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Abstract

Despite satisfactory results on “easy” cases of single image reflection separation,
prior dual-stream methods still suffer from considerable performance degradation
when facing complex ones, i.e., the transmission layer is densely entangled with
the reflection having a wide distribution of spatial intensity. The main reasons
come from the lack of concern on the feature correlation during interaction, and
the limited receptive field. To remedy these deficiencies, this paper presents a
Dual-Stream Interactive Transformer (DSIT) design. Specifically, we devise a
dual-attention interactive structure that embraces a dual-stream self-attention and
a layer-aware dual-stream cross-attention mechanism to simultaneously capture
intra-layer and inter-layer feature correlations. Meanwhile, the introduction of
attention mechanisms can also mitigate the receptive field limitation. We modulate
single-stream pre-trained Transformer embeddings with dual-stream convolutional
features through cross-architecture interactions to provide richer semantic priors,
thereby further relieving the ill-posedness of the problem. Extensive experimental
results reveal the merits of the proposed DSIT over other state-of-the-art alternatives.
Our code is publicly available at https://github.com/mingcv/DSIT.

1 Introduction

When images are captured through glass-like mediums (semi-reflectors), the reflected scenes appear
together with the transmitted ones to different degrees, influenced by many factors such as the material
of medium and the illumination of both scenes, among others [42, 62]. This phenomenon poses
significant challenges in various fields, like multi-view stereo imaging, mobile photography, security
surveillance, and autonomous driving [49, 43]. Therefore, successfully separating the superimposed
layers can, on the one hand, enhance the capability of models to serve downstream applications. On
the other hand, it paves the way for tackling a broader spectrum of layer-decomposition tasks, such
as image denoising and watermark/obstacle removal [51, 20].

As a long-standing blind source separation problem, single image reflection separation (SIRS) has
always been challenging, due to the severe ill-posedness of disentangling two natural image signals.
Generally, the superimposed images I can be formulated as follows:

I = T + R + C(T,R). (1)

It consists of an additive combination of target transmission and reflection layers (T and R, respec-
tively) and a residual component, denoted by the mapping C of the two layers. Note that C is used to
describe the non-linear/linear attenuation of the two layers, thus representing a group of reflection
models [23]. In the literature, two main routes of approaches have been delivered. One tendency
(single-stream) is to treat the reflection layer as noise/degradation, merely modeling the transmission
layer. Alternatively, the other rising trend (dual-stream) pays attention to the reconstruction quality
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Figure 1: Schematic illustration of dual-stream interactive behaviors, including YTMT [22], MuGI
[23], and our proposed Dual-Attention Interaction (DAI) mechanisms, where FT and FR represent the
feature flows of transmission layer and reflection layer respectively. The superscript l of the feature
flows denotes the number of building blocks traversed to derive the flows.

of both the transmission and reflection layers. This work follows the latter principle because the
reflection layer may also contain valuable information [43] and imposing constraints from both
perspectives can better regularize the decomposition [22, 23].

The dual-stream schemes, with IBCLN [29], YTMT [22], and DSRNet [23] as representatives,
attempt to estimate both of the two layers with Siamese networks that employ two sub-networks with
identical architecture and shared weights. Particularly, YTMT and DSRNet advocated dual-stream
feature interactions to facilitate the information flow between the streams and finally reconstruct the
decoupled layers. Though being effective, the interaction mechanisms used in these two methods do
NOT explicitly assess the correlation between dual-stream features during interactions, as illustrated
in Fig. 1 (a) and (b). More concretely, assuming we have dual-stream features at a certain stage in the
networks, previous interaction strategies directly pass the undesired information at the current stage
(may be required again at subsequent stages) from one branch to the other without checking if the
passed information is needed by the sibling. Actually, in intermediate blocks, some information is very
likely delivered back and forth, making the separation process ineffective and inefficient. In contrast,
the attention mechanisms in Transformers assign small weights to token pairs with low similarities,
which are further suppressed by the Softmax function. In other words, employing a cross-attention
mechanism seems to have the potential for improving dual-stream interaction. Furthermore, due to
the presence of correlated scenes in reflection superposition phenomena across entire images, the task
demands a keen perception of global information in both streams. Motivated by the above analysis,
we propose a strategy, called dual-attention interaction, consisting of a dual-stream self-attention and
a dual-stream cross-attention, as depicted in Fig. 1 (c), to extract both the intra-layer and inter-layer
feature correlations explicitly.

In addition, most of recent state-of-the-art methods [60, 48, 22, 23] adopted networks (e.g., Hyper-
Column [60, 48, 22] and Feature Pyramid [23]) pre-trained on high-semantic tasks to assist feature
extraction. In this work, we argue that Transformers, thanks to their generalization and selective at-
tention characteristics, should be more powerful to the target task. However, pre-trained Transformer
models typically have trouble in dense prediction due to the lack of inductive biases [8]. To make
Transformers suitable, we develop a Dual-Architecture Interactive Encoder (DAIE), which enables
the interaction between semantically rich features extracted by a pre-trained Transformer and local
dual-stream features extracted by a CNN. By this means, the Cross-Architecture Interactions (CAI)
can balance the global and local perspectives and combine high-semantic priors with the low-semantic
demands of the reflection separation.

In summary, our primary contributions are as follows:

• We propose a novel Dual-Attention Interaction (DAI) mechanism to energize Dual-Stream Inter-
active Transformers. DAI introduces the explicit correlation assessment within dual streams to
effectively address the challenge of reflection separation;
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• We customize a bridge, namely the Dual-Architecture Interactive Encoder (DAIE), to connect the
pre-trained Transformer model with the task of layer decomposition, which alleviates the inherent
ill-posedness of the problem;

• Through extensive experiments on multiple datasets, we demonstrate the efficacy of our design
with superior performance over other SOTA competitors, both quantitatively and qualitatively.
Moreover, the better generalizability compared to previous methods is also verified.

2 Related Work

Low-level Vision Transformers. Building upon the attention mechanism [3], Transformers were
initially developed by the community of natural language processing [41], and soon became popular
across various domains because of their remarkable modeling [2, 17], scaling [24, 56, 36], and trans-
ferring [10, 6, 4] abilities. Introduced by [12], Vision Transformers (ViTs) have shown advantages on
a large number of visual tasks [56, 34, 66, 57, 50, 8].

For low-level purposes, IPT [6] was developed to handle multiple restoration tasks with a shared
standard Transformer body, which required a large number of parameters for good performance
without suitable task-related priors. Swin Transformer [35] introduced the shifted window attention
mechanism, which reduced the computational cost of attention while incorporating inductive biases
for images, inspiring a series of subsequent works. SwinIR [33] equipped residual-in-residual
structures [46, 61] with the Swin Transformer block, exploring its capability in low-level vision
tasks. ELAN [59] performed multiple window attentions of varying sizes in parallel and fused them,
using grouped four-directional offset convolution layers for local feature extraction and cross-window
association. Chen et al. [7] introduced an overlapping attention mechanism in their HAT model to
establish cross-window connections and employed same-task pre-training for better performance.
Zhang et al. proposed ART [58], which utilized a sparse window attention mechanism akin to dilated
convolution, alternating it with window attention, thereby replacing the shifted window mechanism.
UFormer [47] embedded window attention modules into a U-shaped network, which captured cross-
window associations beyond the current scale. Moreover, Restormer [55] introduced a transposed
attention mechanism, resembling channel attention. While faster, this approach somewhat neglected
spatial correlations. Retinexformer [5] employed this design for low-light image enhancement. DAT
[9] alternated between window self-attention and window transposed self-attention to address spatial
correlation deficiencies. Overall, these methods mostly opt to validate their designs on tasks like
image super-resolution, which focus on reconstructing a single component, overlooking the intrinsic
advantages of attention mechanisms in component decomposition tasks.

Single Image Reflection Separation. Single image reflection separation, with looser data assump-
tions, relies more heavily on priors to alleviate its inherent ill-posedness. Traditional methods
developed priors like edge sparsity [28, 27], manual annotation [26], or relative smoothness [31],
some of which were further leveraged by deep learning methods. Although multiple-image solu-
tions [37, 1, 16, 39, 30, 18, 38, 51, 53, 19] have shown satisfactory performance facing weaker
ill-posedness, these methods typically rely on sequences of images captured with rotating polarizers
or moving cameras, which limits their applicability.

In deep learning methods, CEILNet [14] applied the relative smoothness assumption to data synthesis
and used an edge detection network to emphasize edge information. Zhang et al. [60] proposed
a gradient mutual exclusion loss to promote edge sparsity and introduced the HyperColumn and
perceptual loss to incorporate high-level semantics. ERRNet [48] aimed to expand the receptive field
and utilized non-aligned images for data augmentation. These methods employed end-to-end single-
branch networks for estimation, but the lack of interaction between layers led to inefficiency and untidy
separations. In another way, BDN [54] alternated between estimating transmission and reflection
layers, considering their mutual dependency. RAGNet [32] estimated reflection first and then used its
features to modulate the estimation of the transmission layer and mask. Dong et al. [11] emphasized
the importance of the reflection layer, using multi-scale Laplacian features with LSTM for iterative
estimation. RRW [25] utilized a cascaded reflection detector and remover and proposed a more
reasonable data acquisition scheme. Song et al. [40] proposed a robust SIRR model based on a multi-
scale Transformer architecture, but it only learned to restore the transmission layer, and the usage of
the Transformer was not well motivated. IBCLN [29] introduced a convolutional LSTM network,
using a dual-branch structure for reflection and transmission reconstruction but lacking interaction
between branches for cross-verifying the accuracy of decoupling. Hu and Guo proposed a dual-stream
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Figure 2: (a) The overall architecture of our proposed Dual-Stream Interactive Transformer, which
consists of a dual-architecture interactive encoder and a dual-stream interactive decoder, injecting
the global prior into local features and aggregating them in dual-stream from bottom to up. (b) A
visual illustration of our proposed dual-attention interactive block, which provides both intra-layer
self-attention and inter-layer cross-attention, capturing holistic feature correlations.

interactive reflection separation strategy [22], called YTMT, assessing information utility through
activation functions and exchanging low-value information, facilitating information retention and
efficient interaction in the high-dimensional feature space. Their subsequent DSRNet [23] used MuGI
for efficient interaction and introduced a non-linear residual component to estimate the overexposure
during the layer superimposition, achieving state-of-the-art performance. However, neither the
YTMT nor the MuGI mechanism explicitly assessed the correlation of exchanged information, which
can introduce errors and lower the decoupling efficiency. To further alleviate the ill-posedness of
the problem, a recent concurrent work [44] utilized wavelet priors and diffusion models to guide
frequency-domain-based reflection removal. The other work [64] used natural language prompts for
reflection separation, which, however, required accurate paired prompts, incurring additional costs.

3 Methodology

Our overall architecture is illustrated in Fig. 2 (a), which comprises a Dual-Architecture Interactive
Encoder (DAIE) and a Dual-Stream Interactive Decoder (DSID). The DAIE leverages both a pre-
trained Transformer (Global Prior Extractor, GPE) and a task-specific dual-stream CNN (Local Prior
Extractor, LPE), capturing global and local features through specialized extractors. The mixed global
information is then injected into the dual-stream local flows via Cross-Architecture Interactions (CAI),
ensuring comprehensive information utilization. Subsequently, the DSID separates and aggregates
the embeddings hierarchically through our newly developed Dual-Attention Interactive Block (DAIB,
illustrated in Fig. 2 (b)). These components are detailed in the following subsections.

3.1 Dual-Attention Interactive Block

As depicted in Fig. 2 (b), our proposed DAIB embraces a dual-stream design, taking both transmission
and reflection feature flows (FIN

T and FIN
R , respectively) as inputs. After that, a layer normalization and

two parallel attention mechanisms, namely dual-stream self-attention (DS-SA) and dual-stream cross-
attention (DS-CA) are applied to the feature flows, capturing both inter- and intra-layer correlations.
Subsequently, we derive the output feature flows FOT

T and FOT
R after passing the features through a

layer normalization and a feed-forward network in the form of the dual-stream locality-preserving
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block (DSLP Block). The detailed computation procedure is displayed in Alg. 1. We provide a
detailed explanation of the dual attention mechanism in the remainder of this subsection.

Efficient Dual-Stream Cross-Attention Mechanism. We present a simple yet effective cross-
attention mechanism for dual-stream Transformer models via an extension of the self-attention
mechanism. Given the feature streams of transmission layer FT ∈ RN×C and reflection layer
FR ∈ RN×C , we concatenate them along the token dimension to form the input matrix XCA ∈

R2N×C =

[
FT
FR

]
. We then compute the query QCA, key KCA, and value VCA matrices for cross-

attention by applying the linear transformations:

QCA = XCAWq, KCA = XCAWk, VCA = XCAWv, (2)

where Wq,Wk,Wv ∈ RC×D denote the weight matrices that project the input features from C-
dimensional channels into D-dimensional hidden representations. The cross-attention score matrix
ACA ∈ R2N×2N are computed as:

ACA = Softmax(QCAK⊤
CA) = Softmax(

[
FT
FR

]
WqW⊤

k

[
F⊤

T F⊤
R
]
)

= Softmax(

[
F⊤

T WqW⊤
k F⊤

T F⊤
T WqW⊤

k F⊤
R

F⊤
R WqW⊤

k F⊤
T F⊤

R WqW⊤
k F⊤

R

]
),

(3)

where the intra-layer terms FTWqW⊤
k F⊤

T and FRWqW⊤
k F⊤

R represent interactions within the trans-
mission stream FT and the reflection stream FR, respectively. The inter-layer terms FTWqW⊤

k F⊤
R

and FRWqW⊤
k F⊤

T indicate interactions between FT and FR. By denoting the Softmax function with
a scaling factor 1√

D
as S(·), the output matrix YCA is then calculated as:

YCA = ACAVCA =

[
S(FTWqW⊤

k F⊤
T )FTWv + S(FTWqW⊤

k F⊤
R )FRWv

S(FRWqW⊤
k F⊤

T )FTWv + S(FRWqW⊤
k F⊤

R )FRWv

]
. (4)

We further simplify the form of YCA by introducing G(Z1,Z2) = S(Z1WqWT
k Z⊤

2 )Z2Wv, where
Z1 ∈ RN×C and Z2 ∈ RN×C can be chosen between FT and FR, yielding the follows:

YCA =

[
G(FT,FT) + G(FT,FR)

G(FR,FT) + G(FR,FR)

]
=

[
FCA

T

FCA
R

]
. (5)

We finally obtain the output of the dual-stream cross-attention as FCA
T = G(FT,FT) + G(FT,FR)

and FCA
R = G(FR,FT) + G(FR,FR), which are the combined effects of intra-layer and inter-layer

interactions. Meanwhile, if we concatenate the dual-stream features along the batch dimension,
obtaining the input matrix for the dual-stream self-attention mechanism XSA ∈ R2×N×C , we can
further boost the parallelism of our model.

Dual-Attention Design. Based on the above analysis, we can define the following dual-attention
mechanism:{

YSA = DS-SA(QSA,KSA,VSA) = SoftMax(QSAK⊤
SA/

√
D + BSA)VSA,

YCA = DS-CA(QCA,KCA,VCA) = SoftMax(QCAK⊤
CA/

√
D + BCA)VCA,

(6)

where QSA, KSA, and VSA are derived as in the DS-CA. Note that, the number of tokens is doubled
in DS-CA compared to DS-SA. To reduce the computation burden, we employ a window-based
attention mechanism for our dual-attention design. In this way, QSA,KSA,VSA ∈ R2NT×NW×D,
QCA,KCA,VCA ∈ RNT×2NW×D, where NT denotes the total number of windows, NW stands for
the window size. BSA ∈ RNW×NW represents the relative position bias [35], which provides the
same bias values with respect to the same distance between two tokens in a window. It is obtained by
indexing a learnable lookup table BLUT

SA ∈ R(2
√
NW−1)×(2

√
NW−1) through the predefined relative

indexes USA ∈ RNW×NW . Each item of USA is a mapped distance of two locations: uij = t(pi−pj).
p is a 2-D point in a window, the coordinates of which fall between 0 and

√
NW − 1, and each

5



Figure 3: Visualization of extracted local priors, global priors, their cross-architecture-interacted
dual-stream features and features after the DAIBs of two reflection-superimposed inputs. All the
above features are from the second level of our DSIT model and are channel-wise averaged to display.

distinct pi − pj is mapped into a single index by t(·). For DS-CA, we propose the Layered Relative
Position Biases (LRPB), BCA ∈ R2NW×2NW , which are indexed from the extended lookup table
BLUT

CA ∈ R(2
√
NW−1)×(2

√
NW−1)×3 by the layered relative indexes UCA ∈ R2NW×2NW . Each

element is mapped by subtracting two 3-D points u′
ij = t′(vi − vj). v is a 3-D point in a layered

window, with an additional dimension representing to which layer the token belongs, and t′(·) maps
3-D locations into single indexes.

Dual-Stream Locality-Preserving Block. Since reflection separation is a dense prediction task, a
primary consideration during architecture design is to maintain the local information. Therefore,
we introduce the DSLP Block in our DSIT structure, which can be any convolutional dual-stream
network modules. To focus on the enhanced interaction capabilities achieved by our dual-attention
design, we avoid introducing additional novel local modules, opting instead to employ the MuGI
Block [23] as the implementation of the DSLP Block. This approach isolates the performance gains
attributed solely to the dual-attention mechanism, as evidenced in comparisons with models like
DSRNet. One could, of course, substitute our design with alternative specialized dual-stream modules,
potentially achieving even better model performance.

3.2 Dual-Architecture Interactive Encoder

As depicted in Fig. 2 (a), our proposed DAIE integrates both global and local prior extractors. The
single-stream global features modulate the dual-stream local features hierarchically through cross-
architecture interactions (CAI), which are implemented with our proposed dual-attention interactive
blocks. Formally, we have DAIB(FGP,FLP

T ) and DAIB(FGP,FLP
R ), where FGP and FLP

T ,FLP
R represent

global and local features respectively. FLP
T denotes the transmission information flow and FLP

R signifies
the reflection stream. In an effort to provide an intuitive understanding of our DAIE design, we
illustrate the feature visualization of DSIT in Fig. 3. As shown, the dual-stream local priors focus on
different components of the inputs but lack precise layer-specific attention. After being modulated by
the global priors FGP via our proposed CAI and aggregated with the lower stream, we obtain FCAI

T
and FCAI

R , which are significantly separated. Furthermore, the modulated dual-stream features are fed
into a group of DAIBs, resulting in feature separations FDAIB

T ,FDAIB
R of higher quality.

3.3 Loss Function

Pixel reconstruction loss. To compel the consistency of the restored layers T̂ and R̂ in the spatial
domain with their ground-truth scenes T and R and the layer superimposition modeling, we introduce
the following loss function:

Lpix := ∥T̂ − T∥22 + ∥R̂ − R∥22 + α∥I − (T̂ + R̂)− E(T̂, R̂)∥1, (7)

where E denotes a learnable term to constitute the reflection superposition. ∥ · ∥2 and ∥ · ∥1 represent
the ℓ2 and ℓ1 norms, respectively. α is a hyperparameter to balance the intra-layer and inter-layer
fidelity. By enforcing the reconstruction loss with a learnable residual term, the restored layers appear
to be cleaner and completed.
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Table 1: Quantitative results on four real-world testing datasets of SIRS models. The best results are
displayed in bold, while the second-best are underlined. † means data setting II is employed to train
the model. * represents additional prompts are introduced. △ reflects extra data pairs are involved.

Methods Real20 (20) Objects (200) Postcard (199) Wild (55) Average
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Zhang et al. [60] 22.55 0.788 22.68 0.879 16.81 0.797 21.52 0.832 20.08 0.835
BDN [54] 18.41 0.726 22.72 0.856 20.71 0.859 22.36 0.830 21.65 0.849

ERRNet [48] 22.89 0.803 24.87 0.896 22.04 0.876 24.25 0.853 23.53 0.879
IBCLN [29] 21.86 0.762 24.87 0.893 23.39 0.875 24.71 0.886 24.10 0.879

RAGNet [32] 22.95 0.793 26.15 0.903 23.67 0.879 25.53 0.880 24.90 0.886
DMGN [15] 20.71 0.770 24.98 0.899 22.92 0.877 23.81 0.835 23.80 0.877

Zheng et al. [63] 20.17 0.755 25.20 0.880 23.26 0.905 25.39 0.878 24.19 0.885
YTMT [22] 23.26 0.806 24.87 0.896 22.91 0.884 25.48 0.890 24.05 0.886

RobustSIRR [40] 23.30 0.827 24.90 0.917 19.91 0.868 23.67 0.884 22.59 0.889
DSRNet [23] 24.23 0.820 26.28 0.914 24.56 0.908 25.68 0.896 25.40 0.905

PromptRR [44] 24.11 0.813 24.17 0.859 23.03 0.895 26.43 0.930 23.95 0.880
Ours 25.06 0.836 26.81 0.919 25.63 0.924 27.06 0.910 26.27 0.917

Dong et al.† [11] 23.34 0.812 24.36 0.898 23.72 0.903 25.73 0.902 24.21 0.897
DSRNet† [23] 23.91 0.818 26.74 0.920 24.83 0.911 26.11 0.906 25.75 0.910
RRW†△ [65] 21.83 0.801 26.67 0.931 24.04 0.903 26.49 0.915 25.34 0.912

Zhong et al.†∗ [64] 24.05 0.824 26.51 0.927 25.02 0.915 26.23 0.925 25.75 0.917
Ours† 25.22 0.836 27.27 0.932 25.58 0.922 27.40 0.918 26.49 0.922

Table 2: Quantitative results on the “Nature” testings set SIRS methods trained under data setting II.
The best results are shown in bold, and the second-best are underlined.

Metrics ERRNet-F IBCLN YTMT Dong et al. DSRNet RRW Zhong et al. Ours
PSNR 22.18 23.57 23.85 23.45 25.22 26.04 23.87 26.77
SSIM 0.756 0.783 0.810 0.808 0.832 0.846 0.812 0.847

Gradient reconstruction loss. Considering the gradient independence, as a traditional prior in
blind-source decomposition, we simultaneously encourage the models to restore the ground-truth
gradient and penalize the intersected gradient as follows:

Lgrad :=∥∇T̂ −∇T∥1 + ∥∇R̂ −∇R∥1 +
1

N

N−1∑
n=0

β∥D(T̂↓n, R̂↓n)∥22,

D(T̂, R̂) := tanh
(
ξ1|∇T̂|

)
◦ tanh

(
ξ2|∇R̂|

)
,

(8)

where ∇ denotes the difference operator of images. T̂↓n, R̂↓n are 2n down-sampled version of T̂
and R̂. ξ1 and ξ2 are normalization factors. The exclusion term, introduced by [60], ensures the
multi-scale exclusion of the two layers in the gradient domain.

Feature reconstruction Loss. To promote the perceived quality of decoupled layers, we harness the
following feature reconstruction loss:

Lfea :=
∑
i

ωi∥ϕi(T̂)− ϕi(T)∥1, (9)

where ϕi(·) represents the intermediate feature of the pre-trained VGG-19 model, where i ∈
{2, 7, 12, 21, 30} tells the layer id. ωi balance the weights of hierarchies.

Total Loss. The full training objectives Ltotal is defined as follows:
Ltotal := λ1Lpix + λ2Lgrad + λ3Lfea, (10)

where λ1 = 1, λ2 = 1, and λ3 = 0.01 are coefficients for balancing different loss terms.

4 Experimental Validation

4.1 Implementation Details

Datasets. Our training datasets include both synthetic and real-world images. Following [23], we
design two data settings for fair comparison: I. 7,643 synthesized pairs randomly sampled from the
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Input Zhang et al. [60] ERRNet [48] IBCLN [29] YTMT [22]

Dong et al. [11] DSRNet [23] RRW [65] Ours GT

Figure 4: Visual comparison of transmission layer predictions between previous state-of-the-arts and
ours on samples from Real20 [60] and SIR2 datasets. Please note the areas in the boxes.

PASCAL VOC dataset [13] in each epoch and 90 real pairs from [60]. II. 200 extra real pairs from the
“Nature” dataset [29], and 13,700 synthesized pairs sampled from [60] instead. The training image
size is fixed as 384× 384. The window size of attention mechanisms, NW , is fixed to 12× 12, and
the number of windows, NT , varies depending on the spatial scale of the features.

Training Strategy. Our models are all implemented via the PyTorch framework and optimized with
Adam optimizer for 20 or 80 epochs based on different data settings. The learning rate is fixed as
10−4 with a batch size of 1 on a single RTX 3090 GPU. Given real-world data pairs are hard to
acquire, we additionally propose a data augmentation operation Reflection Mixup (RefMix) for the
training real pairs, formulated as Iaug = γI + (1− γ)T, where γ ∈ [0, 1] is uniformly sampled.

4.2 Performance Evaluation

Quantitative comparison. As shown in Tabs. 1 and 2, we make a comparison between ours and
state-of-the-art methods on five real-world datasets, including Real20 [60], Nature20 [29] and three
subsets of the SIR2 Dataset [42]. It is noteworthy that our models trained on both data settings
show superior performance over the alternatives on most testing sets, including those that involve
extra real-world data [65] and language prompts [64]. The superiority is attributed not only to
the improved generalizability afforded by the hybrid Transformer architecture but also to the dual-
attention interactive design that directly assesses intra-layer and inter-layer correlations, which shows
impressive efficiency on SIRS tasks and has a high potential for other decomposition tasks.

Qualitative comparison. To evaluate our proposed model aesthetically, we first present a visual
comparison of estimated transmission layers in Fig. 4. The two superimposed input images are
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Input IBCLN [29] YTMT [22] Dong et al. [11] DSRNet [23] Ours

Figure 5: Visual comparison of transmission predictions between previous state-of-the-arts and ours
in real-world scenarios additionally captured in this paper. The broad advantages demonstrated by
our method across these diverse conditions highlight its superior generalization capability.

sampled from Real20 and SIR2 datasets, respectively. The two cases are representative since the
first case is captured outdoors and contains both specular and weak reflections, while the second
one is taken indoors with a relatively uniform reflection layer, which is highly entangled with the
transmission structure. As can be seen, for the first case, ERRNet, YTMT, and Dong et al. cannot
recognize the reflection regions successfully. Zhang et al. removes the reflections at the cost of
introducing color bias and artifacts. IBCLN, DSRNet, and RRW separate either the specular or the
weak reflection parts, lacking the ability to correlate the reflection components of different intensities.
As for the second one, most alternatives fail to separate the majority of the reflection layer. Although
Dong et al. shows an improvement over previous methods, it still leaves blurry reflection components
in its result transmission layer. With a better layer modeling capability, our models conquer such a
problem, providing strikingly clearer reconstructions.

Additionally, we specifically captured several in-the-wild test cases, as illustrated in Fig. 5. Unlike
standard benchmarks that often incorporate artificial glass plates, these cases utilize real-world
reflective surfaces, including reflections from accumulated water—conditions entirely absent from
the training set. The superior performance of our approach, in comparison to previous state-of-
the-art methods, underscores its robust generalization capacity and practical applicability. We
further compare the reflection predictions between dual-stream reflection separation models in Fig. 6.
Notably, our DSIT model yields significantly more plausible results, exhibiting superior content
fidelity and color accuracy, attributed to the enhanced information selection capabilities of our design.

4.3 Ablation Study

Model selection for GPE. Generally speaking, the design of our DAIE allows different choices
of global prior extractors, which aim to provide semantic priors and/or non-local information. To
elaborate on the efficacy of different GPE models, we compare the settings of using ResNet101
[21], FocalNet-L [52], PVTv2-b4 [45], and Swin-L [35] models, which are all pre-trained on image
classification tasks and finetuned on object detection tasks. As shown in Tab. 3, the ResNet101
as a CNN backbone provides limited global priors and poorly generalizes to the Real20 dataset.
PVTv2 comprises few inductive biases, thus exhibiting inferior performance to the FocalNet and
Swin Transformer, which preserve local dependency.

Design of CAI operation. Our cross-architecture interaction mechanism is designed to exploit useful
information from the priors extracted by GPE and LPE, and thus, various feature fusion operations
can be taken. Here, we build a baseline “Add” that simply sums the information flow provided by
the different prior extractors. Further, we propose two variants based on Cross Attention design
(“CrossAttn”) and DAIB (“DAIB”) mechanisms, respectively. As Tab. 3 shown, cross-attention is not
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Figure 6: Visual comparison of reflection layer predictions between previous state-of-the-arts and
ours on the SIR2 dataset. Our method shows significant superiority over previous dual-stream arts.

capable of fusion cross-architecture information, leading to worse performance than simple addition,
while our proposed DAIB bridges the local and global priors, obtaining superior results.

Table 3: Ablation study on different factors of our design.

Factors Instances Real20 (20) SIR2 (454)
PSNR SSIM PSNR SSIM

GPE

ResNet101 21.59 0.777 24.42 0.886
PVTv2-b4 23.16 0.793 24.44 0.890
FocalNet-L 24.13 0.824 25.52 0.910

Swin-L 25.06 0.836 26.32 0.920

CAI
Add 24.62 0.825 25.79 0.917

CrossAttn 24.50 0.819 24.76 0.896
DAIB 25.06 0.836 26.32 0.920

DAIB

MLP FFN 23.65 0.817 25.38 0.909
w/o DS-CA 24.48 0.823 25.89 0.919
w/o DS-SA 24.47 0.827 26.12 0.920

DAIB 25.06 0.836 26.32 0.920

LRPB w/o LRPB 24.93 0.821 25.99 0.917
w/ LRPB 25.06 0.836 26.32 0.920

RefMix w/o RefMix 24.72 0.823 26.27 0.915
w/ RefMix 25.06 0.836 26.32 0.920

Design of DAIB module. To demon-
strate the effectiveness of our DAIB de-
sign, we constructed three baseline mod-
els. The first baseline, “MLP FFN”, re-
places our DSLP Block with a standard
MLP module. The second, “w/o DS-
CA”, omits the DS-CA mechanism, and
the third, “w/o DS-SA”, removes the
DS-SA mechanism. As shown in Tab. 3,
model performance degrades when sub-
stituting DSLP Block with MLP, primar-
ily due to the reduced inductive biases
and feature interactions. Moreover, the
removal of either DS-CA or DS-SA re-
sults in inferior performance, particu-
larly for DS-CA. This highlights the crit-
ical role of our proposed dual-attention
interactive mechanism.

Design of LRPB mechanism. LRPB
provides an initial bias to each attention
point according to the spatial and layer locations, injecting a layer-aware prior into the attention
mechanism. Through the ablation study of whether or not to equip with LRPB shown in Tab. 3
“LRPB”, we show its merit in handling the layer decomposition problem.

The usage of RefMix. To evaluate the effectiveness of our proposed RefMix, a comparison of
employing it or not is made in Tab. 3 “RefMix”, showing that it aids the reflection separation.

Due to the page limitation, more visual analyses are organized in the appendix.

5 Concluding Remarks
In this study, a dual-stream interactive Transformer has been designed to address the challenge of
single image reflection separation. To harness high-quality priors from pre-trained Transformer
models, we developed a dual-architecture interactive encoder, which can effectively fuse multi-source
information with adaptive emphases. Additionally, we introduced a novel dual-attention interactive
block that utilizes both an effective dual-stream self-attention mechanism and a layer-aware dual-
stream cross-attention module to separate the entangled features. Comprehensive experiments
together with ablations have been conducted to verify the advances of our method. Looking forward,
several interesting points deserve future exploration. For instance, larger vision foundation models
can provide more substantial priors for low-level vision tasks. A relative position bias design tailored
for a specific vision task will be also beneficial. Furthermore, our RefMix technique is likely to
extend its benefits to other data-hungry visual tasks. These considerations may inspire future research
on low-level Transformer designs.
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A Appendix

A.1 Algorithm for Dual-Attention Interactive Block

We offer the overall procedure of the DAIB in Alg. 1, corresponding to the description in Sec. 3.1.

A.2 Visual Analysis of Ablation Study

As shown in Fig. 7, we provide visual results of our ablation study. Among them, “GPE-ResNet101”,
“GPE-PVTv2-b4”, and “GPE-FocalNet-L” show the effects of selecting different GPE models.
ResNet101 provides limited global priors, thus exhibiting trivial performance. DSIT with PVTv2-
b4 tends to concentrate on the wrong components during the layer decomposition due to a lack
of inductive biases, producing unpleasant results. FocalNet-L replaces explicit query-key-value
interactions with a focal modulation module. Although it shows merits over the former two settings,
the lack of explicit information assessment limits its usability in our framework. The settings of “CAI-
Add” and “CAI-CrossAttn” fail to effectively integrate global and local priors, resulting in inferior
performance and misguided attention. “DAIB-MLP FFN” replaces the DSLP Block with MLP FFN,
which also cannot separate the reflection successfully due to insufficient inductive biases. Moreover,
we can observe that removing either attention mechanism in our dual-attention interaction design
leads to appreciable performance degradation. Layered Relative Position Bias (LRPB) provides
layer-aware attention initialization, while “w/p LRPB” loses the ability to separate reflections in
some areas. As shown by “w/o RefMix”, specific reflection patterns can be hard to separate after
eliminating the reflection mixup augmentation.

A.3 Visual Illustration of the RefMix

We visualize the results of our Reflection Mixup (RefMix) augmentation in Fig. 8. The hyperparameter
γ controls the blending rate of I and T. Since the image pairs are aligned, adjusting their blending
rate is actually tuning the intensity of the reflection layer. Some regions covered by strong reflections
can thereby be learned reasonably.

A.4 More Visual Comparisons

We provide more visual comparisons of estimated transmission and reflection layers in Figs. 9-12.
The overall superiority shown by our models demonstrates the effectiveness of our DSIT design.

Note that the case is sampled from the Real20 dataset in Fig. 12, and no ground-truth reflection layer
is provided with the dataset, so we put the result of the input image subtracted by the ground-truth
transmission layer as the reference. It is clear that the hollows should not appear in the real reflection
scene. Our models present a potential ability of inpainting these areas with the aid of global priors.

A.5 Limitations

Previous SIRS methods typically fail to deal with the regions dominated by reflections, which show
negligible defocus effects, as shown in Fig. 13. Although our model takes a significant step forward
to solve the hard case beyond the former methods, it still leaves some visible reflections due to the
deviation of the case from the relative smoothness assumption. We can expect that it will be better
handled when involving more real-world pairs.
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Algorithm 1 The computational process for Dual-Attention Interactive Block.

Require: Dual-stream features FIN
T and FIN

R .
Ensure: Interacted dual-stream features FOT

T and FOT
R .

1: LayerNorm:
2: FLN

T = LN(FIN
T ), FLN

R = LN(FIN
R )

3: Combine tokens both inter/intra-window-wise:
4: XLN

0 = Concat([FLN
T ,FLN

R ], dim=0)
5: XLN

1 = Concat([FLN
T ,FLN

R ], dim=1)
6: Apply DS-SA and DS-CA, respectively:
7: XSA

0 = DS_SA(XLN
0 )

8: XCA
1 = DS_CA(XLN

1 )

9: Split tokens back to dual streams:
10: FSA

T ,FSA
R = Split(XSA

0 , dim=0)
11: FCA

T ,FCA
R = Split(XCA

1 , dim=1)
12: Combine the dual-attention results with skip connections:
13: FDA

T = FIN
T + FSA

T + FCA
T

14: FDA
R = FIN

R + FSA
R + FCA

R

15: Apply the DSLP Block as FFN:
16: FFFN

T ,FFFN
R = DSLP_Block(LN(FDA

T ),LN(FDA
R ))

17: Derive the outputs FOT
T ,FOT

R :
18: FOT

T = FDA
T + FFFN

T

19: FOT
R = FDA

R + FFFN
R

Figure 7: Visual results of DSIT variants shown in Tab. 3. The case is sampled from the SIR2 dataset.
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Figure 8: The RefMix results according to different γs, which enrich the real pairs during training.

Figure 9: Visual comparison of transmission layer predictions between previous arts and ours. The
case is sampled from the SIR2 dataset.
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Figure 10: Visual comparison of transmission layer predictions between previous arts and ours. The
case is sampled from the SIR2 dataset.

Figure 11: Visual comparison of transmission layer predictions between previous arts and ours. The
case is sampled from the SIR2 dataset.
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Figure 12: Visual comparison of reflection layer predictions between previous arts and ours.

Figure 13: Our limitation illustration, when solving a hard case, sampled from the SIR2 dataset.
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code has been provided in the supplementary material and will be made
open-source.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
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