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ABSTRACT

In complex, dynamic scenarios, intelligent agents often proceed with overconfi-
dence, repeating errors or switching strategies inconsistently—this leads to hallu-
cinations, particularly in multi-turn or tool-augmented interactions. Can we equip
intelligent agents with human-like cognitive control: to reason adaptively, choose
suitable thinking styles, and self-correct in complex, multi-turn tasks? Inspired by
human meta-reasoning, we introduce CognitionLight a cognitively inspired con-
trol plugin that regulates agent behavior via a symbolic “traffic-light” mechanism.
At each reasoning step, CognitionLight computes a multi-dimensional confidence
vector and issues one of three symbolic control signals: Continue (green), Switch
Persona (yellow), or Rollback (red), dynamically guiding how the agent proceeds.
To operationalize the symbolic signals, CognitionLight incorporates a structured
Persona Switching Module. Upon receiving a control signal, the system se-
lects from five predefined cognitive styles: Direct, Reflective, Conservative, Tool-
Seeking, and Contextual, each implemented via prompt-level behavioral modula-
tion. The choice is guided by a fused representation of task-level uncertainty, feed-
back consistency, and historical persona performance, enabling adaptive reasoning
modulation. Through extensive experiments on multi-turn reasoning benchmarks,
we demonstrate that CognitionLight enhances response consistency, reduces hal-
lucinations, and enables dynamic persona adaptation. Our results validate it as a
promising framework for integrating human-like meta-reasoning into large-scale
agent systems, offering both stability and flexibility in diverse reasoning environ-
ments.

1 INTRODUCTION

Imagine you are solving a riddle, engaging in a technical dialogue, or drafting an analytical report.
At some point, you hesitate—“Does this make sense?” You pause, reassess your reasoning, or shift
to a different strategy: moving from fast intuition to deliberate analysis, or consulting an external
reference. Such moments of self-correction show that human cognition inherently involves regu-
lating the reasoning process: monitoring progress, adapting thinking styles, and revising direction
when necessary.

This internal flexibility, often referred to as meta-reasoning or cognitive control, allows humans to
maintain coherence, avoid cascading errors, and remain adaptive across evolving tasks Russell &
Wefald (1991); Miller & Cohen (2001) However, as illustrated in Figure 1, most existing AI agents
lack such regulatory mechanisms. In single-turn settings, they often produce incorrect outputs with
misplaced confidence, without revisiting or correcting their answers. In multi-turn interactions, they
frequently lose track of prior context, yielding responses that contradict earlier information. These
failures stem not from local errors, but may from the absence of overarching reasoning control—no
mechanism to monitor, revise, or adapt. As a result, AI agents exhibit hallucinations, unstable
behavior, and limited robustness across a broad spectrum of reasoning scenarios, including multi-
step tasks, tool-augmented decision-making, and multi-modal contexts Yao et al. (2022b); Shinn
et al. (2023); Mialon & et al. (2023); Zhou & et al. (2023).
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Figure 1: Illustration of CognitionLight in a single and multi-turn user-agent interaction. A
vanilla agent fails to adjust reasoning style across user turns, giving generic responses (red ×). Our
CognitionLight agent dynamically adapts reasoning personas and gets the right answers.

Recent advances have introduced heuristic or feedback-based mechanisms to support step-wise rea-
soning and error recovery. Chain-of-thought prompting Wei et al. (2022) improves reasoning via
intermediate verbalization; ReAct Yao et al. (2022b) integrates tool use with thought processes;
Reflexion Shinn et al. (2023) adds self-evaluation and retry loops. RR-MP He et al. (2024) com-
bines reactive and reflective pathways for greater robustness. Toolformer Schick et al. (2023) for
failure-aware action revision using tool outcomes and Critic-CoT ? to frame reasoning as iterative
critique and re-decision. Voyager Xu et al. (2023) and CAMEL Liu et al. (2023) develop embodied
agents that refine actions over long horizons with minimal supervision. Despite their effectiveness,
these approaches lack a structured framework for regulating behavior holistically. Reasoning is not
treated as a controlled process where agents can explicitly decide at each step, whether to continue,
revise, or adapt based on internal and external feedback. This raises a fundamental question: Can
we equip intelligent agents with human-like cognitive control, enabling them to reason adaptively,
select appropriate reasoning styles, and self-correct across complex, multi-turn tasks with evolving
demands?

We address this challenge by decomposing cognitive control into three tightly coupled capabilities:
(1) how to assess the current reasoning status? (First) (2) how to adapt the strategy accordingly?
(Second) and (3) how to regulate the process over time to ensure coherence and flexibility? (Third)
Our proposed framework, CognitionLight, unifies these capabilities into a step-wise control ar-
chitecture, inspired by the metaphor of a traffic signal: green to proceed, yellow to adapt, red to
revise.

First, to assess reasoning status, CognitionLight introduces a multi-signal sensing mechanism that
monitors both internal confidence and external feedback. It computes a confidence vector αt based
on model-internal cues such as uncertainty, multimodal alignment, and tool feedback. This vector
is then fused into a scalar confidence score γt, alongside a binary verification signal δt. These two
signals jointly determine whether the current reasoning path is stable, risky, or failing. Second, when
uncertainty is detected, the agent adapts its reasoning strategy through persona switching. It selects
from a predefined set of reasoning styles, including Direct, Reflective, and Tool-Seeking, depending
on task demands and signal feedback. This mechanism enables dynamic behavioral modulation
while maintaining overall coherence in reasoning. Third, a symbolic controller integrates the sensing
and adaptation modules to issue step-wise reasoning decisions. A high confidence score leads to a
Continue signal; moderate uncertainty prompts a Switch signal; and low confidence combined with
failure results in a Rollback decision. These symbolic signals constitute the core control mechanism
of CognitionLight, ensuring stable, adaptive, and self-correcting reasoning across complex multi-
turn tasks.

CognitionLight offers a general framework for agent reasoning control by aligning three core com-
ponents: signal computation, persona adaptation, and step-wise decision control. These compo-
nents are unified under a symbolic cognitive signaling metaphor, which guides the agent’s reasoning
through interpretable control signals. Through this integration, CognitionLight emulates the flexible
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Figure 2: Overview of the CognitionLight agent workflow for step-by-step multimodal rea-
soning. The user provides a multi-turn instruction (top), prompting the agent to initiate a controlled
reasoning process. The left panel outlines the core workflow steps. The center highlights the Cog-
nitionLight module, consisting of three core components: (1) Persona Selector assigns a persona;
(2) Signal Estimator evaluates reasoning status; and (3) Policy Controller issues symbolic decisions.
These decisions guide behavior across perception, reasoning, and execution, enabling interpretable,
feedback-driven control.

and self-regulatory mechanisms that characterize human intelligent behavior. Our contributions are
as follows:

• We propose a symbolic control mechanism that translates internal confidence and external
feedback into three discrete traffic-light signals: Continue, Switch, and Rollback. These
signals provide transparent and fine-grained control over the agent’s reasoning process.

• We design a dynamic persona-switching strategy that enables agents to choose among five
distinct reasoning styles. The strategy adapts personas in real time based on control signals,
improving robustness, behavioral flexibility, and error correction in multi-turn tasks.

• We develop a lightweight and general-purpose controller that integrates seamlessly with
a wide range of reasoning agents. Experiments on Game24, ALFWorld, and WebShop
show consistent improvements in long-horizon task success rates, more effective rollback
recovery, and stable persona-switching behavior, all with minimal computational overhead.

2 COGNITIONLIGHT: A FRAMEWORK FOR SYMBOLIC COGNITIVE CONTROL

As illustrated in Figure 2, CognitionLight serves as a lightweight control layer atop the base agent,
interfacing with perception, planning, and execution. It introduces five task-aware personas and a
symbolic traffic-light policy to guide step-by-step reasoning. Rather than altering model weights, it
supervises the reasoning trajectory—detecting uncertainty, switching strategy, or rolling back when
necessary. This supervision is realized through three interdependent modules (Figure 3): the Signal
Estimator computes behavioral signals from model outputs; the Persona Selector adapts the rea-
soning mode via prompt modulation; and the Policy Controller maps internal signals to symbolic
decisions. Together, they form an interpretable control loop that enables agents to reason accurately,
responsively and reflectively.
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Figure 3: Modular Architecture of CognitionLight.

Table 1: Symbolic control mapping in COGNITIONLIGHT. Each reasoning step is guided by a
symbolic signal derived from the scalar confidence γt and binary correctness flag δt. Depending on
this combination, the agent executes one of three actions: Continue, Rollback, or Switch Persona.
This structured decision space enables dynamic and interpretable adaptation across multi-turn tasks.

Symbol Condition (γt, δt) Control Decision Action Type Persona Behavior

Green γt ≥ 0.75, δt = 1 Continue with current persona Continue No change (retain current)
Red γt ≥ 0.75, δt = 0 Rollback with current persona Rollback No change (retry current)

Yellow 0.4 ≤ γt < 0.75, δt = 1 Switch persona and retry Soft Switch Change to alternate style
Red 0.4 ≤ γt < 0.75, δt = 0 Rollback and switch persona Full Switch Abandon current and switch

Yellow γt < 0.4, δt = 1 Cautiously switch persona Soft Switch Conservative transition
Red γt < 0.4, δt = 0 Full rollback and persona switch Full Switch Reset reasoning with new persona

2.1 SIGNAL ESTIMATOR: HOW TO JUDGE THE REASONING STATUS?

At the core of CognitionLight lies a symbolic control mechanism that enables agents to regulate
reasoning progress with structured feedback. Inspired by human meta-cognition, the agent contin-
uously evaluates its own behavior—asking: Should I proceed, rethink, or rollback? This is opera-
tionalized via three symbolic control signals: green, yellow, and red. Each step t produces two inter-
nal judgments: a scalar confidence score γt ∈ [0, 1] and a binary correctness flag δt ∈ {0, 1}. The
former captures uncertainty from internal signals, while the latter reflects outcome-based success
(e.g., reaching a goal state or obtaining external verification). Their joint configuration determines
the symbolic action, as summarized in Table 1.

Behavioral Signal Vector α⃗t. To assess the agent’s internal reasoning dynamics, CognitionLight
computes a five-dimensional behavioral signal vector α⃗t = [α

(1)
t , . . . , α

(5)
t ], where each component

reflects a distinct reasoning property:

• Confidence Sharpness (αentropy
t ): Measures how peaked or uncertain the model’s output

distribution is, serving as a proxy for generation confidence.

• Stability Across Samples (αconsistency
t ): Captures whether multiple outputs from the same

prompt yield similar responses, indicating deterministic reasoning or behavioral drift.

• Cross-Modal Alignment (αclip
t ): Reflects the semantic consistency between generated text

and visual input, applicable in multimodal scenarios.

• Tool Interaction Feedback (αtool
t ): Encodes whether external tools (e.g., calculator, API)

are invoked successfully, offering task-dependent evidence for correctness.

• Historical Persona Reliability (αprior
t ): Tracks the recent success rate of the currently

active persona, allowing the system to estimate prior reliability in similar contexts.
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Table 2: CognitionLight personas with their behavioral intent, prompting strategy, and initialization
triggers.

Persona Behavior Style Prompt Guide Initialization Trigger (Keyword Pattern)

DIRECT Fast, intuitive response Answer directly and concisely. Simple prompt, e.g., “translate”, “paraphrase”
REFLECTIVE Step-by-step reasoning Think step-by-step before answering. “explain”, “why”, “should I. . . ”
CONSERVATIVE Cautious clarification Ask clarifying questions if unsure. “are you sure”, “can you explain”
TOOL-SEEKING Verification via tools Use tools if necessary to verify. “search”, “run Python”, “look at chart”
CONTEXTUAL Context-sensitive follow-up Use prior turns in this conversation. “then”, “what about”, continuation

These features are normalized and fused via a learnable aggregation function:

γt = fθ(α⃗t) (1)

Together, the triplet (α⃗t, γt, δt) serves as a symbolic diagnostic interface, enabling interpretable and
adaptive control at each reasoning step.

2.2 PERSONA SELECTOR: HOW TO ADAPT THE REASONING BEHAVIOR?

To robustly support multi-turn reasoning, COGNITIONLIGHT equips the base agent with a set of
interpretable reasoning personas and dynamically switches among them based on symbolic signals.
Each persona reflects a distinct cognitive strategy, realized via prompt-level control, and is selected
or switched in response to evolving confidence and feedback cues.

Reasoning Personas and Prompt Mapping. The persona set P comprises five predefined strate-
gies—DIRECT, REFLECTIVE, CONSERVATIVE, TOOL-SEEKING, and CONTEXTUAL—each paired
with a specific behavioral prior and initialization rule. Table 2 summarizes both their behavior styles
and trigger patterns used for initial assignment based on the user prompt.

Signal-Guided Persona Switching. During reasoning, COGNITIONLIGHT monitors the agent’s
internal confidence γt and external feedback δt, mapping them into discrete control signals
(green/yellow/red). Persona switching is triggered in yellow or red states—when confidence is low
or the prior step fails validation. These symbolic signals guide whether to retry reasoning with a
different persona. The persona selection policy is formalized as:

πswitch(t) = argmax
p∈P

Φ(p | personat, γt, δt, α⃗t) (2)

where Φ(·) scores the utility of switching to persona p based on: (1) Prior effectiveness
αprior
t under similar tasks; (2) Current signals (γt, δt); (3) Failure mode alignment (e.g., DI-

RECT→REFLECTIVE).

Multi-Turn Adaptation. To avoid repetitive failures, COGNITIONLIGHT tracks each persona’s
performance over time and updates its prior utility αprior. Personas that repeatedly fail are down-
weighted, encouraging convergence to more effective reasoning modes. This dynamic adaptation
enables the agent to refine its behavior style in long-horizon tasks. Figure 4 visualizes this evolving
persona trajectory.

2.3 STEPWISE POLICY CONTROLLER: HOW TO MAINTAIN COHERENT REASONING PATHS?

While symbolic signals offer per-step feedback, long-horizon reasoning demands trajectory-level
control. CognitionLight introduces a structured controller to regulate how signals accumulate, how
personas evolve, and how rollback maintains semantic coherence.

Multi-Turn Control Loop. At each step t, the controller performs:

1. Signal Computation: α⃗t → γt, with correctness flag δt;
2. Symbol Assignment: (γt, δt) → st ∈ {GREEN, YELLOW, RED};
3. Policy Decision: Continue, switch persona, or rollback;
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Figure 4: Gamma-Control Timeline with Persona Switching. A 60-step reasoning trajectory
showing the confidence curve (γt, blue line), control decisions: Continue (green dots), Rollback (red
crosses), and Switch Persona (orange triangles), and active personas (top color bar). Background
colors denote signal zones: red (γt < 0.4), yellow (0.4 ≤ γt < 0.75), and green (γt ≥ 0.75).
Dashed lines indicate persona switching points. For Rollback+Switch cases, control markers are
chronologically placed across consecutive steps.

Table 3: Overall Performance on Three Tasks and LLM Backbones. Metrics include Game24
Success Rate (G24 SR), ALFWorld Success Rate (ALF SR), WebShop Reward and SR (WS R / WS
SR), and averaged success rate across tasks (Avg SR). Best results in bold, second-best underlined.

Method LLaMA-3.1-8B-Instruct GLM4-9B-Chat Qwen2.5-14B-Instruct
G24 SR ALF SR WS R WS SR Avg SR G24 SR ALF SR WS R WS SR Avg SR G24 SR ALF SR WS R WS SR Avg SR

Act-only 0.0 36.4 27.9 58.9 21.4 0.2 75.3 23.9 66.7 33.1 3.7 76.3 25.0 42.0 35.0
CoT 0.6 34.0 28.8 51.0 21.1 0.0 73.3 36.0 60.4 36.4 4.3 83.3 26.6 57.9 38.1
ReAct 0.5 25.9 27.2 54.3 17.9 0.5 78.9 23.8 67.2 34.4 7.7 83.0 29.9 65.2 39.2
Reflexion 7.4 47.2 33.9 64.8 29.5 8.4 77.2 36.5 68.0 40.7 15.1 86.2 42.0 72.8 47.8
ReAct + Reflexion 9.2 28.8 34.1 51.9 24.0 6.5 89.4 29.2 66.5 41.7 19.3 93.5 29.9 49.0 47.6
GA-Rollback 6.3 39.0 39.2 71.3 28.2 7.2 73.9 34.1 68.8 38.4 17.3 88.2 39.3 67.1 48.2
C-Light-Rule 8.1 31.6 29.3 58.7 23.0 8.9 82.5 21.4 67.8 37.7 17.2 85.8 36.8 63.3 46.6
C-Light-Learn 9.7 49.8 42.2 70.2 33.9 11.3 88.4 44.6 71.7 48.1 22.7 95.4 47.1 70.1 55.1

4. Memory Update: Append (xt, at, st, pt) to H.

The memory buffer H supports both fine-grained control and global trajectory shaping.

Cumulative Signal Integration. Instead of treating γt in isolation, we compute moving trends:

γ̄t =
1

w

t∑
i=t−w+1

γi, δ̄t =
1

w

t∑
i=t−w+1

δi (3)

These trends modulate thresholds and trigger persona re-evaluation when persistent uncertainty
arises.

Semantic Rollback Protocol. To recover from faulty turns while preserving coherence, rollback
follows three constraints:

• Trusted History: Retain only steps with δi = 1;

• Persona Compatibility: Ensure new persona aligns with verified context;

• Prompt Regeneration: Resume from last valid xi with updated persona prompt, guided
by H≤i.

This guarantees correction without disorientation, enabling cognitively traceable multi-turn reason-
ing.
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Table 4: Ablation Study on CognitionLight Variants (Qwen-2.5-14B-Instruct). Metrics: Success
Rate (SR↑).

Variant Game24 SR ALFWorld SR WebShop SR Avg SR
Full (C-Light-Learn) 22.7 95.4 47.1 55.1
Rule (C-Light-Rule, no training) 17.2 85.8 36.8 46.6
No Rollback 13.4 84.2 34.0 43.8
No Persona Switching 8.9 78.5 26.2 37.9

Table 5: Case Study: Step-wise Control Behavior in Game of 24. At each reasoning step t, the
agent processes user input and determines a symbolic control signal based on γt (confidence) and
δt (correctness). The signal dictates whether to continue, rollback, or switch persona. The agent
transitions across five personas to adapt its reasoning strategy.

Step t Input Summary Persona γt δt Signal Action

1 Start: “24 Game task” Direct 0.92 1 Green Continue
2 “Use 3, 8, and 2” Direct 0.41 0 Yellow Switch Persona
3 “Can you retry another equation?” Reflective 0.65 0 Yellow Switch Persona
4 “Try evaluating multiple paths” Tool-Seeking 0.81 1 Green Continue
5 “I still don’t see 24” Tool-Seeking 0.27 0 Red Rollback
6 “Try again, new plan?” Conservative 0.69 1 Green Continue
7 “Final answer?” Contextual 0.87 1 Green Continue

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Benchmarks and Metrics. We evaluate CognitionLight on three representative benchmarks that
span symbolic reasoning, embodied planning, and tool-augmented decision-making: (1) Game24,
the classic 24 Game arithmetic reasoning puzzle as included in prior puzzle-reasoning suites Chen
et al. (2025), which requires arithmetic reasoning using symbolic expressions; (2) ALFWorld Shrid-
har et al. (2021), a text-based environment for multi-step embodied planning; and (3) WebShop Yao
et al. (2022a), a product search task involving external tool usage. We report task-specific metrics:
binary Success Rate (SR) for Game24 and ALFWorld, and both SR and cumulative Reward for
WebShop. All experiments are conducted on three widely-used instruction-tuned models: LLaMA-
3.1-8B-Instruct, GLM4-9B-Chat, and Qwen2.5-14B-Instruct.

Baselines and Control Variants. We compare CognitionLight with diverse baselines: (1) Act-
only: direct decoding without reasoning; (2) CoT Wei et al. (2022): chain-of-thought prompting;
(3) ReAct Yao et al. (2023): interleaved reasoning and action; (4) Reflexion Shinn et al. (2023):
self-reflective verbal reinforcement for failure-aware correction; (5) ReAct+Reflexion; and (6) GA-
Rollback Li et al. (2025): reward-guided rollback strategy. As shown in Table 6, to facilitate flexible
control over reasoning behavior, CognitionLight introduces two symbolic controller variants: C-
Light-Rule and C-Light-Learn.

Behavioral Signals and Fusion. At each reasoning step t, CognitionLight computes a behavioral
signal vector αt = [αentropy, αconsistency, αclip, αtool, αprior] ∈ R5, encoding confidence and reliability:
(1) αentropy: normalized inverse token entropy; (2) αconsistency: exact-match rate across k = 4 persona
resamples; (3) αclip: normalized CLIP similarity between prompt and image (ViT-B/32); (4) αtool:
external tool outcome (1 = success, 0.5 = not used, 0 = failure); (5) αprior: recent success rate of the
current persona over the past m = 20 steps. These signals are fused into a confidence score γt that
drives symbolic decisions.

Control Settings and Efficiency. All runs apply consistent symbolic strategies: (1) five predefined
personas with round-robin switching and 2-step lockout; (2) rollback capped at 6 symbolic errors
per episode (red lights); and (3) response filtering based on a minimum output confidence threshold

7
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Table 6: Design Comparison of CognitionLight Controllers. C-Light-Rule is a zero-shot sym-
bolic controller using rule-based fusion, while C-Light-Learn is a lightweight MLP-based controller
trained on labeled trajectories.

Component C-Light-Rule (Zero-Shot) C-Light-Learn (Trained)

α Signals αtool, αprob, αself, 1−αentropy, αhist Identical signals
Fusion Function (γ) 0.30αtool + 0.25αprob + 0.15αself +

0.15(1−αentropy) + 0.15αhist

σ(W2 · ReLU(W1α+ b1) + b2), 113 params

Thresholds τgreen=0.75, τyellow=0.40 τgreen= P90, τyellow= P50 (val grid)
Actions γ ≥ τgreen: Continue; τyellow ≤ γ < τgreen:

Switch; else Rollback
Same three-color logic

Persona Policy Round-robin, switch lock = 2 turns Same (unchanged)
Assistant Filter Discard if prob-mean ¡ 0.93 Same
Wait-Info Threshold k = 6 (embodied envs) Same
Rollback Cap ≤ 6 red lights per episode Same
Training Data None (zero-shot) ∼1k trajectories (success ≤ 3 steps)
Training Cost Zero (rule-based) 20 epochs, BCE loss, Adam 1e-3
Deploy Cost None (static fusion) One MLP forward (∼5µs/step), LLM frozen

Figure 5: Game24 Success Rate Comparison. CognitionLight yields significant improvements
over all baselines, particularly in more complex arithmetic compositions.

of 0.93. Notably, all backbone LLMs are kept frozen. Controller decisions are made in real-time,
and signal computation adds negligible runtime overhead (∼5µs per step), making CognitionLight
deployment highly efficient.

3.2 OVERALL PERFORMANCE

To assess the effectiveness of our symbolic control framework, we evaluate eight reasoning
paradigms across three representative tasks. Table 3 summarizes the results, measuring Success
Rate (SR) and Reward (for WebShop).

CognitionLight achieves state-of-the-art performance across tasks. C-Light-Learn outperforms
all baselines across 15 metrics, ranking first in 14 of them. On the most challenging setup with
Qwen2.5, it achieves 22.7% SR on Game24, compared to 19.3% from ReAct+Reflexion and 17.3%
from GA-Rollback. It also leads on ALFWorld with 95.4% SR and on WebShop with a reward of
47.1. Figure 5 illustrates its superior long-horizon decision-making.

Symbolic control works without training. C-Light-Rule, our zero-shot variant, outperforms
learning-based baselines such as CoT and ReAct in average SR. On LLaMA-3.1, it reaches 8.1%
SR on Game24, while ReAct only achieves 0.5%. These results highlight the effectiveness of our
interpretable signal-light mechanism.

Control generalizes across model scales. CognitionLight provides consistent gains across LLaMA,
GLM, and Qwen backbones. The control mechanism operates independently of the model’s archi-
tecture or scale, confirming its utility as a general symbolic plugin for language agents.
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Figure 6: Rollback vs Switch Outcomes. Proportions of improved (green), neutral (yellow), and
worsened (red) results across tasks. Rollback shows stronger and more stable gains.

3.3 MODULE CONTRIBUTION ANALYSIS

To investigate the specific contributions of each symbolic controller within CognitionLight, we con-
duct an ablation study. Table 4 summarizes the success rates across three benchmark tasks.

Rollback Enables Self-Correction. Disabling rollback leads to notable performance drops. In
Game24, success rate declines from 22.7% to 13.4%, confirming rollback’s role in recovering from
errors and stabilizing long-chain reasoning.

Persona Switching Enables Flexibility. Without persona switching, performance drops sharply,
especially on ALFWorld and WebShop. The average SR falls to 37.9%, showing the importance of
dynamically adjusting reasoning style to match task demands.

Symbolic Control Offers Complementary Gains. The rule-based controller, though untrained,
outperforms single-disabled variants. Rollback aids robustness via error recovery, while persona
switching improves adaptability. Their combination yields the best results, with C-Light-Learn
further boosting performance through learned signal fusion.

Rollback and Switching Lead to Positive Outcomes. Figure 6 shows that most rollback and
switching actions result in improved or stable outcomes across all tasks. Improvement is defined by
∆Score ≥ 0.05 or task success, validating the effectiveness of symbolic interventions.

3.4 CASE STUDY: STEP-WISE CONTROL BEHAVIOR

We present a step-wise case from Game of 24 to illustrate CognitionLight’s interpretable control
process. Table 5 tracks the agent’s trajectory, including task input, inferred persona, confidence
score γt, correctness δt, signal color, and resulting action.At t=2, the agent detects low confidence
(γt=0.41) and incorrect reasoning (δt=0), triggering a yellow signal and persona switch. A second
switch occurs at t=3, selecting a more reflective mode. The cooldown policy stabilizes behavior,
ensuring each persona persists over several steps. At t=5, a red signal (γt=0.27) with continued fail-
ure prompts a rollback. The agent recovers through conservative planning and succeeds confidently
by t=7. This trajectory demonstrates how symbolic signals guide adaptive, transparent reasoning.

4 CONCLUSION

This paper introduces CognitionLight, a cognitively inspired symbolic control framework for multi-
persona reasoning in intelligent agents. By integrating three core components: Persona Selector,
Signal Estimator, and Policy Controller, CognitionLight dynamically adapts agent behavior through
structured control signals that govern whether to continue, switch, or rollback reasoning steps. Ex-
tensive experiments across diverse multi-turn benchmarks demonstrate that our method not only
improves task success rates and reasoning stability, but also provides interpretable insight into agent
decision-making dynamics. It offers a transparent and generalizable way for controlled reasoning in
multimodal agents.
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A ADDITIONAL DISCUSSION OF RELATED WORK

A.1 FOUNDATIONS OF META-REASONING

Early work on meta-reasoning laid the theoretical foundations for our symbolic control framework.
Russell and Wefald formalized core principles for allocating computational resources dynamically
during problem solving, demonstrating how an agent can decide when to continue or halt search
based on expected utility Russell & Wefald (1991). Miller and Cohen provided an integrative theory
of prefrontal cortex function, describing how hierarchical control signals regulate human cognition
in a manner analogous to our traffic-light mechanism Miller & Cohen (2001).

A.2 PROMPT-BASED REASONING AND ACTING

Chain-of-Thought prompting showed that inserting intermediate reasoning steps into prompts signif-
icantly improves performance on complex tasks by eliciting latent reasoning in large LMs Wei et al.
(2022). ReAct extended this idea by interleaving reasoning traces with external actions, enabling
models to query APIs or environments mid-reasoning to reduce hallucination and error propagation
Yao et al. (2022b). Reflexion further incorporates episodic self-evaluation loops, letting agents re-
flect on past failures in natural language and update their future reasoning trajectories without weight
updates Shinn et al. (2023).

A.3 SELF-CRITIQUE AND TOOL LEARNING

Complementary to control signals, recent methods enable models to self-critique and learn tool
usage. Toolformer allows LMs to teach themselves when and how to call external APIs in a self-
supervised fashion, yielding substantial zero-shot gains on downstream tasks Schick et al. (2023).
Critic-CoT introduces a chain-of-thought critic module that generates distant-supervision feedback,
emulating System-2 style questioning to systematically refine reasoning outputs Zheng et al. (2024).

A.4 MULTI-PATH AND REFLECTIVE AGENT ARCHITECTURES

Multi-agent reasoning frameworks such as RR-MP coordinate multiple reactive and reflective agents
running in parallel, preventing thought degeneration by aggregating diverse reasoning paths He et al.
(2024). This demonstrates the power of structured control loops and collaborative reflection, res-
onating with our persona-aware, symbolic traffic-light controller.

B REPRODUCIBILITY

B.1 HARDWARE CONFIGURATION

All base models (LLaMA-3.1-8B-Instruct, GLM4-9B-Chat, Qwen2.5-14B-Instruct) remained
frozen without any fine-tuning. The CognitionLight controller (C-Light-Learn variant) was trained
on a single NVIDIA A100 80 GB GPU for approximately 2 hours using the Adam optimizer with a
learning rate of 1 × 10−3 over 20 epochs. All inference and evaluation tasks (WebShop, Game24,
ALFWorld multi-turn reasoning) were executed in parallel across four A100 GPUs.

B.2 SOFTWARE AND DEPENDENCIES

The experiments ran on Ubuntu 20.04 LTS with Python 3.10. We relied on transformers 4.39.1,
accelerate 0.27.2, openai-clip 1.0, numpy 1.24.1, and torch 2.1.2. Multimodal evaluation used the
OpenAI CLIP ViT-B/32 model. Interactive environments (e.g., ALFWorld) were interfaced via the
official Gym API and reinforcement-learning agents.
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B.3 CONTROL STRATEGY IMPLEMENTATION

At each reasoning step, the signal generator emits a five-dimensional action vector αt comprising
confidence entropy, sample consistency, modality alignment, tool feedback, and historical persona
success rate. Control lights (red/yellow/green) are determined jointly by γt (aggregate confidence)
and δt (verification success). Persona control offers five preset modes (intuitive, reflective, conserva-
tive, tool-oriented, context-based) modulated via prompts. Persona switching employs a two-round
lock to prevent oscillation, with a rollback cap of six switches per episode. Responses with confi-
dence below 0.93 are filtered out.

B.4 TRAINING AND DEPLOYMENT EFFICIENCY

The rule-based controller (C-Light-Rule) requires no training and thus incurs negligible deployment
cost. The learned controller (C-Light-Learn) adds only a lightweight MLP in the inference path,
averaging 5 µs per step. Throughout all evaluations, the controller ran stably with minimal impact
on overall reasoning time.

LLM USAGE DISCLOSURE

In accordance with the ICLR 2026 policy on large language model (LLM) usage, we disclose that
LLM assistance (OpenAI GPT-5 via ChatGPT) was employed during the preparation of this paper.
Specifically, the LLM was used for (i) refining the clarity and readability of text, (ii) restructuring
sections for better logical flow, and (iii) generating illustrative figure captions and LaTeX formatting
templates. All technical content, including problem formulation, theoretical derivations, experi-
mental design, and result interpretation, was conceived, implemented, and validated solely by the
authors. The LLM did not contribute to the novelty of the research ideas, data collection, analysis,
or conclusions.
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