
Reproducibility Report: Your Classifier is Secretly an Energy
Based Model and You Should Treat it Like One

Anonymous Author(s)
Affiliation
Address
email

Reproducibility Summary1

Scope of Reproducibility2

We validated the Joint Energy-Based model (JEM) training technique, recently developed by Grathwohl et al. [1].3

Specifically, we checked performance on image classification, generation, and uncertainty calibration.4

Methodology5

We re-implemented the paper’s pipeline from scratch, based on the algorithm described in the paper. We only referred6

to the authors’ code for subtleties such as data normalization which were not explicitly mentioned in the paper. Training7

JEM took about 12 hours using a Wide ResNet 28-2 architecture [2].8

Results9

We verified that JEM performed similarly to how it was presented in [1]. We could not reproduce the exact numerical10

results of the paper due to the long training time of the algorithm.11

What was easy12

The paper is well-written, with the algorithm and motivation clearly explained.13

What was difficult14

We were not able to reproduce the exact results of the paper since constraints on computation time forced us to use a15

smaller network than the authors. Running the authors’ method with the model and hyperparameters they described in16

their original paper would have required about 80 hours to train on our hardware (which we believe is comparable to17

the authors’ hardware), rather than the 36 hours the authors reported in the paper.18

While the training method produces a well-calibrated hybrid model, training itself is unstable. We needed to restart19

training a few times due to the loss diverging.20

Communication with original authors21

We spoke to the authors who corroborated the second of the above difficulties, however the origin of the lengthy training22

time is less clear.23

Submitted to ML Reproducibility Challenge 2020. Do not distribute.

1 Introduction24

Research in generative models has historically been motivated by the potential benefit to tasks such as semisupervised25

learning, imputing missing data and/or data augmentation for discriminitive tasks, and calibrating uncertainty in26

predictive modelling. However, much of the recent literature in the subject is heavily motivated by generated sample27

quality. At present, there is a large gap in performance between generative modelling and downstream discriminative28

tasks. This is motivated, at least in part, by stark contrast between generative and discriminative deep neural network29

architectures.30

The paper we reproduce in this report [1] bridges the gap between discrimination and generation by using a novel31

energy-based approach. Typically discriminative classifiers define a conditional probability distribution p(y|x) over32

the labels y ∈ RK (for K classes), where (e.g. for images) x ∈ Rc×h×w (channels, height, width). However, by33

reinterpreting of the pre-softmax network outputs of a neural network, the authors of [1] define a method to model the34

data distribution pθ(x) as35

pθ(x) =
exp(−Eθ(x))

Z(θ)
(1)

where Eθ, known as the energy function, depends on the pre-softmax network outputs and continuously maps each36

image to a scalar. The normalization Z(θ) ≡
∫
x
exp(−Eθ(x)) is known as the partition function. Performing maximum37

likelihood estimation by differentiating (1) with respect to θ yields38

∂ log pθ(x)

∂θ
= Epθ(x′)

[
∂Eθ(x

′)

∂θ

]
− ∂Eθ(x)

∂θ
. (2)

The authors approximate the intractable expectation in 2 by stochastic gradient langevin descent (SGLD) [3], a type of39

Markov chain Monte Carlo (MCMC) algorithm. We refer the reader to the references (particularly [1], [3]) for details40

on how this is implemented in practice. The full likelihood function that we must optimize with respect to the network41

parameters θ is then given summing the generative and discriminative contributions:42

L ≡ log pθ(x) + log(pθ(y|x). (3)

For the purpose of this reproducibility study, we chose to replicate Algorithm 1 of [1] described in Appendix A of43

the paper. This is the primary novel algorithm proposed, known as joint energy-based model (JEM) training for44

jointly training a discriminative/generative (hybrid) model. This training scheme is a subset of the class hybrid model45

training methods (hybrid due to the joint generative/discriminative nature). The paper shows that JEM outperforms46

state-of-the-art hybrid models at both generative as well as discriminative modeling.47

NB: If we mention "the paper" without citation, we are referring to [1].48

2 Scope of reproducibility49

We verify the following key claims made in the paper:50

1. We verify the validity of the JEM-based training approach by implementing the model and training pipeline51

from scratch. Due to issues with training time, we could not verify the results for the exact ResNet architecture52

described in the paper (see Section 5 section for details). However, we trained a Wide ResNet (WRN)53

28-2 (scaled down from the WRN 28-10 trained in the paper) and produced comparable generative and54

discriminative performance.55

2. We verify that training with JEM improves uncertainty calibration compared to standard cross entropy56

minimization.57

3 Methodology58

We made every effort to perform an independent reproduction relying on the author’s paper, however we occasionally59

had to refer to the author’s code to obtain information not presented in the paper, particularly image preprocessing60

hyperparameters and the train/test split.61

2

3.1 Model descriptions62

While the paper used a Wide Resnet (WRN) 28-10, we scaled down to a WRN 28-2 for reasons of training time. (See63

Sec 5 for more details). We did not implement the WRN architectures ourselves, but found an existing implementation64

(based on this code) which we used.65

3.2 Datasets66

We used CIFAR10 [4] for all experiments, as in the original paper.67

3.3 Hyperparameters68

To train the WRN 28-2 we used the same hyperparameters that the paper used to train the WRN 28-10. While we69

did not have time to optimize hyperparameters for our scaled down network, we found that we were able to produce70

comparable results to what was found in the paper. Full hyperparameters are given in Table 1.71

hyperparameter value
WRN width 28
WRN depth 2
initial LR 0.0001

train epochs 150
LR decay 0.3

LR decay epochs 50, 100
SGLD steps 20
buffer size 10000

buffer reinit freq 0.05
SGLD step size 1

SGLD noise 0.01

Table 1: Hyperparameters used for training JEM reproduction.

3.4 Experimental setup and computational requirements72

Our code is available here.73

All experiments were run on an AWS p3.2xlarge instance with 8 CPUs and 1 NVIDIA V100 GPU. Training took about74

12 hours for JEM hybrid training and about 2 hours to train an ordinary classifier using the hyperparameters given in75

Table 1. Before we scaled down our model architecture, we tried training a WRN 28-10 on an AWS p2.xlarge instance76

with 4 CPUs and an NVIDIA K80 GPU; this took about 40 hours.77

As a time test, we ran the authors’ code on a AWS p3.2xlarge instance. However we projected a training time of about78

80 hours (as opposed to 36 as they described in their paper) based on time per iteration. This is why we decided to scale79

down our architecture.80

4 Results81

We trained a WRN 28-2 architecture using the hyperparameters described in section 3.3. In particular, we trained both a82

pure classifier as well as a hybrid model using the same architecture. In analogy with lines 5 and 6 of Table 1 of the83

paper, we report both the accuracy of the pure discriminative performance as well as the accuracy and inception score84

(IS) [5] of the hybrid model. We also went beyond the paper by generating samples from uniform noise in 4.3, and85

computed their inception scores as well. To compute the inception score, we adapt the code from here (code for ref [6]).86

4.1 Result 1: Accuracy and Generative Samples87

Table 2 compares the accuracy of the two architectures, where the 28-2 is our result and the 28-10 is taken from Table 188

of the paper. Table 3 compares both the generative and discriminative performances of the two architectures trained89

3

https://github.com/meliketoy/wide-resnet.pytorch/blob/master/networks/wide_resnet.py
https://github.com/divymurli/ML_Reprod_HybridEnergyModels
https://github.com/wgrathwohl/JEM/blob/master/train_wrn_ebm.py
https://github.com/sbarratt/inception-score-pytorch

Figure 1: Samples from last checkpointed training buffer, top 64 samples with most confident predictions.

using JEM. The inception scores are computed using the top 10% of most confident inception-network-classified90

samples from the training buffer.91

In our training pipeline, we saved checkpoints every 5 epochs. We also did a further study of the inception scores92

computed from (a) the final checkpointed training buffer (epoch 145), and (b) the ensembled last 5 training buffers93

between epochs 125 and 145. For both of these, we computed the inception score over the top k most confident samples94

(according to the inception network) for k ∈ {100, 500, 1000, 5000, 10000}. The results for these are shown in Tables95

4 and 5 respectively. Figure 1 shows the 64 most confident (according to the inception network) samples taken from the96

last saved checkpointed buffer.97

Architecture Accuracy
WRN 28-2 (ours) 89.59%
WRN 28-10 (paper) 95.80%

Table 2: Accuracy of the Wide resnet architecture trained purely as a classifier, comparison between 28-2 (ours) and
28-10 (paper).

Architecture Accuracy Inception
Score

WRN 28-2 (ours) 83.72% 19.39
WRN 28-10 (paper) 92.90% 7.82

Table 3: Accuracy and inception scores of the Wide resnet architecture trained trained as a hybrid model using JEM
training. For the inception score, we use the top 10% most confident predictions according to the inception network
from the final checkpointed training buffer.

4.2 Result 2: Calibration98

The expected calibration error (ECE) is a method to measure how well a model is calibrated – the extent to which a99

model’s confidence predicts the true likelihood. Given training samples xi, a classifier’s confidence on an example100

is defined as maxy p(y|xi). Binning these confidences into equally spaced buckets {Bm}Mm=1, we can compute the101

accuracy as well as confidence of the model evaluated on all examples in Bm for each m. These are given by102

4

k 100 500 1000 5000 10000 (Full)
Inception
Score

14.24 22.00 19.39 8.47 5.16

Table 4: Inception scores of the last training checkpoint. Inception scores of the top k most confident predictions in the
last checkpointed training buffer, for k ∈ {100, 500, 1000, 5000, 10000}.

k 100 500 1000 5000 10000 (Full)
Inception
Score

12.00 13.45 10.67 4.37 2.88

Table 5: Inception scores of computed over the ensembled last 5 checkpoints. Inception scores of the top k most
confident predictions in the averaged last 5 checkpointed training buffers, for k ∈ {100, 500, 1000, 5000, 10000}.

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi) (4)

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i (5)

where ŷi and p̂i are respectively the prediction and confidence of each example. The ECE is then given by103

ECE =

m∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)|. (6)

An ideally calibrated model has an ECE of zero. We provide calibration plots for both ordinary supervised training as104

well as JEM for the WRN 28-2 architecture in Figure 2.105

Figure 2: Calibration plots for ordinary supervised training (left) and JEM training (right). ECEs are 7.78% (supervised)
and 4.31% (JEM). Dashed red line corresponds to perfect calibration.

5

(a) SGLD 5 steps (b) SGLD 10 steps (c) SGLD 20 steps

(d) SGLD 50 steps

Figure 3: Fresh generated SGLD samples from uniformly random initialized noise.

4.3 Additional results not present in the original paper106

We note that that in the original paper, "generated" samples were drawn from the training buffer of the last saved107

checkpoint, rather than having images generated from scratch. To emulate a true generative model, we created a "buffer"108

of size 100, initializing it with random uniform noise over [−1, 1]. We then evolved it for 5, 10, 20, 50, and 100 SGLD109

steps to see how well the model could generate images from scratch. See Figure 3 for generated samples at these110

evolution steps.111

For reference, we also compute the inception scores of each of SGLD-evolved generated samples, which are given in112

Table 6.113

k 5 10 20 50 100
Inception
Score

1.19 1.31 3.41 3.99 4.21

Table 6: Inception scores corresponding to the generated samples in Figure 3. Scores are computed using the 100
generated images at each (bold) step shown above.

5 Discussion114

Our results generally tend to corroborate the validity of the JEM method to train hybrid generative/discriminative115

models. In particular, we were able to achieve comparable discriminative accuracy according to Table 3, and the116

samples we generated both from the final training buffer (Figure 1) as well as from uniform random noise (Figure 3)117

produced slightly unusual but decent-quality images.118

We, however, note that the inception scores we obtained for the generated images were puzzling, as we would expect119

them to be lower than what was obtained in the paper (appendix B, table 5 (unconditional) – 7.82 for the last checkpoint120

and 7.79 for the ensemble). However we obtain larger scores; it seems odd that a less complex model would produce121

seemingly higher quality images. One possible source of this discrepancy is the way in we calculated the scores. We122

picked the images with the top k most confident predictions according to the inception network, rather than with respect123

6

to the WRN architecture we trained. Looking above Table 5 in Appendix B of the paper, we notice that they say that124

they compute the inception score by "keeping the top 10 percentile samples with highest p(y|x) values". We assume125

that p(y|x) refers to the network they trained, and not inception.126

What’s further interesting is that the images generated from uniform random noise have significantly lower inception127

scores than those sampled from the training buffer of the last checkpoint. We hypothesize that this is because the training128

buffer images evolve many more SGLD steps over the course of training. While the generated images qualitatively look129

good, we plan to run more experiments with different architectures in the next iteration to understand the distribution of130

the inception score better.131

5.1 What was easy132

This paper was well-written, and the training algorithm (Algorithm 1 of Appendix A of [1]) was clearly described so133

we were able to implement it almost directly from the paper.134

5.2 What was difficult135

Due to runtime, we found that we were not able to exactly replicate the results of the paper – we found that running the136

authors’ original code on the p3 instance would have taken about 80 hours to train a WRN-28-10 model, rather than 36137

as they’d said in their paper. However, even though we used this training method on a scaled-down model (WRN 28-2138

rather than WRN 28-10 like done in the paper), we feel that the method does generalize to other architectures.139

In the paper [1], the authors claimed to be able to train a WRN-28-10 model using the JEM training method in about 36140

hours on a single GPU. However, even when we ran their code on our hardware (mentioned in Sec 3.4), we extrapolated141

that it would take at least 80 hours to train a full-scale 28-10 model. Hence, for this initial reproducibility, we decided142

to scale down the model architecture while trying to test the efficacy of the method.143

One other subtle difficulty which we encountered was that while the result of training neural networks with the JEM144

method produces a well-performing hybrid model, the training itself is highly unstable. The JEM loss function (eqs.145

(2), (8) of [1]) is prone to diverging, hence requiring restarting training from the most recent saved checkpoint. While146

this was mentioned in Appendix H3 of [1], we felt that this could have been stated and explored more clearly.147

5.3 Communication with original authors148

We did communicate with the original authors, who corroborated the second of the above difficulties described. The149

origin of the lengthy training time, however, is less clear.150

References151

[1] Will Grathwohl, Kuan-Chieh Wang, Jorn-Henrik Jacobsen, David Duvenaud, Mohammad Norouzi, and Kevin152

Swersky. Your classifier is secretly an energy based model and you should treat it like one. arXiv:1912.03263,153

2019.154

[2] Nikos Komodakis Sergey Zagoruyko. Wide residual networks. BMVA Press, pp 87.1-87.12, 2016.155

[3] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. Proceedings of the156

28th international conference on machine learning (ICML-11), pp 681-688, 2011.157

[4] https: // www. cs. toronto. edu/ ~kriz/ cifar. html .158

[5] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved techniques159

for training gans. Advances in neural information processing systems, pp 2234-2242, 2016.160

[6] Shane Barratt and Rishi Sharma. A note on the inception score. arXiv:1801.01973, 2018.161

7

https://www.cs.toronto.edu/~kriz/cifar.html

	Introduction
	Scope of reproducibility
	Methodology
	Model descriptions
	Datasets
	Hyperparameters
	Experimental setup and computational requirements

	Results
	Result 1: Accuracy and Generative Samples
	Result 2: Calibration
	Additional results not present in the original paper

	Discussion
	What was easy
	What was difficult
	Communication with original authors

