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Abstract

Document-level Event Argument Extraction001
(EAE) deals with longer texts, and more intri-002
cate relationships between events than sentence-003
level, which faced two problem: 1) semantic004
boundaries between events are difficult to dis-005
tinguish; 2) redundant information distracts at-006
tention from events. To alleviate the afore-007
mentioned issues, we propose the Structure008
and Co-occurrence aware Event Argument Ex-009
traction model (SCEAE). SCEAE utilizes the010
PAIE architecture as the underlying framework.011
Building upon this framework, we incorpo-012
rates two different knowledge-aware prefixes013
to tackle these problems. The Co-occurrence-014
aware prefix leverages knowledge of event co-015
occurrence to enhance the model’s perception016
of semantic boundaries between events. The017
Structure-aware prefix helps the model estab-018
lish structured relationships between the sen-019
tence. We tested our model on the RAMS,020
WikiEvents and MLEE datasets. The experi-021
ments showed that our model achieved gains of022
2.1%, 2.3%, and 3.2% in the Arg-C F1 metric023
compared to PAIE on RAMS, WikiEvents and024
MLEE respectively. Furthermore, our model025
achieved new state-of-the-art performance. We026
will make all the progress publicly available at027
https://github.com/—.028

1 Introduction029

Event Argument Extraction (EAE) is an impor-030

tant subfield of Event Extraction (EE), which aims031

to identify arguments and assign them the correct032

roles. The structured text output from the EAE task033

plays a significant role in various downstream tasks034

such as question answering(Costa et al., 2020), di-035

alogue systems(Zhang et al., 2020), and recom-036

mendation systems(Li et al., 2020b). In recent037

times, the success of Pre-trained Language Models038

(PLM) has led to extensive research on document-039

level EAE, enabling the extraction of events from040

documents consisting of multiple sentences.041

 

[3] Police say there are an unspecified number of casualties including police 
officers in a " terrorist incident " close to the British parliament in London .

[4] Eyewitnesses say a car crashed into pedestrians on nearby Westminster

 bridge before an assailant stabbed a policeman and was shot by police 

outside the parliament building . Two people were killed , according to Sky 

News , including a police officer .

[5] March 18 , 2017 - A man attempts to snatch gun from female soldier on 
patrol at Orly airport south of Paris ; man , who interior ministry spokesman 
says had earlier fired a potshot at police during an identity check before 
fleeing , is shot dead in the Orly incident by other members of soldier patrol 
unit .

...
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Figure 1: An EAE example from the WikiEvents dataset
involves a sentence with the document ID 4, where four
events are triggered by different trigger words. The
arguments of these four events are closely distributed,
and there may even be instances of overlapping events.

As shown in the figure 1, it illustrates an exam- 042

ple of document-level event argument extraction. 043

In the document, a sentence ID 4 contains four 044

events. The argument distribution of these events 045

is extremely dense, and different events can share 046

the same token span as arguments corresponding to 047

different roles. These dense and overlapping events 048

make the semantic boundaries between them blurry, 049

which increases the difficulty of extraction. More- 050

over, as can be seen from the figure 1, the explo- 051

sion in the length of document-level data brings a 052

significant amount of additional information from 053

surrounding sentences. Some of this information is 054

beneficial for EAE, while others introduce redun- 055

dant information that can mislead the extraction 056

process. For example, in the sentence number 5, 057

the presence of person nouns such as "man," "fe- 058

male," "soldier," "spokesman," "police," and "sol- 059

dier" can mislead the extraction of the "victim" 060

argument for the "Life.Die.Unspecified" event trig- 061

gered by "killed." These redundant pieces of infor- 062

mation will cause the attention of the model to be 063

distracted, thereby hindering the EAE process. 064

To alleviate the above issues, we have strength- 065
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ened the model’s boundaries from both the event066

and sentence perspectives, emphasizing key in-067

formation in the extraction task. At the event068

level we have incorporated knowledge of event069

co-occurrence, which refers to multiple events oc-070

curring simultaneously in event mentions. There071

is a strong potential causal link between these072

co-occurring events. For example, in the de-073

picted graph 1, the "Conflict.Attack.Unspecified"074

event triggered by "stabbed" and the "Con-075

flict.Attack.Unspecified" event triggered by "shot"076

share the same text span "assailant." By consid-077

ering event co-occurrence, we can capture these078

relationships. At the sentence level, although event079

mentions are document-level data, the informa-080

tion and components about events is typically con-081

tained within a single sentence. For instance, in082

the WikiEvents dataset, over 94% of arguments are083

located in the same sentence as the trigger word.084

In the RAMS dataset, this proportion exceeds 82%,085

and in the MLEE dataset, it more than 99%. This086

indicates the importance of the trigger sentence.087

To highlight this importance, We take the sentence088

where the trigger word is located as the core, and089

construct the structural relationship between all090

sentences and this sentence. Such structured rela-091

tionships help the model evaluate the usefulness of092

all sentences to the current EAE work, and care-093

fully select the useful information and discard the094

redundant and irrelevant information.095

We have adopted PAIE (Ma et al., 2022) as our096

foundational model, inheriting its encoding and097

span selection modules. Inspired by (Li and Liang,098

2021; Hsu et al., 2023), we utilize prefixes as carri-099

ers of information, condensing the aforementioned100

information into concise prefixes. These prefixes101

are intelligently integrated into the PLM, aiding102

in the generation of PAIE’s event-oriented context103

representation and context-oriented template repre-104

sentation. This integration facilitates the model’s105

performance in EAE, and we refer to the complete106

model as SCEAE.107

We summarize our contributions as follow:108

• We introduce structure-aware to build109

document-level structural information, increase the110

amount of trigger sentence information, and dis-111

card the interference caused by redundant informa-112

tion.113

• We introduced Co-occurrence-aware to in-114

troduce additional information about event co-115

occurrence to help the model capture semantic116

boundaries between events. 117

• Our model, compared to PAIE, has achieved 118

improvements in the Arg-C F1 metric of 2.1%, 119

2.3%, and 3.2% on RAMS, WikiEvents datasets, 120

and MLEE, respectively. In comparison to the sota 121

model, SCEAE outperforms them by 1.7%, 1.6%, 122

and 0.4% in the Arg-C F1 metric, respectively. 123

2 Related Work 124

2.1 Classification-based Event Extraction 125

Currently, research on EE can be broadly cate- 126

gorized into two approaches: classification-based 127

methods and generation-based methods. Within the 128

classification-based approach, (Chen et al., 2015; 129

Nguyen et al., 2016) require prior extraction of 130

entities and non-entities from the text to form argu- 131

ment sets, which are then used for role classifica- 132

tion.(Sheng et al., 2021; Wang et al., 2022; Yang 133

et al., 2023; Xu et al., 2022; Lin et al., 2020; Wad- 134

den et al., 2019) no longer rely on separate entity 135

identification tasks and directly extract arguments 136

and perform role classification using labeling tech- 137

niques. (Li et al., 2020a; Du and Cardie, 2020a) 138

redefine EE as a reading comprehension task and 139

use predefined templates to extract arguments. 140

2.2 Generation-based Event Extraction 141

Based on the generative approach, which avoids 142

the problem of error propagation due to its end-to- 143

end nature, it has received wide attention in recent 144

years. (Lu et al., 2021) extract all arguments at once 145

by constraining the generation of generative PLM. 146

(Li et al., 2021; Hsu et al., 2022; Ma et al., 2022; 147

Hsu et al., 2023; He et al., 2023) decode arguments 148

from the generated results using potential argument 149

relationships in the prompts. 150

2.3 Prefix with Generation-based Extraction 151

The Prefix-tuning proposed by (Li and Liang, 152

2021), is a lightweight alternative approach for 153

fine-tuning in natural language generation (NLG) 154

tasks. Due to its significant impact on generative 155

tasks, there has been a recent emergence in the EE 156

community of using prefix to assist extraction tasks. 157

(Liu et al., 2022) introduces a prompt dynamic pre- 158

fix event extraction method that utilizes prefixes 159

to learn context-specific prefixes for sentence-level 160

event mentions. (Cao et al., 2023) utilizes pre- 161

fixes in the Cross-Lingual EAE domain by initializ- 162

ing prefixes based on language-universal dendency 163

structures to handle differences between source 164

2



EncodeSelf Attention

Cross Attention

Self Attention

D

Decoder

Encoder
Template

Cross Attention

Self Attention

Decoder

role_3

role_2role_0 arg_0

role_1 arg_1 arg_3

arg_2

Hx Span Selector

S1 S1 S3 S4

Q

MatMul

Softmax

VK

Q

MatMul

Softmax

VK

Q

MatMul

Softmax

VK

Figure 2: Overview of SCEAE: The entire model has incorporated different Information-aware prefixes in the
computation of specific parts of multi-head attention. represents the Co-occurrence-aware prefix, represents the
Structure-aware prefix. These prefixes participate in the attention computation of each layer in the PLM’s Encoder
or Decoder, influencing the generation of the final results.

and target languages. (Hsu et al., 2023) employs165

prefixes to overcome the heterogeneity between166

natural language form and structured AMR, thus167

integrating AMR information into sentence-level168

EAE.169

Our work applies the use of prefixes in170

document-level EAE. Building upon the PAIE171

(Ma et al., 2022) model, we incorporate event172

Co-occurrence-aware information and Structural-173

aware information of event mentions, aiding the174

model in capturing semantic boundaries between175

events and avoiding the dispersal of event attention176

caused by redundant information.177

3 Methodology178

In this section, we will provide a description of the179

basic architecture of SCEAE in section 3.1. Sub-180

sequently, in sections 3.2 to 3.4, we will provide181

detailed explanations of the construction and uti-182

lization of each submodule in SCEAE.183

3.1 SCEAE184

As shown in the Figure 2, given an event men-185

tion D, it is input into the model, and the Encoder186

of the model encodes it to obtain Henc
X , which is187

then passed through the Decoder of the model to188

obtain the encoded event-oriented context represen-189

tation HX In this case, the Encoder and Decoder190

have already concatenated prefixes to incorporate191

additional auxiliary information. Specifically, the192

Encoder incorporates the Structure-aware prefix,193

while the Decoder incorporates the Structure-aware194

prefix and Co-occurrence-aware prefix: 195

Henc
X = EncoderSap(D), (1) 196

197
HX = DecoderCap(H

enc
X , Henc

X ). (2) 198

Where Sap represents Structure-aware prefix, Cap 199

represents Co-occurrence-aware prefix. 200

To construct the span selector θ, we need to en- 201

able deep interaction between each token of D and 202

the template. First, we input Henc
X and the tem- 203

plate together into the Decoder for encoding. Then, 204

we concatenate the Structure-aware prefix to the 205

cross-attention part of the Decoder, namely: 206

Hpt = DecoderSap(H
enc
X , T emplate). (3) 207

Where Hpt represents the context-oriented tem- 208

plate representation. Based on Hpt, we can con- 209

struct a set of span selector θ specific to each role. 210

Then, θ utilizes the information fromHX to predict 211

one or multiple token spans as arguments for that 212

role. 213

It should be noted that the two Decoders depicted 214

in the Figure 2 are actually the same Decoder, shar- 215

ing the same pretrained parameters, but with differ- 216

ent prefixes concatenated. We will provide detailed 217

explanations of the construction and application of 218

all modules in the following sections. 219

3.2 Structure-aware 220

Compared to sentence-level data, document-level 221

data leads to a significant increase in data length. 222

While this provides more valuable information to 223
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Figure 3: The above figure illustrates the creation of a
document-level Structure-aware prefix, where the prefix
encapsulates the structured relationship information of
the document.

assist the model in extraction, it also introduces224

redundant information that disperses the model’s225

attention. To address this issue we attempt to con-226

struct structured relationships between sentences.227

Taking the sentence where the trigger is located as228

the core, we establish document-level structured229

relationships between this sentence and other sen-230

tences by limiting the receptive field of the remain-231

ing sentences.232

Doc-Structure-aware prefix Self-attention. As233

shown in Figure 3, we designed a Doc-Structure-234

aware Self-attention mask, denoted as Ms, which235

operates at the sentence level and trains the model236

to be structure-aware for the entire document.237

Specifically, given a document-level event men-238

tion D = {S1, S2, . . . , Sm} and the trigger token239

Tj of the current event to be extracted, where Tj is240

located in sentence ST , Ms restricts the receptive241

field of all sentences except ST . These sentences242

can only attend to themselves and ST , while ST243

can attend to all other sentences. We formalize this244

as:245

Attention(Q,K, V ) = softmax
(
QK⊤ +Ms√

dm

)
V,

(4)246247

Ms =


0, SEN(wi) ∈ {SEN(wi),SEN(Tj)}
0, SEN(Tj)

−∞, Otherwise

.

(5)248

where SEN() is the sentence that the word wi249

belongs. Finally, we obtain the Structure-aware250

matrix WS for the event mention D as follows:251

WS = Encoder −Decoder(D,Ms).252
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Figure 4: Overview of creating a Co-occurrence-aware
prefix. Note that the input to this module is the concate-
nated templates.

Prefix. After constructing the Structure-aware 253

matrix WS for the event mention D, we condense 254

its structural information into a prefix (Li and 255

Liang, 2021; Hsu et al., 2023). As shown in Fig- 256

ure 3, firstly, we introduce a learnable vector of 257

length l as the Query vector for multi-head atten- 258

tion, where l is a tunable hyperparameter that con- 259

trols the length of the prefix to be concatenated 260

into the PLM. Next, we utilize WS as the Key and 261

Value vectors in the multi-head attention calcula- 262

tion, and perform multi-head attention computa- 263

tion with the Q vector. Upon completion of the 264

multi-head attention calculation, we obtain a set 265

of compressed dense vectors P . These vectors P 266

then undergo a series of linear layers for further 267

processing. Finally, we evenly divide the processed 268

P into L segments: P = {P1, P2, . . . , PL}, where 269

each segment has a length of l. Here, L represents 270

the number of layers in the PLM. These segmented 271

vectors Pi, i ∈ [1, L], each with a length of l, can 272

be concatenated into the PLM for computational 273

purposes. 274

Please note that the Encoder-Decoder used for 275

encoding in this context, as well as the Encoder- 276

Decoder used in the subsequent Co-occurrence- 277

aware prefix generation in Figure 4 and the Encoder 278

and Decoder depicted in Figure 2, all belong to 279

the same pre-trained language model (PLM). They 280

share the same training parameters. However, in 281

this case, no prefixes are added to the PLM. 282

3.3 Co-occurrence-aware 283

Document-level data often contains more events, 284

and the relationships between events become more 285
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complex. In order to enhance the model’s ability to286

distinguish the semantic boundaries between events287

we attempted to incorporate knowledge of event288

co-occurrence.289

Specifically, we introduced event co-occurrence290

knowledge from two aspects: Co-occurrence-aware291

Context Labeling, which involves marking the trig-292

ger words corresponding to all events mentioned293

in D, and Co-occurrence-aware prefix generation,294

which involves extracting template information as-295

sociated with all events mentioned in D.296

Co-occurrence-aware Context Labeling.297

Given a sentence-level or document-level298

event mention D = {t1, t2, . . . , tn}, where299

ti represents the i-th token in the D. Let300

E = {E0, E1, . . . , Em}, denote all the events301

Ei that appear in D, and m represents the302

number of events appearing in D. Given the303

trigger words corresponding to all events in E:304

T = {T0, T1, . . . , Tm}, where Ti represents the305

trigger word for event Ei. For the token span306

corresponding to the trigger word Tj of the307

currently extracted event Ej , we annotate it in D308

using special tokens< t−−1 > and< /t−−1 >.309

Thus, the modified D will be D = {t1, t2, . . . , <310

t − −1 > Tj < /t − −1 >, . . . , tn}. For other311

trigger words Tk corresponding to events that exist312

in D, we will annotate them using < t− k > and313

< /t − k > based on their positions in D in the314

order of appearance. Here, k starts from 0, and for315

each annotated trigger word, k is incremented by316

1.317

Co-occurrence-aware prefix. In the prompt-318

based generative approach, templates are directly319

associated with event types, and the interplay of320

role-related information depicted in the templates321

is regarded as a key factor (Hsu et al., 2022) in322

facilitating EE and EAE. To fully leverage this in-323

formation, as shown in Figure 4, we attempt to324

create prefixes from the template information cor-325

responding to all events mentioned in D, and then326

integrate these prefixes into the PLM to assist in327

EAE. Specifically, we start by concatenating the328

templates P = {P0, P1, . . . , PL} corresponding to329

all events E = {E0, E1, . . . , EL} that occur in the330

current event mention D. Next, we encode this331

concatenated template sequence using an Encoder-332

Decoder PLM, resulting in a dense vector represen-333

tation WC that captures the templates associated334

with co-occurring events. Finally, following the335

same approach described in section 3.2, we inte-336

grate the information from WC into prefix. 337

It is important to note that the Encoder-Decoder 338

PLM used for encoding does not have any prefixes 339

added. 340

3.4 Span Selection 341

After obtaining the context-oriented template repre- 342

sentationHpt, we extract the slot representation ψk 343

corresponding to the pre-defined roles from Hpt, 344

where k represents the k-th slot. Then, we convert 345

ψk into a span selector specific to that slot θk (Ma 346

et al., 2022; Du and Cardie, 2020b). Next, apply the 347

span selector θk directly to the event-oriented con- 348

text representation to determine argumentHX to de- 349

termine the argument’s token span [p
(start);p

(end)
k

k ]. 350

ψ
(start)
k = ψk ◦ w(start) ∈ Rh,

ψ
(end)
k = ψk ◦ w(end) ∈ Rh,

logit
(start)
k = ψ

(start)
k HX ∈ RL,

logit
(end)
k = ψ

(end)
k HX ∈ RL,

p
(start)
k = Softmax(logit(start)k ) ∈ RL,

p
(end)
k = Softmax(logit(end)k ) ∈ RL.

(6) 351

Where θ = [w(start);w(end)] ∈ Rh×2 is a 352

learnable parameter matrix shared by all span se- 353

lectors, o represents element-wise multiplication. 354

θk = [ψ
(start)
k ;ψ

(end)
k ] is the span selector specific 355

to the slot corresponding to the role. 356

We define the loss function L as follows: 357

Lk(X) = −(log p
(start)
k (sk) + log p

(end)
k (ek)),

L =
∑
X∈D

∑
k

Lk(X).

(7) 358

where D ranges over all context in dataset and k 359

ranges over all slots in prompt for X . 360

During the inference phase, we predefine spans 361

that cover all possible spans within a predefined 362

length and include a special span (0, 0) to represent 363

the absence of any corresponding argument. Then, 364

we utilize the span selector θk to compute scores 365

for all spans using the following method: 366

scorek(i, j) = logit
(start)
k (i) + logit

(end)
k (j). (8) 367

Where i and j represent the start and end indices 368

of each span in the set of spans. 369

Based on the scores, we determine the predicted 370

final span by selecting the span with the highest 371
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score.372

(ŝk, êk) = arg max
(i,j)∈C

scorek(i, j). (9)373

For the issue of multiple arguments of the same374

role, we utilize the Hungarian algorithm to fine-375

tune our model (Kuhn, 1955; Ma et al., 2022). For376

the problem of allocating multiple slots correspond-377

ing to a single role, we employ Bipartite Matching378

(Carion et al., 2020; Yang et al., 2021; Ma et al.,379

2022).380

4 Experiments381

4.1 Datasets382

We conducted comprehensive ablation and compar-383

ative experiments on SCEAE using three datasets:384

RAMS(Ebner et al., 2020), WikiEvents(Li et al.,385

2021), and MLEE(Pyysalo et al., 2012). RAMS386

and WikiEvents are the latest datasets widely used387

for document-level EE/EAE models. RAMS and388

WikiEvents are derived from news events and389

MLEE focuses on the biomedical domain. Since390

the MLEE dataset does not have a separate valida-391

tion set, we used the training set as our validation392

set during model training. We followed the data393

preprocessing techniques from (Ma et al., 2022;394

He et al., 2023; Hsu et al., 2023) for the document-395

level datasets RAMS, WikiEvents, and MLEE.396

We incorporated the prompts proposed in (Ma397

et al., 2022) specifically designed for the RAMS398

and WikiEvents datasets. Additionally, we utilized399

the prompts suggested in (He et al., 2023) tailored400

for the MLEE dataset. Appendix A provides a de-401

tailed introduction to the four mentioned datasets.402

4.2 Experiment Setups and Evaluation403

Metrics404

We follow previous works for prompt-based gen-405

erative event extraction models using PLM with406

Encoder-Decoder Transformer structure, such as407

BART (Lewis et al., 2020) and T5 (Raffel et al.,408

2020). MTCM uses the BART model as a PLM,409

which is a standard Transformer-based PLM con-410

sisting of both an Encoder and a Decoder. Detailed411

experiment setups and hyperparameters are listed412

in Appendix B.413

We consider the same evaluation criteria in prior414

works (Li et al., 2021; Hsu et al., 2022; Ma et al.,415

2022; He et al., 2023) for all dataset. Since it is416

a generative task, we place greater emphasis on417

the F1 score. Therefore, in this experiment, we418

will report the F1 score for argument identification 419

(Arg-I) and argument classification (Arg-C). 420

• Arg-I: an argument is correctly identified from 421

event mention. 422

• Arg-C: an argument is correctly classified if its 423

offset and the role’s label both match the ground 424

truth. 425

4.3 Baseline Method 426

We will categorize the models used for compar- 427

ison with SCEAE into two groups. The first 428

group is about classification-based methods. The 429

classification-based models include: 430

• EEQA (Du and Cardie, 2020a): redefines the 431

EE task as a question-answering task. 432

• TSAR (Xu et al., 2022): the model use Two- 433

Stream Abstract meaning Representation to EAE. 434

The second group is about generation-based 435

methods. 436

• BART-Gen(Li et al., 2021): redefines the EE 437

task as a seq-to-seq conditional generation. 438

• PAIE (Ma et al., 2022): the model utilizes 439

a span selector for decoding and extracting argu- 440

ments. 441

• TabEAE (He et al., 2023): the model ex- 442

tends the PAIE into a non-autoregressive generation 443

framework. 444

4.4 Main Resuilts 445

We evaluate the proposed model SCEAE and base- 446

line methods under all benchmarks. As shown 447

in Table 1, comparing to the baseline model 448

PAIE, SCEAE demonstrates comprehensive im- 449

provements across all datasets. On the RAMS 450

dataset, SCEAE achieves a 2.3% gain and a 2.2% 451

gain in the Arg-I and Arg-C metric. On the 452

WikiEvents dataset, SCEAE shows a 2.0% im- 453

provement in the Arg-I metric and a 2.3% improve- 454

ment in the Arg-C metric. The largest gains are 455

observed on the MLEE dataset, where SCEAE 456

achieves significant improvements of 3.0% and 457

3.2% in the Arg-I and Arg-C metrics, respectively. 458

In comparison to the previous state-of-the-art 459

models, SCEAE also achieves comprehensive im- 460

provements across the three document-level bench- 461

marks. Specifically, on the RAMS dataset, SCEAE 462

outperforms TabEAE(m2s) with a 1.4% improve- 463

ment in the Arg-I metric and a 1.8% improvement 464

in the Arg-C metric. On the WikiEvents dataset, 465

SCEAE surpasses TabEAE(m2s) with a 1.2% im- 466

provement in the Arg-I metric and a 1.6% improve- 467

ment in the Arg-C metric. On the MLEE dataset, 468
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Model PLM
RAMS WikiEvents MLEE

Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C
classification-based

EEQA BERT 48.7 46.7 56.9 54.5 68.4 66.7
TSAR BERT 56.1 51.2 70.8 65.5 72.3 71.3

generation-based
BART-Gen BART 51.2 47.1 66.8 62.4 71.0 69.8
TabEAE(s) RoBERTa 56.2 51.4 69.7 64.9 - -
TabEAE(m) RoBERTa 55.9 50.9 70.3 64.6 74.0 72.9
PAIE BART 55.3 51.0 68.9 64.2 71.3 70.1
SCEAE BART 57.5 53.1 70.9 66.5 74.3 73.3

Table 1: The table above presents a comparison of the Arg-I F1 and Arg-C F1 metrics between SCEAE and all
baseline methods on three datasets. All experiments utilized a large-scale PLM with 24 Transformer layers. The
highest scores are highlighted in bold, and the second-best scores are underlined. TabEAE(s) means the use of a
Multi-Single Training-inference Scheme, TabEAE(m) means the use of a Multi-Multi Training-inference Scheme

SCEAE achieves a 0.3% improvement in the Arg-469

I metric and a 0.4% improvement in the Arg-C470

metric compared to TabEAE(m2m). These results471

highlight the powerful extraction capabilities of472

SCEAE. ‘473

5 Analysis474

5.1 Capturing the Event Semantic Boundary475

We investigated the ability of SCEAE to capture476

event semantic boundaries from two perspectives,477

similar to TabEAE: inter-event semantics and intra-478

event semantics.479

Inter-event semantics. We conducted an analy-480

sis on the WikiEvents and MLEE datasets, dividing481

the test sets into two categories: those containing482

overlapping events and those without overlapping483

events. Overlapping events refer to multiple events484

that share the same token span as arguments. As485

shown in the Table 2, SCEAE outperforms PAIE486

in both benchworks, with the highest improvement487

occurring when handling the Overlap events in the488

MLEE dataset, where the Arg-C F1 score improves489

by 4.5%. Even when compared to TabEAE, which490

utilizes different reasoning methods, SCEAE still491

achieves excellent performance. This indicates that492

SCEAE is effective in distinguishing the semantic493

boundaries between overlapping events.494

Intra-event semantics. we measure the distance495

between roles and trigger words. Since a role may496

correspond to multiple different arguments, the497

model predicts all the arguments corresponding498

to a role at once. We calculate the distance by sub-499

tracting the head token index of an argument from500

the head token index of its corresponding trigger501

word. We define the distance (d) between a role 502

and a trigger word as the maximum distance be- 503

tween all the arguments within that role and the 504

trigger word. From the Figure 5, it can be observed 505

that PAIE struggles to handle roles with distances 506

(d) greater than or equal to 15 or less than or equal 507

to -15. SCEAE shows significant improvements 508

compared to PAIE when dealing with roles at long 509

distances. This indicates that SCEAE is capable 510

of effectively capturing the arguments surrounding 511

event boundaries. 512

Model

WikiEvents MLEE
N_O Overlap N_O Overlap
296 69 734 1460

TabEAE(s) 65.4 63.0
TabEAE(m) 77.0 67.6
PAIE 63.9 65.0 75.7 63.4
SCEAE 66.0 68.4 77.8 67.9

Table 2: The table above compares the performance of
EAE models in extracting the arguments of overlapping
events. We only measure the Arg-C F1 metric. "N_O"
indicates "no overlap," and the number below represents
the quantity of event mentions without overlap in the
corresponding dataset’s test set.

5.2 Structure-aware for Document 513

To validate that the performance of Structure-aware, 514

we conducted experiments on the RAMS dataset, 515

which has the highest proportion of arguments and 516

trigger words in different sentences. As shown in 517

the Table 4, we defined the D as the distance be- 518

tween the argument and the trigger word in terms 519

of sentences. We classified roles where all the 520
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Model
RAMS WikiEvents MLEE

Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C
w/o str & occur 55.3 51.0 68.9 64.2 71.3 70.1
only str 55.8 52.0 70.5 64.8 72.0 70.9
only occur 55.9 51.6 70.5 65.9 73.9 72.9
SCEAE 57.5 53.1 70.9 66.5 74.3 73.3

Table 3: The table above shows SCEAE’s ablation experiments on all datasets. str: Structure-aware prefix. occur:
Co-occur-aware prefix. Str & occur: Structure-aware and Co-occur-aware prefixes.

Figure 5: The Figures above displays the performance
of different EAE models in extracting arguments at dif-
ferent distances from the triggers on the WikiEvents and
MLEE datasets. Negative numbers represent positions
to the left of the trigger words, while positive numbers
represent positions to the right of the trigger words. We
only measure the Arg-C F1 metric.

Model
RAMS

D = 0 D ̸= 0 All
PAIE 58.7 35.3 51.0
TabEAE(s) 61.2 31.8 51.4
SCEAE 61.9 35.5 53.1

Table 4: The table above shows the performance of
different EAE models on the RAMS datasets with vary-
ing sentence distances between triggers and arguments.
"All" refers to all the data in the test set. We only mea-
sure the Arg-C F1 metric.

arguments corresponded to the same sentence as521

D = 0. If at least one argument within a role was522

in a different sentence from the trigger word, the523

role was classified as D ̸= 0. From Table 4, it can524

be observed that SCEAE achieves a gain of 3.2%525

over PAIE and outperforms TabEAE by 0.7% in the526

D = 0 cases. On the other hand, SCEAE achieves527

a gain of 0.2% over PAIE and outperforms TabEAE528

by 3.7% in the D ̸= 0 cases. The improvements529

in the both aspects in SCEAE enable it to achieve530

outstanding performance, surpassing PAIE by 2.1%531

and TabEAE by 1.7%. This indicates the effective-532

ness of enhancing the attention on trigger sentence533

in the model for argument extraction.534

5.3 Ablation Studies 535

As shown in the Table 3, we conducted compre- 536

hensive ablation experiments on SCEAE. It can be 537

seen from the Table 3 that certain datasets expe- 538

rience significant improvements due to sensitivity 539

to specific knowledge-aware. For example, the 540

Occur-aware prefix improves the Arg-I F1 and Arg- 541

C F1 metrics by 1.6% and 1.7% respectively on 542

WikiEvents and 2.6% and 1.8% respectively on 543

MLEE datasets, while the Structure-aware prefix 544

improves the Arg-I F1 and Arg-C F1 metrics by 545

0.6% and 1.0% respectively on the RAMS dataset. 546

In the SCEAE, it can be observed that when in- 547

tegrating two different prefixes, the models retain 548

sensitivity to individual knowledge-aware without 549

being disturbed by the incorporation of additional 550

knowledge-aware, and resulting in substantial im- 551

provements in performance across all datasets for 552

SCEAE. 553

6 Conclusion 554

The increasing length of document-level data 555

brings about more complex events and redundant 556

information, posing challenges for document-level 557

Event Argument Extraction (EAE) in distinguish- 558

ing semantic boundaries between events and redun- 559

dant information distracts attention from event. To 560

address these issues, we propose SCEAE. SCEAE 561

incorporates the Co-occurrence-aware prefix to 562

help the model capture event semantic boundaries, 563

and the Structure-aware prefix to build structured 564

information of the entire document. Experimental 565

results demonstrate that our model achieves im- 566

provements on three datasets: RAMS, WikiEvents, 567

and MLEE. It achieves a new state-of-the-art per- 568

formance. 569

7 Limitation 570

Indeed, there are still areas in our model that need 571

further improvement. 572
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• The limitation of manually designing templates573

remains a significant issue in prompt-based gener-574

ative methods. This manual design restricts the575

flexibility and adaptability of the model, as it relies576

on predefined templates for generating outputs.577

• The model is not able to directly process ex-578

tremely long data (data length greater than 250).579

Typically, preprocessing is required to handle such580

data, which has been a longstanding challenge in581

the Event Extraction (EE) community.582
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A Dataset statistics821

RAMS, commonly used for document-level Event822

Extraction (EE) and is derived from English online823

news. Each document in the dataset comprises824

five sentences. Since the original dataset is stored825

on an event-by-event basis, we followed the (He826

et al., 2023) method to merge data from different827

events within the same document while retaining828

the ’sents’ field. We used the original train/dev/test829

splits.830

WikiEvents, typically used for document-level831

EE, is collected from English articles in Wikipedia.832

In our experiments, we used the exact argument833

annotations. We also employed the data handling834

approach for excessively long data (length greater835

than 250) described in (He et al., 2023).836

MLEE, commonly used for document-level EE,837

is derived from abstracts of biomedical publica-838

tions. We preprocessed the data using (Trieu et al.,839

2020) method and then applied the data handling840

approach for excessively long data (length greater841

than 250) as described in (He et al., 2023). Since842

the dataset does not have a separate validation set,843

we used the training set for model training.844

Statistics of the datasets and their detailed infor-845

mation are recorded in the table 5.846

B Experiment Setups847

We utilized the BART-Large model, provided by848

Facebook on the Huggingface website, as the pre-849

trained language model for SCEAE. The model850

Dataset RAMS WikiEvents MLEE
# Event types 139 50 23
# Args per event 2.33 1.40 1.29
# Events per text 1.25 1.78 3.32
# Events
Train 7329 3241 4442
Dev 924 345 -
Test 871 365 2200

Table 5: The table above shows the basic information
for the all datasets, where Args stands for Arguments.

has approximately 406 million parameters. We 851

conducted the training of SCEAE and replicated 852

other paper’s experiments using a single NVIDIA 853

A40 Tensor Core GPU with a capacity of 45GB. 854

We selects the best model based on the develop- 855

ment set results. For optimization, we employed 856

the AdamW (Loshchilov and Hutter, 2019) opti- 857

mizer, setting the learning rate l to 40, as described 858

in section 3.2. The batch size was set to 4. The 859

average length of time spent training the model was 860

five hours. 861
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