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Abstract

Recently, there has been a substantial surge of interest in the development of opti-
mization algorithms tailored for overparameterized models. This interest centers
around the objective of minimizing a concept of sharpness in conjunction with the
original loss function, e.g., the Sharpness-Aware Minimization (SAM) algorithm
shown effective in practice. Nevertheless, the majority of sharpness measures exhibit
sensitivity to parameter scaling in neural networks, and they may even experience
significant magnification when subjected to rescaling operations. Motivated by this
issue, in this paper, we introduce a new class of scale-invariant sharpness measures,
that gives rise to a new class of scale-invariant sharpness-aware objective functions.
Furthermore, we prove that the newly introduced objective functions are explicitly
biased towards the minimization of our scale-invariant sharpness measures.

1 Introduction

The success of deep learning [10] is frequently attributed to its overparameterization. Understanding
the generalization capabilities of overparameterized networks is a fundamental, yet unsolved, challenge
in deep learning. It is postulated that achieving near-zero training loss alone may be insufficient, as
there exist many instances where global minima fail to exhibit satisfactory generalization performance.
To this end, a dominant observation asserts that the characteristics of the loss landscape play a pivotal
role in determining which parameters have low training loss while also exhibiting generalization
capabilities.
A recently proposed approach is to consider the geometric aspects of the loss landscape, with the aim
of achieving generalization; it entails the avoidance of sharp minima. For example, the celebrated
Sharpness-Aware Minimization (SAM) algorithm has shown enhancements in generalization across
many practical tasks [8]. While the concept of sharpness lacks a precise definition in a general sense,
people often introduce various measures to quantify it in practice, while most of them rely on the
second-order derivative characteristics of the training loss function, such as the trace or the operator
norm of the Hessian matrix.
Nevertheless, given the intricate geometry of the loss landscape, traditional methodologies for quantify-
ing sharpness may not suffice for the study of generalization. Indeed, neural networks exhibit parameter
invariances, wherein distinct parameterizations can yield identical functions — such as scale-invariance
in ReLU networks. Consequently, an effective measure of sharpness should remain invariant in the
face of such parameter variations. Unfortunately, conventional approaches for quantifying sharpness
frequently fall short of addressing this phenomenon.
Therefore, a fundamental question arises: how can one represent measures of sharpness within a
compact parameterized framework that also enables meaningful applications to models with parameter
invariances? As a step towards answering this question, this paper introduces an average-based parame-
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terized representation for sharpness measures that is invariant under parameter rescaling. Furthermore,
although the provided representation depends on the Hessian of the training loss, we introduce a novel
sharpness-aware loss function for any proposed sharpness measures that only relies on the zeroth-order
information about the training loss. We also prove that this new loss function is explicitly biased
towards minimizing the associated sharpness measure. Thus, it can be considered as a generalized
parameterized sharpness-aware minimization algorithm. Indeed, this allows us to readily design
algorithms with invariant biases, while to the best of our knowledge, only algorithms with biases
towards minimizing the trace, operator norm of the Hessian matrix, and a few other not necessarily
scale-invariant sharpness measures are known in the literature.
In short, in this paper, we make the following contributions:

• We propose a new parameterized representation for sharpness measures as a function of the
training loss’s Hessian matrix, and prove that the new representation is scale-invariant when
applied to neural networks under parameter rescaling.

• Attached to any sharpness representation, an optimization objective, that only depends on the
zeroth-order information about the training loss, is provided, and it is proved that the new
objective is biased towards minimizing the corresponding sharpness measure.

2 Related Work

Foret et al. [8] recently proposed the Sharpness-Aware Minimization (SAM) algorithm to avoid sharp
minima. Besides SAM, Nitanda et al. [18] show how parameter averaging for SGD is biased towards
flatter minima. Label noise SGD also prefers flat minima [6]. Woodworth et al. [26] study the role
of sharpness in overparametrization from a kernel perspective (see [23, 5] for the applications of flat
minima for domain generalization). For applications of SAM in large language models, see [4, 27]
(and [19, 20] for federated learning). Besides those applications, Wen et al. [25] prove that current
sharpness minimization algorithms sometimes fail to generalize for non-generalizing flattest models.
The (implicit) bias of many optimization algorithms and architectures is presently understood, from the
Gradient Descent (GD) [14, 21] to the mirror decent [11, 3, 22]; see also [12] for linear convolutional
networks, and [15] for equivariant networks. Gatmiry et al. [9] find the bias of flatness regularization
for deep matrix factorization. It is also observed that linear neural networks are biased towards weight
alignment for different layers [13] (see also [16] for non-linear networks). Andriushchenko and
Flammarion [1] study the implicit bias of SAM for diagonal linear networks, and Wen et al. [24] find
the explicit bias of the Gaussian averaging method and other SAM variants.
Scale-invariances’ role in generalization in deep learning is emphasized in [17]. Dinh et al. [7] point
out that parameter invariances can lead to the different parameterization of the same function, making
the definition of flatness challenging; see also [2] for a recent study.

3 A Scale-Invariant Sharpness Measure

3.1 Setting

Consider a standard learning setup with a labeled dataset S , and a third-order continuously differentiable
training loss function L : Rd → R≥0, where L(x) denotes the training loss over S computed for the
parameters x ∈ Rd. The main objective in Empirical Risk Minimization (ERM) is to minimize the
training loss L(x) over the feasibility set X ⊆ Rd. However, achieving parameters satisfying L(x) ≈ 0
in overparameterized models is often straightforward. This is because in contrast to other models, in
overparameterized models, there are many global minima, i.e., the set Γ := {x ∈ X : L(x) = 0} is a
manifold – it is called the zero-loss manifold in the literature. Moreover, in practical scenarios, it is
noteworthy that not all global minima exhibit favorable generalization capabilities [8].

3.2 Background on SAM

It is hypothesized that the avoidance of sharp minima can enhance generalization performance. However,
it should be noted that the concept of sharpness encompasses a multitude of distinct definitions in
practical contexts. The Sharpness-Aware Minimization (SAM) algorithm suggests minimizing the
training loss function over a small ball around the parameters:

min
x∈X

{
LSAM(x) := max

∥v∥2≤1
L(x+ ρv)

}
, (1)
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where ρ ∈ R≥0 is called the perturbation parameter. Note that LSAM can be decomposed into two
terms:

LSAM(x) = L(x)︸︷︷︸
empirical loss

+ max
∥v∥2≤1

{
L(x+ ρv)− L(x)

}
︸ ︷︷ ︸

sharpness

. (2)

Foret et al. [8] also suggest alternative average-based sharpness-aware objectives to use PAC bounds on
the generalization error of overparameterized models; we follow the definition in Wen et al. [25]:

LAVG(x) := Ev∼N (0,I)

[
L(x+

ρv

∥v∥2
)
]
= L(x)︸︷︷︸

empirical loss

+Ev∼N (0,I)

[
L(x+

ρv

∥v∥2
)− L(x)

]
︸ ︷︷ ︸

sharpness

. (3)

3.3 Proposed Approach

Wen et al. [25] recently proved that minimizing LSAM(x) will lead to global minima (i.e., L(x) ≈
0) with small λmax(∇2L(x)). In other words, SAM is (explicitly) biased towards minimizing
λmax(∇2L(x)). Moreover, they show that using LAVG(x) is biased towards minimizing 1

dTr(∇2L(x)).
This means that SAM measures the sharpness of a global minimum by λmax(∇2L(x)), while the
average-based objective uses 1

dTr(∇2L(x)) to evaluate it.
In the next example, we argue how both sharpness measures above fail to define a meaningful notion
under parameter rescalings.

Example 1 Consider the loss function L(x1, x2) = x21x
2
2−2x1x2+1 with two parameters x1, x2 ∈ R.

It is scale-invariant, i.e., L(kx1, x2

k ) = L(x1, x2) for all k ̸= 0. Indeed, the zero-loss manifold
Γ = {(x1, x2) : x1x2 = 1} contains infinitely many global minima. Straightforward calculation shows

∇2L(x1, x2) =
( 2x2

2 4x1x2−2

4x1x2−2 2x2
1

)
. Thus, we have 1

2Tr(∇2L(x1, x2)) = x21 + x22. After rescaling,

we get 1
2Tr(∇2L(x1, x2))

∣∣∣
(kx1,k−1x2)

= k2x21 +
x2
2

k2 ̸= 1
2Tr(∇2L(x1, x2)). Therefore, as a sharpness

measure, Tr(∇2L(x1, x2)) is not scale-invariant. The problem magnifies drastically in the limit:

limk→∞ Tr(∇2L(x1, x2))
∣∣∣
(kx1,k−1x2)

= ∞. Similar problems exist for λmax(∇2L(x1, x2)). However,

det(∇2L(x1, x2)) is scale-invariant; we have det(∇2L(x1, x2))
∣∣∣
(kx1,k−1x2)

= det(∇2L(x1, x2)) for

all k ̸= 0.

Note that neural networks are often scale-invariant, e.g., linear networks or ReLU networks. To define
a new scale-invariant sharpness measure, we take a closer look at the average-based sharpness-aware
objective LAVG(x); using its Taylor expansion [25], we have

LAVG(x) = Ev∼N (0,I)

[
L(x+

ρv

∥v∥2
)
]

(4)

≈ L(x) + ρEv∼N (0,I)

[
⟨∇L(x), v

∥v∥2
⟩
]
+ ρ2Ev∼N (0,I)

[vt∇2L(x)v

∥v∥22

]
(5)

= L(x) + ρ2
Tr(∇2L(x))

d
. (6)

This intuitively tells us that for a small perturbation parameter ρ, the leading term in the objective
function is the training loss L(x), and after we get close to the zero-loss manifold Γ, the leading
term becomes 1

dTr(∇2L(x)), which is exactly the explicit bias of the average-based sharpness-aware
minimization objective. This motivates us to define the following parameterized sharpness measure.

Definition 1 ((ϕ, ψ, µ)-sharpness measure). For any continuous functions ϕ, ψ : R → R and any
Borel measure µ on Rd, the (ϕ, ψ, µ)-sharpness measure S(x;ϕ, ψ, µ) is defined as

S(x;ϕ, ψ, µ) := ϕ
(∫

ψ
(
vt∇2L(x)v

)
dµ(v)

)
. (7)

We specify several examples of hyperparameters ϕ, ψ, µ in Table 1, which shows how (ϕ, ψ, µ)-
sharpness measures can represent various notions of sharpness, as a function of the Hessian matrix.
For which hyperparameters (ϕ, ψ, µ) is the corresponding sharpness measure scale-invariant? The
following theorem answers this question.
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Table 1: Examples of (ϕ, ψ, µ)-sharpness measures; see Section 4
Hyperparameters

ϕ(t) ψ(t) dµ(v) S(x;ϕ, ψ, µ)

t t Uniform(Sd−1) 1
dTr(∇2L(x)) = 1

d

∑d
i=1 λi

(2π)d/t2 exp(−t/2) Lebesgue measure on Rd det(∇2L(x)) =
∏d
i=1 λi

ϕ(t) tn Uniform(Sd−1) ϕ
(
p(λ1, λ2, . . . , λd)

)
*ϕ(t) is an arbitrary continuous function and p(λ1, λ2 . . . , λd) is a specifically constructed polynomial

Theorem 1 (Scale-invariant (ϕ, ψ, µ)-sharpness measures). Consider a scale-invariant loss function
L(x) and let µ be a Borel measure of the form

dµ(x) = f
( d∏
i=1

xi

) d∏
i=1

dxi, (8)

where f : R → R is a measurable function. Then, for any continuous functions ϕ, ψ, the corresponding
sharpness measure S(x;ϕ, ψ, µ) is scale-invariant; this means that S(x;ϕ, ψ, µ) = S(Dx;ϕ, ψ, µ)
for any diagonal matrix D ∈ Rd×d with det(D) = 1.

Example 2 Note that det(∇2L(x)) is a scale-invariant sharpness measure; for any diagonal matrix
D ∈ Rd×d with det(D) = 1,

det(∇2L(x))
∣∣∣
Dx

= det(D−1∇2L(x)D−1) = det(D−1)2 det(∇2L(x)) = det(∇2L(x)). (9)

Note that Theorem 1 also supports the scale-invariance of the determinant; the Lebesgue measure
satisfies the condition in Theorem 1 with f ≡ 1, and we have the representation of the determinant in
Table 1.

Now that we defined a flexible set of sharpness measures, the following question arises: how can one
achieve S(x;ϕ, ψ, µ) as the explicit bias of an objective function that only relies on the zeroth-order
information about the training loss, similar to LSAM(x) and LAVG(x)? To give answer to this question,
we introduce the (ϕ, ψ, µ)-sharpness-aware loss function as follows:

L(ϕ,ψ,µ)(x) := L(x)︸︷︷︸
empirical loss

+ρ2 ϕ
(∫

ψ
( 1

ρ2
(
L(x+ ρv)− L(x)

))
dµ(v)

)
︸ ︷︷ ︸

sharpness

, (10)

where ρ is the perturbation parameter (similar to LSAM(x) and LAVG(x)).

Theorem 2 (Informal; explicit bias of the (ϕ, ψ, µ)-sharpness-aware loss function). For a large class
of triplets (ϕ, ψ, µ) and sequences ϵ(ρ) ≤ ∆ρ2 with some ∆ > 0, if L(ϕ,ψ,µ)(x(ρ)) ≤ ϵ(ρ), then
S(x(ρ);ϕ, ψ, µ) ≤ ∆+ oρ(1) as ρ→ 0+.

The above theorem shows how using the new objective function L(ϕ,ψ,µ)(x) leads to explicitly biased
optimization algorithms towards minimizing the sharpness measure S(x;ϕ, ψ, µ) over the zero-loss
manifold Γ.

4 Examples of (ϕ, ψ, µ)-Sharpness Measures

In this section, we prove that various notions of sharpness can be achieved using the proposed approach
in this paper (Table 1).

4.1 Trace

Let ϕ(t) = ψ(t) = t, and note that

S(x;ϕ, ψ, µ) =

∫
vt∇2L(x)vdµ(v) (11)

= Ev∼µ[vt∇2L(x)v], (12)
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where µ is the uniform distribution over the (d− 1)-sphere S(d−1) := {x ∈ Rd : ∥x∥2 = 1}. Denote
the entries of ∇2L(x) as (∇2L(x))i,j . Then, by the linearity of expectation

Ev∼µ[vt∇2L(x)v] =

d∑
i,j=1

(∇2L(x))i,jE[vivj ] =
d∑
i=1

1

d
(∇2L(x))i,i =

1

d
Tr(∇2L(x)), (13)

since E[vivj ] = 1
dδi,j , where δi,j denotes the Knocker delta function.

4.2 Determinant

To achieve the determinant, we choose ϕ(t) = (2π)d/t2 and ψ(t) = exp(−t/2). Then,

S(x;ϕ, ψ, µ) =(2π)d
(∫

exp(−1

2
vt∇2L(x)v)dv

)−2

, (14)

where dv denotes the Lebesgue measure. However, using the multivariate Gaussian integral, we have∫
exp(−1

2
vt∇2L(x)v)dv = (2π)d/2 det(∇2L(x))−1/2. (15)

Replacing this into the definition of S(x;ϕ, ψ, µ) gives the desired result.

4.3 Polynomials of Eigenvalues

First assume that ψ(t) = tn for some n ≥ 0. Then, for any function ϕ(t),

S(x;ϕ, ψ, µ) = ϕ
(∫ (

vt∇2L(x)v
)n
dµ(v)

)
(16)

= ϕ
(
Ev∼µ

[(
vt∇2L(x)v

)n])
, (17)

where µ is the uniform distribution over the (d − 1)-sphere S(d−1). Since ∇2L(x) is a symmetric
matrix, we can find an orthogonal matrix Q such that ∇2L(x) = QtDQ, where D is a diagonal matrix
with diagonal entries λ1, λ2, . . . , λd. Now we write

(
vt∇2L(x)v

)n
=

(
vtQt∇2L(x)Qv

)n
. But Qv

is distributed uniformly over the (d− 1)-sphere S(d−1), similar to v. Thus, we conclude

S(x;ϕ, ψ, µ) = ϕ
(
Ev∼µ

[(
vt∇2L(x)v

)n])
(18)

= ϕ
(
Ev∼µ

[( d∑
i=1

λiv
2
i

)n])
. (19)

Define p(λ1, λ2, . . . , λd) := Ev∼µ
[(∑d

i=1 λiv
2
i

)n]
, which is clearly a polynomial function (by the

linearity of expectation).

5 Conclusion

In this paper, we introduced a new family of sharpness measures and we showed how this new
parameterized representation can generate many meaningful sharpness notions (Table 1). Moreover,
we proved in Theorem 1 how specific Borel measures can lead to scale-invariant sharpness measures
(such as the determinant of the Hessian matrix). Furthermore, in Theorem 2, we showed how the
corresponding zeroth-order objective function to each sharpness measure is explicitly biased towards
minimizing the desired sharpness subject to the zero-loss manifold of the training loss.
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