherical) 74.49% 79.24% | 73.22% 71.37%
Fusion (no deep) 82.31% 85.23% 81.76% 79.21%
Fusion (deep) 86.07% | 94.53% | 89.61% | 86.64%
Fusion (without rot) | 80.29% | 83.92% | 80.41% | 76.31%

A. Place Recognition Results

1) Orientation- and Translation- Tolerance Analysis: We
conduct experiments on four datasets to evaluate the robustness
of place recognition of different methods. As we can see in
Fig. 6, we calculate the average recall at top 1% between
reference/testing trajectories (under translation [0, 2, 4, 6]m and
yaw orientation [0, 45, 90 135]°). For all the non-learning based
approaches, they can achieve robustly place recognition un-
der variant orientation difference, while on the other hand,
translation difference will significantly reduce their matching
accuracy. We can also notice that the PointNet-based method
can handle translation differences locally but is sensitive to ori-
entation differences, the matching accuracy of PointNetVLAD
quickly declined as rotation differences increasing. Compare
to the above techniques, the place descriptors of FusionVLAD
are invariant to orientation-differences and can guarantee the
average recall at top 1% are above 80% on each dataset.

Table III further provides the average recall at top @5, we
can see that on all the four datasets. Here Fusion (top-down)
and Fusion (spherical) indicates the network with only one
perspective. As we mentioned in Section III-C, Fusion (no deep)
means FusionVLAD network but only with fusion-branch loss
in the training procedure, and Fusion (deep) is with all the three
branches. Fusion (without rot) means the training procedure
without ‘rotation loss’ metric. FusionVLAD can achieve more
accurate place retrieval with average recall above 85%. Table IV

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 26,2021 at 16:03:54 UTC from IEEE Xplore. Restrictions apply.


https://github.com/mikacuy/pointnetvlad
https://github.com/LiHeUA/M2DP

YIN et al.: FusionVLAD: A MULTI-VIEW DEEP FUSION NETWORKS FOR VIEWPOINT-FREE 3D PLACE RECOGNITION

Average Recall 88.86% Average Recall 15.38% Average Recall 85.54%

KITTI

NCLT

Average Recall 32.20% Average Recall 70.27%

Campus

PointNetVLAD M2DP

Fig. 6.
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Average Recall 85.44% Average Recall 39.32% Average Recall 47.20%

Average Recall 20.85% Average Recall 50.57%

SHOT

Fast-Histogram

Average Recall at Top 1% under variant viewpoint differences. Each sub-graph represent 16 trails of the place recognition average recall (z-axis) on

different translation (x-axis) or orientations (y-axis). Each trail includes a reference trajectory and a testing trajectory (with translation/orientation noise).

TABLE IV
AVERAGE RECALL AT TOP @5 UNDER DIFFERENT AREAS OF THE CAMPUS
Method | NSH | Hamburg Hall |  Gates
Non-Learning Methods
M2DP 65.38% 75.29% 72.15%
ESF 80.14% 89.23% 86.27%
Fast-histogram 32.15% 36.94% 35.74%
SHOT 48.41% 51.58% 45.36%
Learning Methods

PointNetVLAD 67.59% 72.711% 69.16%
Fusion (top-down) 80.81% 79.59% 81.36%
Fusion (spherical) 75.27% 80.24% 76.82%
Fusion (no deep) 83.86% 85.12% 86.32%
Fusion (deep) 89.51% 92.16% 88.14%
Fusion (without rot) | 82.73% 81.08% 83.65%
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Fig. 7.
dataset.

Average precision score of single-matching results on the NCLT

shows the place recognition performance on the datasets of II,
and all the learning methods use the pre-trained model on the
Campus datasets.

2) Single- and Sequence-Matching Results: Fig. 7 and
Fig. 8 shows the place recognition results of single-scan and
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Fig. 8. Average precision score of sequence-matching [21] results on the
NCLT dataset.

sequence-scan based matching on the NCLT dataset. In both
matching manners, we use the precision-recall curve and Av-
erage Precision Score to analyze the matching accuracy. In the
cases of lower translation differences, both non-learning and
learning-based methods can achieve robust place recognition
ability. For significant translational or rotational differences,
transitional methods or PointNet-based method cannot guaran-
tee an accurate place retrieval. In most cases, the sequence-
matching manner can improve the matching performances,
however, for M2DP method without translation differences,
sequence-matching may reduce the recognition accuracy. For
FusionVLAD, with the benefit of merging both top-down view
and spherical-view branches, our method can achieve stable
place retrieval in both single- and sequence- matching manner.
Especially, we can achieve 80% Average Precision Score under
sequence-matching manner within 6™ m translation differences.
Please not the sequence-matching can only find one single
best matching for each query, thus this manner need to further
modified when dealing with query with more than two matches.
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TABLE V
COMPARISON OF TIME, GPU MEMORY (MEGABYTE), AND FEATURE SIZE
REQUIREMENTS OF DIFFERENT METHODS

Method [ GPU (MB) [ Time (ms) [ Feature Size
Non-Learning Methods
M2DP — 164.05 192
ESF — 14.56 640
Fast-histogram — 1.47 80
SHOT — 14.74 352
Learning Methods

PointNetVLAD 7,711 55.00 256
FusionVLAD 2,459 10.00 256

B. Time and Storage Analysis

In Table V, we analysis the time and memory usage of our Fu-
sionVLAD and other methods. Compared with PointNetVLAD,
our method consumes about 31% GPU memory for training and
takes about 20% time for extracting place descriptor for a point
cloud. While comparing to non-learning method, FusionVLAD
is more robust and efficient. In the inference step, the multi-view
generation step will consume 100™ms on the NUC i7 computer.
FusionVLAD also only requires 10" ms and 37M b on the GPU
device or 87 ms on a CPU device. which make it easy to imply
in the Nvidia embedded system (Nvidia Jetson TX2, or Xavier)
or the NUC computer, and suitable for low cost robot systems
in long-term SLAM or navigation tasks.

C. Discussion & Limitations

As shown in the above analysis, the performance of Fu-
sionVLAD can benefit from multi-view perspectives. However,
in the situation of confined spaces (e.g., indoors, tunnels and
underground), the generated LiDAR map is very sparse and
cannot generated rich textures from top-down view or spher-
ical views. One potential solution for the confined spaces is
using camera to increase the depth resolution, which may has a
computation-expensive operation in depth prediction. Another
limitation comes from the RANSAC-based plane fitting for
top-down view generation, which is only suitable for structured
ground.

We also evaluate the place recognition performance with
single LiDAR scans instead of the cached maps from octree.
The performance of both learning/non-learning methods are
depended on the resolution of LiDAR device, and all methods
perform bad with single VLP-16 scans; thus our multi-view
generation module is necessary in this case.

V. CONCLUSION

In this letter, we designed a parallel fusion network structure,
FusionVLAD, to learn robust 3D place descriptors from multi-
view LiDAR projections. Our method can simultaneously ex-
tract features from the top-down and the spherical-view branch,
and we design a deep fusion layer to guarantee the extracted
descriptors inherit both translation-insensitive and orientation-
invariant properties. The results on both public and self-recorded
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datasets show that our method notably outperforms the state-
of-the-art in 3D place recognition tasks. Our method can work
with limited computation resources and storage spaces, making
it extremely suitable for low-cost robots in large-scale mapping
tasks. In future works, we will fuse information from different
source (image, radar) to further improve the performance.
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