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Abstract

Document-level Event Argument Extraction
(EAE) deals with longer texts, and more intri-
cate relationships between events than sentence-
level, which faced two problem: 1) semantic
boundaries between events are difficult to dis-
tinguish; 2) redundant information distracts at-
tention from events. To alleviate the afore-
mentioned issues, we propose the Structure
and Co-occurrence aware Event Argument Ex-
traction model (SCEAE). SCEAE utilizes the
PAIE architecture as the underlying framework.
Building upon this framework, we incorpo-
rates two different knowledge-aware prefixes
to tackle these problems. The Co-occurrence-
aware prefix leverages knowledge of event co-
occurrence to enhance the model’s perception
of semantic boundaries between events. The
Structure-aware prefix helps the model estab-
lish structured relationships between the sen-
tence. We tested our model on the RAMS,
WikiEvents and MLEE datasets. The experi-
ments showed that our model achieved gains of
2.1%, 2.3%, and 3.2% in the Arg-C F1 metric
compared to PAIE on RAMS, WikiEvents and
MLEE respectively. Furthermore, our model
achieved new state-of-the-art performance. We
will make all the progress publicly available at
https://github.com/—.

1 Introduction

Event Argument Extraction (EAE) is an impor-
tant subfield of Event Extraction (EE), which aims
to identify arguments and assign them the correct
roles. The structured text output from the EAE task
plays a significant role in various downstream tasks
such as question answering(Costa et al., 2020), di-
alogue systems(Zhang et al., 2020), and recom-
mendation systems(Li et al., 2020b). In recent
times, the success of Pre-trained Language Models
(PLM) has led to extensive research on document-
level EAE, enabling the extraction of events from
documents consisting of multiple sentences.
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unit .
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Figure 1: An EAE example from the WikiEvents dataset
involves a sentence with the document ID 4, where four
events are triggered by different trigger words. The
arguments of these four events are closely distributed,
and there may even be instances of overlapping events.

As shown in the figure 1, it illustrates an exam-
ple of document-level event argument extraction.
In the document, a sentence ID 4 contains four
events. The argument distribution of these events
is extremely dense, and different events can share
the same token span as arguments corresponding to
different roles. These dense and overlapping events
make the semantic boundaries between them blurry,
which increases the difficulty of extraction. More-
over, as can be seen from the figure 1, the explo-
sion in the length of document-level data brings a
significant amount of additional information from
surrounding sentences. Some of this information is
beneficial for EAE, while others introduce redun-
dant information that can mislead the extraction
process. For example, in the sentence number 5,
the presence of person nouns such as "man," "fe-
male," "soldier," "spokesman," "police," and "sol-
dier" can mislead the extraction of the "victim"
argument for the "Life.Die.Unspecified" event trig-
gered by "killed." These redundant pieces of infor-
mation will cause the attention of the model to be
distracted, thereby hindering the EAE process.

To alleviate the above issues, we have strength-
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ened the model’s boundaries from both the event
and sentence perspectives, emphasizing key in-
formation in the extraction task. At the event
level we have incorporated knowledge of event
co-occurrence, which refers to multiple events oc-
curring simultaneously in event mentions. There
is a strong potential causal link between these
co-occurring events. For example, in the de-
picted graph 1, the "Conflict. Attack.Unspecified"
event triggered by "stabbed" and the "Con-
flict. Attack.Unspecified" event triggered by "shot"
share the same text span "assailant." By consid-
ering event co-occurrence, we can capture these
relationships. At the sentence level, although event
mentions are document-level data, the informa-
tion and components about events is typically con-
tained within a single sentence. For instance, in
the WikiEvents dataset, over 94% of arguments are
located in the same sentence as the trigger word.
In the RAMS dataset, this proportion exceeds 82%,
and in the MLEE dataset, it more than 99%. This
indicates the importance of the trigger sentence.
To highlight this importance, We take the sentence
where the trigger word is located as the core, and
construct the structural relationship between all
sentences and this sentence. Such structured rela-
tionships help the model evaluate the usefulness of
all sentences to the current EAE work, and care-
fully select the useful information and discard the
redundant and irrelevant information.

We have adopted PAIE (Ma et al., 2022) as our
foundational model, inheriting its encoding and
span selection modules. Inspired by (Li and Liang,
2021; Hsu et al., 2023), we utilize prefixes as carri-
ers of information, condensing the aforementioned
information into concise prefixes. These prefixes
are intelligently integrated into the PLM, aiding
in the generation of PAIE’s event-oriented context
representation and context-oriented template repre-
sentation. This integration facilitates the model’s
performance in EAE, and we refer to the complete
model as SCEAE.

We summarize our contributions as follow:

e We introduce structure-aware to build
document-level structural information, increase the
amount of trigger sentence information, and dis-
card the interference caused by redundant informa-
tion.

e We introduced Co-occurrence-aware to in-
troduce additional information about event co-
occurrence to help the model capture semantic

boundaries between events.

e Our model, compared to PAIE, has achieved
improvements in the Arg-C F1 metric of 2.1%,
2.3%, and 3.2% on RAMS, WikiEvents datasets,
and MLEE, respectively. In comparison to the sota
model, SCEAE outperforms them by 1.7%, 1.6%,
and 0.4% in the Arg-C F1 metric, respectively.

2 Related Work

2.1 Classification-based Event Extraction

Currently, research on EE can be broadly cate-
gorized into two approaches: classification-based
methods and generation-based methods. Within the
classification-based approach, (Chen et al., 2015;
Nguyen et al., 2016) require prior extraction of
entities and non-entities from the text to form argu-
ment sets, which are then used for role classifica-
tion.(Sheng et al., 2021; Wang et al., 2022; Yang
et al., 2023; Xu et al., 2022; Lin et al., 2020; Wad-
den et al., 2019) no longer rely on separate entity
identification tasks and directly extract arguments
and perform role classification using labeling tech-
niques. (Li et al., 2020a; Du and Cardie, 2020a)
redefine EE as a reading comprehension task and
use predefined templates to extract arguments.

2.2 Generation-based Event Extraction

Based on the generative approach, which avoids
the problem of error propagation due to its end-to-
end nature, it has received wide attention in recent
years. (Lu et al., 2021) extract all arguments at once
by constraining the generation of generative PLM.
(Li et al., 2021; Hsu et al., 2022; Ma et al., 2022;
Hsu et al., 2023; He et al., 2023) decode arguments
from the generated results using potential argument
relationships in the prompts.

2.3 Prefix with Generation-based Extraction

The Prefix-tuning proposed by (Li and Liang,
2021), is a lightweight alternative approach for
fine-tuning in natural language generation (NLG)
tasks. Due to its significant impact on generative
tasks, there has been a recent emergence in the EE
community of using prefix to assist extraction tasks.
(Liu et al., 2022) introduces a prompt dynamic pre-
fix event extraction method that utilizes prefixes
to learn context-specific prefixes for sentence-level
event mentions. (Cao et al., 2023) utilizes pre-
fixes in the Cross-Lingual EAE domain by initializ-
ing prefixes based on language-universal dendency
structures to handle differences between source
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Figure 2: Overview of SCEAE: The entire model has incorporated different Information-aware prefixes in the

computation of specific parts of multi-head attention.

represents the Co-occurrence-aware prefix,

represents the

Structure-aware prefix. These prefixes participate in the attention computation of each layer in the PLM’s Encoder

or Decoder, influencing the generation of the final results.

and target languages. (Hsu et al., 2023) employs
prefixes to overcome the heterogeneity between
natural language form and structured AMR, thus
integrating AMR information into sentence-level
EAE.

Our work applies the use of prefixes in
document-level EAE. Building upon the PAIE
(Ma et al., 2022) model, we incorporate event
Co-occurrence-aware information and Structural-
aware information of event mentions, aiding the
model in capturing semantic boundaries between
events and avoiding the dispersal of event attention
caused by redundant information.

3 Methodology

In this section, we will provide a description of the
basic architecture of SCEAE in section 3.1. Sub-
sequently, in sections 3.2 to 3.4, we will provide
detailed explanations of the construction and uti-
lization of each submodule in SCEAE.

3.1 SCEAE

As shown in the Figure 2, given an event men-
tion D, it is input into the model, and the Encoder
of the model encodes it to obtain H$*, which is
then passed through the Decoder of the model to
obtain the encoded event-oriented context represen-
tation H x In this case, the Encoder and Decoder
have already concatenated prefixes to incorporate
additional auxiliary information. Specifically, the
Encoder incorporates the Structure-aware prefix,
while the Decoder incorporates the Structure-aware

prefix and Co-occurrence-aware prefix:
HS = Encodergqy (D), €))

Hyx = Decodercq,(HY, HY'). 2)

Where Sap represents Structure-aware prefix, C'ap
represents Co-occurrence-aware prefix.

To construct the span selector 8, we need to en-
able deep interaction between each token of D and
the template. First, we input H5'“ and the tem-
plate together into the Decoder for encoding. Then,
we concatenate the Structure-aware prefix to the
cross-attention part of the Decoder, namely:

H,y = Decodergq,(HY'C, Template).  (3)

Where H),; represents the context-oriented tem-
plate representation. Based on H,;, we can con-
struct a set of span selector # specific to each role.
Then, 6 utilizes the information from H x to predict
one or multiple token spans as arguments for that
role.

It should be noted that the two Decoders depicted
in the Figure 2 are actually the same Decoder, shar-
ing the same pretrained parameters, but with differ-
ent prefixes concatenated. We will provide detailed
explanations of the construction and application of
all modules in the following sections.

3.2 Structure-aware

Compared to sentence-level data, document-level
data leads to a significant increase in data length.
While this provides more valuable information to
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Figure 3: The above figure illustrates the creation of a
document-level Structure-aware prefix, where the prefix
encapsulates the structured relationship information of
the document.

assist the model in extraction, it also introduces
redundant information that disperses the model’s
attention. To address this issue we attempt to con-
struct structured relationships between sentences.
Taking the sentence where the trigger is located as
the core, we establish document-level structured
relationships between this sentence and other sen-
tences by limiting the receptive field of the remain-
ing sentences.

Doc-Structure-aware prefix Self-attention. As
shown in Figure 3, we designed a Doc-Structure-
aware Self-attention mask, denoted as M, which
operates at the sentence level and trains the model
to be structure-aware for the entire document.
Specifically, given a document-level event men-
tion D = {5, 59, ...,S,,} and the trigger token
T of the current event to be extracted, where Tj is
located in sentence St, Mj restricts the receptive
field of all sentences except S7. These sentences
can only attend to themselves and St, while St
can attend to all other sentences. We formalize this

as:
KT+ M;
Attention(Q, K, V') = softmax <Q+> v,
Vdm
4)

0, SEN(w;) € {SEN(w;), SEN(Tj)}
M = 0, SEN(Tj)
—00, Otherwise
&)
where SEN() is the sentence that the word w;
belongs. Finally, we obtain the Structure-aware

matrix Wy for the event mention D as follows:
Wgs = Encoder — Decoder(D, My).
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Figure 4: Overview of creating a Co-occurrence-aware
prefix. Note that the input to this module is the concate-
nated templates.

Prefix. After constructing the Structure-aware
matrix Wy for the event mention D, we condense
its structural information into a prefix (Li and
Liang, 2021; Hsu et al., 2023). As shown in Fig-
ure 3, firstly, we introduce a learnable vector of
length [ as the Query vector for multi-head atten-
tion, where [ is a tunable hyperparameter that con-
trols the length of the prefix to be concatenated
into the PLM. Next, we utilize W as the Key and
Value vectors in the multi-head attention calcula-
tion, and perform multi-head attention computa-
tion with the Q vector. Upon completion of the
multi-head attention calculation, we obtain a set
of compressed dense vectors P. These vectors P
then undergo a series of linear layers for further
processing. Finally, we evenly divide the processed
P into L segments: P = {Py, P,, ..., P.}, where
each segment has a length of . Here, L represents
the number of layers in the PLM. These segmented
vectors P, i € [1, L], each with a length of [, can
be concatenated into the PLM for computational
purposes.

Please note that the Encoder-Decoder used for
encoding in this context, as well as the Encoder-
Decoder used in the subsequent Co-occurrence-
aware prefix generation in Figure 4 and the Encoder
and Decoder depicted in Figure 2, all belong to

_ the same pre-trained language model (PLM). They

share the same training parameters. However, in
this case, no prefixes are added to the PLM.
3.3 Co-occurrence-aware

Document-level data often contains more events,
and the relationships between events become more



complex. In order to enhance the model’s ability to
distinguish the semantic boundaries between events
we attempted to incorporate knowledge of event
co-occurrence.

Specifically, we introduced event co-occurrence
knowledge from two aspects: Co-occurrence-aware
Context Labeling, which involves marking the trig-
ger words corresponding to all events mentioned
in D, and Co-occurrence-aware prefix generation,
which involves extracting template information as-
sociated with all events mentioned in D.

Co-occurrence-aware
Given a sentence-level or document-level
event mention D = {t1,to,...,t,}, where
t; represents the i¢-th token in the D. Let
E = {Ey,E,...,Ey,}, denote all the events
E; that appear in D, and m represents the
number of events appearing in D. Given the
trigger words corresponding to all events in E:
T = {To,T1,...,Tn}, where T; represents the
trigger word for event E;. For the token span
corresponding to the trigger word T} of the
currently extracted event £;, we annotate it in D
using special tokens < t ——1 > and < /t ——1 >.
Thus, the modified D will be D = {t1,t2,...,<
t——1>1T; < /t——1>,...,t,}. For other
trigger words 7}, corresponding to events that exist
in D, we will annotate them using < ¢t — k£ > and
< /t — k > based on their positions in D in the
order of appearance. Here, k starts from 0, and for
each annotated trigger word, k is incremented by
1.

Co-occurrence-aware prefix. In the prompt-
based generative approach, templates are directly
associated with event types, and the interplay of
role-related information depicted in the templates
is regarded as a key factor (Hsu et al., 2022) in
facilitating EE and EAE. To fully leverage this in-
formation, as shown in Figure 4, we attempt to
create prefixes from the template information cor-
responding to all events mentioned in D, and then
integrate these prefixes into the PLM to assist in
EAE. Specifically, we start by concatenating the
templates P = {Py, Py, ..., P} corresponding to
all events F = {Ey, E1, ..., E} that occur in the
current event mention D. Next, we encode this
concatenated template sequence using an Encoder-
Decoder PLM, resulting in a dense vector represen-
tation W that captures the templates associated
with co-occurring events. Finally, following the
same approach described in section 3.2, we inte-

Context Labeling.

grate the information from W into prefix.

It is important to note that the Encoder-Decoder
PLM used for encoding does not have any prefixes
added.

3.4 Span Selection

After obtaining the context-oriented template repre-
sentation H,t, we extract the slot representation 1,
corresponding to the pre-defined roles from Ht,
where k represents the k-th slot. Then, we convert
1 into a span selector specific to that slot 6, (Ma
etal.,2022; Du and Cardie, 2020b). Next, apply the
span selector 0, directly to the event-oriented con-
text representation to determine argumentH x to de-

(end)
start
termine the argument’s token span [p,(C art):p

_ o wlstat) ¢ Rh.
=0 we) e RM,
T/JkStart)HX c RL,
bV Hy € RE,
pl(jta”) Softmax(loglt(Stwt)) € RE,

p,(:nd) = Softmax(loglt,(:nd)) c RY.

start
Pt =

¢ (end)

lOglt](:mrt

(0)
loglt(end

Where § = [wter);ylend)] ¢ RP>2 s a
learnable parameter matrix shared by all span se-
lectors, o represents element-wise multiplication.
O = [w,(:tart) ; 1/1,E;end)] is the span selector specific
to the slot corresponding to the role.

We define the loss function L as follows:

—(log ™" (s1,) + log p\™ (ex),

L= > LyX

XeD k

Li(X) =

(M
where D ranges over all context in dataset and k
ranges over all slots in prompt for X.

During the inference phase, we predefine spans
that cover all possible spans within a predefined
length and include a special span (0, 0) to represent
the absence of any corresponding argument. Then,
we utilize the span selector 0 to compute scores
for all spans using the following method:

scorey (i, j) = logi t(St‘m)( )+ 1o glt(end (7). (8)
Where 7 and j represent the start and end indices
of each span in the set of spans.

Based on the scores, we determine the predicted
final span by selecting the span with the highest



Score.

(Sk, €x) = arg max score (i, 7). ©)
(i,9)eC

For the issue of multiple arguments of the same

role, we utilize the Hungarian algorithm to fine-

tune our model (Kuhn, 1955; Ma et al., 2022). For

the problem of allocating multiple slots correspond-

ing to a single role, we employ Bipartite Matching

(Carion et al., 2020; Yang et al., 2021; Ma et al.,
2022).

4 Experiments

4.1 Datasets

We conducted comprehensive ablation and compar-
ative experiments on SCEAE using three datasets:
RAMS(Ebner et al., 2020), WikiEvents(Li et al.,
2021), and MLEE(Pyysalo et al., 2012). RAMS
and WikiEvents are the latest datasets widely used
for document-level EE/EAE models. RAMS and
WikiEvents are derived from news events and
MLEE focuses on the biomedical domain. Since
the MLEE dataset does not have a separate valida-
tion set, we used the training set as our validation
set during model training. We followed the data
preprocessing techniques from (Ma et al., 2022;
He et al., 2023; Hsu et al., 2023) for the document-
level datasets RAMS, WikiEvents, and MLEE.
We incorporated the prompts proposed in (Ma
et al., 2022) specifically designed for the RAMS
and WikiEvents datasets. Additionally, we utilized
the prompts suggested in (He et al., 2023) tailored
for the MLEE dataset. Appendix A provides a de-
tailed introduction to the four mentioned datasets.

4.2 Experiment Setups and Evaluation
Metrics

We follow previous works for prompt-based gen-
erative event extraction models using PLM with
Encoder-Decoder Transformer structure, such as
BART (Lewis et al., 2020) and T5 (Raffel et al.,
2020). MTCM uses the BART model as a PLM,
which is a standard Transformer-based PLM con-
sisting of both an Encoder and a Decoder. Detailed
experiment setups and hyperparameters are listed
in Appendix B.

We consider the same evaluation criteria in prior
works (Li et al., 2021; Hsu et al., 2022; Ma et al.,
2022; He et al., 2023) for all dataset. Since it is
a generative task, we place greater emphasis on
the F1 score. Therefore, in this experiment, we

will report the F1 score for argument identification
(Arg-I) and argument classification (Arg-C).

e Arg-I: an argument is correctly identified from
event mention.

e Arg-C: an argument is correctly classified if its
offset and the role’s label both match the ground
truth.

4.3 Baseline Method

We will categorize the models used for compar-
ison with SCEAE into two groups. The first
group is about classification-based methods. The
classification-based models include:

e EEQA (Du and Cardie, 2020a): redefines the
EE task as a question-answering task.

e TSAR (Xu et al., 2022): the model use Two-
Stream Abstract meaning Representation to EAE.

The second group is about generation-based
methods.

e BART-Gen(Li et al., 2021): redefines the EE
task as a seq-to-seq conditional generation.

e PAIE (Ma et al., 2022): the model utilizes
a span selector for decoding and extracting argu-
ments.

e TabEAE (He et al., 2023): the model ex-
tends the PAIE into a non-autoregressive generation
framework.

4.4 Main Resuilts

We evaluate the proposed model SCEAE and base-
line methods under all benchmarks. As shown
in Table 1, comparing to the baseline model
PAIE, SCEAE demonstrates comprehensive im-
provements across all datasets. On the RAMS
dataset, SCEAE achieves a 2.3% gain and a 2.2%
gain in the Arg-lI and Arg-C metric. On the
WikiEvents dataset, SCEAE shows a 2.0% im-
provement in the Arg-I metric and a 2.3% improve-
ment in the Arg-C metric. The largest gains are
observed on the MLEE dataset, where SCEAE
achieves significant improvements of 3.0% and
3.2% in the Arg-1I and Arg-C metrics, respectively.

In comparison to the previous state-of-the-art
models, SCEAE also achieves comprehensive im-
provements across the three document-level bench-
marks. Specifically, on the RAMS dataset, SCEAE
outperforms TabEAE(m2s) with a 1.4% improve-
ment in the Arg-I metric and a 1.8% improvement
in the Arg-C metric. On the WikiEvents dataset,
SCEAE surpasses TabEAE(m2s) with a 1.2% im-
provement in the Arg-I metric and a 1.6% improve-
ment in the Arg-C metric. On the MLEE dataset,



RAMS WikiEvents MLEE
Model PLM Arg-1 Arg-C  Argl Arg-C Argl Arg-C
classification-based
EEQA BERT 4877 467 569 545 684  66.7
TSAR BERT 56.1 512 708 655 723 713
generation-based

BART-Gen | BART 512 471 668 624 71.0 69.8
TabEAE(s) | RoBERTa | 56.2 514 69.7 649 - -
TabEAE(m) | RoBERTa | 559 509 703 646 740 729
PAIE BART 553 51.0 689 642 713 70.1
SCEAE BART 57.5 531 709 665 743 733

Table 1: The table above presents a comparison of the Arg-I F1 and Arg-C F1 metrics between SCEAE and all
baseline methods on three datasets. All experiments utilized a large-scale PLM with 24 Transformer layers. The
highest scores are highlighted in bold, and the second-best scores are underlined. TabEAE(s) means the use of a
Multi-Single Training-inference Scheme, TabEAE(m) means the use of a Multi-Multi Training-inference Scheme

SCEAE achieves a 0.3% improvement in the Arg-
I metric and a 0.4% improvement in the Arg-C
metric compared to TabEAE(m2m). These results
highlight the powerful extraction capabilities of
SCEAE. *

5 Analysis

5.1 Capturing the Event Semantic Boundary

We investigated the ability of SCEAE to capture
event semantic boundaries from two perspectives,
similar to TabEAE: inter-event semantics and intra-

word. We define the distance (d) between a role
and a trigger word as the maximum distance be-
tween all the arguments within that role and the
trigger word. From the Figure 5, it can be observed
that PAIE struggles to handle roles with distances
(d) greater than or equal to 15 or less than or equal
to -15. SCEAE shows significant improvements
compared to PAIE when dealing with roles at long
distances. This indicates that SCEAE is capable
of effectively capturing the arguments surrounding
event boundaries.

event semantics. WikiEvents MLEE
Inter-event semantics. We conducted an analy- Model N_O Overlap | N_O Overlap

sis on the WikiEvents and MLEE datasets, dividing 296 09 734 1460

the test sets into two categories: those containing TabEAE(s) | 654  63.0

overlapping events and those without overlapping TabEAE(m) 71.0 67.6

events. Overlapping events refer to multiple events PAIE 639 650 | 757 634

that share the same token span as arguments. As SCEAE 060 684 | 778 679

shown in the Table 2, SCEAE outperforms PAIE
in both benchworks, with the highest improvement
occurring when handling the Overlap events in the
MLEE dataset, where the Arg-C F1 score improves
by 4.5%. Even when compared to TabEAE, which
utilizes different reasoning methods, SCEAE still
achieves excellent performance. This indicates that
SCEAE is effective in distinguishing the semantic
boundaries between overlapping events.
Intra-event semantics. we measure the distance
between roles and trigger words. Since a role may
correspond to multiple different arguments, the
model predicts all the arguments corresponding
to a role at once. We calculate the distance by sub-
tracting the head token index of an argument from
the head token index of its corresponding trigger

Table 2: The table above compares the performance of
EAE models in extracting the arguments of overlapping
events. We only measure the Arg-C F1 metric. "N_O"
indicates "no overlap," and the number below represents
the quantity of event mentions without overlap in the
corresponding dataset’s test set.

5.2 Structure-aware for Document

To validate that the performance of Structure-aware,
we conducted experiments on the RAMS dataset,
which has the highest proportion of arguments and
trigger words in different sentences. As shown in
the Table 4, we defined the D as the distance be-
tween the argument and the trigger word in terms
of sentences. We classified roles where all the



RAMS

WikiEvents MLEE

Model

Arg-1 Arg-C  Arg-l Arg-C Argl Arg-C

wlo str & occur | 553 510 689 642 713  70.1
only str 558 520 705 648 720 709
only occur 559 51.6 705 659 739 729
SCEAE 575 531 709 665 743 733

Table 3: The table above shows SCEAE’s ablation experiments on all datasets. str: Structure-aware prefix. occur:
Co-occur-aware prefix. Str & occur: Structure-aware and Co-occur-aware prefixes.

WikiEvents MLEE

Figure 5: The Figures above displays the performance
of different EAE models in extracting arguments at dif-
ferent distances from the triggers on the WikiEvents and
MLEE datasets. Negative numbers represent positions
to the left of the trigger words, while positive numbers
represent positions to the right of the trigger words. We
only measure the Arg-C F1 metric.

RAMS
Model D=0 D£0 Al
PAIE 587 353 510
TabEAE(s) | 612 318 514
SCEAE 619 355 53.1

Table 4: The table above shows the performance of
different EAE models on the RAMS datasets with vary-
ing sentence distances between triggers and arguments.
"All" refers to all the data in the test set. We only mea-
sure the Arg-C F1 metric.

arguments corresponded to the same sentence as
D = 0. If at least one argument within a role was
in a different sentence from the trigger word, the
role was classified as D # (0. From Table 4, it can
be observed that SCEAE achieves a gain of 3.2%
over PAIE and outperforms TabEAE by 0.7% in the
D = 0 cases. On the other hand, SCEAE achieves
a gain of 0.2% over PAIE and outperforms TabEAE
by 3.7% in the D # 0 cases. The improvements
in the both aspects in SCEAE enable it to achieve
outstanding performance, surpassing PAIE by 2.1%
and TabEAE by 1.7%. This indicates the effective-
ness of enhancing the attention on trigger sentence
in the model for argument extraction.

5.3 Ablation Studies

As shown in the Table 3, we conducted compre-
hensive ablation experiments on SCEAE. It can be
seen from the Table 3 that certain datasets expe-
rience significant improvements due to sensitivity
to specific knowledge-aware. For example, the
Occur-aware prefix improves the Arg-1 F1 and Arg-
C F1 metrics by 1.6% and 1.7% respectively on
WikiEvents and 2.6% and 1.8% respectively on
MLEE datasets, while the Structure-aware prefix
improves the Arg-I F1 and Arg-C F1 metrics by
0.6% and 1.0% respectively on the RAMS dataset.
In the SCEAE, it can be observed that when in-
tegrating two different prefixes, the models retain
sensitivity to individual knowledge-aware without
being disturbed by the incorporation of additional
knowledge-aware, and resulting in substantial im-
provements in performance across all datasets for
SCEAE.

6 Conclusion

The increasing length of document-level data
brings about more complex events and redundant
information, posing challenges for document-level
Event Argument Extraction (EAE) in distinguish-
ing semantic boundaries between events and redun-
dant information distracts attention from event. To
address these issues, we propose SCEAE. SCEAE
incorporates the Co-occurrence-aware prefix to
help the model capture event semantic boundaries,
and the Structure-aware prefix to build structured
information of the entire document. Experimental
results demonstrate that our model achieves im-
provements on three datasets: RAMS, WikiEvents,
and MLEE. It achieves a new state-of-the-art per-
formance.

7 Limitation

Indeed, there are still areas in our model that need
further improvement.



o The limitation of manually designing templates
remains a significant issue in prompt-based gener-
ative methods. This manual design restricts the
flexibility and adaptability of the model, as it relies
on predefined templates for generating outputs.

e The model is not able to directly process ex-
tremely long data (data length greater than 250).
Typically, preprocessing is required to handle such
data, which has been a longstanding challenge in
the Event Extraction (EE) community.
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A Dataset statistics

RAMS, commonly used for document-level Event
Extraction (EE) and is derived from English online
news. Each document in the dataset comprises
five sentences. Since the original dataset is stored
on an event-by-event basis, we followed the (He
et al., 2023) method to merge data from different
events within the same document while retaining
the ’sents’ field. We used the original train/dev/test
splits.

WikiEvents, typically used for document-level
EE, is collected from English articles in Wikipedia.
In our experiments, we used the exact argument
annotations. We also employed the data handling
approach for excessively long data (length greater
than 250) described in (He et al., 2023).

MLEE, commonly used for document-level EE,
is derived from abstracts of biomedical publica-
tions. We preprocessed the data using (Trieu et al.,
2020) method and then applied the data handling
approach for excessively long data (length greater
than 250) as described in (He et al., 2023). Since
the dataset does not have a separate validation set,
we used the training set for model training.

Statistics of the datasets and their detailed infor-
mation are recorded in the table 5.

B Experiment Setups

We utilized the BART-Large model, provided by
Facebook on the Huggingface website, as the pre-
trained language model for SCEAE. The model
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Dataset RAMS WikiEvents MLEE
# Event types 139 50 23

# Args per event 2.33 1.40 1.29

# Events per text 1.25 1.78 3.32

# Events

Train 7329 3241 4442
Dev 924 345 -

Test 871 365 2200

Table 5: The table above shows the basic information
for the all datasets, where Args stands for Arguments.

has approximately 406 million parameters. We
conducted the training of SCEAE and replicated
other paper’s experiments using a single NVIDIA
A40 Tensor Core GPU with a capacity of 45GB.
We selects the best model based on the develop-
ment set results. For optimization, we employed
the AdamW (Loshchilov and Hutter, 2019) opti-
mizer, setting the learning rate [ to 40, as described
in section 3.2. The batch size was set to 4. The
average length of time spent training the model was
five hours.
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