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ABSTRACT

Embedding-based representation learning approaches for knowledge graphs
(KGs) have been mostly designed for static data. However, many KGs involve
temporal data, which creates the need for new representation learning approaches
that can characterize and reason over time. In this work, we propose a Time-
aware Relational Graph ATtention Network (TR-GAT) for temporal knowledge
graph (TKG) embeddings, in which the initial feature of each entity is represented
by fusing its embedding and the embeddings of its connected relations and times-
tamps as well as its neighboring entities. Different from the existing temporal
GNN models which discretize temporal graphs into multiple snapshots, we treat
timestamps as properties of links between entities. To further incorporate relation
and time information into the graph structures, we utilize a self-attention mecha-
nism which specifies different weights to different nodes according to the corre-
sponding link features, i.e., embeddings of the relevant relations and timestamps
within one neighborhood. Experimental results show that our approach achieves
state-of-the-art performances regarding TKG completion and entity alignment
tasks on several well-established TKG datasets due to the effective and efficient
integration of time information.

1 INTRODUCTION

Knowledge graphs (KGs) abstract knowledge from the real world into a complex network graph con-
sisting of billions of triples. Each triple is denoted as (es, r, eo), where es is the subject entity, eo is
the object entity, and r is the relation between the entities. Large-scale KGs like DBpedia Lehmann
et al. (2015) have been widely used in many AI applications, e.g., question answering, search, and
natural language processing. Oftentimes, a single KG is far from complete and cannot support these
applications with sufficient facts. Therefore, two fundamental KG tasks have been proposed: (1) KG
completion, a.k.a link prediction, which aims to predict the missing entities for incomplete facts in
a single KG; (2) entity alignment, which aims to align equivalent entity pairs referring to the same
real-word object across multiple KGs. To address the above challenges, KG embedding (KGE) ap-
proaches are leveraged to map entities and relations in KGs into a low-dimensional vector space and
measure probabilities of triples and similarities between entities based on their embeddings.

Recently, studies of the temporal dynamics in knowledge graphs have intrigued increasing interests.
Some temporal KGs (TKGs) including Wikidata Erxleben et al. (2014), YAGO Mahdisoltani et al.
(2013), and event-based datasets like ICEWS Lautenschlager et al. (2015) and GDELT Leetaru &
Schrodt (2013) store billions of temporal facts, e.g., the triple (Biden, PresidentOf, USA) is valid
only from Jan. 2021. Such triples attached with time information are represented as quadruples,
shaped like (es, r, eo, τ), where τ denotes the timestamp. Traditional KGE approaches disregard
time information, leading to ineffective link predictions for temporal queries, e.g., (?, PresidentOf,
USA, 2015). Thus, a growing number of studies Leblay & Chekol (2018); Garcı́a-Durán et al.
(2018); Xu et al. (2019; 2020a); Lacroix et al. (2020) in recent years pay attention to new temporal
KGE (TKGE) approaches for TKG completion task.

KGE approaches Sun et al. (2017; 2018) are widely used for entity alignment between KGs. Es-
pecially, GNN-based Wang et al. (2018); Cao et al. (2019); Mao et al. (2020a) entity alignment
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Figure 1: Illustration of the limitation of the existing time-agnostic entity align approaches.

approaches achieve great success. However, to the best of our knowledge, none of the existing
embedding-based entity alignment approaches considers time information, leaving much room for
improving their performance on TKGs. Taking the case in Figure 1 as an example, given two
unaligned entities, Boris Johnson and David Cameron which exist in two TKGs respectively, time-
agnostic approaches are likely to ignore time information and wrongly recognize these two entities
as the same person in the real world due to the homogeneity of their neighborhood information.

To tackle the above issues, we propose a Time-aware Relational Graph ATtention network (TR-
GAT) for TKG embedding (TKGE) where the initial feature of each entity is represented by fusing
its embedding and the embeddings of its connected relations and timestamps as well as its neighbor-
ing entities. To further incorporate relation and time information into the graph structures, we utilize
a self-attention mechanism which specifies different weights to different nodes in a neighborhood
with the corresponding link features, i.e., embeddings of the relevant relations and timestamps.

We build and use multiple datasets extracted from ICEWS, GDELT, Wikidata and YAGO to evaluate
our proposed approaches. The main contributions of this paper are listed as follows:

• We propose a novel GNN-based approach which can model temporal relational graphs with a
time-aware self-attention mechanism, adapt well to datasets where timestamps are represented in
the various forms: time points or time intervals, and perform different TKG learning tasks.

• Existing temporal GNN models typically discretize a temporal graphs into multiple static snap-
shots of higher sparsity and utilize a combination of GNNs and recurrent architectures which
oftentimes suffers from long training time. Differently, our framework could take advantage of
efficient training by treating timestamps as attentional properties of links between nodes. This
idea could potentially be used for other temporal graph representation learning.

• Experiments show that our approaches achieve state-of-the-art results regarding TKG comple-
tion and remarkably outperform several strong entity alignment baseline models on several well-
established TKG datasets. To the best of our knowledge, there is no previous work to integrate
time information into entity alignment approaches.

2 RELATED WORK

Graph Neural Network (GNN) has become increasingly popular in many areas, including social
networks and KGs Schlichtkrull et al. (2018), due to its ability to model non-Euclidean space. Graph
Convolutional Network (GCN) Kipf & Welling (2016) is an extension of GNN, which generates
node-level embeddings by aggregating information from the nodes’ neighborhoods. Furthermore,
Graph Attention Network (GAT) Veličković et al. (2017) employs a self-attention mechanism to
calculate the hidden representations of each entity by attending over its neighbors. With the success
of these GNN models in the static setting, we approach further practical scenarios where the graph
temporally evolves. Existing approaches Chen et al. (2018); Manessi et al. (2020); Pareja et al.
(2020) generally discretize a temporal graph into multiple static snapshots in a timeline and utilize
a combination of GNNs and recurrent architectures (e.g., LSTM), whereby the former digest graph
information and the latter handle dynamism.

KG embedding (KGE) aims to embed entities and relations in a KG into a low-dimensional vector
space for representation learning. A lot of KGE models have been proposed to perform KG comple-
tion task by using a single embedding-lookup layer as an encoder and defining a score function as a
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decoder Bordes et al. (2013); Yang et al. (2014); Trouillon et al. (2016); Nayyeri et al. (2020); Xu
et al. (2020b). While such shallow models might suffer from insufficient expressiveness Dettmers
et al. (2018), GNN-based approaches Schlichtkrull et al. (2018); Vashishth et al. (2020) have been
proposed to leverage multi-hop information around entities by using GNN layers as encoders. With
the development of TKGs, TKGE draws increasing attention. Some recent works extend static KGE
models to the temporal domain. Such approaches employ embedding methods with a shallow en-
coder and design time-sensitive decoding function Leblay & Chekol (2018); Garcı́a-Durán et al.
(2018); Xu et al. (2019; 2020a); Lacroix et al. (2020); Sadeghian et al. (2021). Another line of
TKGE work including RE-NET Jin et al. (2019) and TeMP Wu et al. (2020) uses GNNs to cap-
ture intra-graph neighborhood information, which is combined with temporal recurrence. RE-NET
uses a combination of R-GCN Schlichtkrull et al. (2018) and multi-level RNN for the task of graph
extrapolation (i.e., inferring the next timestep in a sequence). TeMP also combines R-GCN with a
GRU model or a temporal transformer as an encoder to incorporate both structural information and
historical information into entity representation.

Entity alignment (EA) is to find equivalent entities between multiple KGs. Recent studies Chen
et al. (2016); Sun et al. (2017; 2018) have found that KG embedding can also improve the perfor-
mance on the entity alignment task. Among them, many embedding-based EA approaches introduce
GNNs into entity alignment task, which is originated with the ability to model global information
of graphs Wang et al. (2018); Wu et al. (2019b); Cao et al. (2019); Mao et al. (2020a;b). To the best
of our knowledge, there is not any existing work to study entity alignment between TKGs. And the
current GNN-based TKGE approaches are not compatible with the EA setting.

3 PROBLEM FORMULATION

Formally, a TKG is represented as G = (E ,R, T ,Q) where E , R, T and Q are the sets of enti-
ties, relations, timestamps and quadruples, respectively. TKG completion is a fundamental task
for TKGE Garcı́a-Durán et al. (2018). Given a KG, it aims to predict the object entity eo given
(es, r, ?, τ) or predict the subject entity es given (?, r, eo, τ) where eo, es ∈ E , r ∈ R and τ ∈ T .

Let G1 = (E1,R1, T1,Q1) and G2 = (E2,R2, T2,Q2) be two TKGs, S = {(ei1, ei2)|ei1 ∈ E1, ei2 ∈
E2} be a set of pre-aligned entity pairs between G1 and G2. Since timestamps in most TKGs are
presented in similar formats with Arabic numerals and thus could be be easily aligned by manually
uniforming their formats, a unified time set T ∗ = T1 ∪ T2 can be constructed and two TKGs can be
renewed as G1 = (E1,R1, T ∗,Q1) and G2 = (E2,R2, T ∗,Q2) sharing the same set of timestamps.
The task of time-aware entity alignment aims to find new aligned entity pairs between G1 and G2
based on the alignment seeds S and prior knowledge of time information T ∗.

4 METHOD

Our proposed approach can be separated two substructures: an encoder based on TR-GAT and task-
oriented decoders. Specifically, the TR-GAT encoder mainly includes two parts: a time-aware entity
representation and a time-aware self-attention mechanism. Figure 2 depicts the overall framework
of our proposed approaches and the architecture of the time-aware self-attention mechanism. We
elaborate on details of the proposed approach in this section.

4.1 TIME-AWARE ENTITY REPRESENTATION

Time information τ in a temporal fact (es, r, eo, τ) can be represented in various forms, e.g., time
points, begin or end time and time intervals. A time interval is shaped like [τb, τe] where τb and τe
denote the actual begin time and end time of the fact, respectively. A time point can be represented
as [τb, τe] where τb = τe. Noteworthily, we represent a begin or end time as [τb, τ0] or [τ0, τe] where
τ0 ∈ T ∗ is the first time step in the time set denoting the unknown time information. A fact without
known time information can be denoted as (es, r, eo, [τ0, τ0]) to deal with heterogeneous temporal
knowledge bases where a significant amount of relations might be non-temporal.

In order to integrate relation direction, we create a reverse relation r−1 for each relation r and
extend the relation set R = {r0, r1, · · · , r|R|−1} → {r0, r−10 , · · · , r|R|−1, r−1|R|−1}. And each fact
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Figure 2: Left: Depiction of the framework of TR-GAT models for TKG completion and time-
aware EA, where dashed arrows denote created reverse links. Right: An illustration of the time-
aware self-attention mechanism by the node e1, where curved arrows denote attention computations
corresponding to its neighboring nodes.

(es, r, eo, [τb, τe]) is decomposed into two quadruples (es, r, eo, τb) and (eo, r
−1, es, τe) to handle

the begin and the end of the relation, respectively.

We map all of entities, relations (including reverse relations) and time steps in TKGs into a vector
space Rd where d denotes the dimension of the vector space. Embeddings of the entity ei, relation rj ,
time step τm are denoted as hei , hrj , hτm ∈ Rd, respectively. To enforce both relation information
and time information into the entity representation, we first average the embeddings of each entity
and its neighboring entities and then concatenate the average entity embedding with the features
of the inward links in the entity’s neighborhood. In the case of Figure 2, the inward links in the
neighborhood of the entity e1 include (e2, r1, e1, τ1b) and (e3, r

−1
2 , e1, τ2e) in which e1 performs as

the object entity. As shown in Figure 2, the features of the inward links are represented as the average
embeddings of the involved relations and time steps. The complete time-aware entity representation
hinei of an entity ei can be formulated as,

hinei =

 1

|N e
i |+ 1

∑
ej∈N ei ∪{ei}

hej ||
1

|N r
i |

∑
rj∈N ri

hrj ||
1

|N τ
i |

∑
τj∈N τi

hτj

 , (1)

where N e
i is the set of neighboring entities of ei, N r

i and N τ
i are sets of relations and time steps

which connect inwardly to ei. hei , hri and hτi denote the averages of the involved entity embed-
dings, relation embeddings and time embeddings, respectively. || denotes the concatenation operator.

4.2 TIME-AWARE SELF-ATTENTION

Time-aware self-attention aims to integrate both time and relation information into the generated
entity representation by assigning different weights to different neighboring nodes according to the
time and relation features of inward links between nodes. We define the weighted importance βi,j
of neighboring entity ej to ei as follows,

βi,j = ωT
[
hinei ||h

in
ej ||

∑
rm∈Lrij

hrm
|Lrij |

||
∑

τm∈Lτij

hτm
|Lτij |

]
, (2)

where ω ∈ R8d is a shared attention weight vector, Lrij and Lτij denote the sets of relations and time
steps in the links from ej to ei, respectively.

Following GAT Veličković et al. (2017), we define the normalized element αi,j representing the
connectivity from entity ei to ej with a LeakyReLU activation function (in which the negative input
slope α = 0.2) as follows,

αi,j =
exp(LeakyReLU(βi,j))∑

em∈N ei ∪{ei}
exp(LeakyReLU(βi,m))

, (3)
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We take the original time-aware entity representations as the input features of entities in the first
hidden layer. And the output features houtei are obtained with a linear combination of the input
features of neighboring entities and a nonlinear ReLU activation function σ(·), i.e.,

houtei = σ

(
1

M

M∑
m=1

[ ∑
ej∈N ei ∪{ei}

αmi,jh
in
ej

])
. (4)

Same as GAT, we utilize the averaging multi-head attention to stabilize the learning process of self-
attention. M denotes the number of attention heads and αmi,j are normalized attention coefficients
computed by the m-th attention mechanism. It is noteworthy that a TR-GAT attention head has a
lower time complexity compared to a single GAT attention head. Please see more details about the
time complexities of GAT and TR-GAT in Appendix A.1.

4.3 TR-GAT ENCODER

A TR-GAT encoder comprises of an input layer which generates the time-aware entity features and
one or several time-aware attentional layers.

Let the the l-th attentional layer’s output features of entity ei as hout(l)ei . A cross-layer represen-
tation is employed to capture multi-hoop neighboring information in the previous work Mao et al.
(2020a) by concatenating output features of different layers. Similarly, we define the final entity
representation zei of ei as

zei = [hout(0)ei ||hout(1)ei || · · · ||hout(L)ei ], (5)

where L is the number of attention layers and hout(0)ei = hinei are the input entity features.

To reduce the storage complexity to linear in the number of entities and links and enable the execu-
tion of TR-GAT models on larger TKG datasets, we are able to produce a version of the TR-GAT
encoder that leverages sparse matrix operations.

4.4 TEMPORAL KNOWLEDGE GRAPH COMPLETION MODEL

To perform TKG completion, we first use an encoder based on TR-GAT layers to integrate the
intra-graph neighborhood information into entity representations zei .

Let φ(·) denote the score for a quadruple (es, r, eo, τ) and let TKGC denote any proper decoding
function for TKG completion, e.g., TComplEx Lacroix et al. (2020). The score for the quadruple is
defined as follows:

φ(es, r, eo, τ) = TKGC(zes , zr, zeo , zτ ), (6)
where zes and zeo are entity representations of the subject and object, zr and zτ are learned em-
beddings of the relation r and the timestamp τ . In this work, we use the score function defined for
TComplEx Lacroix et al. (2020), which is one of the most recent TKGE models. Note that we first
map zes , zes , zeo , zτ from the real vector space Rd to the complex vector space Ck by dimidiating
the embedding dimension, i.e., k = d/2.

To train our TKG completion model using this score function, the model parameters are learned
using gradient-based optimization in mini-batches. For each mini-batch Qb ⊆ Q, we follow the
setting used for TComplEx to adopt N3 regularization for embeddings and temporal smoothness
and define the full multiclass log-softmax loss function as follows,

L =
1

b

∑
(es,r,eo,τ)∈Qb

[
− log(

exp(φ(es, r, eo, τ))∑
e′o∈E

exp(φ(es, r, e′o, τ))
)− log(

exp(φ(es, r, eo, τ))∑
e′s∈E

exp(φ(e′s, r, eo, τ))
)

+ λb(||zes ||33 + ||zr||33 + ||zeo ||33 + ||zτ ||33)
]
+ λτ

||T ||−1∑
i=1

||zτi+1
− zτi ||33,

(7)

where b denotes the batch size, λb denotes the N3 regularization weight, and λτ denotes the coeffi-
cient of the temporal smoothness regularizer which is used to promote that the neighboring times-
tamps have close representations.
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4.5 TIME-AWARE ENTITY ALIGNMENT MODEL

Time-aware EA model embeds two TKGs into a unified vector space by pushing the seed alignments
of entities together. In this work, the time-aware EA model consists of a TR-GAT encoder and a
translational decoding function which measures similarities between entity representations.

Entity alignments are predicted based on the distances between the final output features of entities
from two KGs. For two entities ei ∈ E1 and ej ∈ E2 from different sources, we use L1 distance to
measure the distance between them as follows,

d(ei, ej) = ||zei − zej ||1 , (8)

A margin rank loss is used as the optimization objective of the entity align model, i.e.,

L =
∑

(ei,ej)∈S

∑
(ei,e′j),(e

′
i,ej)∈S′

[
σ(d(ei, ej) + λ− d(ei, e′j)) + σ(d(ei, ej) + λ− d(e′i, ej))

]
, (9)

where λ denotes the margin, S ′ is the set of generated negative entity pairs, e′i ∈ E1 and e′j ∈ E2
are the negative entities of ei and ej , respectively. Negative entities are sampled randomly and an
Ada optimizer is used to minimize the loss function. During testing, we adopt CSLS Conneau et al.
(2017) as the distance metric to measure similarities between entity embeddings.

We compare the total numbers of trainable parameters in our time-aware EA approach with several
existing EA models. As shown in Table 1, compared to parameter-efficient translational entity align
models like MTransE, TR-GAT uses additional parameters only for reverse relation embeddings,
time embeddings and attention weight vectors.

EA Methods Intra-graph Relation Time Number of Parameter

MTransE Chen et al. (2016) X k(|E1|+ |E2|+ |R1|+ |R2|)
JAPE Sun et al. (2017) X k(|E1|+ |E2|+ |R1|+ |R2|)

BootEA Sun et al. (2018) X k(|E1|+ |E2|+ |R1|+ |R2|)
GCN-Align Wang et al. (2018) X k(|E1|+ |E2|) + 2k2

MRAEA Mao et al. (2020a) X X k(|E1|+ |E2|+ 2|R1|+ 2|R2|) + 3kML
RREA Mao et al. (2020b) X X k(|E1|+ |E2|+ 2|R1|+ 2|R2|) + 3kL

TR-GAT X X X k(|E1|+ |E2|+ 2|R1|+ 2|R2|+ |T ∗|) + 4kML

Table 1: Comparison of our EA method with other EA methods. Note that k = d when embeddings
are real-valued. Overall, TR-GAT is most comprehensive.

5 EXPERIMENTS AND RESULTS

5.1 DATASETS

TKG completion datasets We evaluate our model on three popular benchmarks for TKG com-
pletion, namely ICEWS14, ICEWS05-15, and Yago15K The first two datasets are subsets of Inte-
grated Crisis Early Warning System (ICEWS), which is a very popular knowledge graph used by the
community. ICEWS14 is collected from 01/01/2014 to 12/31/2014, while ICEWS15-05 is the sub-
set occurring between 01/01/2005 and 12/31/2015. It is worth mentioning that each fact in ICEWS
datasets involves a time point as its timestamp. The YAGO15K dataset Garcı́a-Durán et al. (2018) is
a modification of FB15K Bordes et al. (2013) with the additional timestamps from YAGO Mahdis-
oltani et al. (2013). Different from ICEWS datasets, YAGO15K is a hybrid dataset where a part of
facts are non-temporal and timestamps in YAGO15K are represented as start time or end time, like
”occurSince 2000” or ”occurUntil 2000”. See more details of TKGC datasets in Appendix A.2.

Time-aware EA datasets Existing EA benchmarks are mostly extracted from FreeBase Bollacker
et al. (2008), DBpedia Lehmann et al. (2015), Wikidata Erxleben et al. (2014) and YAGO. As
we mentioned, the latter two knowledge bases contains millions of temporal facts. However, the
existing EA benchmarks do not include time information attached to temporal facts in Wikidata
and YAGO. Thus, we create five time-aware EA datasets in this work for evaluation. We build two
datasets DICEWS-1K and DICEWS-200 from ICEWS05-15 in the similar way to the construction
of DFB datasets Zhu et al. (2017). The only difference between DICEWS-1K and DDICEWS-
20000 is the proportion of alignment seed S. We extract three datasets YAGO-WIKI50K-5K,
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YAGO-WIKI50K-1K and YAGO-WIKI20K from Wikidata and YAGO. The first two datasets
contain about 50,000 entity pairs, among which 5,000 and 1,000 entity pairs are taken as pre-known
alignment seeds, and each fact in both datasets is temporal. Meanwhile, YAGO-WIKI20K is a
hybrid dataset with 20,000 entity pairs. It is noteworthy that timestamps in YAGO-WIKI datasets
are represented in various forms, e.g., time points, start or end time, time intervals. Statics of time-
aware EA datasets are listed in Table 2. Please see Appendix A.3 for more details of the above
datasets.

Dataset |E1| |E2| |R1| |R2| |T ∗| |Q1| |Q2| |P| |S|
DICEWS-1K/200 9,517 9,537 247 246 4,017 307,552 307,553 8,566 1,000/200

YAGO-WIKI50K-5K/1K 49,629 49,222 11 30 245 221,050 317,814 49,172 5,000/1,000
YAGO-WIKI20K 19,493 19,929 32 130 405 83,583 142,568 19,462 400

Table 2: Statistics of time-aware EA datasets. |P| denotes the total number of reference entity pairs.

5.2 EXPERIMENTAL SETUP

We perform TKG completion and time-aware EA as ranking tasks based on scores of factual
quadruples and similarities between entity embeddings, and use Mean Reciprocal Rank (MRR)
and Hits@N (N=1, 3, 10) as evaluation metrics. Following the previous work Garcı́a-Durán et al.
(2018); Xu et al. (2019; 2020a); Lacroix et al. (2020); Wu et al. (2020), a time-aware filtering setting
is used for TKG completion to avoid possibly flawed evaluation.

For TKG completion, we compare our model against several state-of-the-art TKGE methods,
including TTransE Leblay & Chekol (2018), HyTE Dasgupta et al. (2018), TA-TransE, TA-
DistMult Garcı́a-Durán et al. (2018), DE-SimplE Goel et al. (2020), TComplEx(×10), TNTCom-
plEx Lacroix et al. (2020)(×10), TeMP Wu et al. (2020) and ChronoR Sadeghian et al. (2021). We
mainly reuse the results reported in literature.

For entity alignment between TKGs, we compare our model with three strong translational base-
line models and four state-of-the-art GNN-based models including MTransE Chen et al. (2016),
JAPE Sun et al. (2017), AlignE Sun et al. (2018), GCN-Align Wang et al. (2018), MuGNN Cao
et al. (2019), MRAEA Mao et al. (2020a) and RREA Mao et al. (2020b). We choose AlignE instead
of BootEA since we do not use iterative learning for other models including our proposed models.
Due to the deficiency of attribute information, we do not select attribute-aware EA models, e.g.,
AttrE Trisedya et al. (2019) or AttrGCN Liu et al. (2020), and use the SE (Structural Embedding)
variants of JAPE and GCN-Align as baseline models. Since we do not use entity names as enhance-
ment information for our proposed models, EA models using textual information like HGCN and
RDGCN Wu et al. (2019a;b) are also excluded from the baseline. Except that the experiments of
MTransE is implemented based on OpenEA framework Sun et al. (2020), all experiments of base-
line models are implemented based on their resource codes. To verify the effect of the incorporation
of time information on the EA performance of TR-GAT, we additionally implement a time-unaware
variant of TR-GAT as an EA baseline model, which takes all time steps τi ∈ T ∗ as unknown time
information τ0 and is denoted as TU-GAT.

Implementation details of our models and baseline models can be found in Appendix A.4. Datasets
and source codes are submitted as supplementary materials for reproducibility.

5.3 TKG COMPLETION RESULTS

Main Results The TKG completion results on three datasets are reported in Table 3. Compared to
a shallow baseline model, TComplEx which has the same decoding function as our TKG completion
model, TR-GAT achieves significant improvements on ICEWS-14 and ICEWS05-15 regarding all
metrics. On YAGO15K, TR-GAT also outperforms TComplEx across most metrics except Hits@10.
Overall, TR-GAT achieves the state-of-the-art results on ICEWS14 and YAGO15K regarding MRR,
Hits@1, Hits@3. On ICEWS05-15, TR-GAT achieves the best Hits@1 and also shows a competitive
performance regarding other metrics. Two of the most recent TKGE models, TeMP-GRU and TeMP-
SA which use combinations of R-GCN and temporal recurrent models based on GRU and temporal
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ICEWS14 ICEWS05-15 YAGO15K

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TTransE .255 .047 - .601 .271 .084 - .616 .321 .230 - .510
HyTE .297 .108 .416 .655 .316 .116 .445 .681 - - - -

TA-TransE .275 .095 - .625 .299 .096 - .668 .321 .231 - .512
TA-DistMult .477 .363 - .686 .474 .346 - .728 .291 .216 - .476
DE-SimplE .526 .418 .592 .725 .513 .392 .578 .748 - - - -

TComplEx(×10) .610 .530 .660 .770 .660 .590 .710 .800 .360 .280 .380 .540
TNTComplEx(×10) .620 .520 .660 .760 .670 .590 .710 .810 .370 .290 .390 .540

TeMP-GRU .601 .478 .681 .828 .691 .566 .782 .917 - - - -
TeMP-SA .607 .484 .684 .840 .680 .553 .769 .913 - - - -
ChronoR .625 .547 .669 .773 .675 .596 .723 .820 .366 .292 .379 .538

TR-GAT .637 .556 .684 .790 .673 .596 .720 .816 .370 .292 .391 .525

Table 3: TKG completion results on ICEWS14, ICEWS05-15 and YAGO15K. Dashes: results are
not reported in the respective literature. The best results among all models are written bold

transformer, have better performance on ICEWS05-15 than TR-GAT regarding MRR, Hits@3 and
Hits@10 but also suffer from longer training time. Although TeMP models use lower-dimensioanl
embeddings than TComplEx, TNTComplEx, ChronoR and ours, the training processes of TeMP-
GRU and TeMP-SA on ICEWS05-15 take about 49 and 52 minutes per epoch using a single GTX
Titan X GPU, while it averagely takes about 17 minutes for TR-GAT to complete a training epoch
on ICEWS05-15 with the same device.

5.4 TIME-AWARE ENTITY ALIGNMENT RESULTS

Models DICEWS-1K DICEWS-200 YAGO-WIKI50K-5K YAGO-WIKI50K-1K
MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

MTransE .150 .101 .241 .104 .067 .175 .322 .242 .477 .033 .012 .067
JAPE .198 .144 .298 .138 .098 .210 .345 .271 .488 .157 .101 .262

AlignE .593 .508 .751 .303 .222 .457 .800 .756 .883 .618 .565 .714

GCN-Align .291 .204 .466 .231 .165 .363 .581 .512 .711 .279 .217 .398
MuGNN .617 .525 .794 .412 .367 .583 .808 .762 .890 .632 .589 .733
MRAEA .745 .675 .870 .564 .476 .733 .848 .806 .913 .685 .623 .801
RREA .780 .722 .883 .719 .659 .824 .868 .828 .938 .753 .696 .859

TU-GAT .748 .681 .870 .576 .489 .739 .815 .767 .902 .672 .607 .795
TR-GAT .900 .876 .942 .849 .815 .909 .903 .871 .959 .799 .748 .891
Improv. 20.3% 28.6% 7.9% 47.4% 66.7% 23.0% 9.7% 14.9% 6.3% 18.9% 23.2% 12.1%

Table 4: Entity alignment results on ICEWS and YAGO-WIKI50K datasets. Improv. indicates
the improvement achieved by TR-GAT against its time-unaware variant TU-GAT. The best results
among all models are written bold.

Main Results Table 4 shows the entity alignment results of our proposed models and all baselines
on ICEWS and YAGO-WIKI50K datasets. It can be shown that TR-GAT remarkably outperforms
all baseline models on four TKG datasets across all metrics. Compared to RREA which achieves the
best results among than all baseline models, TR-GAT obtains the improvement of 23.7%, 21.3%,
7.5% and 5.2% regarding Hits@1 on four TKG datasets, respectively.

Robustness To study the effect of the incorporation of time information, we test the time-unaware
variant of TR-GAT, TU-GAT. As shown in Table 4, TU-GAT outperforms most baseline models
other than RREA since it uses a static relational attention mechanism to capture relation infor-
mation between entities, including relation types and relation directions. It can be observed that
the improvements of TR-GAT against TU-GAT are more significant on datasets with less seeds.
Specifically, TR-GAT improves Hits@1 by 66.7% and 23.2% regarding Hits@1 on DICEWS-200
and YAGO-WIKI50K-1K while the improvements on DICEWS-1K and YAGO-WIKI50K-5K are
28.6% and 14.9%. Similar results can be observed between TR-GAT and RREA.

In practice, it is quite important for an entity alignment model to maintain a good performance
with few pre-aligned entities since such prior knowledge is difficult to be obtained. Meanwhile,
time information from different digital resources can be easily aligned because time information is
mostly recorded with Arabic numerals and represented in similar formats which can be uniformed.
Thus, we conduct a study of the robustness of our models against the numbers of alignment seeds
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in Appendix A.5. By incorporating time information, TR-GAT shows the better robustness and the
lower sensitivity on the number of pre-aligned entities, compared to time-unaware models.

Sensitivity We also conduct a study on the prediction accuracy of aligned entities which have dif-
ferent time sensitivity. As mentioned in Section 5.1, we generate a hybrid dataset YAGO-WIKI20K
where 17.5% of YAGO facts and 36.6% of Wikidata facts are non-temporal. We divide all testing
entity pairs in this dataset into two categories based on their sensitivity to time information, i.e.,
highly time-sensitive entity pairs and lowly time-sensitive entity pairs. Time sensitivity si of a sin-
gle entity ei is defined as the ratio of the number of its time-aware connected links in which τ 6= τ0
over the total number of all links Li within its neighborhood, i.e.,

si = 1− |Lτ0i |/|Li|, (10)
where Lτ0i denotes the set of time-unaware links connecting ei. Given an entity pair (ei1, ei2)

between G1 and G2, we call them as a higly time-sensitive entity pair if si1 > 0.5 and si2 > 0.5.
Otherwise, they are lowly time-sensitive.

Among 19,062 testing entity pairs of YAGO-WIKI20K, 6,898 of them are highly time-sensitive and
others are lowly time-sensitive according to the above definitions. The entity alignment results of
TR-GAT and TU-GAT on the highly time-sensitive test set and the lowly time-sensitive test set are
reported in Table 4. It can be shown that TR-GAT and TU-GAT have close performance on entity
alignment for lowly time-sensitive entity pairs while TR-GAT remarkably outperforms TU-GAT on
the highly time-sensitive test set. In other words, the effect of incorporation of time information are
more significant when testing entity pairs are more time-sensitive.

Highly Time-Sensitive Lowly Time-Sensitive In Total
MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

TR-GAT .805 .797 .892 .331 .284 .419 .503 .470 .590
TU-GAT .700 .639 .818 .314 .264 .411 .454 .400 .558

Table 5: Entity alignment results on different test sets of YAGO-WIKI20K.

Figure 3: Training time per 300 epochs on different datasets.

Training Time As shown in Figure 3, the processing of the additional time information does not
excessively increase the training time for TR-GAT, compared to RREA and TU-GAT. Since we set
the maximum number of epochs as 6000, the training processes of our proposed models on different
datasets can be completed within a couple of hours on a single GeForce GTX Titan X GPU.

6 CONCLUSION

In this paper, we studied the TKGE learning and proposed TR-GAT to remedy the problems of using
attention mechanisms and graph neural networks to learn time-aware relational graphs in a time-
efficient way. We presented an end-to-end framework, which uses a TR-GAT encoder to learn entity
representations with the integration of time and relation information and different task-oriented de-
coding functions to perform time-aware entity alignment and TKG completion. Our experiments
showed that the proposed method obtained superior performance for time-aware entity alignment
and competitive results for TKG completion, and adapted well to TKG datasets where timestamps
are represented inthe various forms: time points, start time or end time, and time intervals. To the
best of our knowledge, there is no previous literature to perform entity alignment between KGs using
a time-aware embedding-based approach.
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A APPENDIX

A.1 TIME COMPLEXITY OF TR-GAT ATTENTION HEAD

In the Section 2.2 of the original GAT paper Veličković et al. (2017), the authors proposed
”The time complexity of a single GAT attention head computing F ′ features may be expressed as
O(|V |FF ′ + |E|F ′), where F is the number of input features, and |V | and |E| are the numbers of
nodes and edges in the graph, respectively”. Noteworthily, a weight matrix is used for each single at-
tention head and the time complexity of the multiplications of and the feature vectors of |V | nodes is
O(|V |FF ′). Since we use a weight vector instead of the weight matrix used in the vanilla GAT, the
time complexity of the multiplications of and the feature vectors of |V | entities is O(|V |F ). In our
work, the number of nodes (entities), edges (quadruples) and input features are denoted as E ,Q and
d. Thus, the time complexity of a single attention head in TR-GAT is denoted as O = d|E|+ d|Q|,
and the complexity of a single attention head in vanilla GAT would be O = d2|E| + d|Q| in our
case. It can be seen that the computation of a TR-GAT attention head is more efficient than a vanilla
GAT attention head.

A.2 DETAILS OF TKG COMPLETION DATASETS

ICEWS14 and ICEWS05-15 are the two most common TKG benchmarks extracted from a pub-
licly available large-scale event-based database, Integrated Crisis Early Warning System (ICEWS) 1.
ICEWS is a repository that contains political events with specific time annotations, e.g. (Barack
Obama, Make a visit, Ukraine, 2014-07-08). It is noteworthy that time annotations in ICEWS are
all time points. ICEWS14 contains events in 2014, and ICEWS05-15 contains events occurring be-
tween 2005-2015. These two datasets are filtered by only selecting the most frequently occurring
entities in the graph.

To create YAGO15K, Garcia-Duran et.al. Garcı́a-Durán et al. (2018) aligned the entities in FB15K
with those from YAGO, which contains temporal information. The final dataset is the result of
all facts with successful alignment. It is worth noting that since YAGO does not have temporal
information for all facts, this dataset is also temporally incomplete and more challenging. Each
temporal facts in YAGO15K have a temporal modifier ”occursSince” or ”occursUntil” to express if
the timestamp is a start time or an end time. Some examples from YAGO15K include (David Beck-
ham, isAffiliatedTo, Manchester United F.C.) and (David Beckham, isMarriedTo, Victoria Beckham,
occursSince, ”1999-##-##”). Follow the previous work, we drop the month and day information
in timestamps from YAGO15K since most of them are unavailable. The statics of the three TKG
completion datasets are listed in Table 6.

Dataset #Entities #Relations Period(year) #Train #Valid #Test
ICEWS14 6,869 230 201 72,826 8,941 8,963
ICEWS05-15 10,094 251 2005-2015 368,962 46,275 46,092
YAGO15K 15,403 34 1513-2017 110,441 13,815 13,800

Table 6: Statistics of TKG completion datasets.

A.3 DETAILS OF TIME-AWARE ENTITY ALIGNMENT DATASETS

We build two datasets DICEWS-1K and DICEWS-200 from ICEWS05-15 in the similar way to
the construction of DFB datasets Zhu et al. (2017). We first randomly divide ICEWS05-15 quadru-
ples into two subsets Q1 and Q2 of similar size, and make the overlap ratio of the amount of
shared quadruples between Q1 and Q2 to all quadruples equal to 50%. The only difference be-
tween DICEWS-1K and DICEWS-200 is the proportion of alignment seed S. In DICEWS-1K and
DICEWS-200, about 12% and 2% of entity pairs between TKGs are pre-known. Moreover, We set
the time unit of ICEWS datasets as 1 day, which means that each day is an individual time step.

YAGO3 and Wikidata are two common large-scale knowledge bases containing time information of
various forms including time points, beginning or end time, and time intervals. Lacroix et al. Lacroix

1https://dataverse.harvard.edu/dataverse/icews

13



Under review as a conference paper at ICLR 2022

et al. (2020) extract a subset2 from Wikidata in which 90% of facts are non-temporal while others
have time annotations attached. We select top 50,000 entities according to their frequencies in
Wikidata and link them to their equivalent YAGO entities3 according to their QIDs and the map-
pings of YAGO entities to Wikidata QIDs. We generate two TKGs only involving the selected
entities from the original Wikidata dataset and all YAGO facts, and then attach complementary time
information4 to meta YAGO facts. We build two time-aware datasets YAGO-WIKI50K-5K and
YAGO-WIKI50K-1K by removing non-temporal facts in the generated TKGs and using different
ratios of alignment seeds S. In addition, we build a hybrid dataset YAGO-WIKI20K containing
both temporal and non-temporal facts with 400 pairs of alignment seeds by reducing sizes of entity
sets of two TKGs to around 20,000. To generate the shared time set T ∗ for a YAGO-WIKI dataset,
we drop month and date information and use the first time step τ0 to represent unobtainable time
information.

All time-aware EA datasets are submitted as supplementary materials and their statics are listed in
Table 2, where P denotes the set of reference entity pairs. The set of reference entity pairs other
than pre-aligned entity pairs, i.e., P − S are used for testing.

A.4 IMPLEMENTATION DETAILS

We implement TR-GAT and TU-GAT models using TensorFlow and test them on a single GeForce
GTX Titan X (Pascal) GPU. For TKG completion, we follow the settings of TComplEx, TNTCom-
plEx Lacroix et al. (2020) and ChronoR Sadeghian et al. (2021) to use an Adagrad optimizer with a
learning rate of lr ∈ {0.1, 0.2} and set the maximum embedding dimension k no more than 2000.
The regularization weights λb and λT are tuned in a range of {0, 0.001, 0.005, 0.01, 0.05,. . . , 10}.
We fix the batch size b = 1000, the number of multi-head attention mechanismsM = 2, the number
of attentional layers L = 1 and the dropout rate dr = 0.3. We adopt the early-stop setting, and fix
the max number of epochs ep = 150. The optimal configurations of other hyper-parameters used
for our proposed models are listed in the Table 7.

Datasets k lr λb λT

ICEWS14 2000 0.1 10 0.005
ICEWS05-15 1500 0.1 1 0.05
YAGO15K 2000 0.2 1 0

Table 7: Optimal hyperparameters of TR-GAT model for TKG completion.

For time-aware EA, we follow the the setting of MRAEA Mao et al. (2020a) to use an Adam op-
timizer with a learning rate of lr = 0.001 and tune k and γ in the ranges of {25, 50, 75, 100} and
{1, 2, 3, 5}, respectively. Moreover, we fix M = 2, L = 2, dr = 0.3, b = |E1| + |E2| for the
time-aware EA models. As mentioned in Section 5.2, we use the source codes 56789 respective
to baseline models for time-aware EA evaluation, except that we evaluate MTransE based on the
implementation of OpenEA framework 10.

For all baseline EA models, we mostly follow their default optimal configurations regarding learning
rates lr, batch sizes b, negative sampling rates η, dropout rates dr, numbers of attentional layers L,
number of attention heads per layer M and mainly focus on the grid research of embedding dimen-
sions k and margins γ (negative weights α for JAPE ). We also follow the respective original paper
to set the balance weight β = 0.9 for GCN-Align. For all baseline models and our proposed models,

2https://github.com/facebookresearch/tkbc
3http://resources.mpi-inf.mpg.de/yago-naga/yago3.1
4http://resources.mpi-inf.mpg.de/yago-naga/yago3.1/yagoMetaFacts.ttl.7z
5https://github.com/nju-websoft/JAPE
6https://github.com/nju-websoft/BootEA
7https://github.com/1049451037/GCN-Align/
8https://github.com/MaoXinn/MRAEA
9https://github.com/MaoXinn/RREA

10https://github.com/nju-websoft/OpenEA/
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we tune k in the range of (25, 50, 75, 100), and γ or α in the range of (0, 0.5, 1, 2, 3, 5, 7, 10, 15, 20).
Specially, we use the same margin hyperparameters as the original paper for AlignE and MuGNN.
To make a fair comparison, we use the same setup for our proposed model as MRAEA and RREA
to fix M = 2, L = 2, dr = 0.3, ep = 6000, b = |E1| + |E2| and η = b//|S| + 1 where // denotes
the round-down after division, and also conduct the same grid research of embedding dimensions k
and margins γ for TR-GAT and TU-GAT as what we do for baseline models.

Hyperparameters used for getting the results reported in Table 4 and 5 are listed in Table 8, 9,
11, 12 and 10. In our experiments, for MRAEA, RREA and our proposed models, the usage of
the higher-dimensional embeddings would lead to out-of-memory problems since we only use a
single mid-range GPU device for training and the learning of large-scale graph neural networks with
numerous nodes and high-dimensional embeddings needs excessive memory footprint during the
training process. It is predictable that we can possibly further boost the performances of TR-GAT
and TU-GAT on YAGOWIKI50K datasets by increasing their embedding dimensions with more
high-performance GPU devices.

The source codes and datasets used in this work are submitted as the supplementary materials for
reproducibility and will be released on Github after the anonymity period.

Models k lr b η γ (or α) dr

MTransE 100 0.01 20,000 10 10 -
JAPE 100 0.01 10,000 1 2 -

AlignE 100 0.01 20,000 10 0.01, 2, 0.7 -
GCN-Align 100 20 - 5 3 0

MuGNN 100 0.001 64 25 1.0, 1.0, 0.12 0.2
MRAEA 100 0.001 19,054 20 1 0.3
RREA 100 0.005 19,054 20 3 0.3

TU-GAT 100 0.001 19,054 20 1 0.3
TR-GAT 100 0.001 19,054 20 1 0.3

Table 8: Optimal hyperparameters of target models for DICEWS-1K.

Models k lr b η γ (or α) dr

MTransE 100 0.01 20,000 10 7 -
JAPE 100 0.01 10,000 1 3 -

AlignE 100 0.01 20,000 10 0.01, 2, 0.7 -
GCN-Align 100 20 - 5 7 0

MuGNN 100 0.001 64 25 1.0, 1.0, 0.12 0.2
MRAEA 100 0.001 19,054 96 2 0.3
RREA 100 0.005 19,054 96 2 0.3

TU-GAT 100 0.001 19,054 96 2 0.3
TR-GAT 100 0.001 19,054 96 1 0.3

Table 9: Optimal hyperparameters of target models for DICEWS-200.

Models k lr b η γ (or α) dr

TU-GAT 100 0.001 39,422 99 2 0.3
TR-GAT 100 0.001 39,422 99 2 0.3

Table 10: Optimal hyperparameters of target models for YAGO-WIKI20K.
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Models k lr b η γ (or α) dr

MTransE 100 0.01 20,000 10 10 -
JAPE 100 0.01 10,000 1 3 -

AlignE 100 0.01 20,000 10 0.01, 2, 0.7 -
GCN-Align 100 20 - 5 3 0

MuGNN 100 0.001 64 25 1.0, 1.0, 0.12 0.2
MRAEA 75 0.001 98,851 20 1 0.3
RREA 50 0.005 98,851 20 1 0.3

TU-GAT 50 0.001 98,851 20 1 0.3
TR-GAT 50 0.001 98,851 20 1 0.3

Table 11: Optimal hyperparameters of target models for YAGO-WIKI50K-5K.

Models k lr b η γ (or α) dr

MTransE 100 0.01 20,000 10 1 -
JAPE 100 0.01 10,000 1 2 -

AlignE 100 0.01 20,000 10 0.01, 2, 0.7 -
GCN-Align 100 20 - 5 10 0

MuGNN 100 0.001 64 25 1.0, 1.0, 0.12 0.2
MRAEA 75 0.001 98,851 99 2 0.3
RREA 50 0.005 98,851 99 1 0.3

TU-GAT 50 0.001 98,851 99 1 0.3
TR-GAT 50 0.001 98,851 99 1 0.3

Table 12: Optimal hyperparameters of target models for YAGO-WIKI50K-1K.

A.5 ROBUSTNESS STUDY

As shown in Table 4, TR-GAT seems more robust to the size of alignment seed |S| compared against
the previous state-of-the-art methods and its time-unaware variant. To verify this observation, we
test TR-GAT, TU-GAT and RREA which obtain the best performance among all baselines, with
|S| varying from 200 to 1000 with step size of 200. As shown in Figure 4, TR-GAT is not only
significantly superior to TU-GAT and RREA in all seed sizes, but also has a more gradual slope
curve. In practical applications, alignment seeds are difficult to obtain. Since our proposed time-
aware EA model performs well with a small amount of pre-aligned entity pairs, it can more easily
be applied in large-scale KGs compared to time-unaware EA methods.

Figure 4: Hits@1 of TEA-GNN, TU-GNN and RREA on entity alignment, w.r.t. number of align-
ment seeds |S|.
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