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Abstract

Large Vision-Language Models (LVLMs) trained
on web-scale data risk memorizing private, harm-
ful, or outdated information, making machine un-
learning increasingly important. Prior work mainly
targets unimodal settings and isolated fact removal,
overlooking the reality that knowledge is often
deeply interconnected across modalities like text
and images. We introduce MMDU-Bench, the
first benchmark for multi-modal deep unlearn-
ing, where models must forget both explicit facts
and implicit inferences made through cross-modal
reasoning. Built on a large-scale synthetic knowl-
edge graph with over 30k relations and 166k QA
pairs, MMDU-Bench enables fine-grained evalua-
tion of forgetting and retention. Experiments across
five representative methods show that the majority
achieve 30% Deep Forget Quality, revealing diffi-
culty in removing entangled knowledge. We also
observe large performance gaps between text-only
and multi-modal unlearning, as well as a trade-off
where stronger forgetting often leads to loss of re-
lated knowledge. MMDU-Bench highlights these
overlooked challenges and provides a foundation
for developing more effective and reliable unlearn-
ing methods.

1 Introduction

Large Vision-Language Models (LVLMs), trained on large-
scale internet data, have demonstrated remarkable perfor-
mance in contextual understanding [Brown et al., 2020; Zhu
et al., 2024c], question answering [Kamalloo et al., 2023;
Arefeen et al., 2024], and reasoning [Wei et al., 2022;
DeepSeek-AI et al., 2025]. However, their powerful capabil-
ities also raise significant concerns: these models can inad-
vertently memorize and generate private [Kim et al., 2023;
Staab et al., 2024], harmful [Li et al., 2024a; Gong et
al., 2025], or misleading content [Dhingra et al., 2022;
Mousavi et al., 2024]. Such risks underscore the growing im-
portance of machine unlearning [Liu et al., 2024b], which
aims to selectively forget undesirable information while re-

taining useful knowledge—aligning with GDPR1 and other
legal or ethical requirements.

Recent works have proposed several unlearning methods to
enable LVLMs to forget specific knowledge by fine-tuning on
data that needs to be removed, such as Gradient Ascent [Jang
et al., 2023; Yao et al., 2024] and Negative Preference Opti-
mization [Zhang et al., 2024]. Although these methods have
achieved notable success in forgetting targeted knowledge,
we found that this is far from sufficient. In real-world appli-
cations, knowledge is rarely isolated—it is often deeply inter-
connected and spans across multiple modalities. For instance,
as shown in Figure 1, simply forgetting the explicit fact “Bob
works at OpenAI” is not enough, as the model may still infer
it from related clues such as “Bob is Amy’s colleague” and
“Amy works at OpenAI”.

To this end, we introduce a new and more realistic chal-
lenge: multi-modal deep unlearning. This task goes beyond
simply removing surface-level facts—it requires LVLMs to
also forget the hidden connections and reasoning paths that
could still lead to the target knowledge, across both textual
and visual modalities.

However, existing benchmarks fall short in evaluating this
deeper level of forgetting, particularly in multi-modal scenar-
ios. To address this gap, we propose the Multi-Modal Deep
Unlearning Benchmark (MMDU-Bench), a new benchmark
specifically designed to assess unlearning methods in the
multi-modal deep unlearning setting.

Our contributions are summarized as follows:
• We introduce MMDU-Bench, a benchmark for evalu-

ating multi-modal deep unlearning. It includes a large-
scale synthetic knowledge graph with over 30k relations
and 166k QA pairs, covering both explicit facts and rea-
soning paths across textual and visual modalities.

• We design structured forget and retain sets that sup-
port fine-grained evaluation. The forget set targets
both single-fact and multi-fact scenarios, while the re-
tain set includes neighboring knowledge, globally unre-
lated facts, and utility sets to assess the model’s general
knowledge.

• We conduct extensive experiments on five representa-
tive unlearning methods and two widely used LVLMs,
evaluated under both text-only and multi-modal settings.

1https://gdpr-info.eu/
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Figure 1: An example of multi-modal deep unlearning where knowledge is interconnected and spans across modalities.

Our analysis reveals key challenges, including the diffi-
culty of forgetting intermediate knowledge involved in
reasoning, and notable performance gaps across modal-
ities.

2 Related Work
Large Vision-Language Models Large Vision-Language
Models (LVLMs) combine visual encoders with large lan-
guage models to jointly process image and text inputs. Recent
models, such as MiniGPT-4 [Zhu et al., 2024a], BLIP [Li
et al., 2022; Li et al., 2023], LLaVA [Liu et al., 2023;
Liu et al., 2024a], GPT-4V [OpenAI, 2023], and Qwen-
VL [Bai et al., 2023; Wang et al., 2024; Bai et al., 2025]
have demonstrated increasing capabilities across diverse mul-
timodal tasks, including image captioning [Agrawal et al.,
2019], visual question answering [Goyal et al., 2019], and
visual grounding [Kazemzadeh et al., 2014].
Knowledge Unlearning for LVLMs Machine unlearning
aims to selectively remove specific knowledge—such as per-
sonal information, copyrighted content, or harmful mate-
rial—from a trained model while retaining unrelated capa-
bilities. Prior work has explored unlearning in both the visual
modality (e.g., removing specific images from classifiers) and
the textual modality (e.g., forgetting content from books or
documents). Techniques such as gradient ascent [Jang et al.,
2023; Yao et al., 2024], preference optimization [Rafailov et
al., 2023; Zhang et al., 2024], and task arithmetic [Ilharco
et al., 2023] have shown promising results in these settings.
With the rise of LVLMs, unlearning across modalities be-
comes increasingly important. While a few recent studies
have begun to explore unlearning in LVLMs [Ma et al., 2024;
Dontsov et al., 2024], it remains unclear whether these meth-
ods can effectively handle cross-modal and entangled knowl-
edge, highlighting the need for deeper investigation.
Unlearning Benchmarks for LVLMs Benchmarks are es-
sential for systematically evaluating the effectiveness of un-

learning methods. Several have been proposed for specific
use cases: MUSE [Shi et al., 2024] focuses on forgetting
knowledge and corpora from real-world news and books,
and introduces six evaluation criteria; TOFU [Maini et al.,
2024] targets fictional author biographies; CLEAR [Dontsov
et al., 2024] extends TOFU to the multi-modal setting;
MLLMU [Liu et al., 2025] targets unlearning in personal
profiles using synthetic multimodal QA; RWKU [Jin et al.,
2024] addresses the unlearning of real-world knowledge em-
bedded in LLMs; and WMDP [Li et al., 2024b] focuses on
safety-sensitive domains such as biosecurity, cybersecurity,
and chemical safety;

While these benchmarks are well-designed for their respec-
tive tasks, they largely treat knowledge as isolated units to
be forgotten. In practice, however, knowledge is often inter-
connected—forgetting a single fact is not sufficient if related
context allows it to be reconstructed. A recent study [Wu
et al., 2024] introduces the concept of deep unlearning and
proposes EDU-RELAT, a small-scale dataset designed to as-
sess unlearning of relational knowledge. However, it is lim-
ited to the text modality, supports only a few relation types,
and lacks diverse question formats. A concurrent work,
FaithUn [Yang et al., 2025], also explores unlearning inter-
connected knowledge, but it is again restricted to text and uses
only multiple-choice QA to verify knowledge removal—an
evaluation method that may be insufficient for the complexi-
ties of LVLMs and prone to bias [Shostack, 2024]. A detailed
comparison with those benchmarks is listed in Table 1.

3 Preliminary
3.1 Multi-modal Knowledge Graph
Following prior works [Liu et al., 2019; Zhu et al., 2024b;
Chen et al., 2024], we formulate a multi-modal knowledge
graph (MMKG) as a directed labeled graph G = (V,E,R),
where V = Vtext ∪ Vvisual denotes the set of entities, with
each entity categorized as either textual or visual. The set R
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Figure 2: Example of MMDU-Bench QA generation and the construction of forget and retain sets.

contains all relation types, and E ⊆ V ×R×V represents the
collection of directed edges (i.e., factual triples) of the form
⟨es, r, et⟩, indicating that a source entity es is connected to a
target entity et via relation r.

3.2 Reasoning Paths
A reasoning path in the MMKG from entity es to et is de-
fined as a sequence of directed or reversed edges:

p = ⟨(es, r1, e1), (e1, r2, e2), . . . , (en−1, rn, et)⟩,

A path is valid if it satisfies the following conditions:
(1) Traversability: Each edge must appear in the MMKG

either as a forward triple (ei, ri+1, ei+1) ∈ E or as a reversed
triple (ei+1, r

−1
i+1, ei) ∈ E, where r−1

i+1 denotes the inverse of
ri+1.

(2) Composability: The relation sequence (r′1, . . . , r
′
n)

must map to a composed relation rc ∈ R according to a rule
in the composition setRcomp, denoted as π(p) = rc.

To avoid semantic ambiguity and inference loops, we re-
strict reasoning paths to be acyclic. Our benchmark uses a
deterministic composition setRcomp, ensuring that each valid
path corresponds to at most one composed relation.

3.3 Multi-modal Deep Unlearning
Multi-modal deep unlearning aims to remove specific
knowledge from LVLMs, ensuring it cannot be recovered
by the model via alternative reasoning paths. To systemati-
cally study and evaluate this task, we represent the knowledge
within LVLMs as structured triples in the previously defined
multi-modal knowledge graph.

Formally, given a target fact τ = ⟨ea, rtarget, eb⟩, multi-
modal deep unlearning seeks to eliminate not only τ itself
but also any semantically equivalent inference that may re-
construct it through cross-modal reasoning.

Let G∗ denote the deductive closure of the knowledge
graph G under composition rulesRcomp, where:

⟨es, rc, et⟩ ∈ G∗ ⇐⇒ ∃ p ∈ PG(es, et) s.t. π(p) = rc,

with PG(es, et) denoting all valid reasoning paths from es
to et, and π(p) the composed relation derived from path p.

The unlearning operation U(G, τ) returns a modified graph
G′ = (V,E′) such that τ /∈ G′∗. This ensures the tar-
get fact cannot be recovered—either explicitly or via indirect
multi-hop reasoning—in the deductive closure of the modi-
fied graph.

3.4 Deep Unlearning Set
We define a deep unlearning set as a subset of edges F ⊆ E
such that, for a given target fact τ = ⟨ea, rtarget, eb⟩, the fact
can no longer be inferred from the graph after removing F ;
formally, τ /∈ (G \ F)∗. In other words, a deep unlearning
set effectively eliminates all valid reasoning paths that could
lead to the inference of τ .

Among the many possible deep unlearning sets, we aim to
find one that removes fewer edges while minimizing disrup-
tion to the model’s unrelated knowledge. Specifically, we pri-
oritize edges directly involved in the inference of τ , and avoid
those that represent general or widely shared knowledge.

In practice, we employ Algorithm 1 to compute such a deep
unlearning set. A formal proof of the algorithm’s correctness
is provided in Appendix A.

4 MMDU-Bench
To systematically study multi-modal deep unlearning, it is
essential to construct a dataset as a multi-modal knowledge
graph that enables structured reasoning and explicit evalua-
tion of knowledge removal. However, existing datasets built
from sources like Wikipedia [Auer et al., 2007; Suchanek et
al., 2007] or Freebase [Bordes et al., 2013; Toutanova et al.,



2015] are text-only and require costly annotation for multi-
modal alignment. Although MMKG [Liu et al., 2019] aug-
ments these graphs with visual signals, it remains noisy and
lacks explicit composition rules, making it unsuitable for con-
trolled evaluation of unlearning.

To address these limitations, we introduce MMDU-Bench,
a dataset built upon structured multi-modal knowledge
graphs, specifically designed to support the study of multi-
modal deep unlearning in LVLMs. It avoids contamina-
tion from pretraining data, enables deterministic composition
rules, and allows fine-grained control over graph structure and
distribution, providing a basis for more systematic evaluation.
An illustrative example is shown in Figure 2.

4.1 Dataset Construction
Our dataset construction follows the pipeline outlined below:
Name and Company Generation. We compiled an ini-
tial list of over 10,000 names from the Behind the Name
database2, removed duplicates, and ensured gender balance,
yielding a final set of 4,000 unique names. In parallel, we
employed GPT-4 to generate 200 fictional companies, each
described by geographic location, primary industry (e.g., ed-
ucation, finance), and a concise description. These companies
cover a broad spectrum of industries to ensure generalizabil-
ity for subsequent analytical tasks.
Knowledge Graph Construction. We randomly selected
200 names as main characters. Each main character is asso-
ciated with two social sub-networks: a family network and
a workplace network, collectively comprising approximately
20 entities. Family networks contain 7–10 individuals charac-
terized by consistent linguistic backgrounds, realistic demo-
graphic distributions (e.g., gender ratios of 0.4–0.6), and logi-
cally assigned family roles with appropriate age relationships.
Each main character was assigned to one of the 200 com-
panies, with organizational roles (e.g., leadership, senior, ju-
nior) determined by age, ensuring realistic workplace hierar-
chies. Additional coworkers were sampled from the broader
name set to introduce geographic diversity.
Entity Attributes and Multimodal Representation.
Structured attributes, including role, age, birthplace, and
appearance, were generated for each entity using GPT-4.
We validated these attributes for internal consistency, for
example, ensuring logical organizational hierarchies within
companies. Culturally appropriate surnames were subse-
quently assigned: familial relationships dictated surname
inheritance (e.g., father’s surname), whereas workplace
entities received surnames aligned with geographic origin.

To enrich entities with visual representations, we utilized
Stable Diffusion 3 [Esser et al., 2024] to generate four can-
didate images per entity based on textual descriptions. These
images were ranked using CLIPScore [Hessel et al., 2021],
and the highest-ranked image was selected as the final visual
representation.
QA Generation. To enhance the diversity and real-
ism of our dataset, we design five question types
reflecting varied reasoning requirements: ask relation,

2https://www.behindthename.com/

ask entity, ask entity multi hop, ask entity multi choice, and
ask entity multi hop multi choice. For each relation in the
knowledge graph, we generate both single-hop and multi-hop
questions, ensuring unique answers. This setup enriches the
dataset with varied reasoning paths, allowing more faithful
evaluation of unlearning performance in realistic QA scenar-
ios.

4.2 Split Dataset
Forget and Retain Sets. To evaluate unlearning effective-
ness, we construct explicit forget and retain sets. For each
main character, we randomly select one fact from their family
or workplace network as the direct forget set. Algorithm 1 is
then applied to identify additional supporting facts along rea-
soning paths that could indirectly infer this target fact, form-
ing the deep forget set. Removing these ensures the goal of
deep unlearning.

To comprehensively assess retention capabilities, we de-
sign the retain set across three progressively broader con-
texts. First, the neighbor retain set comprises remaining facts
within the same local network. Next, the global retain set
includes facts sampled from unrelated character networks,
providing broader domain coverage. Finally, we introduce
a model utility set, based on the general-knowledge bench-
marks MMLU [Hendrycks et al., 2021] and MMMU [Yue et
al., 2024], enabling the evaluation of broader model utility.

Training and Evaluation Sets. To mimic real-world appli-
cations—where models are typically trained on limited ques-
tion types but evaluated under broader conditions—we adopt
a selective training strategy. For each fact, only two QA types
are included in the training set, limiting exposure to linguistic
variations. The evaluation set, by contrast, includes all QA
types, thus testing the model’s ability to generalize to unseen
formulations. This setup imposes a more rigorous criterion
for both retention and forgetting.

Algorithm 1 Get Forget Set

Require: Target fact f(A r−→ B), knowledge graph G
Ensure: Forget fact set F or ∅

1: function GETFORGETSET(f,G)
2: P ← GETREASONINGPATHS(f)
3: if P = ∅ then
4: return ∅
5: end if
6: F ← ∅
7: for p ∈ P do
8: F ← F ∪ {p[0], p[0]−1}
9: end for

10: return F ▷ Return the forget fact set
11: end function

4.3 Statistics
The dataset comprises more than 30k relations, 166k QA
pairs, and 4,800 entities. The detailed statistics are shown
in Appendix D.

https://www.behindthename.com/


Benchmark TOFU [Maini et al., 2024] CLEAR [Dontsov et al., 2024] RWKU [Jin et al., 2024] KLUE [Yang et al., 2025] MMDU (ours)
Knowledge Source Synthetic Synthetic Real-world Real-world Synthetic

Deep Unlearning ✗ ✗ ✗ ✓ ✓
Multi-modal Data ✗ ✓ ✗ ✗ ✓

Multi-hop QA ✗ ✗ ✗ ✓ ✓
Model Utility ✓ ✓ ✗ ✗ ✓

Multi-fact Unlearning ✗ ✗ ✗ ✗ ✓

Unlearning Targets 200 200 200 200 1,000
Forget Probes 4,000 4,000 13,131 8,377 38,356

Table 1: A comparison between current unlearning benchmarks and MMDU-Bench.

4.4 Evaluation Metrics
Since we cannot directly verify whether a fact has been com-
pletely forgotten, we evaluate forgetting based on the model’s
inability to answer queries related to that fact or its reasoning
path. Specifically, if a model can answer any QA query de-
rived from the forget set, we consider the fact to be retained.
This stringent criterion reflects realistic adversarial scenarios
in which users might probe a model using varied questioning
strategies.

Based on this framework, we define the following evalua-
tion metrics:

Forget Quality. To assess how well target knowledge is for-
gotten, we define two forgetting metrics as follows:

Direct Forget Quality (DirectFQ): Measures whether the
model forgets the specific target fact. Let I be an indicator
function that returns 1 if the model answers correctly and 0
otherwise. Then,

DirectFQ = 1− 1

|Fd|
∑
f∈Fd

∑
q∈Qt(f)

I(q)
|Qt(f)|

where Fd is the direct forget set and Qt(f) denotes the set of
training questions associated with fact f .

Deep Forget Quality (DeepFQ): Assesses whether the
model forgets inferred facts along the reasoning path:

DeepFQ = 1− 1

|Fi|
∑
f∈Fi

∑
q∈Qe(f)

I(∃q ∈ Qe)

|Qe(f)|

where Fi is the deep forget set and Qe(f) denotes the set of
evaluation questions associated with fact f .

Retain Quality. To assess whether unrelated knowledge is
retained, we define retention metrics at three levels:

Neighbor Retain Quality (NRQ): Measures retention of
neighboring facts in the same network that are not in the for-
get set:

NRQ =
1

|Fn|
∑

f∈Fn

I (∃q ∈ Qe(f))

where Fn is the neighbor retain set.
Global Retain Quality (GRQ): Measures retention of

facts from unrelated networks:

GRQ =
1

|Fg|
∑
f∈Fg

I (∃q ∈ Qe(f))

where Fg is the global retain set.

Model Utility: Evaluates the model’s general knowledge
after unlearning. We measure this via MMLU (text) and
MMMU (multi-modal).

Forgetting-Retention Trade-off Score (FRTS). We intro-
duce a normalized metric to evaluate the balance between for-
getting effectiveness and knowledge retention. It is defined
as:

FRTS =
1

2

(
DirectFQ + DeepFQ

2︸ ︷︷ ︸
ForgetScore

·
1

2

(
NRQunlearn

NRQbase
+

GRQunlearn

GRQbase

)
︸ ︷︷ ︸

RetainRatio

+
Utilityunlearn

Utilitybase︸ ︷︷ ︸
UtilityRatio

)

All components are scaled to the range [0, 1], and thus
FRTS also lies in [0, 1]. A higher score indicates more ef-
fective forgetting with minimal loss of unrelated or general-
purpose knowledge.

5 Experiments
5.1 Setup
Models. We adopt LLaVA-1.57B [Liu et al., 2024a] and
Qwen2.5-VL3B [Bai et al., 2025], two widely used open-
source LVLMs with strong multimodal capabilities, as base
models for evaluating unlearning methods.

Data. Due to computational constraints, we randomly sam-
ple 50 main characters from the full dataset and reconstruct
a corresponding subset using the same pipeline described
in the dataset section. To help the model retain general
knowledge during unlearning, we augment the training data
with data from the ScienceQA [Lu et al., 2022] dataset and
MMLU [Hendrycks et al., 2021] training set.

Unlearning Baselines We evaluate five mainstream un-
learning methods: Task Vector (TV)[Ilharco et al., 2023],
Gradient Ascent (GA)[Jang et al., 2023], Direct Preference
Optimization (DPO)[Rafailov et al., 2023], Negative Pref-
erence Optimization (NPO)[Zhang et al., 2024], and Who’s
Harry Potter (WHP)[Eldan and Russinovich, 2023]. We con-
sider two unlearning settings: single-fact, where the model
is trained to forget a single target fact, and multi-fact, where
five related facts are removed simultaneously. These settings
allow us to evaluate both fine-grained unlearning precision
and the robustness of each method when handling multiple
interconnected facts. Each method is trained and evaluated



Model Method Forget Quality Retain Quality FRTS↑DirectFQ ↑ DeepFG↑ NRQ↑ GRQ ↑ Utility↑

LLaVA-1.57B

NONE 7.33/9.33 0.00/0.00 94.43/91.56 94.50/92.50 50.50/32.25 N/A
DPOtext 64.00/50.67 2.14/1.32 89.93/91.11 91.00/90.50 48.50/30.12 0.6186
DPOmulti-modal 52.00/98.67 3.12/4.45 92.21/88.20 90.50/89.00 48.50/29.75 0.6637
GAtext 100.00/100.00 34.11/31.87 74.45/80.17 90.50/86.50 45.38/29.75 0.7495
GAmulti-modal 100.00/100.00 19.55/24.20 82.55/81.21 91.50/83.00 47.12/31.62 0.7521
NPOtext 45.33/77.33 4.55/10.83 86.45/88.41 93.00/87.00 48.25/28.50 0.6279
NPOmulti-modal 62.67/96.67 6.70/13.39 92.09/86.88 92.00/90.00 49.50/30.63 0.7012
TVtext 72.00/72.00 2.50/3.12 94.28/87.48 93.00/87.00 48.75/31.25 0.6648
TVmulti-modal 62.67/62.67 3.12/2.50 90.80/89.70 93.00/91.00 47.62/29.62 0.6267
WHPtext 100.00/100.00 8.67/5.71 84.76/81.28 90.00/88.00 47.50/30.50 0.7185
WHPmulti-modal 78.00/100.00 7.41/4.29 92.75/87.78 90.50/91.00 47.50/28.12 0.6871

Qwen2.5-VL3B

NONE 0.00/0.00 0.00/0.00 100.00/99.73 100.00/99.50 57.50/42.50 N/A
DPOtext 100.00/100.00 13.75/8.25 95.43/96.74 100.00/99.00 56.75/42.25 0.7669
DPOmulti-modal 75.00/75.00 4.35/4.55 100.00/98.91 100.00/99.00 57.50/42.75 0.6992
GAtext 77.33/72.00 3.75/5.63 100.00/99.46 98.50/98.00 56.00/41.75 0.6855
GAmulti-modal 26.67/54.67 2.50/3.13 99.07/98.53 99.00/98.50 56.25/42.25 0.6001
NPOtext 75.62/50.67 6.75/3.33 100.00/99.07 99.25/99.00 56.00/40.50 0.6521
NPOmulti-modal 44.08/78.90 3.33/11.82 99.07/99.07 99.50/99.25 56.25/41.75 0.6617
TVtext 45.00/43.05 0.00/0.00 100.00/98.53 100.00/99.00 56.25/42.75 0.6046
TVmulti-modal 25.00/35.00 0.00/0.00 99.07/99.07 100.00/99.00 56.50/43.50 0.5746
WHPtext 100.00/78.00 4.38/3.12 98.15/98.53 100.00/99.00 58.00/42.75 0.7336
WHPmulti-modal 77.33/100.00 2.42/5.56 100.00/98.53 100.00/99.00 55.25/39.75 0.7057

Table 2: Results on single-fact unlearning setting. In the performance formulated as “a/b”, “a” denotes the text-only performance and “b” is
the multi-modal performance. Results on multi-fact unlearning setting can be found in Table 3.

separately on both textual and multi-modal QA datasets. Ap-
pendix E includes implementation and hyperparameter de-
tails.

5.2 Results
The results for single-fact unlearning are presented in Table 2,
while those for multi-fact unlearning are shown in Table 3.
We highlight three key observations from the experimental
outcomes.

Current Methods Struggle with Deep Forgetting. In
the single-fact unlearning setting, several methods exhibit
promising results in removing target facts while preserv-
ing unrelated knowledge. For example, GAmulti modal on
LLaVA-1.57B achieves 100% DirectFQ and the highest FRTS
of 0.7521, suggesting it can effectively and precisely for-
get the intended fact without broadly degrading model be-
havior. However, even the strongest method in this setting
achieves only 34.11% and 31.87% DeepFQ on LLaVA-1.57B
and Qwen2.5-VL3B, respectively, revealing that current meth-
ods remain largely ineffective at forgetting inferred knowl-
edge along reasoning paths.

In the more realistic multi-fact unlearning setting, over-
all forgetting improves. For instances, GAtext achieves a
DeepFQ of 59.20% on text-only QA and 47.74% on multi-
modal QA. However, this comes at the cost of reduced NRQ,
GRQ, and Utility, highlighting a stronger trade-off. Further-
more, for models with stronger memorization capacity, such
as Qwen2.5-VL3B, deep unlearning becomes even more diffi-
cult. While DPO-text achieves 83.16% DeepFQ on text-only
QA and 78.47% on multi-modal QA in the multi-fact setting,

most other methods yield much lower scores even under the
simpler single-fact setting. These findings confirm that cur-
rent unlearning techniques are primarily surface-level, lack-
ing robustness when facing multi-hop, modality-linked rea-
soning or stronger models, underscoring the urgent need for
more principled and scalable deep unlearning approaches.

Large Performance Gaps Between Modalities. We find
that the modality of data used during unlearning has a sig-
nificant impact on both forgetting effectiveness and the side
effects on retained knowledge. First, using different modal-
ity data for unlearning leads to varying levels of forgetting.
In several cases, training on text-only data results in more
thorough removal of facts, especially when evaluated on text-
based queries. For example, on the single-fact dataset with
LLaVA-1.57B, GA trained on text-only data shows stronger
forgetting compared to when trained on multi-modal data.

Second, unlearning tends to affect the modality-aligned
knowledge more directly. When training is performed on
text-only data, we observe higher forgetting scores on tex-
tual evaluations (e.g., higher DirectFQ), but this also results
in greater loss of nearby knowledge within the text modal-
ity. For instance, in LLaVA-1.57B, GA trained on text-only
data yields lower NRQ (74.45% compared to 80.17%), show-
ing that aggressively forgetting in one modality can come at
the cost of retaining useful knowledge in the same modal-
ity. Conversely, training with multi-modal data tends to pro-
duce more moderate forgetting effects, while better preserv-
ing broader context. These results highlight that the choice
of training data in unlearning must be aligned with the in-
tended deployment scenario and that modality-specific for-



Model Method Forget Quality Retain Quality FRTS↑DirectFQ↑ DeepFG↑ NRQ↑ GRQ↑ Utility↑

LLaVA-1.57B

NONE 32.50/34.44 8.85/7.81 94.57/91.72 95.50/92.50 50.50/32.25 N/A
DPOtext 89.44/78.61 23.78/19.62 90.08/89.66 93.50/90.50 49.00/30.75 0.7387
DPOmulti-modal 75.83/83.61 23.26/23.78 94.22/86.98 94.00/89.50 49.00/30.75 0.7334
GAtext 100.00/100.00 59.20/47.74 61.51/62.65 86.00/86.50 45.38/30.87 0.7646
GAmulti-modal 100.00/97.22 45.31/67.53 74.03/51.17 91.50/83.00 47.12/28.62 0.7678
NPOtext 83.89/81.11 22.40/20.83 88.54/85.12 92.50/90.00 48.62/29.88 0.7220
NPOmulti-modal 75.83/81.11 26.56/28.82 92.26/86.68 93.50/91.00 48.62/30.75 0.7373
TVtext 75.83/73.06 19.44/20.66 91.07/87.95 94.50/92.00 48.75/30.63 0.7103
TVmulti-modal 75.83/81.39 19.44/22.05 90.10/85.22 94.50/90.50 49.00/31.00 0.7225
WHPtext 97.50/94.72 32.12/31.08 79.71/81.13 90.00/91.00 47.50/31.12 0.7666
WHPmulti-modal 84.17/94.72 18.06/26.56 89.31/82.49 91.50/88.00 49.62/29.62 0.7410

Qwen2.5-VL3B

NONE 10.28/2.50 0.00/0.00 100.00/99.06 100.00/99.50 57.50/42.50 N/A
DPOtext 100.00/100.00 83.16/78.47 44.05/47.52 81.00/82.50 52.50/41.25 0.7580
DPOmulti-modal 74.17/79.17 23.96/22.40 83.95/82.04 99.00/98.50 56.88/43.00 0.7270
GAtext 83.33/83.33 66.67/48.44 58.78/55.93 73.50/72.00 40.25/33.25 0.5974
GAmulti-modal 89.44/91.94 31.77/42.88 74.48/64.19 95.50/84.50 43.50/35.00 0.6484
NPOtext 65.00/49.44 3.12/4.69 97.42/95.96 99.50/98.50 55.75/41.37 0.6357
NPOmulti-modal 38.89/41.39 2.14/3.03 98.96/97.57 99.75/99.50 56.50/42.88 0.6030
TVtext 34.17/31.67 0.00/0.00 98.61/98.02 99.50/99.50 57.62/41.88 0.5792
TVmulti-modal 23.33/28.89 0.00/0.00 98.44/98.02 99.50/99.00 57.62/42.88 0.5672
WHPtext 94.72/81.39 19.97/11.63 91.02/90.77 99.50/99.00 55.38/41.75 0.7334
WHPmulti-modal 76.39/97.22 14.06/17.88 98.26/96.03 99.25/99.00 55.00/42.25 0.7393

Table 3: Results on multi-fact unlearning.
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Figure 3: Metric correlation based on averaged baseline results.

getting dynamics should be carefully considered to balance
effectiveness and stability.

Unlearning Disproportionately Affects Local Knowledge.
Although these methods aim to remove specific facts, they of-
ten cause collateral damage to related knowledge. NRQ cap-
tures this effect, showing substantial impact on structurally
related but unremoved facts. For example, in the multi-fact
setting with LLaVA-1.57B, the GA-text method reduces NRQ

to 61.51% on text-only QA and 62.65% on multi-modal QA,
a stark drop from the baseline scores of 94.57% and 91.72%.
This observation aligns with prior findings [Qin et al., 2024],
suggesting that interconnected knowledge often shares sim-
ilar gradient directions, making isolated removal inherently
difficult. In contrast, GRQ and Utility are only slightly re-
duced. GRQ drops from 94.00% to 86.00% on text-only QA
and from 91.50% to 86.50% on multi-modal QA. Meanwhile,
performance on general knowledge remains stable. This dis-
crepancy highlights a core insight: unlearning impacts are
spatially biased, with proximal knowledge bearing the brunt
of interference. Figure 3 further supports this pattern, reveal-
ing clear stratified correlations among forget and retain met-
rics. The metric correlation of each baseline is shown in Ap-
pendix F.1. Conservative approaches like TV and NPO better
preserve both NRQ and GRQ but exhibit reduced forgetting,
underscoring the fundamental trade-off between unlearning
efficacy and local retention. Together, these findings call for
more fine-grained strategies that can disentangle target facts
from their surrounding context.

6 Conclusion and Future Work
In this work, we introduce MMDU-Bench, the first bench-
mark for multi-modal deep unlearning, which evaluates mod-
els’ ability to forget both explicit facts and cross-modal rea-
soning paths. Our findings show that deep unlearning re-
mains a challenging task—existing methods often fail to re-
move entangled knowledge, especially when it spans modal-
ities. Moreover, we observe a significant performance gap
depending on the modality of the unlearning data, revealing
new challenges in multi-modal unlearning. We hope MMDU-



Bench provides a foundation and useful insights for future
research into more robust, modality-aware unlearning meth-
ods that better align with real-world safety and compliance
demands.

A Proof of Valid Deep Unlearning Set

Proposition. Given a target fact τ = ⟨ea, rtarget, eb⟩, the for-
get setF returned by Algorithm 1 constitutes a valid deep un-
learning set. That is, removing F from G yields a new graph
G′ such that:

τ /∈ G′∗,

where G′∗ is the deductive closure of G′ under the composi-
tion rules, and no valid reasoning path remains that implies
rtarget from ea to eb.

Proof. Let P denote the set of all valid acyclic reasoning
paths p in G such that π(p) = rtarget and p starts at ea and
ends at eb. By definition of the deductive closure, τ ∈ G∗ if
and only if such a p ∈ P exists.

Algorithm 1 selects, for each p ∈ P , the first edge p[0]
(along with its inverse, if applicable), and includes it in the
forget set F . After removing all such edges from G, none of
the paths in P remain traversable, and thus:

∀p ∈ P, p /∈ PG′(ea, eb).

Hence, τ /∈ G′∗ by construction.
To verify sufficiency, suppose for contradiction that τ ∈

G′∗. Then there must exist a new path p′ ∈ PG′(ea, eb) such
that π(p′) = rtarget. However, since all known paths inP were
disrupted at their first edge, and composition rules Rcomp are
assumed deterministic and acyclic, any new path p′ must ei-
ther coincide with a removed prefix or require recombination
of partial segments invalid under Rcomp. This contradicts the
completeness of the edge removal over P , so no such p′ ex-
ists.

Furthermore, the selection of the first edge p[0] in each path
is motivated by its typically higher specificity to the target
fact. For example, in the path

Alice
born in−−−−→ California

located in−−−−−→ USA,

removing ⟨Alice, born in,California⟩ invalidates the
inference ”Alice was born in the USA” while leaving
broader geographic knowledge intact. In contrast, remov-
ing ⟨California, located in,USA⟩ would affect many un-
related facts.

Thus, although the algorithm does not guarantee minimal-
ity in terms of edge count, it yields a valid deep unlearning
set that reduces disruption to unrelated facts.

B Additional Algorithms
B.1 Reasoning Path Extraction

Algorithm 2 Reasoning Path Extraction

Require: Target fact f(A r−→ B), graph G
Ensure: Set of valid reasoning paths P or ∅

1: function GETREASONINGPATHS(f,G)
2: s← f.A ▷ source
3: t← f.B ▷ target
4: Pcand ← FINDPATHS(s, t,G) ▷ DFS search
5: Pvalid ← ∅
6: for p ∈ Pcand do
7: e← CONVERTEDGES(p) ▷ Apply Composition

Rules
8: if e.rel = f.rel then
9: Pvalid ← Pvalid ∪ {p}

10: end if
11: end for
12: return Pvalid if non-empty else ∅
13: end function

B.2 Multi-Fact Forget Set Generation

Algorithm 3 Get Multi-Fact Forget Set

Require: Set of target factsR = {f1, f2, ..., fn}, knowledge
graph G

Ensure: Forget fact set F
1: function GETMULTIFACTFORGETSET(R,G)
2: F ← ∅
3: for f ∈ R do
4: Ff ← GETFORGETSET(f,G)
5: if Ff ̸= ∅ then
6: for e ∈ Ff do
7: F ← F ∪ {e}
8: G ← G \ {e} ▷ Remove edge e from the

graph
9: end for

10: end if
11: end for
12: return F
13: end function

C Training Details.
To ensure the models effectively memorize the target facts
prior to unlearning, we conduct full-parameter fine-tuning.
Training is performed for 4 epochs with a learning rate of
5×10−5, an effective batch size of 256, a gradient norm clip-
ping of 1, and a warm-up of 100 steps. All experiments are
conducted on 4 A800-80G GPUs.

D Details of MMDU-Bench
D.1 Relation Types
MMDU-Bench defines a total of 24 distinct relation types,
categorized into three domains: Family Relation, Work Rela-
tion, and Geography Relation, as illustrated in Figure 4.



Family Relation
Father of Mother of Husband of
Wife of Grandfather of Grandmother of
Grandson of Granddaughter of Son of
Daughter of Sibling of Cousin of
Aunt of Uncle of Niece of
Nephew of

Work Relation
Colleague of Manager of Subordinate of
Employee of Employer of

Geography Relation
Born in Locates in Contains

Table 4: Relation Types in MMDU-Bench.

D.2 QA Statistics

Split AE. AE MC. AEMH. AEMH MC. AR. AB. AE Neg. Total
Train 3,742 16,808 3,897 21,913 9,256 577 4,200 56,193
Eval 15,688 56,822 12,030 51,207 29,806 577 0 166,130

Table 5: QA type distribution across Train and Eval
sets. AE.: ask entity, AE MC.: ask entity multi choice,
AEMH.: ask entity multi hop, AEMH MC.:
ask entity multi hop multi choice, AR.: ask relation, AB.:
ask birthplace, AE Neg.: ask entity negative.

D.3 Character Country Distribution
The distribution of character nationalities and regions is illus-
trated in Figure 4.

E Implementation of Unlearning Baselines
E.1 Method Descriptions
We use the following unlearning methods as our baseline:

Task Vector (TV): Task Vector [Ilharco et al., 2023] rep-
resents the difference between a fine-tuned model and its
base model in parameter space, enabling modular knowl-
edge transfer and modification. Mathematically, given a base
model θbase and a fine-tuned model θtask, the task vector is
defined as τtask = θtask − θbase. For unlearning, we can
negate the task vector and add it to the model’s parameters
as θunlearned = θlearned − λτtask.

Gradient Ascend (GA): Gradient ascent [Jang et al.,
2023] maximizes the loss by updating model parameters in
the direction of the gradient θ′ = θ + η∇θL(θ). Although
it can effectively erase knowledge from the model, it may
cause catastrophic forgetting, degrading performance on
unrelated tasks.

Direct Preference Optimization (DPO): DPO [Rafailov
et al., 2023] is a preference-based fine-tuning method that
improves model alignment by directly optimizing the differ-
ence in likelihood between preferred and dispreferred out-
puts, without relying on reinforcement learning. The loss
function is defined as:

LDPO = −E
[
log σ

(
β

(
log

πθ(z+)

πref(z+)
− log

πθ(z−)

πref(z−)

))]
where z+ and z− denote the preferred and dispreferred re-

sponses, and πref(z) is the reference model’s probability. The
hyperparameter β controls the sharpness of the preference
margin. In our unlearning setup, we treat the target fact as the
dispreferred response and use an “I don’t know” (IDK) style
response as the preferred output. A full list of IDK templates
is provided in Table 6.

Negative Preference Optimization (NPO): NPO [Zhang
et al., 2024] extends DPO by reinforcing negative preference
signals to facilitate unlearning. The optimization objective is
defined as:

LNPO = − 2

β
log σ

(
−β log

πθ(z)

πref(z)

)
where πθ(z) is the model’s probability of generating a tar-
get response z, and πref(z) is a reference model’s probability.
By pushing the probability of certain responses below their
reference likelihood, NPO forces the model to forget specific
knowledge while preserving general capabilities.

Who’s Harry Potter (WHP) [Eldan and Russinovich,
2023] is an unlearning method that mitigates knowledge
traces by aligning the model’s logits with those of a baseline
model. Specifically, it computes a generic logit representa-
tion as follows:

vgeneric = vbaseline − αReLU(vreinforced − vbaseline)

where vreinforced denotes the logits after fine-tuning, and
vbaseline corresponds to the original model’s logits. Dur-
ing fine-tuning, WHP replaces answer-critical tokens with
generic alternatives, encouraging the model to produce non-
informative outputs while preserving general capabilities. In
our implementation, we approximate this effect by randomly
replacing answers with alternative values.

E.2 Hyperparameter Settings
We set the effective batch size to 16 for all baseline methods.
Below, we report the hyperparameter configurations used for
each unlearning method under both the single fact and
multi fact unlearning settings, and across two vision-
language models: LLaVA-1.57B and Qwen2.5-VL3B. Table 7
summarizes the learning rate and number of training epochs
for all methods and settings. This unified table facilitates di-
rect comparison between models and unlearning configura-
tions. Each row corresponds to an unlearning method, while
the columns report the learning rate and epoch values under
both single-fact and multi-fact settings for each model.

F Additional Results
F.1 Metric Correlation Across Baselines
Figures 5–9 present Pearson correlation heatmaps between
evaluation metrics across unlearning methods under the
multi-fact unlearning setting using the Qwen2.5-VL3B model.
We observe consistently strong correlations between Di-
rectFQ and DeepFQ, indicating that effective removal of
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Figure 4: Character nationality and regional distribution

IDK Responses
I’m not sure about that. Sorry, I really don’t know.
I have no idea at all. I’m not certain of that.
That’s beyond my knowledge. I can’t provide an answer.
I don’t have that info. I’m not familiar with it.
That’s not something I know. I’m not informed on this.
I have no clue about it. I don’t have enough information about that.

Table 6: List of IDK-style responses used as preferred outputs in DPO training.

target facts generally accompanies removal of related sup-
porting facts along reasoning paths. The retention met-
rics—Neighbor Retain Quality (NRQ), Global Retain Quality
(GRQ), and Model Utility—form a distinct three-level hier-
archy, reflecting progressively broader categories of retained
knowledge.

Notably, DPO and GA exhibit higher DirectFQ-DeepFQ
correlations and weaker correlations between forgetting and
retention metrics compared to more conservative methods
(e.g., NPO and TV). This indicates that DPO and GA achieve
more targeted unlearning by effectively eliminating both the
specified facts and their associated reasoning chains, without
substantially compromising the retention of unrelated infor-
mation.

F.2 Forget&Retain Trend over Epoch

Figures 10–14 illustrate the trends of each evaluation met-
ric across five unlearning baselines as the number of training
epochs increases.
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Method LLaVA-1.57B (Single) Qwen2.5-VL3B (Single) LLaVA-1.57B (Multi) Qwen2.5-VL3B (Multi)

LR Epochs LR Epochs LR Epochs LR Epochs

NPO 5× 10−6 20 1× 10−5 20 5× 10−6 20 1× 10−5 20
GA 1× 10−5 30 2× 10−5 30 1× 10−5 30 2× 10−5 30
TV 1× 10−5 30 1× 10−5 30 1× 10−5 30 1× 10−5 30
DPO 5× 10−6 25 1× 10−5 20 5× 10−6 25 1× 10−5 30
WHP 5× 10−6 25 1× 10−5 20 5× 10−6 25 1× 10−5 20

Table 7: Unified hyperparameter settings (learning rate and number of epochs) for all unlearning methods under both single-fact and multi-
fact scenarios across LLaVA-1.57B and Qwen2.5-VL3B.
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Figure 6: Correlation Heatmap of GA
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Figure 8: Correlation Heatmap of TV
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Figure 10: Direct Forget Quality Trend
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Figure 11: Deep Forget Quality Trend

G Prompt Used in MMDU-Bench
Construction

Figure 15 and Figure 16 present the prompts provided to
GPT-4 for assigning attributes to entities within the family
and work relation networks. Figure 17 and Figure 18 show
the prompts used to guide GPT-4 in generating character ap-
pearance and company logo descriptions.
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Figure 12: Neighbor Retain Quality Trend

10 15 20 25 30 35 40
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

G
R

Q

GRQ vs Epoch

DPO
GA
NPO
TV
WHP

Figure 13: Global Retain Quality Trend
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Prompt

You are tasked with constructing a virtual family relationship knowledge graph based on
the provided JSON data. Follow these instructions:

1. Identify the main character as specified in the input and build family roles for each
individual in relation to this main character.

2. For the main character and each family member, add the following details:
- Age: Ensure it is appropriate for their role in the family.
- Place of Birth: Provide a detailed location in the format City, State/Province,

Country.
3. Role Options: [grandfather,grandmother,father,mother,uncle,aunt,husband,wife,son,

daughter,sibling,cousin,nephew,niece,granddaughter,grandson]
Output the enhanced family data, including information about the main character, in JSON

format.
Input Example:
{
"main_character": {
"name": "Alice",
"gender": "Female",
"role": "main character",
"age": 30

}
"family_members": [
{"name": "John", "gender": "Male"},
{"name": "Mary", "gender": "Female"},
{"name": "Emily", "gender": "Female"}

]
}
Output Example:
{
"main_character": {
"name": "Alice",
"role": "main character",
"gender": "Female",
"age": 30,
"birthplace": "Seattle, Washington, USA",

},
"family_members": [
{
"name": "John",
"gender": "Male",
"role": "father",
"age": 55,
"birthplace": "Springfield, Illinois, USA",

},
{
"name": "Mary",
"gender": "Female",
"role": "mother",
"age": 52,
"birthplace": "Denver, Colorado, USA",

},
{
"name": "Emily",
"gender": "Female",
"role": "sibling",
"age": 18,
"birthplace": "Seattle, Washington, USA",

}
]

}
Notes:
- Include the main character in the output with the role explicitly labeled as "main

character".
- Maintain logical consistency in family roles, ages, and relationships.
- The family relationships need to align with normal family structures.
- All roles need to be within the range of Role Options.
Input:
$input_json

Figure 15: Prompt used for generating family relations.



Prompt

I am constructing a knowledge graph of virtual company relationships. The structure should
begin with a main_character that is at the top of the hierarchy. The main character

will have three fields: manager, colleague, and subordinate, which represent the
respective relationships in the company.

For each person under the manager, colleague, and subordinate fields:
manager: Each manager will have a field for age, birthplace and a manager field to

indicate their superior. If a person has no manager, the manager field should be ’null
’.

colleague: Colleagues will have age, birthplace, and a colleague field to represent other
colleagues at the same level. If a person has no colleagues, the colleague field should
be ’null’.

subordinate: Subordinates will have age, birthplace, and a subordinate field to represent
the subordinates under them. If a person has no subordinates, the subordinate field
should be ’null’.

The birthplace should provide a detailed location in the format City, State/Province,
Country.

The hierarchy of roles in the company is categorized from highest to lowest as [’
leadership’, ’management’, ’senior’, ’mid-level’, ’junior’, ’entry-level’].

Each person should be assigned a role that corresponds to their position in the hierarchy,
along with age that fit their level.

The hierarchical relationship between the main_character and other persons in the company
must STRICTLY align with the main_character’s assigned level.

Example Input (JSON format):
{

"main_character": {
"name": "Alice",
"age": 45
"level": "leadership"

}
"company_members": [

{"name": "John", "gender": "Male"},
{"name": "Smith", "gender": "Male"},
{"name": "Bob", "gender": "Male"}

]
}
Example Output:
{

"Alice": {
"manager": null
"subordinate": {

"John": {
"age": 38,
"subordinate": {

"Smith": {
"age": 28,
"subordinate": null,
"birthplace": "Springfield, Illinois, USA"

}
},
"birthplace": "Seattle, Washington, USA"

}
}
"colleague": {

"Bob": {
"age": 36,
"colleague": null,
"birthplace": "Denver, Colorado, USA"

}
}

}
}
Input:
$input_json

Figure 16: Prompt used for generating work relations.



Prompt

Input: A JSON data containing character relationships, including details such as name,
role, gender, age, and birthplace.

Output: Using keywords that suitable for Stable Diffusion image generation to describe a
detailed appearance for each character, covering:

- Gender and age range (e.g., young, adult, middle-aged, elderly)
- Ethnicity/Regional traits (based on birthplace, e.g., Caucasian, African American, East

Asian)
- Facial features (e.g., sharp jawline, round face, high cheekbones)
- Hair style and color (e.g., short black hair, long wavy blonde hair)
- Eye color and shape (e.g., deep-set blue eyes, almond-shaped brown eyes)
- Skin tone (e.g., fair, tan, dark)
- Clothing style (if applicable, based on cultural background or profession)
- Accessories (if relevant, such as glasses, earrings, or hats)
- The appearance description should be realistic, diverse, and coherent, reflecting the

person’s background.
Output should format in JSON and only output the answer.
Example:
Input:
{
"main_character": {
"name": "Alice",
"role": "main character",
"gender": "Female",
"age": 54,
"birth_place": "Boston, Massachusetts, USA"

},
"family_members": [
{
"name": "Mike",
"gender": "Male",
"role": "husband",
"age": 56,
"birth_place": "New York City, New York, USA"

},
{
"name": "Alan",
"gender": "Male",
"role": "son",
"age": 30,
"birth_place": "Boston, Massachusetts, USA"

},
{
"name": "John",
"gender": "Male",
"role": "son",
"age": 28,
"birth_place": "Boston, Massachusetts, USA"

}
]

}
Output:
{
"Alice": "Female, middle-aged, Caucasian, round face, high cheekbones, soft jawline,

short light brown hair, slightly wavy, green almond-shaped eyes, fair skin tone,
casual modern attire, light colors, no accessories.",

"Mike": "Male, middle-aged, Caucasian, square jawline, broad forehead, prominent nose,
short dark brown hair, neatly combed, deep-set blue eyes, fair skin tone, casual
button-up shirts and khaki pants, watch.",

"Alan": "Male, young adult, Caucasian, sharp jawline, straight nose, youthful appearance,
medium-length wavy blonde hair, hazel round-shaped eyes, fair skin tone, modern

casual t-shirts and jeans, no accessories.",
"John": "Male, young adult, Caucasian, soft jawline, narrow face, light stubble, short

brown hair, slightly messy, brown almond-shaped eyes, fair skin tone, casual hoodies
and jeans, no accessories."

}
Input:
$input_json

Figure 17: Prompt used for generating appearance for each character.



Prompt

Input: a company name and a brief description of the company
Output: keywords for stable diffusion to generate the company logo.

For example:
Input:
Name: GrapeWine Company
Description: A company that produces grape wines with great flavor.
Output: logo,Minimalist,A bunch of grapes and a wine glass

Input:
Name: $name
Description: $description

Figure 18: Prompt used to generate logo descriptions for each company.
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Mitchell Wortsman, Ludwig Schmidt, Hannaneh Ha-
jishirzi, and Ali Farhadi. Editing models with task arith-
metic. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net, 2023.

[Jang et al., 2023] Joel Jang, Dongkeun Yoon, Sohee Yang,
Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, and
Minjoon Seo. Knowledge unlearning for mitigating pri-
vacy risks in language models. In Anna Rogers, Jordan L.
Boyd-Graber, and Naoaki Okazaki, editors, Proceedings
of the 61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL 2023,
Toronto, Canada, July 9-14, 2023, pages 14389–14408.
Association for Computational Linguistics, 2023.

[Jin et al., 2024] Zhuoran Jin, Pengfei Cao, Chenhao Wang,
Zhitao He, Hongbang Yuan, Jiachun Li, Yubo Chen, Kang
Liu, and Jun Zhao. RWKU: benchmarking real-world
knowledge unlearning for large language models. In
Amir Globersons, Lester Mackey, Danielle Belgrave, An-
gela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng
Zhang, editors, Advances in Neural Information Process-
ing Systems 38: Annual Conference on Neural Information
Processing Systems 2024, NeurIPS 2024, Vancouver, BC,
Canada, December 10 - 15, 2024, 2024.

[Kamalloo et al., 2023] Ehsan Kamalloo, Nouha Dziri,
Charles L. A. Clarke, and Davood Rafiei. Evaluating
open-domain question answering in the era of large lan-
guage models. In Anna Rogers, Jordan L. Boyd-Graber,
and Naoaki Okazaki, editors, Proceedings of the 61st

Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2023, Toronto,
Canada, July 9-14, 2023, pages 5591–5606. Association
for Computational Linguistics, 2023.

[Kazemzadeh et al., 2014] Sahar Kazemzadeh, Vicente Or-
donez, Mark Matten, and Tamara L. Berg. Referitgame:
Referring to objects in photographs of natural scenes. In
Alessandro Moschitti, Bo Pang, and Walter Daelemans,
editors, Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2014,
October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT,
a Special Interest Group of the ACL, pages 787–798. ACL,
2014.

[Kim et al., 2023] Siwon Kim, Sangdoo Yun, Hwaran Lee,
Martin Gubri, Sungroh Yoon, and Seong Joon Oh. Propile:
Probing privacy leakage in large language models. In Al-
ice Oh, Tristan Naumann, Amir Globerson, Kate Saenko,
Moritz Hardt, and Sergey Levine, editors, Advances in
Neural Information Processing Systems 36: Annual Con-
ference on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023.

[Li et al., 2022] Junnan Li, Dongxu Li, Caiming Xiong, and
Steven C. H. Hoi. BLIP: bootstrapping language-image
pre-training for unified vision-language understanding and
generation. In Kamalika Chaudhuri, Stefanie Jegelka,
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