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Abstract: The tie-knotting task is highly challenging due to the tie’s high de-
formation and long-horizon manipulation actions. This work presents TieBot, a
Real-to-Sim-to-Real learning from visual demonstration system for the robots to
learn to knot a tie. We introduce the Hierarchical Feature Matching approach to
estimate a sequence of tie’s meshes from the demonstration video. With these
estimated meshes used as subgoals, we first learn a teacher policy using privi-
leged information. Then, we learn a student policy with point cloud observation
by imitating teacher policy. Lastly, our pipeline applies learned policy to real-
world execution. We demonstrate the effectiveness of TieBot in simulation and
the real world. In the real-world experiment, a dual-arm robot successfully knots
a tie, achieving 50% success rate among 10 trials. Videos can be found on our
website.

Keywords: Learning from Visual Demonstration, Real-to-Sim-to-Real, Cloth
Manipulation

1 Introduction

Learning cloth manipulation holds great utility across a wide range of applications. One intriguing
domain is robotic tie knotting. Service robots must be adept at tasks like aiding the elderly or
individuals with disabilities in dressing for certain social events. Teaching robots to knot ties, as a
special case of cloth manipulation, typically pushes the limits of robotic cloth manipulation. This
offers valuable insights for tie knotting and the broader field of robotic cloth manipulation.

Cloth manipulation presents challenges for robots due to its high-dimensional state and complex
dynamics. Extracting and modeling state information are difficult problems. In contrast, humans
have accumulated extensive knowledge about cloth manipulation. These priors make learning from
demonstration (LfD) a promising direction. LfD empowers a robot to acquire a policy from expert
demonstrations, significantly reducing the need to design task-specific reward functions manually.
Consequently, LfD stands as a potent and efficient framework for instructing robots in the execution
of complex skills.

However, existing LfD methods struggle with tie-knotting tasks. Kinesthetic demonstration or tele-
operation suffers from the complexity of tie-knotting tasks. Tie-knotting tasks require bi-manual
operations, placing high demand on human operators’ skills and equipment. For instance, Zhang et.
al use VR headsets for teleoperation [1]. Thus, simple behavior cloning may be significantly labor-
intensive. Learning from visual demonstration is usually an easier approach in terms of collecting
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demonstration data. But this approach also leads to embodiment gaps. Therefore, researchers at-
tempt to find some object-centric representations that robots can utilize to generate correct actions,
overcoming embodiment gaps. Several methods attempt to learn a general visual representation of
some simple pick-place skills via large-scale pre-training on actionless videos [2, 3, 4]. These works
present strong generalizations on the learned visual representations, but none of them shows the abil-
ity to learn dexterous manipulation skills that can knot a tie. Other methods such as [5, 6, 7, 8, 9]
try to leverage object trajectories or keypoints as representations to guide the policy learning. Such
representations are indeed sufficient to describe simple object motions but fail to capture the tie’s
complex topology and subtle dynamics.

Compared to the existing LfD work mentioned
in the previous paragraph, our insight is that
mesh is the most suitable representation for
tie-knotting tasks and other complex cloth ma-
nipulation tasks. It captures accurate geomet-
ric structures and physics properties of the tie,
which is crucial for tie-knotting tasks. It also
disentangles irrelevant information in the vi-

Demonstration

sual demonstrations, such as environment back- Real2Sim
ground, object colors, and so forth, enabling ‘

the learned policy to apply to different test set- Learn@Sim
tings. Therefore, inspired by [10], we propose ;

a Real-to-Sim-to-Real LfD framework. First, sim2Real

we propose a Hierarchical Feature Matching
method to iteratively estimate the tie’s meshes
with cloth simulation from the demonstrated
video. We use a cloth simulator called Dif-
fClothAl [11] that supports intersection-free
contact for cloth to maintain the tie’s topo-
logical structure during the estimation process.
These estimated meshes from the demonstrated Marﬁpulation
video are then used as subgoals. To learn

where to grasp the tie and where to pull the tie  Figure 1: Our proposed TieBot performs a tie-
from point clouds observations in simulation, knotting task. We leverage cloth simulation to re-
we adopt a teacher-student training paradigm cover the cloth’s state from human demonstration
similar to [12]. Lastly, our pipeline executes and learn a goal-condition policy to accomplish
learned policy in real-world settings. the tie-knotting task.

4

In summary, we make the following contribu-

tions: 1) We introduced a systematic LfD framework for a dual-arm robot to learn to knot to tie.
2) We proposed a Hierarchical Feature Matching approach to estimate the tie’s mesh with high de-
formation from the demonstrated RGB-D video using cloth simulation. 3) With estimated meshes
as subgoals, we presented a teacher-student training paradigm to learn grasping points and placing
points from point cloud observations in simulation. 4) We conduct experiments in simulation and
the real-world to demonstrate the effectiveness and advances of our pipeline. To the best of our
knowledge, this work is the first effort to develop a robotic system that integrates perception, model-
ing, and robot learning to train robots to tackle the task of tie-knotting—a particularly complex and
underexplored area of cloth manipulation.

2 Related Work

2.1 Cloth Manipulation

Previous work mainly addresses short-horizon cloth manipulation tasks that only involve simple
pick-place actions. There are several approaches to learning cloth manipulation skills. One approach



is using model-free RL or learned dynamics model to learn cloth unfolding, rope rearranging, and
dressing assistance tasks on raw sensor input [13, 14, 15, 16, 17]. Other approaches will collect
and annotate data from images [18, 19] or generate demonstration trajectories in simulation [20] to
learn policy. Because of the short-horizon and simple actions features of tasks, it’s also possible to
infer correct actions from some visual representations, such as flow between current observation and
target images [21].

In contrast, tie-knotting tasks require flipping or rotating a part of the tie, which makes it difficult
to annotate robot actions or design action primitives. Therefore, collecting and annotating robot
actions on observations is infeasible. It’s also difficult to generate demonstrations or directly apply
RL in simulation since the trajectories of tie-knotting tasks are much longer and the possible state
space is much larger. Thus, in this work, we choose to learn skills from human demonstration.

2.2 Learning from Visual Demonstration

One line of research explores pre-training neural representations from actionless videos [22, 23, 2,
24, 3, 4, 25]. This approach aims at learning general representations for different actions, whereas
none of them shows the ability to learn dexterous manipulation skills that can knot a tie. Another
line of research attempts to learn from visual priors extracted from visual demonstrations, such as
object trajectories [5, 26], hand poses [27, 28], keypoints positions [29, 6], graph relations [7], or
affordances [30]. The third approach is to learn a video or trajectory prediction model to guide policy
learning [31, 32, 33, 34, 8]. These approaches require in-domain demonstrations, placing restrictions
on visual demonstrations. Moreover, the prediction model may suffer from the long-horizon feature
of tie-knotting tasks. ORION is the most closely related work, which builds a graph representation
from object motions that can generalize across diverse test environments [35]. However, simple
graph representations cannot capture the tie’s complex topology and subtle dynamics during the
tie-knotting process.

Consequently, we propose explicitly modeling the demonstration as a sequence of meshes. Mesh
can accurately describe the tie’s structure and dynamics, which is crucial to learning correct robot
actions and generalizing them to different test scenarios.

2.3 Cloth State Estimation

One cloth state estimation method directly predicts cloth states using deep learning [36, 37, 38, 39].
Non-rigid point cloud registration methods such as coherent point drifting are also applied for linear
deformable object tracking [40, 41, 42]. However, purely vision-based methods do not guarantee
correct cloth topology due to the lack of physics prior. Huang et al. propose a method to reconstruct
and track cloth state with a dynamics model [43]. However, this method requires known actions,
which cannot be accessed easily from human demonstration sometimes. Lv et al. use differentiable
rendering to estimate the state of linear deformable objects [10]. However, tie is a 2D deformable
object.

Therefore, we propose a Hierarchical Feature Matching method to iteratively estimate the tie mesh
in the demonstration video with cloth simulation. Cloth simulation provides important physics prior
for state estimation, such as non-penetration, which is crucial for maintaining correct topology.

3 Technical Approach

This work presents a Real-to-Sim-to-Real LfD framework called TieBot to guide a dual-arm robot
shown in Fig. 1 to knot the tie from an RGB-D demonstration video. An overview of our proposed
method is in Fig. 2. We first describe the procedure to estimate the tie’s mesh sequences from the
demonstrated video (Sec. 3.1). Using the tie’s mesh sequences as subgoals, we introduce a pipeline
to generate robot actions to manipulate the tie, using teacher-student training paradigm (Sec. 3.2).
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Figure 2: TieBot utilizes simulation to estimate the tie’s meshes from the demonstrated video. Then,
using mesh sequences as subgoals, we introduce how to generate the robot’s actions to manipulate
the tie. The pipeline finally executes learned policy in real world.

3.1 Real2Sim

To better estimate the tie’s mesh, we propose to integrate cloth simulation into our pipeline, which
provides important physical prior such as non-penetration in the estimation process. We segment
the tie in the demonstrated RGB-D video using Track-Anything [44] and transform the associated
segmented depth images into point clouds. Meanwhile, a tie’s mesh is loaded into the DiffClothAl.
At time step ¢, we use the tie mesh’s vertices denoted as ytS to describe the tie’s shape. From the
RGB images and segmented point clouds denoted as {Z} and {X;”}, Real2Sim pipeline estimates
tie’s mesh sequences {yts } with simulation. The pipeline manually aligns the mesh with the initial
frame. We assume the initial mesh fully overlaps with the initial point cloud.

Local Feature Matching. If V| and X7,
are aligned and there are correspondences be-
tween X;”; and X, we can build the cor-
respondences from the tie’s mesh to the next
demonstrated point cloud X;” and move the
tie’s vertices to align V;* towards X;°.

Here we adopt an off-the-shelf feature match-  Figure 3: Local Feature matching between two
ing model called LoFTR [45] to build up cor- images. A hand caused a gap along the length of
respondences between two RGB images Z; ; the tie during the demonstration.

and Z; as shown in Fig 3. Typically, LoFTR can

provide more than a hundred reliable correspondences between two images, which cover almost
every visible part of the tie. From the correspondences between Z;_; and Z;, we can find the feature
points on X;?; and their corresponding feature points on X”. Then, to control the mesh in Diff-
ClothAl to align it with X, D we need to define several vertices on the mesh as control vertices V.
Since V7 ; aligns well with X” |, we map the feature points on X;”, to nearest vertices on V> ;.
These vertices are assigned as control vertices ). Finally, we control V to move to the positions of
feature points on X;” to align YV towards X;” in DiffClothAl

However, vanilla local feature matching cannot create correspondences in occluded regions, which is
common in tie-knotting tasks. We lose the motion information due to occlusion, and the estimation
will deviate. Therefore, we propose to add global keypoints information to amend this pipeline.

Keypoints Detection. Keypoints detection can directly build correspondences between mesh ver-
tices and the point cloud. Thus, it will not be affected by occlusion. We define five keypoints along
the tie’s surface and the corresponding five key vertices on the mesh, shown in Fig. 4. For each
keypoint as the origin, we define the local frame as follows. The z direction is the surface normal
from the tie’s positive side to the negative side. The x direction is the direction of the tie’s middle
skeleton. The y direction is derived using the right-hand rule. These five keypoints, in a predefined
order, play the role of the skeleton definition.



Then, we train Pointnet++ [46] to predict the
keypoints and associated local frames on the %ﬁ%
demonstrated point clouds. However, the high-

dimensional state makes it challenging to gen-
erate sufficient training data to cover all the
states encountered in the knotting procedure. A
successful tie-knotting trajectory occupies only
a small portion of the whole state space of the tie. Thus, uniformly applying random actions on the
initial tie’s mesh in the simulation to produce training data fails to cover these states. In contrast, we
generate training data based on the current estimated mesh. When we detect the chamfer distance
between YV and XP is larger than a threshold, we backtrack to the previous time step, gather the
tie’s shape ¥ | and apply random actions to the tie’s mesh at £ — 1 in the simulation to generate
annotated training data and train the keypoints prediction network.

Figure 4: The oriented keypoints to represent the
state of the tie. The x,y,z axis are represented by
the red, green, blue arrow, respectively.

Hierarchical Feature Matching (HFM). Finally, we combine them as Hierarchical Feature Match-
ing (HFM) for state estimation. Control vertices assigned in local feature matching and key vertices
will be used together to pull the mesh to target positions specified by local feature matching and
keypoints detection. Local feature matching provides detailed motion of vertices, while global key-
points indicate a global tie’s structure. This global structural information ensures the estimation
won’t deviate too much, alleviating the shortcomings of the local feature matching method. We use
this method to estimate the tie’s meshes from demonstration and output a sequence of meshes { V¢ }.
The next part will use these meshes as subgoals to guide robot action generation.

3.2 Learn@Sim

Our pipeline begins to sequentially generate feasible robotic actions in the simulation to guide the
tie {)7} towards these subgoals. Since the tie-knotting task is a long-horizon task with multiple
grasp and pull actions, we aim to learn where to grasp the tie and where to pull the tie.

For where to pull, we apply a simple strategy. Once we identify the grasping vertices, we pull
these vertices to the positions of those vertices on the subgoal. For where to grasp, we adopt a
similar teacher-student training paradigm in [12] to ease policy learning. Directly learning from
high dimensional observations such as point cloud is data-inefficient because the policy needs to
simultaneously learn which features to extract from visual observations and what the high-rewarding
actions are. On the contrary, learning a policy via RL from sufficient state information would be
much easier, as suggested by [12]. Therefore, we first use privileged information to learn a teacher
policy, and then train a student policy imitating teacher policy with point clouds as observations.

Teacher Policy. We first learn a teacher policy to select proper grasping points using privileged in-
formation. The state s contains the previous tie’s vertices positions and the point-wise displacement
for each tie vertices to the subgoal. The action a is one or two grasping vertices of all the tie mesh’s
vertices. The reward function R is defined in equation 1.

Note that we specify the action space as the discrete space (vertex index of the tie). Although there
are multiple 6D poses of the robotic grippers to grasp one vertex position of the mesh, the learned
policy still reflects the overall grasping quality of these 6D poses associated with one vertex. In the
engineering practice, we record each grasping pose offline so that once we figure out the grasping
vertices on the tie’s mesh at each timestep, we can automatically produce the feasible grasping poses
concerning specific hardware platforms using inverse kinematics.

Cy, if knotting-tie succeeds
R(s,a) = ¢ —Cy, if fails to reach any subgoal along the trajectory (1)
Cs — | Y7 = V||, Otherwise

For the reward function, here C, C, C3 are constant positive values. th is the result tie mesh. The
failure to reach the subgoal is due to the distance ||V — V¥ || is larger than a given threshold, the tie



could not be pulled close to the subgoal by grasping on the wrong selected vertex; otherwise, it will
return Cs — ||V — Yy || for intermediate steps or C; for the final step.

Student Policy. To learn actions from point clouds, we train a student policy to imitate teacher
policy. We add some perturbations to the size and positions of the mesh and update the associated
trajectories accordingly to generate training data in the simulation. We render point clouds from
meshes in PyBullet [47] as the input of our policy network 7% and output the grasping points and
placing points positions. We use Pointnet++ [46] as the policy network and train it in a supervised
learning manner.

4 Experiments

In this section, we introduce our experimental setup and conduct quantitative and qualitative eval-
uations to demonstrate the effectiveness of our approach. Our experiments focus on answering the
following questions.

* How do our pipeline and baseline methods perform on tie-knotting task?
* Can our pipeline apply to other cloth manipulation tasks?

* How does HFM compare to other cloth state estimation methods?

* Can our HFM apply to other cloth manipulation tasks?

Considering the complexity of the entire system, we provide additional experiment results, along
with detailed explanations of submodules, in the supplementary materials and website.

4.1 Comparing TieBot and Baseline

We first evaluate the whole pipeline of TieBot and a baseline method in a tie-knotting task. We
estimate a sequence of meshes from one human demonstration video. Then, we divide the whole
trajectory into 6 parts with 6 subgoals. Our teacher policy learns to select proper grasping points
using PPO [48], and student policy imitates the teacher policy to infer grasping points and placing
points from the point cloud. We evaluate TieBot and the baseline method 10 times for each of the
two different ties in DiffClothAl and evaluate TieBot on two real ties with a dual-arm robot.

To illustrate our pipeline applies to other cloth manipulation tasks besides the tie-knotting task,
we conduct experiments on the towel-folding task in the real setting. The towel-folding process is
shown in the last row of Fig. 7.

ATM. ATM proposes to model tasks

as points trajectories [8]. It first Success Rate /

learns a trajectory prediction model, Average Achieved Subgoals Ours ATM
and then learns policy with the simulation: normal tie 60% /51 0% /0.0
learned prediction model using imi- simulation: larger tie(unseen) 30% /43 0%/0.0
tation learning. For tie-knotting task, real: real tie(softer) 50%75.0 NA/NA
following similar experiment settings real: real tie(harder, unseen) 30% /4.15 NA/NA
in ATM., we collect 100 demonstra- real: towel(unseen) 70% /1.6 0% /0.8

tion videos in simulation to train the Table 1: Success rate and average achieved subgoals of pol-
trajectory prediction module. Then, icy rollouts

we use the 45 demonstration videos

with ground truth action annotations to train the policy network and test the policy in simulation.
The action is the 3D offset of the grasping vertices. For towel-folding task, we collect 100 human
demonstrations and 10 robot demonstrations in the real world. We train the ATM to predict the
displacement of the two robot arms’ end effectors in cartesian space.

Metrics. We compare the success rate between our pipeline and ATM [8]. For the tie-knotting task,
in simulation experiments, if the distance of the final tie’s mesh to the target tie’s mesh is smaller than
a threshold, we consider it a success. In real-world experiments, if the little end of the tie is inserted
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Figure 5: The results of TieBot at different stages. We show different sides of the tie in red and blue
and manipulation action in yellow to better visualize.

into the hole, as shown in the final stage in Fig. 5 and Fig. C.9, we consider it a success. Since the
tie-knotting task is long-horizon, we also compute the averaged number of achieved subgoals for
further evaluation. For the towel-folding task, We consider the state to be successful if the towel
stays totally on one side of the folding line, as shown in Fig. D.12.

Experiment Result. We test TieBot on two real ties that differ in materials: one is softer, and the
other one is harder. We tested each of them 10 times. We also test TieBot and ATM on two ties
with different sizes in simulation 10 times for each. The quantitative results are shown in Tab. 1, and
qualitative results of TieBot are shown in Fig. 5. This comparison suggests that object trajectories are
insufficient to represent subtle dynamics and topology of the tie in tie-knotting tasks. ATM quickly
deviates from the correct trajectory since it cannot capture the subtle dynamics of the tie. Therefore,
it fails to achieve even one subgoal. Hence, explicitly modeling the tie in meshes is necessary. For
qualitative evaluation, in Fig. 5, we can see that although the tie in the demonstration video, the
mesh in the simulation, and the tie used for real robot manipulation are different, our pipeline can
overcome these gaps and learn feasible robot policy. For the towel-folding task, we find that ATM
can learn the first folding action but struggle with learning the latter action.

4.2 Evaluating Hierarchical Feature Matching (HFM)

Real2Sim is the most important part of our pipeline. Without accurate state estimation, particularly
estimating the correct topology for the tie, it’s impossible to learn a feasible policy to accomplish the
task. To illustrate the importance of different components of HFM and its performance against other
cloth state estimation methods, we design three experiments in simulation to test baseline methods
and the ablation versions of HFM.

Coherent Point Drift. Coherent Point Drift (CPD) [49] is a non-rigid point cloud registration
algorithm. We employ the CPD to predict the target positions of the mesh vertices in the target point
cloud and directly align the mesh to the target positions.

Ablated Version. Ours w/o KP stands for only using local feature matching; Ours w/o LF stands
for using local feature matching and the predicted keypoints positions; Ours w/o FM stands for only
using predicted keypoints positions and local frames.

L2 Distance || Ours  Ours w/o FM  Ours w/o KP  Ours wo LF  CPD

expl 0.0248 0.0732 0.2424 0.0512 0.1384
exp2 0.0053 0.0107 0.0123 0.0088 0.0661
exp3 0.0032 0.0093 0.0053 0.0049 0.1049

Table 2: Quantitative results of ablation study and comparison to CPD in simulation.
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Figure 6: The visualization of the ablation study of HFM in simulation. We put a cross sign in the
image’s bottom-right corner to indicate failures of estimating the correct target state, according to
human evaluation. Red and blue colors represent different sides of the mesh.

Experiment Result. The qualitative results are shown in Fig. 6. We can find that either CPD or
ablated versions of HFM cannot estimate the target mesh correctly among these three experiments.
We also compute the L2 Distance between the vertices of the target mesh and estimated mesh as
a quantitative evaluation shown in Tab. 2. It also suggests that the performance will degrade if we
cancel some parts of HFM, while CPD deviates a lot from the correct states.

4.3 Apply HFM on Other Cloth Manipulation Tasks

We demonstrate that HFM can be applied to other cloth manipulation tasks. One is a different way
to knot a tie. The other one is to fold a towel. We visualize the estimation results in Fig. 7. The
results show that HFM can be applied to different cloth manipulation tasks.

Flgure 7 The visualization of a different way to knot a tie and the towel foldlng The first row is the
human demonstration of tie-knotting, the second row is the estimated states in simulation, and the
third row is towel folding. We show the manipulation action in yellow dots and arrows.

5 Conclusion

This paper presents TieBot, a novel system designed to teach robots to perform the tie-knotting task
through a Real-to-Sim-to-Real learning approach. The framework leverages visual demonstrations
and integrates a mesh of the tie to capture its complex structure and subtle dynamics, which are es-
sential for effective manipulation. Through the proposed Hierarchical Feature Matching method, we
estimate tie meshes from demonstration videos and use them as subgoals for policy learning in sim-
ulation. Our teacher-student training paradigm enables robots to learn from point cloud observations
and execute the learned policy in real-world settings. TieBot demonstrates promising results both in
simulation and real-world experiments, achieving a 50% success rate for tie-knotting. Additionally,
we showcase its potential for other cloth manipulation tasks, such as towel folding, indicating the
broader applicability of our approach. This work marks a significant step forward in robotic cloth
manipulation, particularly for long-horizon, complex tasks such as tie-knotting.

Nonetheless, our pipeline has some limitations. First, our Real2Sim module requires training key-
points detection models iteratively, which is computationally intensive. Second, due to the hardware
limits, the last step in the real-world experiments shown in Fig. 5 is hardcode action. Better video
tracking methods and more dexterous robot arms may alleviate these issues.
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Appendix

A More Discussion on Real2Sim
A.1 Why not Use Video Tracking?

One may be curious about why not use video tracking to extract a tie’s motion in our work. We test
co-tracker [50] and DINO-Tracker [51] on our tie-knotting demonstration videos. For instance, in
the towel-folding task, we tested DINO-Tracker on the demonstration video. From the results shown
in Fig. A.1, we can find that even the state-of-the-art video tracking model cannot provide accurate
point-level trajectory.

Start Frame End Frame

Figure A.1: Track prediction results of the towel-folding task.

A.2 Experiment on Qut-of-Distribution Issue of Keypoints Detection

To illustrate the necessity of iteratively updating the detection model, we train a neural network with
the same structure on a randomly sampled tie’s shape based on the initial shape. We trained our
iterative keypoint detection model on 14 different shapes separately. For each shape, we randomly
generate 500 similar shapes for training. For the randomly sampled method, we randomly generate
7000 shapes from the initial tie’s shape to train a single keypoint detection model. We compare
the result of Ours with random sample RS result in Fig. A.2. Compared to the human annotation
result, RS’s predictions have larger errors than Ours. RS method encounters an out-of-distribution
problem. The test shape of the tie cannot be easily sampled, so RS cannot generalize to this test
case.

We also test the iterative global keypoint detection and RS method in simulation with ground truth
annotation. The quantitative results are listed in Tab. A.1.

\ Position Error(m)  Z-axis Error(°)  X-axis Error(°)

Ours 0.028 10.68 14.41
RS 0.183 49.00 68.76

Table A.1: Quantitative results of iterative keypoint detection on simulation data

A.3 Implementation Details of Keypoints Detection
A.3.1 Keypoint Positions Prediction

1) data generation We first load the mesh model into DiffClothAlI [11], choose keypoint as control
vertices, and apply random perturbations to these vertices to generate different shapes of the tie.
Then, we load generated mesh models into PyBullet [47] to render point clouds. We use the same
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RGB image Point Cloud Ours Random Sample Human Annotation

Figure A.2: Prediction results of the oriented keypoints on real image and point cloud.

camera intrinsics as demonstrated video and similar camera pose to render point clouds. We generate
500 point clouds as training data.

To annotate training data, we first compute the geodesic distance of all points in the point cloud to
keypoints. Then, we convert the geodesic distance to probability using equation 1. d is the geodesic
distance, o is a hyperparameter, p is the probability to evaluate how likely the point is to be a
keypoint. In our experiments, we use o = 0.15. Thus, if a point is close to one of five keypoints, the
probability corresponding to that keypoint will be high.

42

p=exp 2% (1

2) training details Different from the original pointnet++ semantic segmentation model [46], we
change the last layer to sigmoid. The training parameters are listed in Tab. A.2.

parameter name parameter value
loss function L2(for keypoint posjtions gnd foser predic.ti().n)
LI1(for normal and middle line direction prediction)
data augmentation gaussian noise, random scale, random rotation
training epochs 80
batch size 24
learning rate le-4
optimizer Adam
scheduler cosine annealing with 10 epochs warm-up

Table A.2: Hyperparameters for training global keypoint prediction

3) inference details Our model takes a point cloud as input and outputs a probability matrix P €
(0,1)N*3 N is the number of points in the point cloud. Each entry P; ; represents the probability
of point ¢ to be keypoint j. To decode the predicted keypoints positions, we first select points with
the top 5% probability as inlier for each column of P. Then, we assign other points’ probability to
zero and normalize the probability for each column of P. Now we get the normalized probability
distribution of each keypoint, denoted as P. Fmally, we compute the average positions of all points
weighted by normalized probability, x; = El 1 Pl , - ;. This is the final prediction for keypoint
positions.
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A.3.2 Normal(Z Axis) Prediction

1) data generation We generate data the same way as keypoint positions. For annotation, we first
compute the normal direction of each face of the mesh. Then, we assign these values to points in the
point cloud according to the nearest faces.

2) training details We also remove the log_softmax layer in pointnet++ [46]. We use L1 distance
as the loss function. The other training parameters are the same as keypoint position prediction.

3) inference details With predicted keypoints positions and predicted normal directions of all
points, we compute the normal of each keypoint as the average of neighboring points normal direc-
tions.

A.3.3 Middle Line(X Axis) Prediction

1) data generation Same as normal prediction, just change the annotation from normal direction
to middle line direction.

2) training details It’s the same as normal prediction.

3) inference details It’s the same as normal prediction.

A.4 Results of Local Feature Matching and Keypoints Detection on Real Data

We present some examples of local feature matching and keypoints detection on two tie-knotting
tasks and a towel-folding task, shown in Fig A.3.

A.5 Ablation Study of HFM on Real Data

We demonstrate the effectiveness of hierarchical matching in cloth state estimation in Fig. A.4. In
the first test case, we aim to illustrate the importance of global keypoint detection. Therefore, we
chose two images that show differences in positions and orientations. In the third column, OQurs
method successfully flips the tie and moves forward a little, as shown in the images. Our w/o KP
and Ours w/o LF cannot move forward as expected. Because, in this case, local feature matching
cannot find correspondences in the tie’s left part.

In the second test case, we aim to illustrate the importance of local feature matching. We chose two
images that contain an operation of lifting a side of a ring in the air. This action requires detailed
information to achieve accurate estimation. The last column shows the result of Ours w/o FM.
Our framework cannot accurately estimate the shape only with global keypoint positions and local
frames. This global information can only provide general structure guidance instead of detailed
shape information.

B More Discussions on Learn@Sim

B.1 How to Control Tie in DiffClothAl

Modeling grasping in DiffClothAl [11] is not simply selecting one vertex on the mesh as the control
vertex. Because controlling one vertex is not enough to simulate rotation in DiffClothAl, knotting
a tie requires some rotation actions. Therefore, we select one central vertex and its surrounding
vertices as control vertices, shown in Fig.B.5. By controlling a small region instead of a single
vertex, we can simulate rotation actions in DiffClothAl.

15



Matches: 388

Matches: 269

Matches: 231

Matches: 273

Matches: 252

Matches: 191

Matches: 177

(a) Local feature matching and keypoints (b) Local feature matching and keypoints detection re-
detection results on real-world tie-knotting sults on another real-world tie-knotting demonstration
demonstration

Matches;

Matches: 1424

Matches: 1156

(c) Local feature matching results on another real-world towel-folding demonstration

Figure A.3: We test local feature matching and keypoints detection on real-world demonstrations. It

shows that our method works for most tie shapes.
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(a) Ablation study mainly on keypoint prediction.
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(b) Ablation study mainly on local feature matching.

Figure A.4: Ablation study on hierarchical feature matching for state estimation.
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Figure B.5: Ilustration of control vertices in DiffClothAl.

B.2 How are the grasp and pull actions defined

Grasp Actions

For the grasp action, we begin by sampling a set of vertices from the mesh, which

serve as grasping vertex candidates. The grasp action is then defined as selecting different combina-
tions of these vertices. This selection process is treated as a discrete action space, where the policy

chooses the optimal vertices for grasping based on the current state of the tie.

The pull action is defined as the target position for the robot’s gripper. Once the

policy has selected the grasping vertices at a particular step, the corresponding goal positions are
determined by the positions of these vertices on the subgoal mesh. This approach means that the
pull action is not learned directly; instead, it is derived automatically based on the selected grasping

points and the configuration of the subgoal mesh, leveraging the differentiable cloth simulation.
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B.3 Implementation Details of Teach-Student Training Paradigm
B.3.1 Teacher Policy

We model the grasping point selection as MDP and use model-free RL to learn the proper grasping
point. To simplify the problem, we sample 40 vertices on the middle line of the mesh model as our
candidates. vertices directly connected to these candidates in left, right, up, and down are defined as
their neighbors.

In practice, we evenly sample 40 vertices on the middle line of the mesh model as our candidates.
The state s is a 40 x 6 matrix. The action a is a 820 x 1 one-hot vector, which contains grasping
one vertex(40) and two vertices(40 x 39/2 = 780).

To learn to select grasping points, we use PPO implemented in stable-baseline3 [52]. The hyperpa-
rameters are shown in Tab B.3 for all trajectories.

parameter name parameter value
learning rate 0.0003
batch size 64
¥ 0.99
gae_lambda 0.95
clip range 0.2
Ch 5
. 0.9,1.5,2.0,3.0,3.0,1.9
fitting threshold {(listed in subgoals order)}
Cs 30
Cs 30

Table B.3: Hyperparameters for learning grasping points settings

B.3.2 Student Policy

To learn student policy, we first execute the teacher policy multiple times within the DiffClothAl
simulation environment. During each run, the teacher policy uses the current mesh and the subgoal
mesh to predict the selected grasping vertices on the current mesh, as well as the corresponding
placing points. Through these simulations, we generate a dataset comprising 3,000 mesh-grasping-
placing pairs, which serve as the foundation for training the student policy.

To simulate real-world conditions, we load all the generated meshes into PyBullet and use the same
camera intrinsics as those used in our real-world setup to render point clouds. This ensures that the
point clouds accurately reflect the observations a robot would receive in practice.

The student policy is then trained using supervised learning, where the input is the rendered point
cloud and the output is the predicted grasping points and placing points. The grasping and placing
points produced by the teacher policy serve as the ground truth labels for this training process.
The student policy learns to map point cloud observations to the appropriate actions (grasping and
placing points), effectively mimicking the decisions made by the teacher policy based on the point
cloud data alone.

The training details are the same as training keypoints prediction, only changing the number of
keypoints from 5 to 2. We follow the same training hyperparameters as grasping point prediction
for placing point position detection, only changing the pointnet++ semantic segmentation model to
the classification model.

More Results on ATM Baseline

We first illustrate example outputs of ATM baseline on two different ties in Fig. B.6. We can see
that without explicit mesh modeling, ATM will quickly deviate from correct trajectories.
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Figure B.6: Illustration of ATM rollouts in simulation.

To further examine whether the long-horizon property or points trajectories representations lead to
the failure of ATM on tie-knotting tasks, we further conduct experiments on some shorter tasks to
see if ATM can work. Specifically, we divide the whole tie-knotting task into 6 subtasks, training
and testing ATM on each subtask separately. The results are shown in Fig. B.7. We can see that
ATM’s results look better for the first 3 subtasks. But ATM still cannot complete the last 3 subtasks,
which involve complex topology and subtle dynamics. This experiment demonstrates that using
points trajectory representation cannot handle such complex tasks even with a shorter horizon.

initial target stepl step2 step3 step4 step5 step6

Figure B.7: Illustration of ATM results on 6 subtasks.

C More Discussions on Real-World Experiment

C.1 Real-World Experiment setup

We set up the real-world experiment with a dual-arm robot as shown in Fig. C.8. The MOVO
robot [53] has two 7 DoF arms and a Kinect RGB-D camera overhead. We perform position controls
and use RangedIK [54] for solving inverse kinematics. The success state is defined in Fig. C.9.

C.2 Failure Cases and Analysis

Two major failure cases in real-world experiments are shown in Fig. C.10. One is the robot fails to
rotate the whole ring structure of the tie, another is the robot fails to insert the little end of the tie
into the whole shown in Fig. C.9.

The first case is caused by the subtle dynamics of the tie. To rotate the ring structure, the tie should
be a bit harder so that the ring structure will not crumple during the rotation process, while it should
not be so hard so that the rotation action won’t interfere with other parts of the tie. This places a
high demand on both the tie and the robot. It’s hard to solve from the algorithm side.

The second case is caused by partial observation of this task. We use one camera on the top of the
robot for perception. It cannot perceive the little end of the tie in this case. Thus, the robot has to act
blindly, lowering the success rate.
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Figure C.9: Illustration of the success state of knotting a tie.
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(a) Fail to rotate the ring structure. (b) Fail to insert little end of the tie.

Figure C.10: Illustration of two major failure cases

D Additional Experiments on Towel-Folding Task

To illustrate our pipeline applies to other cloth manipulation tasks besides the tie-knotting task, we
conduct experiments on the towel-folding task in the real setting.

D.1 Real-World Experiment setup

We set up the real-world experiment with two robot arms as shown in Fig. D.11. The left arm is a
Flexiv Rizon 4s arm and the right is a Flexiv Rizon 4 arm. One Realsense D435 RGB-D camera is
mounted on the top of the aluminum tube. The size of the towel is 45cm x 75cm. This task requires
two robot arms to fold the rectangular towel as shown in Fig D.12.
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Figure D.11: Ilustration of real-world experiment settings for towel-folding task.

first fold action se&)ﬁd fold atio final state

Figure D.12: Illustration of the process of the towel-folding task. The blue dash lines are the folding
lines
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