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Abstract

Partial label learning (PLL) seeks to train generalizable classifiers from datasets1

with inexact supervision, a common challenge in real-world applications. Existing2

studies have developed numerous approaches to progressively refine and recover3

ground-truth labels by training convolutional neural networks. However, limited at-4

tention has been given to foundation models that offer transferrable representations.5

In this work, we empirically conduct comprehensive evaluations of 11 foundation6

models across 13 PLL approaches on 8 benchmark datasets under 3 PLL scenarios.7

We further propose PartialCLIP, an efficient fine-tuning framework for foundation8

models in PLL. Our findings reveal that current PLL approaches tend to 1) achieve9

significant performance gains when using foundation models, 2) exhibit remarkably10

similar performance to each other, 3) maintain stable performance across vary-11

ing ambiguity levels, while 4) are susceptible to foundation model selection and12

adaptation strategies. Additionally, we demonstrate the efficacy of text-embedding13

classifier initialization and effective candidate label filtering using zero-shot CLIP.14

Our experimental results and analysis underscore the limitations of current PLL15

approaches and provide valuable insights for developing more generalizable PLL16

models. The source code can be found in the supplementary material.17

1 Introduction18

Partial label learning (PLL) is an important weakly supervised learning framework and has been19

studied a lot in the past decade [1–8]. PLL aims to learn a classifier from datasets with inexact20

supervision in the label space, i.e., each training instance is associated with a set of candidate labels21

among which only one is correct. This framework alleviates the burden of precise data annotation,22

making it particularly valuable in scenarios where obtaining exact labels is costly or impractical.23

Therefore, PLL has been extensively studied across various real-world domains such as image24

annotation [9], web mining [10], ecoinformatics [11], and natural language processing [12].25

The core challenge in PLL lies in accurately identifying the ground-truth label from the candidate26

label set. Existing PLL methods can be broadly categorized into two groups: average-based and27

identification-based methods. The average-based methods [13, 5] treat each candidate label equally28

by averaging the model outputs corresponding to all candidate labels. By contrast, identification-29

based methods [14, 15] progressively identify the ground truth label from the candidate label set30

through iterative refinement. Recently, deep neural network techniques have further enhanced PLL31

performance, such as PRODEN [16] and CRDPLL [17].32

Despite these advancements, standard PLL (ST-PLL) methods often underperform in real-world33

scenarios, particularly in long-tailed PLL (LT-PLL) [18] and instance-dependent PLL (ID-PLL) [19]34

settings. This suboptimal performance can be attributed to the fact that ST-PLL assumes that the35

number of instances across all categories is uniform, and the false-positive labels in the candidate36
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Figure 1: (a) Performance comparison between ST-PLL approaches and their PartialCLIP-enhanced
variants in terms of test accuracy and the number of training epochs. Marker sizes represent the
number of learnable parameters in each model. (b) The impact of partial rate on model accuracy across
different ST-PLL methods. (c) Evaluation of various foundation models under three scenarios with
CRDPLL (ST-PLL), RECORDS (LT-PLL), and POP (ID-PLL) serving as representative methods.

label sets are often generated randomly. Moreover, prevailing PLL methods predominantly employ37

convolutional networks such as ResNet [20]. Training these models typically requires 200–1,00038

epochs to reach convergence, involving extensive parameter updates of the entire model. This process39

imposes substantial demands on computation and memory. Even with such investments, the quality40

of learned representations often degrades in highly ambiguous or imbalanced regimes, resulting in41

subpar classification performance.42

In this work, we explore the efficacy of fine-tuning existing open-source foundation models on43

PLL benchmarks. Specifically, we empirically assess the classification performance across three44

PLL scenarios, i.e., ST-PLL, LT-PLL, and ID-PLL, with 11 models for 13 PLL approaches on 845

datasets. To facilitate comprehensive evaluations, we introduce PartialCLIP, a unified fine-tuning46

framework tailored to PLL. Experimental results demonstrate that PartialCLIP significantly enhances47

the performance of existing PLL approaches with markedly fewer training epochs (refer to Figure 1a).48

Furthermore, our findings reveal that current PLL approaches:49

• exhibit remarkably similar performance to each other under the standard PLL and ID-PLL50

scenarios (see Figure 1b), indicating the effectiveness of transferred representations.51

• maintain superior and stable performance across varying levels of label ambiguity, even52

under high ambiguity conditions (see Figure 1b).53

• are susceptible to the choice of foundation models (see Figure 1c) and fine-tuning methods54

Table 5, underscoring the importance of selecting appropriate models.55

Additionally, we explore the vision-language alignment capability of CLIP in two aspects: 1) classifier56

initialization and 2) candidate label filtering. For classifier initialization, we employ class-specific57

embeddings derived from CLIP’s text encoder, prompted with “a photo of a [CLASS]”. This58

approach leverages CLIP’s semantic understanding to reduce reliance on extensive supervised data59

during training. For candidate label filtering, we filter out semantically irrelevant candidate labels60

according to the cosine similarities between image embeddings and textual prompts. Remarkably,61

pruning over 50% of candidate labels does not degrade performance and even yields improvements.62

This finding shifts the emphasis from the quantity of candidate labels to the quality-driven selection.63

In summary, our contributions are as follows. 1) We propose an early foundation model benchmark64

for PLL, evaluated on eight datasets across three PLL settings; 2) We present two ways of leveraging65

vision-language model alignment to address the challenges of learning from inexact labels; 3) We66

identify three new findings of tuning foundation model in PLL to guide the future research.67

2 Related Works68

Partial Label Learning ST-PLL methods can be roughly divided into two categories, i.e., the69

averaged-based strategy (ABS) and the identification-based strategy (IBS). ABS excludes non-70

candidate labels and treats every candidate label equally. It averages the model output of all candidate71

labels for prediction [13, 5]. IBS views the ground truth label as a latent variable and gradually72

eliminates the label ambiguity during the training process [14, 15]. PRODEN [16] suggested a73
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strategy to progressively uncover the ground-truth label. CC [21] devised label disambiguation74

approaches that are provably risk-consistent and classifier-consistent from a mathematical perspective.75

LWS [22] introduced a suite of leveraged weighted loss functions. CAVL [23] utilizes the class76

activation value to guide the model in selecting the ground-truth label from the candidate label77

set during training. ABS-MAE and ABS-GCE [24] revisited the average-based strategy methods.78

Following MoCo [25], PiCO [26] incorporated the widely used contrastive loss into PLL. CRDPLL79

[17] applied consistency regularization [27] within the candidate label sets. PAPI [28] computed80

similarity scores between feature prototypes and instance embeddings. CROSEL [29] employed two81

models to sift out reliable samples from the dataset through cross-selection for the training stage.82

Long-Tailed Partial Label Learning In contrast to ST-PLL, LT-PLL is more complex and challeng-83

ing. Several works have begun to focus on LT-PLL in recent years. For instance, [30, 31]tackled it by84

employing over-sampling techniques and imposing regularization constraints. SoLar [18] regarded85

LT-PLL as an optimal transport problem and harnessed the Sinkhorn-Knopp algorithm [32] to obtain86

a rapid approximation. It confines the pseudo labels to adhere to the estimated class distribution87

priors. RECORDS [33] get insights from the perspective of logit adjustment [34]. It updates the88

global representations with momentum, thereby dynamically determining the class distribution. It89

cleverly combines with the existing ST-PLL methods and alleviates the model’s bias towards head90

classes through dynamic logit adjustment. HTC [35] constructs two expert classifiers, each excelling91

in inferring head classes and tail classes separately.92

Instance-Dependent Partial Label Learning In the above two PLL paradigms, the candidate set of93

each instance is randomly generated and has nothing to do with the instance itself. However, in the94

real-world, the labels that are prone to misclassification are typically highly similar to the ground-truth95

label. Therefore, a more practical ID-PLL was proposed. VALEN [36] was the first to introduce96

ID-PLL, featuring a two-stage disambiguation process. Stage one aimed to recover the latent label97

distribution of instances by an auxiliary model; stage two trained the model with the recovered distri-98

bution. ABLE [19] proposed an ambiguity-induced positive selection contrastive learning framework99

to disambiguate labels. POP [37] presented a method that progressively purifies the candidate label100

set and optimizes the classifier. IDGP [38] modeled the ID-PLL candidate label generation process,101

using categorical and Bernoulli distributions to simulate the ground-truth and noisy label generation,102

respectively. DIRK [39] proposed a self-distillation-based label disambiguation method with the103

student model trained under the guidance of the teacher model’s output.104

Fine-Tuning Foundation Models Recently, Transformer-based models like CLIP [40], which have105

been pre-trained on large-scale image-text data, have witnessed remarkable success. In image106

classification tasks, the performance of transformer-based models can be improved by fine-tuning.107

For example, CoOp [41]adopts learnable prompt vectors by minimizing prediction errors. Tip-108

Adapter [42], a training-free adaption method, directly configures the adapter using cache mode.109

LIFT [43] has proved theoretically and experimentally that a lightweight classifier, together with110

diverse PEFT strategies, can effectively address the long-tailed problem. The core of VPT [44] lies in111

the concept of visual prompts. By inputting carefully designed prompts into the model, it guides the112

model to learn more effective representation methods without changing the basic structure.113

3 The Proposed PartialCLIP Framework114

3.1 Preliminary115

Setting of Partial Label Learning Let X represent the feature space, and let Y denote the label116

space with K classes. Consider a training set D = {(xi, Si) | 1 ≤ i ≤ N}, where xi ∈ Rd is a117

d-dimensional feature vector and Si ⊆ {0, 1}K represents the candidate label set corresponding to118

xi. Notably, Si contains the ground-truth label of xi and false positives. The objective of the PLL is119

to learn a multi-class classifier f : X → Y from the training set D. In this paper, we consider various120

generation strategies of candidate labels, including uniform sampling, flip probability sampling, and121

instance-dependent generation. We also consider the long-tailed distribution of candidate labels.122

Generation Strategies of Candidate Label Set To systematically compare how candidate label sets123

are formed under different assumptions, we describe three prevalent generation strategies below:124

3



• Uniform Sampling Strategy (USS): Given the true label yi ∈ Y , USS constructs each Si by125

choosing any subset of the remaining K − 1 labels with equal probability, yielding 2K−1126

equally likely candidate sets.127

• Flip-Probability Sampling Strategy (FPS): FPS includes each false-positive label indepen-128

dently with probability η. To ensure that Si ̸= {yi}, if no label is flipped, one label is129

randomly selected and flipped.130

• Instance-Dependent Generation: A lightweight neural network is employed to learn xi 7→131

Si, producing candidate label sets whose false-positive labels depend on xi. The high132

inter-label similarity in candidate label sets increases disambiguation difficulty.133

Foundation Models In this section, we use CLIP [40] as a representative of the foundation models. In134

experiments, we offer detailed results for different foundation models to demonstrate the effectiveness135

of the proposed fine-tuning framework. The CLIP model contains an image encoder fI and a text136

encoder fT . The training of the CLIP model is based on contrastive learning, which aligns image137

and text features in a shared latent space. This training paradigm enables CLIP to perform zero-shot138

classification by aligning image and text representations effectively. The zero-shot inference process139

of the CLIP model for image classification is as follows. First, each class j ∈ [K] is transformed into140

a sentence lj using a template “a photo of a [CLASSj ]”. Then, the text encoder fT processes lj to a141

text feature tj , given by fT (lj). Given an input image v, the image encoder outputs an embedding142

i = fI(v). Finally, zero-shot classification is performed by computing the cosine similarity between143

i and each tj , and selecting the class with the highest score.144

Fine-Tuning Methods Our fine-tuning framework is agnostic to different types of foundation models.145

In this work, we use the pre-trained CLIP as our default foundation model for its transferrable repre-146

sentations. We fine-tune CLIP using a partial label loss function, leveraging a parameter-efficient147

fine-tuning (PEFT) strategy to balance performance and computational cost. PEFT methods consis-148

tently outperform both full fine-tuning and linear probing. Details descriptions of the PEFT methods149

are provided in Appendix F, and their empirical comparisons appear in Section 4.150

3.2 Techniques for Improving Partial Label Learning151

Classifier Initialization via Textual Embeddings Notably, directly optimizing a randomly initialized152

classifier is found to have a negative impact on fine-tuning the model [43]. Therefore, it is crucial to153

set an appropriate initial state for the classifier. A straightforward method is to apply linear probing154

using re-weighted or logit adjustment loss. Another approach is to compute the class mean feature155

as initialization. However, these two approaches not only require extracting features of training156

data but also are not available with scarce tail-class data. To overcome it, we tend to leverage the157

semantic knowledge from the text modality of CLIP. For multi-model transformer-based models like158

CLIP, since its visual and text modality are interconnected, we can utilize the class names in the159

text modality to “activate” its visual task capabilities and thus initialize the classifier. Specifically,160

we use hand-crafted textual prompts (e.g., “a photo of a [CLASS]”) and compute their features161

t1, · · · , tK , which are then used to initialize the classifier weights w1, · · · ,wK . The above processes162

are completed before training.163

Effective Candidate Labels The USS [21] and the FPS [16] strategy often introduce redundant164

false-positive labels since they are randomly generated. In this case, we refine and obtain effective165

candidate labels by consulting zero-shot CLIP confidences. Specifically, for the image xi, we166

compute a confidence vector zi ∈ RK that represents the confidence of the image belonging to each167

class based on zero-shot CLIP. Then, we refine the initial candidate label set Si by selecting the class168

indices with the top-k highest confidence scores, resulting in the refined set Ŝi as follows:169

Ŝi = Si∩ argtopk(zi), (1)

where argtopk returns the indices of the k highest confidences produced by the zero-shot CLIP.170

In practice, we can set k = K
2 for simplicity, and a smaller k may increase the possibility that171

the ground-truth labels are erroneously removed from the candidate label set. Therefore, overly172

aggressive pruning may remove true labels when CLIP is less discriminative.173

Beyond these techniques, PartialCLIP offers several compelling strengths:174

• Loss-Agnostic: PartialCLIP is compatible with many existing partial label loss functions to175

fine-tune the pre-trained foundation models.176
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• Model-Agnostic: Although we use CLIP as the default model in our experiments, Partial-177

CLIP does not rely on specific types of foundation models and fine-tuning methods.178

• Efficient: Based on the parameter-efficient fine-tuning, PartialCLIP only requires 10 epochs179

to achieve convergence in most datasets.180

4 Empirical Evaluation of PartialCLIP181

Our main goal is to investigate the effectiveness of fine-tuning foundation models across diverse PLL182

scenarios, datasets, algorithms, pre-trained models, and fine-tuning methods. To this end, we conduct183

experiments under 3 PLL scenarios, 8 datasets, 13 algorithms, 11 pre-trained foundation models,184

and 6 fine-tuning methods. First, we demonstrate the benefits of fine-tuning foundation models by185

not only showing their strong generalization performance but also robustness to different learning186

algorithms and partial rates. Next, we analyze how performance varies with different configurations187

of pre-trained model weights and PEFT methods.188

Baselines For standard partial label learning (ST-PLL) algorithms, we implement seven baseline189

algorithms: CC [21], LWS [22], CAVL [23], PRODEN [16], CRDPLL [17], ABS-MAE [24], and190

ABS-GCE [24]. To address class imbalances in PLL, we consider three long-tailed partial label191

learning (LT-PLL) methods: Solar [18], RECORDS [33], and HTC [35]. Instance-dependent partial192

label learning (ID-PLL) encompasses algorithms such as ABLE [19], POP [37], and IDGP [38].193

Datasets The datasets used for the experiments in ST-PLL are CIFAR10 [45] and CIFAR100 [45].194

For LT-PLL, we conducts experiments on ImageNet-LT [46], Places-LT [46], CIFAR10-LT [47], and195

CIFAR100-LT [47]. ID-PLL encompasses CIFAR10 [36], CIFAR-100 [36], andfour fine-grained196

image datasets [48] [49], i.e., CUB-200-2011 (CUB200) [50], Stanford Cars (CARS196) [51], FGVC197

Aircraft (FGVC100) [52], and Stanford Dogs (DOGS120) [53]. All images are scaled to 224× 224.198

4.1 Advantages of Fine-tuning Foundation Models199

4.1.1 Finding 1: Significant Performance Improvement200

Experimental results demonstrate that fine-tuning foundation models achieves significant performance201

improvements compared with training a ResNet from scratch or using a pre-trained checkpoint. We202

conduct experiments in three scenarios, i.e., partial label learning with completely random, long-tailed,203

and instance-dependent candidate labels. In these experiments, we employ CLIP as the foundation204

model for its robust performance.205

Table 1: Comparisons of different ST-PLL algorithms based on ResNet and CLIP on CIFAR-10 and
CIFAR-100 datasets. Bold indicates superior results.

Method Backbone CIFAR-10 CIFAR-100

η = 0.1 η = 0.3 η = 0.5 η = 0.7 η = 0.01 η = 0.05 η = 0.1 η = 0.2

CC Wide-ResNet-34-10 88.8 86.7 83.8 77.6 63.7 61.2 58.7 51.7
w/ PartialCLIP CLIP-ViT-B/16 97.1 97.1 96.7 96.9 85.6 84.3 84.6 85.3

LWS Wide-ResNet-34-10 86.5 84.3 54.8 38.5 58.5 55.2 40.1 23.9
w/ PartialCLIP CLIP-ViT-B/16 96.8 96.8 96.7 14.5 82.5 80.9 59.0 14.8

CAVL Wide-ResNet-34-10 95.1 94.8 93.7 70.6 79.1 76.7 51.7 16.2
w/ PartialCLIP CLIP-ViT-B/16 97.0 97.1 97.0 97.0 85.8 85.3 85.4 84.9

CRDPLL Wide-ResNet-34-10 97.5 97.3 97.1 95.8 83.1 82.8 82.2 81.0
w/ PartialCLIP CLIP-ViT-B/16 97.5 97.3 96.8 96.3 86.8 88.9 88.7 85.7

PRODEN Wide-ResNet-34-10 91.2 91.1 89.8 86.5 72.6 71.6 70.8 58.9
w/ PartialCLIP CLIP-ViT-B/16 97.4 97.3 97.2 95.9 85.8 86.4 86.1 85.2

ABS-MAE Wide-ResNet-34-10 93.9 87.6 80.5 42.6 8.2 4.6 2.6 2.9
w/ PartialCLIP CLIP-ViT-B/16 96.9 96.8 96.9 96.6 85.1 83.9 84.4 84.0

ABS-GCE Wide-ResNet-34-10 94.7 93.5 90.0 78.8 79.1 77.2 34.4 13.1
w/ PartialCLIP CLIP-ViT-B/16 97.0 97.0 96.4 96.0 85.4 84.8 84.9 84.2
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Table 2: Test accuracy for ID-PLL methods on CIFAR and fine-grained datasets. The backbone for
vanilla algorithms on the CIFAR dataset is ResNet-34 trained from scratch, while the backbone for
the fine-grained dataset is pre-trained on ImageNet. Bold indicates better results.

Method Backbone CIFAR10 CIFAR100 FGVC100 CUB200 CARS196 DOGS120

Zero-shot CLIP-ViT-B/16 87.2 64.4 23.1 55.5 62.5 61.9
POP ResNet-34 89.6 64.6 77.9 64.9 85.3 74.9

w/ PartialCLIP CLIP-ViT-B/16 97.2 82.6 73.0 70.1 84.3 78.9
IDGP ResNet-34 84.1 62.3 72.5 58.2 79.6 66.8

w/ PartialCLIP CLIP-ViT-B/16 97.1 82.4 61.4 62.2 83.8 78.1
ABLE ResNet-34 83.9 63.9 74.1 63.2 85.8 72.8

w/ PartialCLIP CLIP-ViT-B/16 97.3 82.1 73.5 70.9 84.4 80.4

Results under the ST-PLL Scenario Table 1 reports results on CIFAR-10 and CIFAR-100 datasets.206

Integrating existing ST-PLL methods into PartialCLIP consistently outperforms the baselines trained207

with a ResNet model from scratch. Figure 1a and Figure 1b further demonstrate these improvements.208

This is because the pre-trained transformer-based models have stronger classification capabilities.209

When the partial rate η = 0.2 on the CIFAR100 dataset, CAVL demonstrates an accuracy improve-210

ment of 68.7%, while ABS-MAE exhibits an enhancement reaching 81.1%. As observed from Table211

1, when the partial rate is relatively high, the accuracy of the LWS algorithm is rather poor. The212

detailed analysis of the reasons and the corresponding solutions are attached in the appendix G.3213

Results under the ID-PLL Scenario Table 2 presents ID-PLL results on common and fine-grained214

image datasets. We trained for 100 or 200 epochs to achieve convergence for different datasets.215

In ID-PLL, we utilize the ID-PLL false-positive label generation strategy proposed by VALEN216

[36] to produce instance-dependent false-positive labels. Specifically, the candidate label sets217

are generated based on the predicted probabilities of WideResNet. We select the top 10% of218

the labels predicted by WideResNet for each image into the candidate sets. This yields highly219

correlated candidate labels, making label disambiguation more difficult. We found that on the CIFAR220

datasets, integrating PartialCLIP led to a significant overall improvement. Particularly on the CIFAR-221

100 dataset, PartialCLIP achieves up to a 20.1% improvement, reflecting CLIP-ViT-B/16’s strong222

Table 3: Accuracy comparisons on CIFAR10-LT and CIFAR100-LT under various flipping probability
η and imbalance ratio γ. Bold indicates superior results.

Method
CIFAR10-LT

η = 0.3 η = 0.5

γ = 100 γ = 150 γ = 200 γ = 250 γ = 100 γ = 150 γ = 200 γ = 250

Solar 79.5 74.6 70.7 68.2 75.7 70.2 64.3 60.6
w/ PartialCLIP 88.7 86.6 82.9 83.0 81.7 80.7 81.1 73.1

RECORDS 78.0 73.6 71.7 66.7 74.1 67.7 63.8 58.6
w/ PartialCLIP 92.8 91.0 88.6 86.0 91.2 86.5 83.3 81.6

HTC 85.7 82.5 80.6 78.1 83.4 79.8 77.7 72.4
w/ PartialCLIP 95.1 94.1 93.4 92.8 93.6 92.3 91.5 89.5

Method
CIFAR100-LT

η = 0.05 η = 0.1

γ = 20 γ = 50 γ = 100 γ = 150 γ = 20 γ = 50 γ = 100 γ = 150

Solar 57.1 47.5 42.0 39.1 52.6 42.5 36.4 33.8
w/ PartialCLIP 79.9 75.7 71.8 68.9 78.8 73.3 69.2 63.9

RECORDS 57.6 49.0 43.4 39.8 54.7 45.5 40.5 37.4
w/ PartialCLIP 81.9 78.8 77.1 73.4 79.9 78.2 74.8 71.5

HTC 61.1 53.3 47.5 44.8 60.5 51.3 46.2 42.6
w/ PartialCLIP 77.1 72.6 68.5 59.8 73.8 67.4 63.0 60.6
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representational power. On fine-grained tasks, CLIP’s gains are mixed compared to ResNet-34 [20]223

pretrained on ImageNet, This may be caused by the following reasons: 1) we initialize the classifier224

weights with class names in the text modality. On the common image classification datasets, class225

names like “dog” can effectively leverage CLIP’s general knowledge. However, on fine-grained226

datasets, overly specialized and detailed class names, like those in the FGVC100 dataset (e.g., “747-227

300”, “DC-6”), cannot “activate” CLIP because its pre-training tasks are usually not so fine-grained;228

and 2) The ResNet-34 used for comparison was trained on ImageNet and fine-grained datasets used229

for evaluation are sampled from ImageNet.230

Results under the LT-PLL Scenario Table 3 and Table 10 summarize LT-PLL performance using231

FPS to generate the candidate labels over 10 training epochs. Compared to the previous ST-PLL and232

ID-PLL scenarios, CLIP-ViT-B/16 yields larger gains over ResNet under the LT-PLL scenario. This233

is because LT-PLL faces the dual challenges of class imbalance and ambiguous labels, making it234

more difficult to obtain high-quality representations, especially for the tail classes. By leveraging235

the pre-trained CLIP model, the quality of the representations can be guaranteed. Specifically, on236

CIFAR10-LT, HTC [35] exhibits the best performance. However, RECORDS [33] leads on the237

more complex CIFAR100-LT, Places-LT, and ImageNet-LT datasets. Table 11 presents the accuracy238

comparison under different shots. As can be observed, RECORDS performs comparably to HTC and239

Solar [18] on head classes but significantly lags behind on middle and tail classes. HTC and Solar240

rely on the outputs of the model’s classifier head to estimate the class distribution. In the early stages241

of the model, the outputs are biased towards the head classes, leading to inaccurate estimations of the242

class distribution, which in turn exacerbates the bias in the model’s outputs. In contrast, RECORDS243

estimates the distribution through global representations. These global representations are obtained244

through pre-training and are relatively stable. Therefore, the estimated distribution is relatively245

accurate, which further balances the model’s outputs.246

4.1.2 Finding 2: Diminished Impact of Algorithm Choice247

In addition, although there is a significant disparity when the method uses Wide-ResNet-34-10 [54] as248

the backbone (for example, on the CIFAR-100 dataset, when the partial rate η is 0.2, CRDPLL [17]249

outperforms CC by 29.3%), the leading margin drops to 0.4% when CLIP-ViT-B/16 is employed as250

the backbone. This phenomenon mainly occurs under the scenarios of ST-PLL and ID-PLL, and it is251

not significant in the LT-PLL setting. During the fine-tuning process, the pre-trained representations252

remain unchanged. When Wide-ResNet-34-10 is used as the backbone, the quality of the model253

representations trained from scratch may vary considerably. Therefore, we infer that the results of254

partial label learning tasks are positively correlated with the quality of the learned representations.255

4.1.3 Finding 3: Robustness to Varying Partial Rate256

Furthermore, as can be seen in Figure 1b, our proposed method exhibits superior robustness to varying257

partial rates, maintaining stable performance with only marginal degradation even under conditions258

of increasing label ambiguity η in the ST-PLL scenario. For example, when using CC [21] as the259

baseline and comparing different backbones, we can observe that when η increases from 0.1 to 0.7,260

the accuracy of the model with Wide-ResNet-34-10 as the backbone drops by 11.1%. In contrast, the261

performance of the fine-tuned CLIP-ViT-B/16 only decreases by 0.2%. This is because ambiguous262

supervision information can severely disrupt the learning of representations. However, the pre-trained263

representations have a high quality and remain unchanged during the fine-tuning process.264

4.2 Choosing the Right Foundation Model to Fine-Tune265

Impact of Foundation Models Table 4 and Figure 1c present the comparison results of diverse266

backbones integrated within the PartialCLIP framework under three scenarios: standard PLL (CRD-267

PLL), long-tailed PLL (RECORDS), and instance-dependent PLL (POP). The results indicate that the268

optimal backbone varies depending on the specific scenario and dataset characteristics. Specifically,269

MetaCLIP [55] generally outperforms other backbone categories under the PLL scenario, while270

OpenAI CLIP [40] excels in the LT-PLL scenario. SigLip [56] demonstrates superior performance271

in fine-grained classification tasks across both the ST-PLL and ID-PLL scenarios. Overall, ViT272

[57] pretrained on ImageNet [58] generally lags behind the CLIP series in terms of performance.273

Specifically, In21k-ViT-T16-augreg is pretrained on ImageNet21k, while In21k-ViT-B16-augreg and274

In21k-ViT-S16-augreg are pretrained on ImageNet1k. On simple datasets such as CIFAR-10, the275
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Table 4: Performance of pre-trained models across 3 PLL settings. The imbalance ratio for CIFAR-
100-LT is 100. The partial rates of DOGS and FGVC datasets in the ST-PLL setting are 0.01 and
0.01. For other datasets, their partial rates are consistent with those presented in Table 5.

ST-PLL LT-PLL ID-PLL

Pre-trained Model C10 C100 CUB FGVC CARS DOGS C100-LT Places-LT CARS DOGS

OpenAI CLIP-ViT-B16 97.3 88.7 85.1 79.9 92.4 84.4 74.8 43.3 84.3 78.9
OpenAI CLIP-ViT-B32 96.7 85.4 80.4 72.2 88.8 79.7 69.5 39.9 79.2 74.1
CLIP-ViT-B16-L400m 97.2 86.5 84.9 82.4 94.2 82.1 68.8 38.1 92.1 76.1
CLIP-ViT-B32-L400m 96.5 85.5 80.0 75.5 92.3 77.3 66.9 37.4 86.2 70.3
In21k-ViT-B16-augreg 97.4 86.9 81.8 74.1 88.0 93.2 73.2 31.0 72.0 93.2
In21k-ViT-T16-augreg 96.3 85.1 81.8 56.6 79.3 78.9 65.5 26.4 53.4 73.9
In21k-ViT-S16-augreg 96.7 84.8 79.6 69.7 85.8 91.6 68.7 28.4 67.4 88.6
MetaCLIP-ViT-B16 98.6 90.1 85.2 80.1 94.3 84.6 77.3 38.5 89.5 78.8
MetaCLIP-ViT-B32 98.0 89.1 80.6 74.1 92.0 79.3 74.6 37.8 86.5 72.0
SigLIP-ViT-B16 97.1 86.1 81.2 82.1 94.5 84.5 65.6 33.0 90.4 79.4
SigLIP2-ViT-B16 97.3 86.7 82.1 82.0 94.9 85.3 71.4 34.5 91.4 80.7

Table 5: Comparison of different parameter-efficient fine-tuning methods. The best results are
highlighted in bold and the second-best results are underlined.

ST-PLL LT-PLL ID-PLL

Methods CIFAR10 CIFAR100 CUB200 CARS196 CIFAR100-LT Places-LT DOGS120 FGVC100
η = 0.3 η = 0.1 η = 0.01 η = 0.01 η = 0.1 η = 0.05 η = 0.1 η = 0.1

Zero-Shot 87.2 64.4 48.8 59.1 64.4 39.1 61.9 23.1
Adaptformer 97.1 84.6 85.7 92.2 74.8 43.3 78.9 73.0

w/o text init 97.1 85.1 84.4 92.2 34.8 32.3 79.4 64.1
Adapter 96.8 84.6 84.5 92.0 74.6 42.8 78.6 66.4
VPT-Shallow 96.1 82.2 80.8 87.9 70.2 42.3 77.9 54.8
VPT-Deep 97.0 85.2 84.6 92.0 75.7 42.9 79.0 74.1

w/o text init 97.1 84.8 84.1 92.0 68.0 34.9 79.4 72.6
LoRA 95.2 83.7 85.6 92.9 75.5 42.7 78.6 73.0
BitFit 96.0 84.4 77.3 91.9 74.5 41.8 78.3 71.4
Linear probe 93.6 74.8 78.0 83.6 53.5 37.6 65.9 41.5
Full fine-tuning 59.1 24.7 48.8 59.1 6.9 2.3 14.1 15.8

former’s performance is comparable to the latter’s. However, as datasets become more challenging,276

the latter outperforms the former significantly.277

Impact of Fine-Tuning Methods PartialCLIP is a general framework that allows for the integration278

of various fine-tuning methods. In our experiments, we evaluate zero-shot CLIP, full fine-tuning,279

and six PEFT methods, i.e., BitFit [59], VPT-shallow [44], VPT-deep [44], Adapter [60], LoRA280

[61], and AdaptFormer [62] into PartialCLIP and compare their performance. Experiments are281

conducted across standard PLL (using CC for CIFAR-10 and CIFAR-100, and CRDPLL for fine-282

grained datasets), LT-PLL (RECORDS), and ID-PLL (POP) settings. As shown in Table 5, VPT-283

Deep and Adaptformer generally achieve the highest accuracy. In addition, the performance of284

PEFT outperforms that of the linear probe, indicating its remarkable advantages in optimizing285

model performance. Additionally, classifiers initialized with semantic text embeddings consistently286

surpass those with random initialization, indicating the importance of semantic-aware initialization in287

enhancing model performance across various settings.288

4.3 Further Analyses289

Effect of Classifier Initialization Table 5 demonstrates that initializing the classifier with class names290

significantly improves the performance. Given that CLIP is a large vision-language multi-modal291

model, the class names in the text modality serve as supervision information. The interconnectedness292

of textual and visual features activates the model’s inherent general knowledge, leading to excellent293
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Figure 2: (a) Test accuracy curves of three ST-PLL methods on CIFAR100 where the partial rate η is
0.1. (b) Test accuracy curves of three LT-PLL methods on Places-LT where the partial rate η is 0.02.
(c) Test accuracy curves of three ID-PLL methods on DOGS120.

Table 6: Effectiveness of the proposed CLIP candidate label filtering. For CIFAR datasets, we report
the results of LWS method. For ImageNet-LT and Places-LT, the RECORDS algorithm is used.

CIFAR-10 CIFAR-100 ImageNet-LT Places-LT

Settings η = 0.7 η = 0.1 η = 0.2 η = 0.1 η = 0.1

Zero-Shot CLIP 87.2 64.4 66.8 39.1
Original Size 7.3 10.9 20.8 100.9 37.4
Effective Size 3.8 5.9 10.8 50.9 19.1
PartialCLIP 14.5 59.0 14.8 58.1 37.8

w/ CLIP pre-filter 96.2 (+81.7) 82.3 (+23.3) 82.1 (+67.3) 71.4 (+13.3) 41.1 (+3.3)

results in downstream image classification tasks. Figure 2 illustrates the test accuracy progression294

throughout the training process across three PLL scenarios.295

Impact of Candidate Labels Filtering The experimental results in Table 6 demonstrate a strong296

correlation between the partial rate η and the performance degradation of PartialCLIP. Specifically,297

as η increases, a progressive decline in the performance metrics is observed. Notably, when the298

cardinality of the candidate label set exceeds a certain threshold, PartialCLIP’s performance falls299

below that of direct zero-shot inference on the dataset. The efficacy of pre-filtering via CLIP300

stems from the observation that most candidate labels differ significantly from the ground-truth301

label. By leveraging the zero-shot ability of CLIP, a considerable number of false-positive labels302

can be excluded. This reduction in the candidate label set size mitigates interference during the303

disambiguation process, thereby enhancing overall model performance.304

5 Conclusion305

In this work, we propose PartialCLIP, a unified fine-tuning framework that leverages vision-language306

models for partial-label learning (PLL), including standard PLL, long-tailed PLL, and instance-307

dependent PLL. To the best of our knowledge, this is the first framework that systematically integrates308

vision-language models fine-tuning into these PLL scenarios. PartialCLIP incorporates 13 PLL309

baselines, 8 benchmark datasets, and 8 fine-tuning methods. Our experimental results demonstrate310

that PartialCLIP significantly outperforms previous convolutional network-based models, and pre-311

trained CLIP models exhibit robustness to label ambiguity and class imbalance, highlighting their312

potential for real-world weakly supervised learning scenarios. However, PartialCLIP relies heavily313

on the quality of pre-trained vision-language models, which may not capture fine-grained category314

distinctions. In the future, we aim to improve the fine-grained recognition capabilities of the315

framework by integrating advanced techniques and exploring more effective vision-language models.316

9



References317

[1] Min-Ling Zhang, Fei Yu, and Cai-Zhi Tang. Disambiguation-free partial label learning. IEEE Transactions318

on Knowledge and Data Engineering, 29(10):2155–2167, 2017.319

[2] Wei Tang, Weijia Zhang, and Min-Ling Zhang. Disambiguated attention embedding for multi-instance320

partial-label learning. In Advances in Neural Information Processing Systems 36, New Orleans, LA, USA,321

pages 56756–56771, 2023.322

[3] Yao Yao, Chen Gong, Jiehui Deng, and Jian Yang. Network cooperation with progressive disambiguation323

for partial label learning. In Machine Learning and Knowledge Discovery in Databases: European324

Conference, ECML PKDD, pages 471–488, 2021.325

[4] Vivien Cabannnes, Alessandro Rudi, and Francis Bach. Structured prediction with partial labelling through326

the infimum loss. In International Conference on Machine Learning, pages 1230–1239. PMLR, 2020.327

[5] Timothee Cour, Ben Sapp, and Ben Taskar. Learning from partial labels. Journal of Machine Learning328

Research, 12(42):1501–1536, 2011.329

[6] Nam Nguyen and Rich Caruana. Classification with partial labels. In Proceedings of the 14th ACM330

SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 551–559, 2008.331

[7] Wei Tang, Yin-Fang Yang, Zhaofei Wang, Weijia Zhang, and Min-Ling Zhang. Multi-instance partial-label332

learning with margin adjustment. In Advances in Neural Information Processing Systems 37, Vancouver,333

Canada, pages 26331–26354, 2024.334

[8] Jiahan Zhang, Qi Wei, Feng Liu, and Lei Feng. Candidate pseudolabel learning: Enhancing vision-language335

models by prompt tuning with unlabeled data. In International Conference on Learning Representations,336

2025.337

[9] Ching-Hui Chen, Vishal M. Patel, and Rama Chellappa. Learning from ambiguously labeled face338

images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(7):1653–1667, 2018.339

doi: 10.1109/TPAMI.2017.2723401.340

[10] Jie Luo and Francesco Orabona. Learning from candidate labeling sets. In Advances in Neural Information341

Processing Systems, volume 23, pages 1504–1512, 2010.342

[11] Li-Ping Liu and Thomas G. Dietterich. A conditional multinomial mixture model for superset label343

learning. In Proceedings of the 26th International Conference on Neural Information Processing Systems,344

volume 1, page 548–556, 2012.345

[12] Limao Xiong, Jie Zhou, Qunxi Zhu, Xiao Wang, Yuanbin Wu, Qi Zhang, Tao Gui, Xuanjing Huang,346

Jin Ma, and Ying Shan. A confidence-based partial label learning model for crowd-annotated named347

entity recognition. In Findings of the Association for Computational Linguistics, Toronto, Canada, pages348

1375–1386, 2023.349

[13] Eyke Hüllermeier and Jürgen Beringer. Learning from ambiguously labeled examples. Intelligent Data350

Analysis, 10(5):419–439, 2006.351

[14] Rong Jin and Zoubin Ghahramani. Learning with multiple labels. In Advances in Neural Information352

Processing Systems, pages 897–904, 2002.353

[15] Fei Yu and Min-Ling Zhang. Maximum margin partial label learning. Machine Learning, 106(4):573–593,354

2017.355

[16] Jiaqi Lv, Miao Xu, Lei Feng, Gang Niu, Xin Geng, and Masashi Sugiyama. Progressive identification of356

true labels for partial-label learning. In Proceedings of the 37th International Conference on Machine357

Learning, pages 6500–6510, 2020.358

[17] Dong-Dong Wu, Deng-Bao Wang, and Min-Ling Zhang. Revisiting consistency regularization for deep359

partial label learning. In Proceedings of the 39th International Conference on Machine Learning, Baltimore,360

Maryland, USA, pages 24212–24225, 2022.361

[18] Haobo Wang, Mingxuan Xia, Yixuan Li, Yuren Mao, Lei Feng, Gang Chen, and Junbo Zhao. SoLar:362

Sinkhorn label refinery for imbalanced partial-label learning. In Advances in Neural Information Processing363

Systems 35, pages 8104–8117, 2022.364

[19] Shiyu Xia, Jiaqi Lv, Ning Xu, and Xin Geng. Ambiguity-induced contrastive learning for instance-365

dependent partial label learning. In Proceedings of the Thirty-First International Joint Conference on366

artificial Intelligence, pages 3615–3621, 2022.367

10



[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.368

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 770–778,369

2016.370

[21] Lei Feng, Jiaqi Lv, Bo Han, Miao Xu, Gang Niu, Xin Geng, Bo An, and Masashi Sugiyama. Provably371

consistent partial-label learning. In Advances in Neural Information Processing Systems, volume 33, pages372

10948–10960, 2020.373

[22] Hongwei Wen, Jingyi Cui, Hanyuan Hang, Jiabin Liu, Yisen Wang, and Zhouchen Lin. Leveraged weighted374

loss for partial label learning. In Proceedings of the 38th International Conference on Machine Learning,375

Virtual Event, pages 11091–11100, 2021.376

[23] Fei Zhang, Lei Feng, Bo Han, Tongliang Liu, Gang Niu, Tao Qin, and Masashi Sugiyama. Exploiting377

class activation value for partial-label learning. In Proceedings of the 10th International Conference on378

Learning Representations, pages 1–17, 2022.379

[24] Jiaqi Lv, Biao Liu, Lei Feng, Ning Xu, Miao Xu, Bo An, Gang Niu, Xin Geng, and Masashi Sugiyama.380

On the robustness of average losses for partial-label learning. IEEE Transactions on Pattern Analysis and381

Machine Intelligence, 46(5):2569–2583, 2023.382

[25] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised383

visual representation learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern384

recognition, pages 9729–9738, 2020.385

[26] Haobo Wang, Ruixuan Xiao, Yixuan Li, Lei Feng, Gang Niu, Gang Chen, and Junbo Zhao. Pico:386

Contrastive label disambiguation for partial label learning. In International conference on learning387

representations, 2022.388

[27] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel, Ekin Dogus389

Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised learning with390

consistency and confidence. Advances in Neural Information Processing Systems, 33:596–608, 2020.391

[28] Shiyu Xia, Jiaqi Lv, Ning Xu, Gang Niu, and Xin Geng. Towards effective visual representations for392

partial-label learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern393

Recognition, pages 15589–15598, 2023.394

[29] Shiyu Tian, Hongxin Wei, Yiqun Wang, and Lei Feng. Crosel: Cross selection of confident pseudo labels395

for partial-label learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern396

Recognition, pages 19479–19488, 2024.397

[30] Jing Wang and Min-Ling Zhang. Towards mitigating the class-imbalance problem for partial label learning.398

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,399

pages 2427–2436, 2018.400

[31] Wenpeng Liu, Li Wang, Jie Chen, Yu Zhou, Rui rui Zheng, and Jianjun He. A partial label metric learning401

algorithm for class imbalanced data. In Asian Conference on Machine Learning, volume 157, pages402

1413–1428, 2021.403

[32] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in Neural404

Information Processing Systems, volume 26, page 2292–2300, 2013.405

[33] Feng Hong, Jiangchao Yao, Zhihan Zhou, Ya Zhang, and Yanfeng Wang. Long-tailed partial label learning406

via dynamic rebalancing. arXiv preprint arXiv:2302.05080, 2023.407

[34] Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, and Sanjiv408

Kumar. Long-tail learning via logit adjustment, 2021. URL https://arxiv.org/abs/2007.07314.409

[35] Yuheng Jia, Xiaorui Peng, Ran Wang, and Min-Ling Zhang. Long-tailed partial label learning by head410

classifier and tail classifier cooperation. In Proceedings of the AAAI Conference on Artificial Intelligence,411

volume 38, pages 12857–12865, 2024.412

[36] Ning Xu, Congyu Qiao, Xin Geng, and Min-Ling Zhang. Instance-dependent partial label learning. In413

Advances in Neural Information Processing Systems, volume 34, pages 27119–27130, 2021.414

[37] Ning Xu, Biao Liu, Jiaqi Lv, Congyu Qiao, and Xin Geng. Progressive purification for instance-dependent415

partial label learning. In Proceedings of the 40th International Conference on Machine Learning, volume416

202 of Proceedings of Machine Learning Research, pages 38551–38565, 2023.417

11

https://arxiv.org/abs/2007.07314


[38] Congyu Qiao, Ning Xu, and Xin Geng. Decompositional generation process for instance-dependent partial418

label learning. In International Conference on Learning Representations, 2023.419

[39] Dong-Dong Wu, Deng-Bao Wang, and Min-Ling Zhang. Distilling reliable knowledge for instance-420

dependent partial label learning. In Proceedings of the 38th AAAI Conference on Artificial Intelligence,421

Vancouver, Canada, pages 15888–15896, 2024.422

[40] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish423

Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from424

natural language supervision. In International Conference on Machine Learning, pages 8748–8763, 2021.425

[41] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-language426

models. International Journal of Computer Vision, 130(9):2337–2348, 2022.427

[42] Renrui Zhang, Wei Zhang, Rongyao Fang, Peng Gao, Kunchang Li, Jifeng Dai, Yu Qiao, and Hongsheng428

Li. Tip-adapter: Training-free adaption of clip for few-shot classification. In European conference on429

computer vision, pages 493–510. Springer, 2022.430

[43] Jiang-Xin Shi, Tong Wei, Zhi Zhou, Jie-Jing Shao, Xin-Yan Han, and Yu-Feng Li. Long-tail learning with431

foundation model: Heavy fine-tuning hurts. In Forty-first International Conference on Machine Learning,432

2024.433

[44] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and434

Ser-Nam Lim. Visual prompt tuning. In Proceedings of the 17th European Conference on Computer435

Vision, pages 709–727, 2022.436

[45] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Master’s437

thesis, University of Tront, 2009.438

[46] Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X Yu. Large-scale439

long-tailed recognition in an open world. In Proceedings of the IEEE/CVF Conference on Computer Vision440

and Pattern Recognition, pages 2537–2546, 2019.441

[47] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced datasets with442

label-distribution-aware margin loss. In Advances in Neural Information Processing Systems, volume 32,443

pages 1565–1576, 2019.444

[48] Xiu-Shen Wei, Yi-Zhe Song, Oisin Mac Aodha, Jianxin Wu, Yuxin Peng, Jinhui Tang, Jian Yang, and445

Serge Belongie. Fine-grained image analysis with deep learning: A survey. IEEE transactions on pattern446

analysis and machine intelligence, 44(12):8927–8948, 2021.447

[49] Bo Zhao, Jiashi Feng, Xiao Wu, and Shuicheng Yan. A survey on deep learning-based fine-grained object448

classification and semantic segmentation. International Journal of Automation and Computing, 14(2):449

119–135, 2017.450

[50] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-2011 Dataset.451

Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.452

[51] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained453

categorization. In Proceedings of the IEEE international conference on computer vision workshops, pages454

554–561, 2013.455

[52] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained visual456

classification of aircraft, 2013. URL https://arxiv.org/abs/1306.5151.457

[53] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Li Fei-Fei. Novel dataset for fine-grained458

image categorization : Stanford dogs. In In First Workshop on Fine-Grained Visual Categorization, IEEE459

Conference on Computer Vision and Pattern Recognition, volume 2, 2011.460

[54] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision Conference.461

British Machine Vision Association, 2017.462

[55] Hu Xu, Saining Xie, Xiaoqing Ellen Tan, Po-Yao Huang, Russell Howes, Vasu Sharma, Shang-Wen Li,463

Gargi Ghosh, Luke Zettlemoyer, and Christoph Feichtenhofer. Demystifying clip data. In International464

Conference on Learning Representations, 2024.465

[56] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language image466

pre-training. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages467

11975–11986, 2023.468

12

https://arxiv.org/abs/1306.5151


[57] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas469

Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,470

and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In471

International Conference on Learning Representations, 2021.472

[58] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical473

image database. In IEEE Conference on Computer Vision and Pattern Recognition, pages 248–255, 2009.474

[59] Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: Simple parameter-efficient fine-tuning for475

transformer-based masked language-models. In Proceedings of the 60th Annual Meeting of the Association476

for Computational Linguistics (Volume 2: Short Papers), pages 1–9, 2022.477

[60] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea478

Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for NLP. In479

Proceedings of the 36th International Conference on Machine Learning, pages 2790–2799, 2019.480

[61] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and481

Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Conference on482

Learning Representations, 2022.483

[62] Shoufa Chen, Chongjian GE, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo. Adapt-484

former: Adapting vision transformers for scalable visual recognition. In Advances in Neural Information485

Processing Systems, volume 35, pages 16664–16678, 2022.486

[63] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia, Boris487

Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision training. arXiv488

preprint arXiv:1710.03740, 2017.489

[64] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated data490

augmentation with a reduced search space. In Proceedings of the IEEE/CVF Conference on Computer491

Vision and Pattern Recognition Workshops, pages 702–703, 2020.492

[65] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk493

minimization. In International Conference on Learning Representations, 2018.494

[66] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.495

Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceedings of the496

IEEE/CVF international conference on computer vision, pages 6023–6032, 2019.497

[67] Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gordon,498

Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for contrastive499

language-image learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern500

Recognition, pages 2818–2829, 2023.501

[68] Wei Wang, Dong-Dong Wu, Jindong Wang, Gang Niu, Min-Ling Zhang, and Masashi Sugiyama. Realistic502

evaluation of deep partial-label learning algorithms. In Proceedings of the 13th International Conference503

on Learning Representations, Singapore, pages 1–25, 2025.504

13



A Implementation Details in PartialCLIP505

For all experiments, we use the SGD optimizer with a batch size of 64, weight decay of 5×10−4, and506

momentum of 0.9. For lightweight fine-tuning methods, the learning rate is 0.01. For full fine-tuning,507

we search the learning rate from {0.02, 0.01, 0.005, 0.002, 0.001, 0.0005}, considering its weak508

stability. In ST-PLL and LT-PLL tasks, our experiments indicate that convergence can be achieved509

in just 10 epochs. But in ID-PLL, because of the higher complexity of disambiguating candidate510

label sets, the model needs more training epochs. Specifically, on CIFAR-10, CIFAR-100, DOGS120,511

and CARS196 datasets, the model requires 100 epochs, and on FGVC100 and CUB200 datasets,512

it needs 200 epochs to converge. In PartialCLIP, we set the bottleneck dimension r = 2⌊log2 ( K
2L )⌋513

for Adapter and AdaptFormer such that it learns even fewer parameters than the classifier (please514

refer to for detailed analysis). The scaling factor σ of the cosine classifier is set to 25 (please refer to515

the corresponding paragraph for the analysis). All experiments are conducted on a single NVIDIA516

A6000 GPU. A GPU with 48GB of memory is sufficient for all reproductions. To meet different517

precision and storage needs, we provide three precision types: AMP [63], fp16, and fp32. fp16 saves518

space but has lower precision; fp32 offers higher precision with more storage consumption. AMP519

uses fp16 for memory storage to reduce memory usage and speed up data transfer, and switches to520

fp32 for critical operations like gradient updates, often with loss scaling to avoid gradient underflow.521

For data augmentation, we use RandAugment [64], Mixup [65], and CutMix [66].522

B Details of Candidate Label Set Construction Strategies523

Uniform Sampling Strategy (USS) [21]: In the USS strategy, it is assumed that the label space is of524

K dimensions. In this case, apart from the ground truth label, each of the remaining K − 1 labels has525

two distinct states: either being included in the candidate label set or not being included. According526

to the principles of permutation and combination in combinatorial mathematics, the total count of527

all possible candidate label sets can be calculated as 2K−1. Moreover, regardless of the sizes, each528

possible candidate power label set has the same probability of occurrence.529

Flip Probability Sampling Strategy (FPS) [16]: Within the FPS [16] strategy, a probabilistic530

approach is implemented for candidate label set construction. Specifically, for each instance, every531

false-positive label y can be incorporated into candidate label sets with a fixed probability parameter η.532

To ensure the integrity of the learning framework, a safeguard mechanism is implemented. When the533

random sampling process results in zero label flips for a particular instance, the system automatically534

selects and inverts one false label through a uniform random selection process, thereby guaranteeing535

at least one label modification per instance.536

Instance-Dependent Generation [36]: Existing studies in ST-PLL and LT-PLL typically assume537

that each false label has a random or fixed probability of being included in the set of candidate labels.538

However, in practice, annotators tend to select candidate labels that are semantically related to the539

true label, resulting in instance-dependent candidate labels. It uses a lightweight neural network to540

generate instance-specific candidate label sets tailored to the characteristics of each sample. The541

candidate labels within these sets exhibit high similarity, thereby increasing the complexity of the542

disambiguation process.543

C Core Components of PartialCLIP544

As illustrated in Figure 3, the code architecture of PartialCLIP is meticulously organized into four545

distinct components: Config, Algorithm, Models, and Trainer.546

Configuration module: The configuration layer systematically enumerates essential parameters547

required for PartialCLIP implementation, comprising two principal components: (1) Data Configu-548

ration, specifying dataset-related parameters including dataset nomenclature and storage path; (2)549

Model Configuration, governing training protocol specifications such as backbone type, fine-tuning550

paradigm, batch size, and gradient descent optimization rate.551

Algorithm module: The algorithm layer incorporates three distinct partial label learning paradigms552

under the PartialCLIP framework: ST-PLL, LT-PLL and ID-PLL. This taxonomy systematically553

organizes state-of-the-art methodologies. ST-PLL Implements seven baseline algorithms: CC [21],554

LWS [22], CAVL [23], PRODEN [16], PiCO [26], CRDPLL [17], ABS-MAE [24], ABS-GCE [24].555
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PartialCLIP:  Fine-Tuning Framework for PLL
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Figure 3: Code structure of PartialCLIP.

LT-PLL addresses long-tailed distribution scenarios through: Solar [18], RECORDS [33], and HTC556

[35]. ID-PLL includes ABLE [19], POP [37], and IDGP [38].557

Model module: The model layer constitutes the core computational infrastructure of the PartialCLIP558

framework, comprising two principal components: Fine-Tuning and Backbone. The Fine-Tuning559

module support methods include VPT [44], Adapter [60], Adaptformer [62], LoRA [61], BitFit [59],560

Linear Probe and FFT. The Backbone module integrates multi-modal architectures like ViT [57],561

OpenAi CLIP [40], MetaCLIP [55], SigLIP [56], Open CLIP [67].562

Trainer module: The trainer layer is responsible for the entire training process of the model. The563

Dataset part pertains to the construction of the dataset. The Dataloader is primarily utilized to load564

the dataset. The optimizer represents the optimizer module, and Evaluation is in charge of assessing565

the performance of the model.566

D Statistics of Datasets567

Table 7: Details of the built-in dataset of PartialCLIP, including the dimensions of data samples, the
number of training data, the number of test data, and the number of categories.

Dataset # Dimensions # Training data # Test data # Class

CIFAR-10 224×224 50,000 10,000 10
PLCIFAR10 224×224 50,000 10,000 10
CIFAR-100 224×224 50,000 10,000 100
Places-LT 224×224 62,500 10,000 365

ImageNet-LT 224×224 115,800 10,000 1,000
FGVC Aircraft (FGVC100) 224×224 6,776 3,333 100
Stanford Dogs (DOGS120) 224×224 12,000 8,580 120
Stanford Cars (CARS196) 224×224 8,144 8,041 196
CUB-200-2011 (CUB200) 224×224 5,994 5,794 200

CIFAR-10568
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Table 8: Details of three versions of CIFAR-10 and CIFAR100 in PartialCLIP. γ indicates the
imbalance ratio in LT-PLL.

Setting Dataset # Maximum class # Minimum class # Test data # Class

ST-PLL CIFAR-10 5,000 5,000 10,000 10
ID-PLL CIFAR-10 5,000 5,000 10,000 10
LT-PLL CIFAR-10-LT 5,000 ⌊ 5,000

γ ⌋ 10,000 10
Real-World PLL PLCIFAR10 5,000 5,000 10,000 10

ST-PLL CIFAR-100 500 500 10,000 100
ID-PLL CIFAR-100 500 500 10,000 100
LT-PLL CIFAR-100-LT 500 ⌊ 500

γ ⌋ 10,000 100

The CIFAR-10 [45] dataset is a natural image (32×32 pixels) recognition dataset consisting of 10569

classes. There are 50000 training samples and 1000 test samples per class. Considering the patch570

size of CLIP-ViT-B/16 is 16, we resize the CIFAR-10 dataset to 224×224.571

CIFAR-100572

The CIFAR-100 [45] dataset is a natural image (32×32 pixels) recognition dataset consisting of 100573

classes. There are 500 training samples and 100 test samples per class. We also resize the CIFAR-100574

dataset to 224×224.575

Places-LT The Places-LT [46] dataset is of great importance in computer vision, containing 62,500576

images from 365 classes, with the number of images per class ranging from 5 to 4,980. It is mainly577

applied to scene recognition tasks in computer vision, enabling researchers to train and evaluate578

related models.579

ImageNet-LT ImageNet-LT [46] is a significant dataset in the field of computer vision. It consists of580

115,800 images distributed across 1000 classes. The number of images per class varies greatly, with581

a maximum of 1280 images for some classes and a minimum of only 5 images for others. This large582

variance in class sizes poses unique challenges for machine learning algorithms, especially in terms583

of handling class imbalance.584

Stanford DOGS120 Stanford DOGS120 [53] focuses on the recognition of dog images. It contains a585

total of 120 different dog breeds, with each breed having a varying number of sample images ranging586

from 150 to 200. The images in this dataset typically have a resolution of around 224×224 pixels. For587

each class, 100 images are allocated for training, while the remaining images (at least 50 per class)588

are reserved for testing.589

Stanford Cars196 Stanford Cars196 [51] is a dataset used for car image recognition. It consists590

of images of 196 different classes of cars. The number of images within each class ranges from591

approximately 30 to 100, offering a diverse set of samples for each car class. The images in this592

dataset generally have a resolution of 224×224 pixels. The training set consists of a total of 8,144593

images, and the test set contains 8,041 images.594

FGVC Aircraft FGVC Aircraft (FGVC100) [52] is mainly designed for fine-grained visual catego-595

rization tasks. It contains 100 different fine-grained categories. There are a total of 10,000 images.596

The number of images in the training set is 6,667, and the remaining ones constitute the test set. The597

images in the FGVC100 dataset generally have a resolution of 224×224 pixels.598

CUB-200-2011 CUB-200-2011 [50], also known as the Caltech-UCSD Birds-200-2011 dataset, is599

centered around bird image recognition. It consists of 200 different species of birds. The total number600

of images is 11,788. The size of the training set is 5,994, and the size of the test set is 5,794. The601

images in this dataset usually have a resolution of 224×224 pixels.602
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E Details of Implemented PLL algorithms in PartialCLIP603

E.1 ST-PLL baselines604

PRODEN [16] is designed to approximately minimize the proposed risk estimator by relaxing the605

minimization problem into a weighted combination. This approach integrates the learning of weights606

and the classifier in a unified manner, effectively mitigating the risk of overfitting.607

RC and CC [21] devised label disambiguation approaches that are provably risk-consistent and608

classifier-consistent.609

LWS [22] introduced a family of loss functions for partial label learning, termed the Leveraged610

Weighted (LW) loss, which incorporates a leverage parameter β to balance the trade-offs between611

losses on partial labels and non-partial labels.612

CRDPLL [17] applied consistency regularization [27] within the candidate label sets. Meanwhile, it613

derives entirely accurate supervision from the non-candidate labels, ensuring that the complements of614

the candidate labels are unequivocally excluded from being the ground-truth labels.615

CAVL [23] leverages the Class Activation Value (CAV), and it guides the model to pick the ground616

truth label from candidates during training. It turns PLL into supervised learning, enabling the model617

to recognize true labels using learned CAV-based representation.618

ABS-MAE and ABS-GCE [24] refocused on the average-based strategy (ABS) methods. Theoret-619

ically, it introduced five data generation processes for noise-free and noisy partial labels, thereby620

addressing a critical gap in the theoretical understanding of PLL robustness. Empirically, it conducted621

comprehensive experiments to validate its theoretical insights.622

E.2 LT-PLL baselines623

SoLar [18] conceptualizes the LT-PLL as an optimal transport problem, leveraging the Sinkhorn-624

Knopp algorithm [32] to achieve an efficient approximation. This approach ensures that the generated625

pseudo-labels conform to the estimated class distribution priors.626

RECORDS [33] adopts a logit adjustment perspective [34], dynamically updating global represen-627

tations through momentum to infer the class distribution. By integrating with existing partial label628

learning methodologies, it mitigates model bias towards head classes via dynamic logit adjustment.629

HTC [35] employs a dual-expert classifier framework, where each classifier specializes in the630

inference of head and tail classes, respectively. It incorporates a classifier weight estimation (CWE)631

module, designed to discern the class affiliation of a sample—whether it pertains to a head class or632

a tail class. This module adaptively adjusts and fuses the outputs from the dual classifiers, thereby633

enhancing the accuracy of the final prediction.634

E.3 ID-PLL baselines635

ABLE [19] introduced an ambiguity-induced positive selection contrastive learning framework aimed636

at resolving label ambiguity. It jointly optimizes a representor that minimizes a weighted sum of637

contrastive losses across all groups and a classifier that minimizes a classification loss.638

POP [37] progressively refined the learning model and purified the candidate label sets in each639

training epoch. Theoretically, POP expands reliable model regions efficiently. Technically, POP is640

compatible with arbitrary PLL losses and improves their performance in instance-dependent cases.641

IDGP [38] formulated the candidate label generation process in ID-PLL, employing categorical642

and Bernoulli distributions to model the generation of ground truth labels and false-positive labels,643

respectively.644
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F Details of PEFT Methods645

F.1 Adapter646

Adapter [60] is a technique in machine learning and deep learning. Typically, an adapter works by647

adding a small set of trainable parameters to the pre-trained model. These parameters are trained648

to capture the specific characteristics of the new task or domain, while keeping the majority of the649

original model’s parameters fixed. This enables efficient transfer learning, reducing data and resource650

requirements for fine-tuning, and is effective in various natural language processing tasks.651

F.2 Adaptformer652

AdaptFormer [62] replaces the MLP block in the Transformer encoder with AdaptMLP. AdaptMLP653

consists of two parallel sub-branches. The left-hand branch contains an MLP layer identical to that in654

the original network, termed the frozen branch. The right-hand branch is a newly introduced task-655

specific lightweight module, designed as a bottleneck structure. This lightweight encoder-decoder656

architecture aims to limit the number of newly added parameters by reducing the intermediate657

dimension. In practice, this design has demonstrated remarkable efficacy.658

F.3 LoRA659

LoRA [61], short for Low-Rank Adaptation, is a technique used to fine-tune transformer-based660

models. It freezes the pre-trained parameters of the original model and only adapts a small number661

of newly added low-rank matrices. This significantly reduces the storage and computing resources662

required for fine-tuning, making it more efficient and cost-effective. At the same time, LoRA can663

achieve similar performance to traditional fine-tuning methods. It has been widely used in various664

natural language processing tasks and has become an important method in the field of large language665

model optimization.666

F.4 BitFit667

BitFit [59] is a method in the field of machine learning, particularly for fine-tuning pre-trained668

transformer-based models. It focuses on adapting the bias terms of the model while keeping the other669

parameters fixed. By doing so, it aims to achieve efficient adaptation to new tasks with minimal670

computational cost and without significantly altering the pre-learned knowledge of the model.671

F.5 VPT672

Visual prompt tuning [44] is a technique in the field of computer vision. It aims to adapt pre-trained673

models to specific tasks by adding and tuning visual prompts. These prompts can be in the form of674

image-based cues. This method enables more efficient fine-tuning with fewer parameter adjustments,675

enhancing the model’s performance on targeted visual tasks.676

G Additional Experimental Results677

G.1 Results on Real-world Dataset PLCIFAR10678

In addition to the previous three simulated PLL settings, we also test the performance of PartialCLIP679

on a real-world PLL dataset PLCIFAR10 [68], which is created through manual annotation and is680

divided into two types: PLCIFAR10-Aggregate and PLCIFAR10-Vaguest. PLENCH also proposed681

two evaluation metrics on the validation set: covering rate (CR) and oracle accuracy (OA). We used682

CLIP-ViT-B/16 as the backbone in PartialCLIP and compared the results with those in PLENCH that683

used ResNet as the backbone. For all baselines combined with PartialCLIP, we set the number of684

training epochs to 10. According to Table 9, we found that almost all metrics of each baseline have685

been improved to varying degrees.686
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Table 9: Classification Accuracies of PLL methods on PLCIFAR10 dataset. Bold indicates better
results.

Methods Backbone Aggregate Vaguest

w/ CR w/ OA w/ CR w/ OA

CC ResNet 80.7 81.4 71.8 70.1
w/ PartialCLIP CLIP-ViT-B/16 95.7 96.2 88.5 93.6

LWS ResNet 55.3 55.5 60.2 61.0
w/ PartialCLIP CLIP-ViT-B/16 95.9 95.9 94.9 95.1

CAVL ResNet 68.1 68.2 63.6 63.7
w/ PartialCLIP CLIP-ViT-B/16 77.1 77.7 79.6 80.4

CRDPLL ResNet 81.6 81.7 76.2 75.7
w/ PartialCLIP CLIP-ViT-B/16 87.7 87.6 90.0 91.9

PRODEN ResNet 86.0 85.9 75.0 74.8
w/ PartialCLIP CLIP-ViT-B/16 95.0 95.7 62.9 68.8

ABLE ResNet 85.9 86.1 75.5 74.9
w/ PartialCLIP CLIP-ViT-B/16 93.0 95.6 92.4 92.7

POP ResNet 85.0 85.0 75.2 74.3
w/ PartialCLIP CLIP-ViT-B/16 95.0 95.2 93.2 93.8

IDGP ResNet 82.8 83.4 76.1 76.1
w/ PartialCLIP CLIP-ViT-B/16 96.2 96.3 94.1 94.1

Table 10: Test accuracy of different LT-PLL methods with PartialCLIP on Places-LT and ImageNet-LT
under various flipping probability η. Bold indicates superior results.

Methods Places-LT ImageNet-LT

η = 0.01 η = 0.02 η = 0.05 η = 0.1 η = 0.01 η = 0.02 η = 0.05 η = 0.1

Solar 37.7 37.8 36.1 32.4 60.4 60.0 55.5 47.9
RECORDS 45.4 44.8 43.3 37.8 72.7 73.1 70.7 58.1

HTC 40.2 37.2 31.3 21.2 57.9 49.5 36.4 25.0

Table 11: Different shots accuracy comparisons on Places-LT (η = 0.05) and ImageNet-LT (η =
0.01). The best results are marked in bold, and the second-best are marked underlined.

Methods
Places-LT ImageNet-LT

Many Medium Few Many Medium Few

Solar 52.8 34.2 9.5 82.4 55.7 14.6
RECORDS 55.3 42.0 24.0 78.7 73.7 52.7

HTC 53.2 25.1 5.4 82.2 52.1 9.4

G.2 More Results on LT-PLL datasets687

G.3 Investigation into the Deterioration of the LWS Algorithm’s Performance and Tailored688

Countermeasures689

We observed that when Wide-ResNet-34-10 is used as the backbone, as the partial rate increases690

from 0.1 to 0.7, the accuracy of LWS [22] on the CIFAR100 dataset drops from 86.5% to 38.5%,691

with a decline rate reaching 48%. Meanwhile, when CLIP-ViT-B/16 is employed as the backbone,692

the accuracy can remain relatively stable when the partial rate is relatively low. However, when the693

partial rate increases to 0.7, a "collapse" phenomenon also occurs in performance.694
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To explore the reasons behind the observed performance changes, it is essential to delve into the695

principles of the LWS algorithm. In LWS, the leverage parameter β is incorporated into the loss696

functions. This parameter serves to trade off the losses associated with partial labels and those of697

non-partial labels. Specifically, the partial loss function under consideration assumes the form.698

L̄ψ(y⃗, g(x)) =
∑
z∈y⃗

wzψ(gz(x)) + β ·
∑
z/∈y⃗

wzψ(−gz(x)),

where y⃗ ∈ Y⃗ denotes the partial label set. It consists of a binary loss function ψ(·) : ψ(x) =699
1

1+ex , weighting parameters wz ≥ 0 on ψ(gz) for z ∈ Y , and the leverage parameter β ≥ 0 that700

distinguishes between partial labels and non-partial ones.701

However, LWS focuses on differentiating between candidate labels and non-candidate labels, making702

their boundaries clear. This leads to the following situation: when η is small, the candidate label703

set is relatively small, and most non-candidate labels can be excluded. However, when η increases,704

the candidate label set also expands. The excluded non-candidate labels only account for a small705

proportion, and the size of the sample space of candidate labels even approaches that of the entire706

sample space. This results in very weak supervision information provided, and the difficulty is close707

to that of an unsupervised task. Moreover, within the candidate set, LWS only uses a simple binary708

classification loss, without additional designs like those in CRDPLL. This makes it extremely difficult709

to identify the ground truth label within the candidate set.710

Therefore, considering that LWS is highly sensitive to the size of the candidate label set, we utilize711

the zero-shot capability of CLIP to pre-filter the candidate label set before training, excluding those712

false-positive labels that can be distinguished by general knowledge alone. In the case of CIFAR-100713

dataset with η = 0.2, since the candidate set is relatively large, we select the top 30% of the labels714

based on the results of CLIP zero-shot. In other cases, we select the top 50% of the labels in terms715

of confidence for each sample. We found that after pre-screening the candidate label set and then716

conducting the training, the performance is significantly improved, comparable to the results obtained717

under low partial rates. Specifically, in the context of the CIFAR10 dataset with a partial rate of 0.7,718

the test accuracy was increased from 14.5% to 96.2%. For the CIFAR100 dataset, when the partial719

rates were 0.05, 0.1, and 0.2 respectively, the test accuracies were increased from 80.9%, 59.0%, and720

14.8% to 81.9%, 82.3%, and 82.1% respectively.721

H Limitations and Broader Impacts722

Limitations Although PartialCLIP integrates a certain number of PLL baselines, there are still some723

methods and frameworks that are incompatible with it. How to equip our framework with more724

algorithms is a question worthy of further exploration.725

Broader Impacts This research falls within the field of weakly supervised learning, which aims726

to optimize performance while reducing data labeling costs. As its effectiveness is increasingly727

validated and applications grow, reliance on comprehensive data annotation may decline. This could728

potentially lead to higher unemployment rates among data annotation professionals, underscoring the729

need for proactive measures to address associated socioeconomic impacts.730
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