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Abstract

The multi-domain fine-tuning of large language
models (LLMs) confronts a notorious trade-off
among abilities across domains. Existing studies
attribute this trade-off to the conflicts between
samples rooted in inherent semantics. Recent
approaches attempt to mitigate these conflicts
through the empirical investigation or heuristic
strategies. However, without a fundamental un-
derstanding of interactions between samples, they
yield only marginal improvements, while incur-
ring substantial trial-and-error costs. To address
this challenge, we move beyond empirical studies
by modeling interactions between samples as their
influence on each other’s loss, estimated using
gradients. Intriguingly, we find that these inter-
actions evolve throughout training rather than
being purely determined by inherent semantics.
Building on this insight, we propose EVolving
Interaction-guided Curriculum (EVIC), which it-
eratively selects samples that positively influence
the overall dataset for training. By dynamically
adapting the training curriculum to prioritize sam-
ples that contribute the most to the model training,
EVIC effectively mitigates conflicts and improves
the performance-to-sample ratio. Extensive ex-
periments on a mixed dataset covering coding,
math, and general tasks with several model archi-
tectures show that EVIC significantly outperforms
all baselines across diverse capabilities.
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1. Introduction
Large language models (LLMs) have demonstrated remark-
able capabilities in various fields, such as general instruction
following (Yang et al., 2024b; Xu et al., 2024a; Dong et al.,
2024), code generation (Jiang et al., 2024; Hou et al., 2024;
Hui et al., 2024), and mathematical reasoning (Ahn et al.,
2024; Imani et al., 2023; Luo et al., 2023). Building on
these successes, cutting-edge LLMs are striving to integrate
diverse capabilities across various domains, aiming to better
address read-world tasks and advance the realization of gen-
eral artificial intelligence (Dubey et al., 2024; Yang et al.,
2024a; Liu et al., 2024a; Adler et al., 2024).

However, the multi-domain fine-tuning of LLMs still con-
fronts significant challenges. In particular, training a model
that excels across all domains is extremely difficult, as im-
provements in one capability often come at the expense of
others (Wang et al., 2023a; Leybzon & Kervadec, 2024;
Mueller et al., 2022). Existing studies attribute this issue to
inherent conflicts between samples, arising from their dif-
ferent semantics (Wu et al., 2024; Dong et al., 2023; Wang
et al., 2023b; Ge et al., 2023). A common alternative is
to train specialized models for each domain and then in-
tegrate them (Feng et al., 2024; Zhou et al., 2024; Wang
et al., 2024), but this inevitably incurs considerable com-
putational costs. Furthermore, from the perspective of data
resources, conflicts between samples hinder the effective
use of high-quality data, which is especially valuable due to
its scarcity and high acquisition costs (Li et al., 2023a; Liu
et al., 2024b; Li et al., 2023b). Therefore, it is highly desir-
able to explore strategies to fully leverage mixed datasets
for the enhancement of LLMs’ multi-domain capabilities.

Existing efforts for this problem rely on empirical investi-
gation or heuristic strategies to manage training samples.
Based on empirical insights gained from experiments on a
mixed dataset containing samples from mathematics, code,
and general domains, Dong et al. (2023) propose Dual-stage
Mixed Fine-tuning (DMT), which trains on full amounts of
specialized (i.e., math and code) data first and then trains
on general data with a small amount of specialized data
included. Such experience-based approaches may be useful
in certain scenarios but tend to be inefficient, requiring nu-
merous experiments to discover suitable training strategies.
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Figure 1. The interaction matrices computed after training Mistral-
7B for warm-up and one epoch. We randomly select 15 samples
from each domain to generate the heatmap. The indices in the
figure, ordered from smallest to largest, correspond to samples
from coding, math, and general domains. We divide the elements
of both matrices by 108 and clip them to the range of [−0.2, 0.2].

Alternatively, Mixture-of-Skills (MoS) employs reward sig-
nals based on heuristic metrics such as transferability and
difficulty to train a scorer network, which is then used to as-
sign sampling probabilities to training samples. Compared
to experience-driven methods, heuristic-based methods of-
fer more guided curriculum strategies but also lead to only
marginal improvements due to the lack of a fundamental
understanding of interactions between samples.

To address this challenge, we move beyond empirical stud-
ies and propose a novel LLM fine-tuning framework named
EVolving Interaction-guided Curriculum (EVIC). Specifi-
cally, we model the interactions between samples as their
influence on each other’s loss, estimated using (Adam) gradi-
ents. Notably, we find that these interactions evolve during
the training process (as shown in Figure 1), rather than
being purely determined by inherent semantics. Inspired
by this intriguing observation, EVIC periodically updates
the interactions between each pair of samples and selects
the samples that positively influence the overall dataset for
training. By dynamically adapting the training curriculum to
prioritize samples that contribute the most to the model train-
ing, EVIC effectively mitigates conflicts and significantly
improves the performance-to-sample ratio. That is, given
the sample batch size, EVIC achieves higher performance
with fewer training steps compared to existing methods.

The main contributions of this paper are as follows.

• We find that the interactions between samples esti-
mated with (Adam) gradients evolve during the training
process, providing insights into enhancing LLM fine-
tuning on multi-domain datasets through progressive
data management.

• We propose the EVIC framework, which effectively
mitigates conflicts between samples and achieves supe-
rior performance-to-sample ratio by dynamically adapt-

ing the training curriculum to prioritize samples that
contribute the most to the model training.

• We conduct extensive experiments on a mixed dataset
containing 182,166 samples covering the domains of
mathematical reasoning, code generation, and general
instruction following with Mistral-7B, Llama-3.1-8B,
and Qwen2.5-14B. The evaluation results on GSM8K,
HumanEval, and AlpacaEval 2.0 show that EVIC out-
performs all baselines across diverse capabilities.

2. Preliminaries
Supervised Fine-Tuning (SFT). An LLM πθ (with param-
eters θ) generates a response y = [y1, . . . , ym] to the query
x = [x1, . . . , xn], where the tokens (xi)

n
i=1 and (yj)

m
j=1

come from a predefined vocabulary, in an autoregressive
paradigm. Specifically, the model samples yj from the con-
ditional probability distribution πθ(· | x,y1:j−1), where
y1:0 is null and y1:j−1 = [y1, . . . , yj−1] for j = 2, . . . ,m.
We can decompose the conditional probability πθ(y | x)
into πθ(y | x) =

∏m
j=1 πθ(yj | x,y1:j−1). We fine-

tune the model on a dataset D = {(x(i),y(i))}Ni=1 with
the loss function L(θ;D) = 1

N

∑N
i=1 ℓ(θ;x

(i),y(i)) =

− 1
N

∑N
i=1 log πθ(y

(i) | x(i)).

Vanilla Curriculum Learning (CL). The key idea of
vanilla CL is to train the model on a sequence of tasks
or samples that gradually increase in difficulty (Bengio
et al., 2009; Soviany et al., 2022). The model is initially
presented with simpler samples, allowing it to learn funda-
mental concepts before moving on to more complex tasks.
Formally, for the dataset D = {(x(i),y(i))}Ni=1, a cur-
riculum consists of a sequence of subsets (Dk)

K
k=1, where

Dk = {x(ikj ),y(ikj )}Nk
j=1 and the difficulty increases with k.

Then, the model learns (Dk)
K
k=1 in sequence. The vanilla

CL approaches use various metrics to measure difficulty,
such as sample complexity, model uncertainty, or domain-
specific heuristics.

Fine-Tuning with Adam. The Adam optimizer (Kingma,
2014) is widely used for fine-tuning LLMs, which combines
the advantages of both adaptive gradient algorithms and
momentum methods. Starting from the initial parameter θ0,
the update rule of the Adam optimizer is

θt = θt−1 − ηt−1Γ(θt−1),

Γ(θt−1) =
mt√
vt + ε

for t ≥ 1, where

mt =

{
1

1−βt
1
(β1mt−1 + (1− β1)∇θL(θt−1)), (t ≥ 1)

0, (t = 0)
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and

vt =

{
1

1−βt
2
(β2vt−1 + (1− β2)∇θL(θt−1)), (t ≥ 1)

0, (t = 0)

represent the first and second moment estimates, respec-
tively, and β1, β2 are hyperparameters that control the ex-
ponential decay rates of these moment estimates. Here, we
follow the notation Γ from (Xia et al., 2024a) to denote
the Adam gradient. We omit the batch of samples Bt in
∇θL(θt−1;Bt) and Γ(θt−1;Bt) for the simplicity of nota-
tion, unless we want to emphasize Bt.

3. Evolving Interaction-guided Curriculum
We propose EVolving Interaction-guided Curriculum
(EVIC), a novel approach with minimal manual design cost,
sample-level data management, and superior performance-
to-sample ratio. Specifically, we start from the perspective
of learning dynamics and model the inter-sample interac-
tions as their influence on each other’s loss, estimated using
(Adam) gradients (Section 3.1). Then, we observe that these
interactions evolve throughout the training process, rather
than being purely determined by intrinsic semantics (Sec-
tion 3.2). Building on this insight, we periodically update
the estimation of inter-sample interactions during training
and select samples that positively interact with the overall
dataset for subsequent training (Section 3.3).

3.1. Modeling Interactions between Samples

The learning dynamics provides an effective way to un-
derstand and quantify how samples influence each other
during the training process. Inspired by (Xia et al., 2024a),
which uses loss-based dynamics to estimate the similarity
between training and test samples, we model the interac-
tions between training samples as their influence on each
other’s loss. Consider two samples s(i) =

(
x(i),y(i)

)
and

s(j) =
(
x(j),y(j)

)
, the influence of s(j) on the loss of s(i)

at parameter θt can be estimated by the Taylor expansion as

ℓ
(
θ
(j)
t+1;x

(i),y(i)
)
− ℓ

(
θt;x

(i),y(i)
)

≈ ∇θℓ
(
θt;x

(i),y(i)
)⊤
·
(
θ
(j)
t+1 − θt

)
= − ηt

〈
∇θℓ

(
θt;x

(i),y(i)
)

︸ ︷︷ ︸
gradient of s(i)

, Γ
(
θt;x

(j),y(j)
)

︸ ︷︷ ︸
Adam gradient of s(j)

〉
, (1)

where θ
(j)
t+1 is the parameter after learning s(j) from θt and

ηt is the learning rate at the t-th step.

Random gradient projection. For LLMs, the high di-
mensionality of (Adam) gradients imposes a prohibitive
computational overload on computing Eq. (1). Following

(Xia et al., 2024a), we use the Johnson-Lindenstrauss (JL)
transformation to project the (Adam) gradients into an 8192-
dimensional space, which preserves inner products within
an acceptable margin of error (see Appendix C.1 for details).
Formally, we denote an (Adam) gradient g after projection
as ĝ ∈ R8192. Then, for the dataset D = {(x(i),y(i))}Ni=1,
we use an interaction matrix Int(θt) ∈ RN×N to represent
the interactions between samples, where

Int(θt)[j, i] =

〈
∇̂θℓ

(
θt;x

(i),y(i)
)

︸ ︷︷ ︸
projected

gradient of s(i)

, Γ̂
(
θt;x

(j),y(j)
)

︸ ︷︷ ︸
projected Adam

gradient of s(j)

〉
,

(2)

where Int(θt)[j, i] ≥ 0 indicates that sj promotes the learn-
ing of si, while Int(θt)[j, i] < 0 indicates the opposite. By
the linearity of the inner product, the estimated influence
of sj on the overall dataset is given by the j-th row sum of
Int(θt), i.e.,

∑N
i=1 Int(θt)[j, i].

3.2. Observations of Inter-Sample Interactions

Assumptions underlying existing approaches. Studies
based on learning dynamics typically compute gradients
and related quantities (e.g., sample importance) using early-
stage checkpoints in the training process (Xia et al., 2024a;
Pruthi et al., 2020). Research on fine-tuning LLMs on multi-
domain datasets, such as (Dong et al., 2023), generally treats
all samples from the same domain as a whole, focusing on
data management at the domain granularity. These practices
imply two underlying assumptions as follows.

1. Inter-sample interactions remain largely unchanged
throughout the training process.

2. Samples within the same domain mutually enhance
each other’s learning.

However, our observations suggest that these two custom-
ary assumptions do not always hold. On a mixed dataset
composed of CodeAlpaca, GSM8K-RFT, and Alpaca-GPT4
(the three datasets correspond to domains of code generation,
mathematical reasoning, and general instruction following,
respectively. See Section 4.1 for details), we first randomly
select 5% of the samples and perform warm-up training for
Llama-3.1-8B to adapt it from the pre-training distribution
to the SFT distribution. After that, we conduct one epoch of
training on the entire dataset. We compute the interaction
matrices as in Eq. (2) and randomly sample 15 samples
from each domain to plot the interaction heatmap, as shown
in Figure 1. From the heatmap, we make the following
interesting observations.

1. The signs and absolute values of the interactions be-
tween many pairs of samples change significantly dur-
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Figure 2. Framework of EVIC. Given a multi-domain mixed dataset, EVIC first obtain (Adam) gradients for the entire dataset in each
stage. Then, EVIC computes the inter-sample interaction matrix using the (Adam) gradients. After that EVIC selects samples that
positively interact with the entire dataset for training.

ing training, indicating that the interactions evolve dy-
namically over the course of training.

2. For some sample pairs (si, sj), sign (Int(θt)[j, i]) is
not necessarily equal to sign(Int (θt)[i, j]), which
means that the interaction relationship are asymmetric.

3. Conflicts also exist among samples within the same
domain, while some samples from different domains
mutually promote each other’s learning, suggesting that
managing samples at the sample-level may be more
effective than at the domain-level.

3.3. Dynamic Interaction-guided Curriculum Learning

The above intriguing observations inspire us to select sam-
ples that have a positive influence on the overall dataset
in a staged manner during training, thus leveraging the dy-
namic nature of interactions between samples. We summa-
rize the EVIC framework in Algorithm 1. Specifically, we
first randomly select 5% of the samples (for the ablation
study on the proportion, please see Section 4.3) from the
multi-domain dataset for warm-up training (Lines 2-5 in Al-
gorithm 1). Then, we compute the interaction matrix for the
entire dataset (Lines 7-9 in Algorithm 1) and select samples
corresponding to non-negative-sum rows for training (Lines
10-14 in Algorithm 1). After that, we update the interac-
tion matrix, select samples, train the model, and repeat this
process until the end of the training process.

Algorithm 1 The EVIC framework

1: Input: dataset D = {s(i)}Ni=1, number of iterations M ,
base model πbase

2: Warm-Up and Initialization:
3: D0 ← Randomly selected 5% of samples from D
4: Train πbase on D0 to form πθ0

5: T0 ← 0
6: for m = 1, . . . ,M do
7: ▶ Interaction Matrix Computation:
8: Compute JL-projected (Adam) gradients for D
9: Compute Int(θTm−1

) according to Eq. (2)
10: ▶Sample Selection:
11: Dm ←

{
s(j) |

∑N
i=1 Int(θTm−1

)[j, i] ≥ 0
}

12: Shuffle Dm

13: ▶Model Training:
14: πθTm

← fine-tune πθTm−1
on Dm.

15: end for
16: Output: πθTM

Discussion. Although our framework does not impose a
constraint requiring every sample to be selected, our ex-
periments show that nearly all samples are learned at least
once. We provide an intuitive explanation for this, and leave
a more rigorous analysis of this phenomenon for our fu-
ture work. First, because many inter-sample interactions
change their signs during the training process, pairs of sam-
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Table 1. Statistics of the datasets and benchmarks for each
domain, and settings for model inference and evaluation.
Domain Dtrain |Dtrain| Dtest |Dtest| Temp Seed

Code CodeAlpaca 20,022 HumanEval 164 0.3 1-10
Math GSM8K-RFT 110,142 GSM8K-test 1,319 0.0 -
General Alpaca-GPT4 52,002 AlpacaEval 2.0 805 0.7 1-10

ples that are initially in conflict may gradually become less
conflicting or even mutually promoting as the training pro-
gresses. Second, empirically, gradients at parameters near
local optima tend to have smaller magnitudes. Thus, even
if a pair of samples remains in conflict throughout training,
the absolute value of their interaction will diminish as one
of the samples is learned. This causes the contribution of
these conflicting pairs to the overall influence on the dataset
to decrease, thereby increasing the likelihood of selecting
samples that have not yet been learned.

4. Experiments
4.1. Experimental Settings

Tasks and Datasets. We focus on improving the comprehen-
sive capabilities of LLMs in code generation, mathematical
reasoning, and general instruction following, which are the
three most attention-grabbing abilities of LLMs at present.
We use three datasets for each domain: CodeAlpaca (Chaud-
hary, 2023) for code generation, GSM8K-RFT (Cobbe et al.,
2021; Yuan et al., 2023) for mathematical reasoning, and
Alpaca-GPT4 (Peng et al., 2023) for general instruction
following. For details of the datasets, see Appendix A.1.

Evaluation. We evaluate the performance of code genera-
tion, mathematical reasoning, and general instruction fol-
lowing of all models on HumanEval (Chen et al., 2021),
GSM8K-test (Cobbe et al., 2021), and AlpacaEval 2.0
(Dubois et al., 2024), respectively. The statistics of the
datasets and benchmarks for each domain, and the settings
for model inference and evaluation are presented in Table 1.

Specifically, for HumanEval, we perform model inference
with a temperature of 0.3 and random seeds ranging from 1
to 10, and report the mean and standard deviation of Pass@1
and Pass@10 of all models. For GSM8K-test, we employ
the greedy decoding with a temperature of 0.0 and report
the accuracies. For AlpacaEval 2.0, we perform model in-
ference with a temperature of 0.7 and random seeds ranging
from 1 to 10. We employ GPT-4—the default evaluator of
AlpacaEval—as the judge to compare the outputs of all mod-
els with those of GPT-4-Turbo, using the length-controlled
win rate and the win rate as metrics. In addition to the indi-
vidual metrics for each domain, we also report their average.

Specifically, we compute the average metric by

AVG =
1

3

(
ACC+

P@1 + P@10

2
+

LC-WR+WR

2

)
.

We use vLLM (Kwon et al., 2023) for efficient model infer-
ence. For more details, please see Appendix A.4.

Baselines and Hyperparameters. We compare our pro-
posed EVIC framework with the baselines as follows.

• Multi-Task Learning (MTL) trains on the multi-domain
dataset without any sample management strategies. MTL
belongs to progressive CL methods as categorized in (So-
viany et al., 2022).

• Domain-Specific Learning (DSL) trains only on the
separate dataset for each domain, which reflects the upper
limit of the model’s specialized ability on each dataset.
We use DSLcode, DSLmath, and DSLgen to represent the
versions of DSL training only on code, math, and general
samples, respectively.

• Dual-stage Mixed Fine-tuning (DMT, Dong et al.
(2023)) trains on full amounts of specialized (i.e., code
and math) samples first and then trains on general-domain
samples with a small proportion of the specialized sam-
ples included.

• Mixture-of-Skills (MoS, Wu et al. (2024)) employs rein-
forcement learning with reward signals based on heuristic
metrics such as transferability and difficulty to train a
scorer network, and then use it to assign sampling proba-
bilities to samples. MoS belongs to balanced CL methods
as categorized in (Soviany et al., 2022).

Besides, we also add vanilla CL and self-pased CL as our
additional baselines in Appendix B.2.

Model Training. We conduct all the model training once
with LoRA (Hu et al., 2021) implemented in the LLaMA-
Factory framework (Zheng et al., 2024). We run DSL until
its test performance no longer improves. For MTL, DMT,
and MoS, we align their training process to three epochs,
as their performance shows only marginal gains beyond
three epochs. Because EVIC selects different samples at
each stage, we measure its training duration in terms of
iterations1 and training steps (with a batch size of 128),
and ensure that the total training steps of EVIC do not
exceed those of the baseline methods to maintain fairness.
We run all experiments on 8 NVIDIA A100 GPUs (80GB).
For more details of our baselines, hyperparameters, and the
training process, see Appendix A.2.

1An iteration refers to performing one sample selection phase
and training the model on the selected samples for one epoch.
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Table 2. Performance of models trained on the multi-domain dataset with different methods, evaluated on multiple benchmarks.
The bold font indicates the best result and an underline indicates the second-best result. Please note that DSL is not involved in the
performance comparison and only serves as a reference for the upper limit of each ability.

Model Mistral-7B-v0.3 Llama-3.1-8B Qwen2.5-14B

Dtest GSM8K HumanEval AlpacaEval 2 GSM8K HumanEval AlpacaEval 2 GSM8K HumanEval AlpacaEval 2

Metric ACC P@1 P@10 LC-WR WR AVG ACC P@1 P@10 LC-WR WR AVG ACC P@1 P@10 LC-WR WR AVG

DSLmath 59.1 0.2±0.1 1.4±0.4 0.6±0.2 0.7±0.2 20.2 68.3 6.7±0.2 19.0±1.2 0.9±0.2 1.1±0.2 27.4 85.0 57.5±0.5 81.0±1.5 3.8±0.5 3.3±0.3 52.6

DSLcode 0.1 40.5±0.7 58.5±1.4 7.5±0.7 3.8±0.3 18.4 13.7 48.8±0.5 71.2±0.4 8.1±0.6 3.9±0.2 26.6 60.4 71.6±0.5 89.2±1.4 10.6±1.0 4.8±0.4 49.5

DSLgen 37.6 11.6±0.6 33.9±2.3 11.6±1.3 7.0±0.4 23.2 44.1 6.9±0.4 23.0±2.1 12.5±1.2 6.6±0.5 22.9 73.6 3.1±0.2 13.4±1.5 19.3±1.1 10.8±0.6 32.3

MTL 56.2 21.3±0.4 33.9±1.3 8.6±0.5 5.6±0.7 30.3 65.4 46.1±0.4 66.3±2.0 9.9±0.6 5.1±0.7 43.0 74.4 66.0±1.0 84.8±0.9 17.2±1.3 8.4±0.5 54.2

DMT 55.5 3.1±0.4 13.7±1.4 10.5±0.9 6.7±0.4 24.2 65.3 41.3±0.8 69.5±2.6 12.9±1.0 6.9±0.5 43.5 77.9 55.6±1.2 89.1±1.4 18.1±0.9 8.9±0.4 54.6

MoS 56.9 28.6±0.7 43.2±1.8 9.0±1.0 5.4±0.5 33.3 65.1 44.5±0.6 68.8±1.0 10.7±0.9 5.9±0.5 43.4 79.6 66.7±0.9 84.9±1.2 16.8±1.0 8.5±0.5 56.0

EVIC 57.1 37.8±0.5 56.9±0.9 9.8±0.5 5.9±0.7
⋆37.4 65.8 46.3±0.6 69.9±0.8 11.6±0.6 6.2±0.8

⋆44.3 79.7 69.1±0.9 86.1±1.3 17.9±0.9 9.2±0.3
⋆57.0

Models. We conduct supervised fine-tuning with three pop-
ular base models—Mistral-7B-v0.3 (Jiang et al., 2023),
Llama-3.1-8B (Dubey et al., 2024), and Qwen2.5-14B
(Yang et al., 2024a). We use pretrained models instead
of instruction-tuned versions to prevent the models from
having already seen some samples in our mixed dataset. For
more details of the models, see Appendix A.3.

4.2. Main Results

EVIC boosts the multi-domain fine-tuning of LLMs. We
present the performance of different methods on multiple
benchmarks in Table 2. Please note that DSL is not involved
in the performance comparison and only serves as a refer-
ence for the upper limit of each ability. From the table, we
make the following observations:

• None of the baselines outperform all others across all
metrics, regardless of the base model architecture. This
confirms the existence of conflicts between abilities
and samples from different domains.

• Our proposed EVIC outperforms all baseline methods
in terms of average performance across all metrics.
Specifically, EVIC exceeds the best-performing base-
line by four points on Mistral-7B and around one point
on Qwen2.5-14B. Furthermore, EVIC achieves either
the highest or the second-highest results in the individ-
ual metrics for each domain.

• Although simple and straightforward, MTL sometimes
achieves decent performance. Specifically, its aver-
age performance on Mistral-7B surpasses that of DMT,
and its accuracy for the mathematical reasoning and
Pass@1 for coding on Llama-3.1-8B exceed those of
both DMT and MoS. Nevertheless, MTL remains over-
all inferior to EVIC as well as DMT and MoS, indicat-
ing the necessity of data management or curriculum

learning in multi-domain datasets.

• DMT exhibits overall stronger general capabilities than
EVIC and MoS, which may be attributed to its focus
on the general data in the final training stage. However,
DMT may lead to unsatisfactory coding performance,
especially when code data is scarce (in our experiments,
the amount of code data is one-fifth of the math data
and less than half of the general data). This is because
the small portion of code data added in the final stage
cannot fully counteract the decline in coding ability
caused by improvements in other capabilities.

• MoS exhibits stronger coding ability than DMT, possi-
bly because it can adaptively adjust data sample prob-
abilities to handle imbalanced domain distributions.
However, it still underperforms EVIC. We speculate
that an important reason for this performance gap is
that the heuristic reward signals in MoS do not directly
relate to the model’s optimization process, as the inter-
actions between samples do.

EVIC yields a higher performance-to-sample ratio. Table
4 presents the number of training steps taken by different
methods to achieve the performance shown in Table 2, with
a batch size of 128. For EVIC, we also report the number
of training steps per iteration. As can be seen from the
table, given the same batch size, EVIC achieves higher
performance with fewer training steps compared to all the
baselines. Specifically, the performance-to-sample ratio
of EVIC is at least 1.29 times that of MTL, that is, EVIC
takes at most 77.7% of the training steps taken by MTL to
outperform all baselines across diverse capabilities. Even
more remarkably, for Qwen2.5-14B, these two numbers are
2.11 and 47.4%, highlighting the advantage of our approach
in fine-tuning large-scale LLMs.

EVIC covers almost all samples. Table 3 reports the sam-
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Table 3. Sample coverage rate (%) of EVIC across different domains and over the entire dataset in each iteration.
Model Mistral-7B-v0.3 Llama-3.1-8B Qwen2.5-14B

Domain Code Math General Total Code Math General Total Code Math General Total

Iteration 1 68.99 45.37 40.27 46.51 83.42 86.09 71.75 81.70 80.73 72.62 55.85 68.72
Iteration 2 93.58 90.75 92.08 91.44 87.59 94.52 80.34 89.71 97.78 97.40 99.10 97.92
Iteration 3 97.49 96.11 95.78 96.17 99.86 99.96 99.87 99.92 – – – –
Iteration 4 98.97 99.07 98.50 98.90 – – – – – – – –

Table 4. The number of training steps taken by different meth-
ods to achieve the performance in Table 2. |Dwarm-up| and
|DEVIC-iterm| respectively represent the number of warm-up steps
and the number of steps in the m-th iteration. |DEVIC|, |DDMT|,
|DMoS|, and |DMTL| respectively represent the number of steps
for EVIC (in total), DMT (3 epochs), MoS (3 epochs), and MTL
(3 epochs). We use a batch size of 128 for EVIC and all baselines.

Model Mistral Llama3.1 Qwen2.5

|Dwarm-up| 72 72 72
|DEVIC-iter1| 661 1162 978
|DEVIC-iter2| 873 959 973
|DEVIC-iter3| 654 1010 –
|DEVIC-iter4| 1,058 – –

|DMTL| (for 3 epochs) 4,269 4,269 4,269
|DDMT| (for 3 epochs) >4,269 >4,269 >4,269
|DMoS| (for 3 epochs) 4,269 4,269 4,269
|DEVIC| (in total) 3,318 3,203 2,023

|DMTL|/|DDMT| <1.00 <1.00 <1.00
|DMTL|/|DMoS| 1.00 1.00 1.00
|DMTL|/|DEVIC| ⋆1.29 ⋆1.33 ⋆2.11

Table 5. Performance of Mistral-7B trained with the non-
iterative variant of EVIC at each iteration. EVICiter and
EVICnon-iterm represent the standard version of EVIC and the
non-iterative variant for m iterations, respectively.
Dtest GSM8K HumanEval AlpacaEval 2

Metric ACC P@1 P@10 LC-WR WR AVG

EVICnon-iter1 51.7 18.5 30.5 8.0 4.5 27.5
EVICnon-iter2 50.7 28.4 47.6 8.9 5.1 31.9
EVICnon-iter3 54.3 28.0 46.3 10.1 6.1 33.2
EVICnon-iter4 52.2 27.2 48.2 12.0 6.8 33.1
EVICnon-iter5 52.8 26.3 45.7 11.2 6.4 32.5

EVICiter 57.1 37.8 56.9 9.8 5.9 ⋆37.4

ple coverage rate of EVIC across domains in each iteration,
defined as the proportion of samples that have been learned
at least once, excluding the warm-up stage. From the ta-
ble we find that, although the EVIC framework does not
enforce every sample to be selected at least once, nearly
90% of the samples are learned within two iterations, and
this proportion exceeds 96% within three iterations. Consid-
ering that EVIC selects a sample for training only when it

Table 6. Performance of Llama-3.1-8B trained with the non-
iterative variant of EVIC at each iteration. EVICiter and
EVICnon-iterm represent the standard version of EVIC and the
non-iterative variant for m iterations, respectively.
Dtest GSM8K HumanEval AlpacaEval 2

Metric ACC P@1 P@10 LC-WR WR AVG

EVICnon-iter1 62.2 43.1 68.3 10.5 5.3 41.9
EVICnon-iter2 63.4 45.2 65.2 10.6 5.1 42.2
EVICnon-iter3 64.1 45.1 68.9 11.4 5.4 43.2

EVICiter 65.8 46.3 69.9 11.6 6.2 ⋆44.3
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Figure 3. Average performance across all benchmarks of Mistral-
7B trained with EVIC with different warm-up sample proportions
(5%, 20%, and 100%). We default to a 5% proportion for the
warm-up data in our main experiments. The “sample efficiency
ratio” refers to |DMTL/DEVIC| (defined in Table 4).

positively influences the overall dataset, we can conclude
that nearly all samples are presented to the model at an
appropriate time. This iterative adaptation of the training
curriculum, which prioritizes samples that contribute most
to the model training, effectively enhances the model’s di-
verse capabilities (as shown in Table 2) and significantly
improves performance-to-sample ratio (as shown in Table
4). For an intuitive explanation of this feature, please see
the discussion in Section 3.3.

4.3. Ablations

Iterative interaction computation is necessary. We con-
duct ablations with Mistral-7B and Llama-3.1-8B to verify
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the necessity of the iterative interaction computation in the
EVIC framework. In the experiments, we compare EVIC
with its non-iterative variant, which only selects samples
after the warm-up phase for multiple epochs of learning,
without updating the iteration matrix periodically during
the training process. Specifically, as shown in Table 3, the
Mistral-7B and Llama-3.1-8B models trained with the non-
iterative variant are exposed to approximately 46% and 81%
of all the samples, respectively. To align their total training
steps with those of the standard version of EVIC shown in
Table 4, we train Mistral-7B and Llama-3.1-8B using the
non-iterative variant for five and three epochs, respectively.

The results are presented in Tables 5 and 6. As can be seen,
the performance of the non-iterative variant improves as
training progresses. However, despite with similar train-
ing steps, its results remain significantly lower than those
of the standard version of EVIC. In addition, we find that
the performance of the non-iterative variant for Mistral-7B
begins to decline after the fourth iteration. Although its
performance on AlpacaEval 2.0 exceeds that of the stan-
dard version at the fourth iteration, its average performance
throughout the training process is at least four points lower
than that of the standard EVIC. Thus, we can conclude that:
(1) The iterative computation of interactions between sam-
ples and the corresponding sample selection are necessary
for the effectiveness of EVIC. (2) The effective use of as
many samples as possible contributes to the improvement of
model performance, which further highlights the importance
of EVIC’s superiority in the performance-to-sample ratio.

5% of the samples for warm-up is sufficient. In the main
experiments, we default to using 5% of all samples as warm-
up data to help the model adapt to the transition from the
pretraining distribution to the SFT distribution. To evaluate
the effect of this proportion, we conduct an ablation study
with Mistral-7B-v0.3, as shown in Figure 3. Specifically,
we report the average performance of the model across all
benchmarks and |DMTL|/|DEVIC| (defined in Table 4) with
the proportions of 5%, 20%, and 100%. As shown in the
figure, increasing the proportion of warm-up samples leads
to a slight performance improvement (less than 2%), but
at the cost of a significant decrease in the performance-to-
sample ratio. Therefore, a 5% warm-up sample proportion
is sufficient for EVIC to achieve satisfactory performance
while maintaining a high performance-to-sample ratio.

5. Related Work
Despite the impressive performance of LLMs in special-
ized domains, research on training them on multi-domain
datasets remains in its early stages (Wang et al., 2023a; Ley-
bzon & Kervadec, 2024; Mueller et al., 2022; Chen et al.,
2025; 2024). A key challenge stems in the conflicts between
samples from different sources and domains (Su et al., 2024;

Xu et al., 2024b; Wang et al., 2023b; Ge et al., 2023).

Recently, some pioneering studies have explored this prob-
lem. Dong et al. (2023) conduct extensive experiments and
propose an empirical guideline for fine-tuning LLMs on
mixed datasets that include math, code, and general sam-
ples: to train on the full amount of math and code data,
and then train on the general data with a small proportion
of math and code samples included. This may work for
some model architectures or datasets, but the lack of theo-
retical supports limits its reliability. Wu et al. (2024) use
reinforcement learning to adjust focus dynamically on var-
ious sub-datasets based on their current learning process.
Others apply curriculum learning, using prior criteria such
as prompt length, attention scores, and loss values to rank
sample difficulty and design a learning path from simple to
complex tasks (Kim & Lee, 2024), but they do not consider
conflicts between samples and are therefore not applicable
to multi-domain mixed datasets. In contrast to the afore-
mentioned methods that rely on empirical investigation or
heuristic strategies, we move beyond empirical practices
by modeling inter-sample interactions between samples as
their influence on each other’s loss, estimated using gradi-
ents. Our approach, which delves deeper into the model
training process, allows for more refined management of
training samples and provides a reliable training curriculum,
thereby improving the model’s multi-domain performance
and enhancing performance-to-sample ratio.

Another line of research focuses on goal-directed fine-
tuning, which aims to select data from multi-domain
datasets relevant to specific capabilities, rather than enhanc-
ing the model’s overall abilities. (Cao et al., 2023; Wu
et al., 2024; Zhang et al., 2023; Xia et al., 2024b). Xia
et al. (2024b) selects samples for training by predicting
the similarity between training and test samples. In addi-
tion, some methods rely solely on instruction information
to identify relevant tasks (Lee et al., 2024), while others
propose a self-guided approach where the student LLM gen-
erates task-specific input-output pairs and fine-tunes itself
in multiple stages (Zhao et al., 2024). In contrast to the goal
of the aforementioned works—leveraging mixed datasets
to enhance the model’s specialized abilities, we focus on
improving the comprehensive multi-domain capabilities of
LLMs. Furthermore, from a technical perspective, we con-
sider the interactions between training samples, which the
aforementioned works do not take into consideration.

6. Conclusion and Future Work
In this paper, we propose EVIC, a novel approach to multi-
domain fine-tuning of large language models, which ad-
dresses the notorious trade-off between domain-specific
abilities. By modeling the evolving interactions between
training samples, we go beyond heuristic or empirical meth-
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ods, providing a deeper understanding of how these interac-
tions influence the model’s learning process. Our approach
not only improves performance-to-sample ratio but also
mitigates domain conflicts, resulting in significant enhance-
ments across various capabilities. Extensive experiments
on a mixed dataset covering math, coding, and general
instruction-following tasks, using Mistral-7B, Llama-3.1-
8B, and Qwen2.5-14B, demonstrate that EVIC outperforms
all baseline methods, highlighting its effectiveness in en-
hancing multi-domain performance.

Our future work will further explore the theoretical expla-
nations behind EVIC, including the dynamics driving its ef-
fectiveness in improving multi-domain capabilities, the the-
oretical foundations of its superior performance-to-sample
ratio, and why EVIC can nearly cover all samples without
imposing the constraint that every sample must be learned.
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A. More Details about Experiments
A.1. Tasks and Datasets

To enhance the capabilities of large models in code generation, mathematical reasoning, and instruction following, we use
three distinct datasets (i.e., CodeAlpaca, GSM8k-RFT, and GPT4-Alpaca) to train our models in these respective domains.

• CodeAlpaca2 (Chaudhary, 2023) is designed for training code generation models and contains 175,000 programming
challenges in Python. Each challenge tests model’s ability to generate syntactically correct and meaningful code, ranging
from simple algorithms to more complex tasks.

• GSM8k-RFT3 (Cobbe et al., 2021) is employed to evaluate mathematical reasoning, containing over 8,000 arithmetic
and algebraic problems that require multi-step reasoning. This dataset tests model’s ability to solve complex numerical
tasks including problem solving and logical deduction.

• GPT4-Alpaca4 (Peng et al., 2023) is utilized for instruction following and consists of 1,750 human-written tasks across
multiple domains. Model is required to generate correct responses based on diverse instructions, assessing its capacity to
understand and execute complex instructions.

A.2. Baselines, Hyperparameters, and Model Training

Baselines. We compare our proposed EVIC framework with the following baselines.

• Multi-Task Learning (MTL) trains on the mixed dataset without any sample management strategies.

• Domain-Specific Learning (DSL) trains only on the separate dataset for each domain, which reflects the upper limit
of the model’s specialized ability on each dataset. We use DSLcode, DSLmath, and DSLgen to represent the versions of
DSL training only on code, math, and general samples, respectively.

• Dual-stage Mixed Fine-tuning (DMT, Dong et al. (2023)) trains on full amounts of specialized (i.e., code and math)
samples first and then trains on general-domain samples with a proportion of k of the specialized samples included.
Dong et al. (2023) recommend k = 1/256 in their paper, but we conduct experiments using k = 1/64, 1/128, 1/256
to search for an optimal k and thus explore its performance limits.

• Mixture-of-Skills (MoS, Wu et al. (2024)) employs reinforcement learning with reward signals based on heuristic
metrics such as transferability and difficulty to train a scorer network, and then use it to assign sampling probabilities
to samples. We run MoS with both of the metrics to explore the upper limit of performance.

Hyperparameters. We use a learning rate of 2× 10−5, the cosine learning rate scheduler, a batch size of 128 for all the
methods. For LoRA, we use a rank of 128, α = 512, a dropout ratio of 0.1, and learn LoRA parameters for all attention
matrices.

Model Training. We conduct all the model training with LoRA (Hu et al., 2021) implemented in the LLaMA-Factory
framework (Zheng et al., 2024). We run DSL until its test performance no longer improves. For MTL, DMT, and MoS, we
align their training process to three epochs, as their performance shows only marginal gains beyond three epochs. Because
EVIC selects different samples at each stage, we measure its training duration in terms of iterations5 and training steps
(with a batch size of 128), and ensure that the total training steps of EVIC do not exceed those of the baseline methods
to maintain firness. We run all experiments on 8 NVIDIA A100 GPUs (80GB).

2https://github.com/sahil280114/codealpaca
3https://huggingface.co/datasets/openai/gsm8k
4https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM
5An iteration refers to performing one sample selection phase and training the model on the selected samples for one epoch.
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A.3. Models

We conduct supervised fine-tuning with three popular base models—Mistral-7B-v0.36 (Jiang et al., 2023), Llama-3.1-8B7

(Dubey et al., 2024), and Qwen2.5-14B8 (Yang et al., 2024a). We use pretrained models instead of instruction-tuned versions
to prevent the models from having already seen some of the samples in our mixed dataset.

• Mistral-7B-v0.3 is an open-source language model developed by Mistral AI. With 7 billion parameters, it excels in
performance, and is designed for efficiency and versatility.

• Llama-3.1-8B is a large-scale language model by Meta, featuring 8 billion parameters. It excels in tasks such as language
understanding, generation, and translation across various domains.

• Qwen2.5-14B is a robust language model developed by Qwen AI, offering 14 billion parameters. It focuses on enhancing
generative tasks, including content creation and problem-solving, delivering highly accurate and context-aware outputs.

A.4. Evaluation

For models trained on CodeAlpaca, GSM8k-RFT and GPT4-Alpaca, we evaluate their performance on the HumanEval,
GSM8k-test and AlpacaEval benchmarks.

• HumanEval (Chen et al., 2021) consists of 164 programming problems that cover a range of common tasks in the
Python programming language. Each problem requires the model to generate a valid Python code solution based on a
given problem description. The difficulty of the problems ranges from basic algorithmic tasks to moderately complex
programming challenges. We perform model inference with a temperature of 0.3 and random seeds ranging from 1 to
10, and report the mean and standard deviation of Pass@1 and Pass@10 of all models.

• GSM8K (Cobbe et al., 2021) test set is a subset of the GSM8k dataset, consisting of more than 8,000 mathematical
problems. These problems are designed to evaluate models’ math reasoning abilities, particularly in solving arithmetic
and algebraic tasks that require multi-step reasoning. We employ greedy decoding with a temperature of 0.0 and report
the accuracies to evaluate models with GSM8k test set.

• AlpacaEval (Li et al., 2023c) consists of 800 instruction tasks across various domains, such as information retrieval,
task execution, reasoning, and classification. Each instruction is human-written, and the model’s task is to generate the
correct response based on it. The dataset tests the model’s ability to understand and follow diverse instructions. We
perform model inference with a temperature of 0.7 and random seeds ranging from 1 to 10. We employ GPT-4–the
default evaluator of AlpacaEval–as the judge to compare the outputs of all models with those of GPT-4, using the
length-controlled win rate and the win rate as the metrics.

B. More Experiments
B.1. Number of times different samples are selected

We report the numbers of times different samples being selected during the training of Llama-3.1-8B and Mistral-7B in
Figure 4.

B.2. More Curriculum Learning Baselines

The baselines in our initial submission (DMT and MoS) belong to progressive CL and balanced CL methods as categorized
in (Soviany et al., 2022). Additionally, we add vanilla CL and self-paced CL as baselines. As shown in Tables 7 and 8,
EVIC, DMT, and MoS significantly outperform other CL baselines, underscoring the importance of CL methods tailored for
multi-domain fine-tuning.

6https://huggingface.co/mistralai/Mistral-7B-v0.3
7https://huggingface.co/meta-llama/Llama-3.1-8B
8https://huggingface.co/Qwen/Qwen2.5-14B
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(a) Code (Mistral-7B-v0.3) (b) Math (Mistral-7B-v0.3) (c) General (Mistral-7B-v0.3) (d) Total (Mistral-7B-v0.3)

(e) Code (Llama-3.1-8B) (f) Math (Llama-3.1-8B) (g) General (Llama-3.1-8B) (h) Total (Llama-3.1-8B)

Figure 4. Number of times different samples are selected.

Table 7. Performance of Mistral-7B-v0.3 trained on the multi-domain dataset with different methods, evaluated on multiple
benchmarks. Vanilla CL uses query length to measure the difficulty of samples and trains the model in an ”easy-to-hard” paradigm
accordingly. Self-pased CL measures the difficulty of samples using the model’s loss value on the sample and also adopts the ”easy-to-hard”
manner.

Dtest GSM8K HumanEval AlpacaEval 2

Metric ACC P@1 P@10 LC-WR WR AVG

MTL 56.2 21.3±0.4 33.9±1.3 8.6±0.5 5.6±0.7 30.3

DMT (progressive CL) 55.5 3.1±0.4 13.7±1.4 10.5±0.9 6.7±0.4 24.2

MoS (balanced CL) 56.9 28.6±0.7 43.2±1.8 9.0±1.0 5.4±0.5 33.3

Vanilla CL 47.9 3.1 13.2 8.3 5.1 20.9

Self-paced CL 48.4 3.5 11.9 7.9 4.0 20.7

EVIC 57.1 37.8±0.5 56.9±0.9 9.8±0.5 5.9±0.7
⋆37.4

Table 8. Performance of Llama-3.1-8B trained on the multi-domain dataset with different methods, evaluated on multiple
benchmarks. Vanilla CL uses query length to measure the difficulty of samples and trains the model in an ”easy-to-hard” paradigm
accordingly. Self-pased CL measures the difficulty of samples using the model’s loss value on the sample and also adopts the ”easy-to-hard”
manner.

Dtest GSM8K HumanEval AlpacaEval 2

Metric ACC P@1 P@10 LC-WR WR AVG

MTL 65.4 46.1±0.4 66.3±2.0 9.9±0.6 5.1±0.7 43.0

DMT (progressive CL) 65.3 41.3±0.8 69.5±2.6 12.9±1.0 6.9±0.5 43.5

MoS (balanced CL) 56.9 28.6±0.7 43.2±1.8 9.0±1.0 5.4±0.5 33.3

Vanilla CL 59.3 3.4 15.9 9.6 5.8 25.6

Self-paced CL 56.6 2.3 11.0 9.5 5.2 23.5

EVIC 65.8 46.3±0.6 69.9±0.8 11.6±0.6 6.2±0.8
⋆44.3
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C. Mathematical Derivations
C.1. Introduction to Johnson-Lindenstrauss (JL) Transformation

The Johnson-Lindenstrauss (JL) Transformation(Johnson, 1984) is a method for reducing the dimensionality of high-
dimensional data while approximately preserving the pairwise distances and inner products. The JL transformation projects
data points into a lower-dimensional subspace and ensures that the Euclidean distance between any two points remains the
same within a specified error bound.

In practice, to reduce the computational cost on Eq. (1), we employ the JL transformation to project the (Adam) gradients
into an 8192-dimensional space, following (Xia et al., 2024a). Specifically , for a given parameter θt and two samples
s(i) =

(
x(i),y(i)

)
and s(j) =

(
x(j),y(j)

)
, we can compute the d-dimensional projections of the gradient of s(i) and the

Adam gradient of s(j) by

∇̂θℓ
(
θt;x

(i),y(i)
)
= Π⊤

1 ∇θℓ
(
θt;x

(i),y(i)
)
, (3)

Γ̂
(
θt;x

(j),y(j)
)
= Π⊤

2 Γ
(
θt;x

(j),y(j)
)
, (4)

with Π1,Π2 ∈ RP×d drawn from a Rademacher distribution. In the equations, P represents the dimension of the gradient,
∇̂θℓ

(
θt;x

(i),y(i)
)

represents the projected gradient of s(i), and Γ̂
(
θt;x

(j),y(j)
)

represents the projected Adam gradient
of s(j). In our method, we choose d = 8192 following (Xia et al., 2024a).
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