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Abstract

The continuous-time model of Nesterov’s momentum provides a thought-provoking
perspective for understanding the nature of the acceleration phenomenon in convex
optimization. One of the main ideas in this line of research comes from the field of
classical mechanics and proposes to link Nesterov’s trajectory to the solution of
a set of Euler-Lagrange equations relative to the so-called Bregman Lagrangian.
In the last years, this approach led to the discovery of many new (stochastic)
accelerated algorithms and provided a solid theoretical foundation for the design
of structure-preserving accelerated methods. In this work, we revisit this idea
and provide an in-depth analysis of the action relative to the Bregman Lagrangian
from the point of view of calculus of variations. Our main finding is that, while
Nesterov’s method is a stationary point for the action, it is often not a minimizer
but instead a saddle point for this functional in the space of differentiable curves.
This finding challenges the main intuition behind the variational interpretation of
Nesterov’s method and provides additional insights into the intriguing geometry of
accelerated paths.

1 Introduction

This paper focuses on the problem of unconstrained convex optimization, i.e. to find
x∗ ∈ arg min

x∈Rd
f(x), (P)

for some lower bounded convex L-smooth2 loss f ∈ C1(Rd,R).

Nesterov’s acceleration. Nemirovskii and Yudin (1983) showed that no gradient-based optimizer
can converge to a solution of (P) faster than O(k−2), where k is the number of gradient evaluations3.
While Gradient Descent (GD) converges like O(k−1), the optimal rate O(k−2) is achieved by the
celebrated Accelerated Gradient Descent (AGD) method, proposed by Nesterov (1983):

xk+1 = yk − η∇f (yk) , with yk = xk +
k − 1

k + 2
(xk − xk−1). (AGD)

The intuition behind Nesterov’s method and the fundamental reason behind acceleration is, to this
day, an active area of research (Allen-Zhu and Orecchia, 2014; Defazio, 2019; Ahn, 2020).

ODE models. Towards understanding the acceleration mechanism, Su et al. (2016) made an
interesting observation: the convergence rate gap between GD and AGD is retained in the continuous-
time limits (as the step-size η vanishes):

Ẋ +∇f(X) = 0 (GD-ODE), Ẍ +
3

t
Ẋ +∇f(X) = 0 (AGD-ODE)

∗Equal Contribution.
2A differentiable function f : Rd → R is said to be β-smooth if it has β-Lipschitz gradients.
3This lower bound holds just for k < d hence it is only interesting in the high-dimensional setting.
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where Ẋ := dX/dt denotes the time derivative (velocity) and Ẍ := d2X/dt2 the acceleration.
Namely, we have that GD-ODE converges like O(t−1) and AGD-ODE like O(t−2), where t > 0
is the time variable. This seminal paper gave researchers a new tool to understand the nature of
accelerated optimizers through Bessel Functions (Su et al., 2016), and led to the design of many
novel fast and interpretable algorithms outside the Euclidean setting (Wibisono et al., 2016; Wilson
et al., 2019), in the stochastic setting (Krichene et al., 2015; Xu et al., 2018) and also in the manifold
setting (Alimisis et al., 2020; Duruisseaux and Leok, 2021).
Nesterov as solution to Euler-Lagrange equations. It is easy to see that AGD-ODE can be
recovered from Euler-Lagrange equations, starting from the time-dependent Lagrangian

L(X, Ẋ, t) = t3
(

1

2
‖Ẋ‖2 − f(X)

)
. (1)

Indeed, the Euler-Lagrange equation

d

dt

(
∂

∂Ẋ
L(X, Ẋ, t)

)
=

∂

∂X
L(X, Ẋ, t) (2)

reduces in this case to t3Ẍ + 3t2Ẋ + t3∇f(X) = 0, which is equivalent to AGD-ODE (assuming
t > 0). In a recent influential paper, Wibisono et al. (2016) generalized the derivation above to
non-Euclidean spaces, where the degree of separation between points x and y is measured by means
of the Bregman Divergence (Bregman, 1967) Dψ(x, y) = ψ(y)− ψ(x)− 〈∇ψ(x), y − x〉, where
ψ : Rd → R is a strictly convex and continuously differentiable function (see e.g. Chapter 1.3.2
in Amari (2016)). Namely, they introduced the so-called Bregman Lagrangian:

Lα,β,γ(X, Ẋ, t) = eα(t)+γ(t)
(
Dψ(X + e−α(t)V,X)− eβ(t)f(X)

)
, (3)

where α, β, γ are continuously differentiable functions of time. The Euler-Lagrange equations imply

Ẍ + (eα(t) − α̇(t))Ẋ + e2α(t)+β(t)
[
∇2ψ(X + e−α(t)Ẋ)

]−1
∇f(X) = 0. (4)

The main result of Wibisono et al. (2016) is that, under the ideal-scaling conditions β̇(t) ≤ eα(t)

and γ̇(t) = eα(t), any solution to Eq. (4) converges to a solution of (P) at the rate O(e−β(t)). Under
the choice ψ(x) = 1

2‖x‖
2
2, we get back to the Euclidean metric Dψ(x, y) = 1

2‖x− y‖
2
2. Moreover,

choosing α(t) = log(2/t), β(t) = γ(t) = 2 log(t), we recover the original Lagrangian in Eq. (1)
and O(e−β(t)) = O(t−2), as derived in Su et al. (2016).
Impact of the variational formulation. The variational formulation in Wibisono et al. (2016) has
had a considerable impact on the recent developments in the theory of accelerated methods. Indeed,
this approach can be used to design and analyze new accelerated algorithms. For instance, Xu et al.
(2018) used the Lagrangian mechanics formalism to derive a novel simplified variant of accelerated
stochastic mirror descent. Similarly, França et al. (2021), Muehlebach and Jordan (2021) used
the dual Hamiltonian formalism to study the link between symplectic integration of dissipative
ODEs and acceleration. Due to its rising importance in the field of optimization, the topic was also
presented by Prof. M. I. Jordan as a plenary lecture at the International Congress of Mathematicians
in 2018 (Jordan, 2018), centered around the question “what is the optimal way to optimize?”.
Imprecise implications of the variational formulation. While the Lagrangian formalism has
been inspiring and successful for algorithm design and analysis, its precise implications for the
geometry and the path of accelerated solutions have not been examined in a mathematically rigorous
way (to the best of our knowledge). In Jordan (2018) it is hinted that, since Nesterov’s method solves
the Euler-Lagrange equations, it minimizes the action functional

∫ t2
t1
Lα,β,γ(Y, Ẏ , t)dt over the

space of curves by the minimum action principle of classical mechanics (Arnol’d, 2013). This claim4

is inaccurate. Indeed, the term minimum action principle is misleading5: solving Euler-Lagrange

4Paragraph before Eq. (9) in Jordan (2018): “[...] we use standard calculus of variations to obtain a
differential equation whose solution is the path that optimizes the time-integrated Bregman Lagrangian”.

5From Section 36.2 in Gelfand and Fomin (2000): “The principle of least action is widely used [...]. However,
in a certain sense the principle is not quite true [...]. We shall henceforth replace the principle of least action by
the principle of stationary action. In other words, the actual trajectory of a given mechanical system will not be
required to minimize the action but only to cause its first variation to vanish.”
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Figure 1: Optimization of f(x) = x2/2 using AGD-ODE. Peturbations (vanishing at extrema) are added to the
AGD-ODE solution: depending on the perturbation kind (i.e. direction in space of curves), the local behavior is
either a max or a min. Hence, Nesterov’s path can be a saddle point for the action (formally shown in Sec. 3.1).

only makes the action stationary (necessary condition: vanishing first-order derivative), but does not
guarantee minimality — this only holds in physics for very special cases6, which do not include
even simple mechanical systems like the pendulum (proof in Section 36.2 of Gelfand and Fomin
(2000)). Indeed, from a theoretical perspective, the claim requires computing the second variation
along Nesterov’s path. Quite surprisingly, even though many papers are dedicated to the variational
formulation (Wibisono et al., 2016; Jordan, 2018; Casgrain, 2019; Duruisseaux and Leok, 2021), to
the best of our knowledge there is no work which provides an in-depth rigorous study of the action
relative to Bregman Lagrangian and that characterizes minimality of Nesterov in the space of curves.
Our contributions. Intrigued by the non-trivial open question of minimality of Nesterov’s path
and by the enigmatic geometry of accelerated flows, in this paper, we examine the properties of
accelerated gradient methods from the perspective of calculus of variations.
1. In Sec. 3 we study the minimality of classical Nesterov’s ODE (damping 3/t) proposed by Su

et al. (2016) on multidimensional quadratic losses. By using Jacobi’s theory for the second
variation (summarized in Sec. 2), we find that Nesterov’s path is optimal only if the integration
interval [t1, t2] is small enough. In contrast, if t2 − t1 >

√
40/β (β is Lipschitz constant for

the gradient), Nesterov’s path is actually a saddle point for the action (see Fig. 1).
2. In Sec. 4 we extend the analysis to the µ-strongly convex setting and thus consider a constant

damping α. We show that, for extremely overdamped Nesterov flows (α ≥ 2
√
β), i.e for highly

suboptimal parameter tuning (acceleration holds only for α ≈ 2
√
µ), Nesterov’s path is always

a minimizer for the action. In contrast, we show that for α < 2
√
β (acceleration setting), if

t2 − t1 > 2π/
√

4β − α, Nesterov’s path is again a saddle point for the action.
3. In Sec. 5 we discuss the implications of our results for the theory of accelerated methods and

propose a few interesting directions for future research.

We start by recalling some definitions and results from calculus of variations, which we adapt from
classical textbooks (Landau and Lifshitz, 1976; Arnol’d, 2013; Gelfand and Fomin, 2000).

2 Background on calculus of variations
We work on the vector space of curves C1([t1, t2],Rd) with t1, t2 ∈ [0,∞). We equip this space with
the standard norm ‖Y ‖ = maxt1≤t≤t2 ‖Y (t)‖2 + maxt1≤t≤t2 ‖Ẏ (t)‖2. Under this choice, for any
regular Lagrangian L, the action functional J [Y ] :=

∫ t2
t1
L(Y, Ẏ , t)dt is continuous.

First variation. Let D be the linear subspace of continuously differentiable displacements curves
h such that h(t1) = h(t2) = 0. The corresponding increment of J at Y along h is defined as
∆J [Y ;h] := J [Y + h]− J [Y ]. Suppose that we can write ∆J [Y ;h] = ϕ[Y ;h] + ε‖h‖, where ϕ is
linear in h and ε→ 0 as ‖h‖ → 0. Then, J is said to be differentiable at Y and the linear functional
δJ [Y ; ·] : D → R such that δJ [Y ;h] := ϕ[Y ;h] is called first variation of J at Y . It can be shown
that, if J is differentiable at Y , then its first variation at Y is unique.

Extrema. J is said to have an extremum at Y if ∃δ > 0 such that, ∀h ∈ D with ‖h‖ ≤ δ, the sign
of J [Y + h]− J [Y ] is constant. A necessary condition for J to have an extremum at Y is that

δJ [Y ;h] = 0, for all h ∈ D. (5)
6e.g. free particle in vanishing potentials, or t1 ≈ t2, see Remark 2 at the end of Section 21 and Section 36.2.
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We proceed with stating one of the most well-known results in calculus of variations, which follows
by using Taylor’s theorem on J [Y ] =

∫ t2
t1
L(Y, Ẏ , t) dt.

Theorem 1 (Euler-Lagrange equation). A necessary condition for the curve Y ∈ C1([t1, t2],Rd) to
be an extremum for J (w.r.t. D) is that it satisfies the Euler-Lagrange equations (2).

It is crucial to note that Theorem 1 provides a necessary, but not sufficient condition for an extremum
— indeed, the next paragraph is completely dedicated to this.

Second Variation. Thm. 1 does not distinguish between extrema (maxima or minima) and saddles.
For this purpose, we need to look at the second variation.

Suppose that the increment of J at Y can be written as ∆J [Y ;h] = ϕ1[Y ;h] + ϕ2[Y ;h] + ε‖h‖2,
where ϕ1 is linear in h, ϕ2 is quadratic in h and ε → 0 as ‖h‖ → 0. Then J is said to be twice
differentiable and the functional δ2J [Y :, ·] : D → R s.t. δ2J [Y, h] := ϕ2[Y ;h] is called the second
variation of J at Y . Uniqueness of second variation is proved in the same way as the first variation.
Theorem 2. A necessary condition for the curve Y ∈ C1([t1, t2],Rd) to be a local minimum for
J (w.r.t D) is that it satisfies δ2J [Y ;h] ≥ 0. For local maxima, the sign is flipped.

Jacobi equations. Recall that J [Y ] =
∫ t2
t1
L(Y, Ẏ , t)dt. Using the notation LY Z = ∂2L/(∂Y ∂Z),

the Taylor expansion for ∆J [Y ;h] = J [Y + h]− J [Y ] if ‖h‖ → 0 converges to

∆J [Y ;h] =

∫ t2

t1

(
LY h+ LẎ ḣ

)
dt+

1

2

∫ t2

t1

(
LY Y h

2 + LẎ Ẏ ḣ
2 + 2LY Ẏ hḣ

)
dt, (6)

where the equality holds coordinate-wise. Therefore, δJ [Y ;h] =
∫ t2
t1

(
LY h+ LẎ ḣ

)
dt and

δ2J [Y ;h] =
1

2

∫ t2

t1

(
LY Y h

2 + 2LY Ẏ hḣ+ LẎ Ẏ ḣ
2
)
dt

=
1

2

∫ t2

t1

(
LY Y −

d

dt
LY Ẏ

)
h2dt+

1

2

∫ t2

t1

LẎ Ẏ ḣ
2dt

=
1

2

∫ t2

t1

(
Pḣ2 +Qh2

)
dt, (7)

where P = LẎ Ẏ , Q = LY Y − d
dtLY Ẏ , and the second equality follows from integration by parts

since h vanishes at t1 and t2. Using this expression, it is possible to derive an easy necessary (but not
sufficient) condition for minimality.
Theorem 3 (Legendre’s necessary condition). A necessary condition for the curve Y to be a minimum
of J is that LẎ Ẏ is positive semidefinite.
Conjugate points. A crucial role in the behavior of δ2J [Y ;h] is played by the shape of the solutions
to Jacobi’s differential equation d

dt (Pḣ) −Qh = 0. A point t ∈ (t1, t2) is said to be conjugate to
point t1 (w.r.t. J) if Jacobi’s equation admits a solution which vanishes at both t1 and t but is not
identically zero. We have the following crucial result.
Theorem 4 (Jacobi’s condition). Necessary and sufficient conditions for Y to be a local minimum
for J are: (1) Y satiesfies the Euler-Lagrange Equation; (2) P positive definite; (3) (t1, t2) contains
no points conjugate to t1.

3 Analysis of the action of Nesterov’s path with vanishing damping 3/t

This section is dedicated to the analysis of the action functional relative to Eq. (3). By incorporating
the tool of variational calculus, we study the optimality of Nesterov’s method in minimizing the action.
We start by a general abstract analysis in the convex quadratic case in Sec. 3.1, and then present an
intuitive analytical computation in Sec. 3.2. The non-quadratic case is discussed in Sec. 3.4.

3.1 Solutions to Jacobi’s equation for the Bregman Lagrangian in the quadratic setting

For the sake of clarity, we start by considering the Lagrangian in Eq. (1) for the simple one-
dimensional case f(x) = βx2/2. We have

Q = LY Y −
d

dt
LY Ẏ = −βt3, P = LẎ Ẏ = t3. (8)
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Figure 2: First conjugate point to t1 = 1, 4 for quadratics βx2/2, under the settings of Section 3.1. For each
value of β, six solutions h(t) to the Jacobi equation (each one has different velocity) are shown.

Therefore, Jacobi’s equation relative to the action functional
∫ t2
t1
L(Y, Ẏ , t)dt with t1 > 0 is

d

dt
(t3ḣ)− βt3h = 0. =⇒ t3ḧ+ 3t2ḣ+ βt3h = 0 =⇒ ḧ+

3

t
ḣ+ βh = 0, (9)

which is itself Nesterov’s ODE. Following the procedure outlined in Theorem 2, we now study the
solutions h such that h(t1) = 0. Any solution to Eq. (9) can be written as7

h(t) = C
Y1(
√
β t)

t
− C Y1(

√
β t1) J1(

√
β t)

J1(
√
β t1) t

, (10)

where C > 0 specifies the initial velocity (see Fig. 2), Jα is the Bessel function of the first kind and
Yα is the Bessel function of the second kind.

Jα(x) =

∞∑
m=0

(−1)m

m! Γ(m+ α+ 1)

(x
2

)2m+α

, Yα(x) =
Jα(x) cos(απ)− J−α(x)

sin(απ)
. (11)

Points t > t1 conjugate to t1 satisfy h(t) = 0, which results in the identity Y1(
√
β t)/Y1(

√
β t1) =

J1(
√
β t)/J1(

√
β t1). Remarkably, this condition does not depend on C, but only on t1 and

on the sharpness β. Let us now fix these parameters and name Kβ,t1 = Y1(
√
β t1)/J1(

√
β t1).

Points conjugate to t1 then satisfy Y1(
√
β t) = Kβ,t1J1(

√
β t). We now recall the following

expansions (Watson, 1995), also used by Su et al. (2016):

J1(x) =

√
2

πx

(
cos

(
x− 3π

4

)
+O

(
1

x

))
, Y1(x) =

√
2

πx

(
sin

(
x− 3π

4

)
+O

(
1

x

))
.

(12)
Since J1 and Y1 asymptotically oscillate around zero and are out of synch (π/2 difference in phase),
for t big enough the condition Y1(

√
β t) = Kβ,t1J1(

√
β t) is going to be satisfied. Further, this

condition is going to be satisfied for a smaller value for t if β is increased, as confirmed by Figure 2.

Theorem 5 (Local optimality of Nesterov with vanishing damping). Let f : Rd → R be a convex
quadratic, and let X : R→ Rd be a solution to the ODE Ẍ + 3

t Ẋ +∇f(X) = 0. For 0 < t1 < t2,
consider the action functional J [Y ] =

∫ t2
t1
L(Y, Ẏ , t)dt, mapping Y ∈ C1([t1, t2],Rd), to a real

number. Then, if |t2 − t1| is small enough, there are no points conjugate to t1 and Nesterov’s
path minimizes J over all curves such that Y (t1) = X(t1) and Y (t2) = X(t2). The length of the
optimality interval |t2 − t1| shrinks as β, the maximum eigenvalue of the Hessian of f , increases.

Proof. The argument presented in this section can be lifted to the multidimensional case. Indeed,
since the dynamics in phase space is linear, it’s geometry is invariant to rotations and we can therefore
assume the Hessian is diagonal. Next, Jacobi’s equation has to be solved coordinate-wise, which
leads to a logical AND between conjugacy conditions. By the arguments above, the dominating
condition is the one relative to the maximum eigenvalue β.

The following corollary shows that Nesterov’s path actually becomes suboptimal if the considered
time interval is big enough. This is also verified numerically in Figure 1.

7Symbolic computations are checked in Maple/Mathematica, numerical simulations are performed in Matlab.
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Corollary 6 (Nesterov with vanishing damping is not globally optimal). In the settings of Thm. 5,
for |t2 − t1| big enough, Nesterov’s path becomes a saddle point for J .

Proof. Non-existence of conjugate points is necessary and sufficient for minimality/maximality.

In the next subsection, we provide a constructive proof for Cor. 6, which allows us to derive a concrete
bound for |t2 − t1|. In particular, we show in Prop. 7 that, for the case of vanishing damping 3/t,
Nesterov’s path is always a saddle point for the action if |t2 − t1| >

√
40/β.
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Some readers might have already realized that
Jacobi’s equation Eq. (9) in the quadratic po-
tential case is itself the solution of Nesterov’s
ODE. This means that, if t1 ≈ 0, the first time
conjugate to t1 is exactly when Nesterov’s path
reaches the minimizer. Hence — only in the
one-dimensional case — it is actually true that,
if we do not consider arbitrary time intervals but
only the first interval before the solution first touches the optimizer, Nesterov’s path always minimizes
the action. Sadly, this strong and interesting result is not valid in higher dimensions, since Nesterov’s
path in general never actually crosses the minimizer in finite time 8.
Remark on dropping boundary conditions. The results in this section are formulated for the
fixed boundaries case Y (t1) = X(t1) and Y (t2) = X(t2), where X is the solution to Nesterov’s
ODE. From an optimization viewpoint, this requirement seems strong. Ideally, we would want
X(t2) to be any point close to the minimizer (say inside an ε-ball). A simple reasoning proves that
Nesterov’s path can be a saddle point for the action also in this case. By contradiction, assume
Nesterov’s trajectory minimizes the action among all curves that reach any point inside a small ε-ball
at time t2. Then, Nesterov’s path also minimizes the action in the (smaller) space of curves that reach
exactly X(t2). By Cor. 6, this leads to a contradiction if t2 is big enough.

3.2 A constructive proof of Nesterov’s suboptimality in the quadratic setting

We now present a direct computation, to shed some light on the suboptimality of Nesterov’s path in
the context of Thm. 5. In the setting of Sec. 3.1, the second variation of J along γ is 1

2

∫ t2
t1
t3[ḣ(t)2−

βh(t)2]dt, independent of γ. Consider now the finite-norm perturbation (vanishing at boundary):

h̃ε,c(t) =


0 t ≤ c− ε or t ≥ c+ ε
t−c+ε
ε t ∈ (c− ε, c)

c+ε−t
ε t ∈ (c, c+ ε)

, c ∈ (t1, t2), ε < min(c− t1, t2 − c). (13)

This is a triangular function with support (c − ε, c + ε) and
height one. Let hε,c be a C1 modification of h̃ε,c such that
‖h̃ε,c − hε,c‖ is negligible9. For any scaling factor σ > 0,

δ2J(σ · hε,c) = −σ2

(
3βε4

10 + (βc2 − 3)ε2 − 3c2
)
c

3ε
. (14)

The denominator is always positive. Hence, we just need to
study the sign of the numerator, with respect to changes in
ε > 0 and c > 0. Consider for now c fixed, then the zeros of the numerator are at (15 − 5u ±√

25u2 − 60u+ 225)/(3β), with u := βc2. Since 25u2− 60u+ 225 > 0 for all u ≥ 0, the solution
has two real roots. However, only one root ε2∗(u, β) is admissible, since the smallest one is always
negative10. As a result, for fixed c > 0, δ2J(σhε,c) changes sign only at ε2∗(u, β). Note that ε2∗(u, β)
is decreasing as a function of u and ε2∗(0, β) = 10/β as well as limu→∞ ε2∗(u, β) = 3/β. Therefore,
for any c, β > 0, we showed that δ2J(σhε,c) changes sign when ε∗ ∈ [

√
3/β,

√
10/β]. If choosing

8The first crossing time in each direction depends on the sharpness in each direction, hence by the time each
coordinate reaches zero, we already have a conjugate point.

9Standard technique in calculus of variation, see e.g. proof of Legendre’s Thm (Gelfand and Fomin, 2000).
10If u > 0, then 15− 5u−

√
25u2 − 60u+ 225 < 0.
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ε big is allowed by the considered interval (hε,c has to vanish at t1, t2), then the second variation is
indefinite. This happens if |t2 − t1| > 2ε∗. By taking σ → 0, we get the following result.

Proposition 7 (Sufficient condition for saddle). The second variation of the action of Nesterov’s
Lagrangian (damping 3/t) on f(x) = βx2/2 is an indefinite quadratic form for |t2− t1| >

√
40/β.

This result generalizes to β-smooth multidimensional convex quadratics.

We remark that the inverse dependency on the square root of β is also predicted by the general proof
in Sec. 3.1, where the argument of the Bessel functions is always t

√
β.

3.3 Unboundedness of the action for large integration intervals (from above and below)

In Prop. 7, we showed that for big enough integration intervals, Nesterov’s method with damping 3/t
on f(x) = βx2/2 is saddle point for the action. This suggests that the action is itself unbounded —
both from above and below. It is easy to show this formally.

Proposition 8 (Unboundedness of the action). Let L be Lagrangian of Nesterov’s method with
damping 3/t on a β-smooth convex quadratic and J [Y ] =

∫ t2
t1
L(Y, Ẏ , t)dt. Let a, b be two

arbitrary vectors in Rd. There exists a sequence of curves (Yk)k∈N, with Yk ∈ C1([t1, t2],Rd) and

Yk(t1) = a, Yk(t2) = b for all k ∈ N, such that J [Yk]
k→ ∞. In addition, if |t2 − t1| >

√
40/β

there exists another sequence with the same properties diverging to −∞.

Proof. The proof is based on the computation performed for Prop. 7. Crucially, note that for the
quadratic loss function case we have δ2J = J . For the case a = b = 0, we showed that for any
interval [t1, t2], by picking ε small enough, we have J(hε,c) = δ2J(hε,c) > 0 (also illustrated in the
figure supporting the proof). Hence, J(σ ·hε,c)→ +∞ as σ →∞. Same argument holds for −∞ in
the large interval case. This proves the assertion for a = b = 0. Note that the curves corresponding
to the diverging sequences can be modified to start/end at any a, b ∈ Rd at the price of a bounded
error in the action. This does not modify the behavior in the limit; hence, the result follows.

3.4 Optimality of Nesterov with vanishing damping if curvature vanishes (polynomial loss)
Note that the bound on |t2 − t1| in Prop. 7 gets loose as β decreases. This is also predicted by the
argument with Bessel functions in Sec. 3.1, and clear from the simulation in Fig. 2. As a result, as
curvature vanishes, Nesterov’s path becomes optimal for larger and larger time intervals. This setting
is well described by polynomial losses f(x) ∝ (x−x∗)p, with p > 2. As Nesterov’s path approaches
the minimizer x∗, the curvature vanishes; hence, for every β > 0 there exists a time interval (t1,∞)
where the curvature along Nesterov’s path is less then β. This suggest that, for losses with vanishing
curvature at the solution, there exists a time interval (t∗,∞) where Nesterov’s path is actually a
minimizer for the action. While this claim is intuitive, it is extremely hard to prove formally since
in this case the second variation of J depends on the actual solution of Nesterov’s equations — for
which no closed-form formula is known in the polynomial case (Su et al., 2016).

However, we also note that the vanishing sharpness setting is only interesting from a theoretical
perspective. Indeed, regularized machine learning objectives do not have this property. Actually,
in the deep neural network setting, it is known that the sharpness (maximum eig. of the Hessian)
actually increases overtime (Yao et al., 2020; Cohen et al., 2021). Hence, it is safe to claim that in the
machine learning setting Nesterov’s path is only optimal for small time intervals, as shown in Thm. 5.

4 Analysis of the action of Nesterov’s path with constant damping α
In the µ-strongly convex case11, it is well known that a constant damping α = 2

√
µ yields acceleration

compared to gradient descent12. This choice completely changes the geometry of Nesterov’s path
and needs a separate discussion. The corresponding Lagrangian is

Lα(Y, Ẏ , t) = eαt
(

1

2
‖Ẏ ‖2 − f(Y )

)
. (15)

11Hessian eigenvalues lower bounded by µ > 0.
12The corresponding rate is linear and depends on

√
µ/β, as opposed to µ/β (GD case).
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Again, we consider the quadratic function f(x) = βx2/2 and examine Jacobi’s ODE ḧ(t) + αḣ(t) +
βh(t) = 0. We have to determine whether there exists a non-trivial solution such that h(t1) =
h(t2) = 0 and h(t) vanishes also at a point t ∈ (t1, t2), the conjugate point.

For the critical damping case α = 2
√
β the general solution such that h(t1) = 0 is

h(t) = Ce−
√
βt(t− t1). (16)

There is no non-trivial solution h that vanishes also at t ∈ (t1, t2) — no conjugate points. The same
holds for the overdamping case α > 2

√
β, where the solution that vanishes at t1 is

h(t) = Ce−
αt
2

(
e

1
2

√
α2−4βt − e 1

2

√
α2−4β(2t1−t)

)
. (17)

For the underdamping case α < 2
√
β, the picture gets more similar to the vanishing damping

case (Sec.3.1). The solution under h(t1) = 0 is

h(t) = Ce−
αt
2

(
sin

(√
4β − α2

2
t

)
− tan

(√
4β − α2

2
t1

)
cos

(√
4β − α2

2
t

))
. (18)

Hence all points t > t1 conjugate to t1 satisfy t = t1 + 2kπ/
√

4β − α2 for k ∈ N. Therefore for
any t2 > t1 + 2π/

√
4β − α2 there exists a conjugate point t ∈ (t1, t2).

Theorem 9 (Global optimality of overdamped Nesterov, suboptimality of accelerated Nesterov).
Let f : Rd → R be a strongly convex quadratic, and let X : R → Rd be a solution to the ODE
Ẍ + αẊ + ∇f(X) = 0. For 0 ≤ t1 < t2, consider the action J [Y ] =

∫ t2
t1
Lα(Y, Ẏ , t)dt. If

α ≥ 2
√
β, where β is the max. eigenvalue of the Hessian of f , then Nesterov’s path minimizes J

over all curves s.t. Y (t1) = X(t1) and Y (t2) = X(t2). Else (e.g. acceleration setting α ≈ 2
√
µ),

Nesterov’s path is optimal only for |t2 − t1| ≤ 2π/
√

4β − α2 and otherwise is a saddle point.

Proof. As for the proof of Thm. 5, the condition on conjugate points has to hold for each eigendirec-
tion separately. We conclude by noting that eigenvalues are in the range [µ, β].
For the underdamping case, we give a concrete example for α = β = 1, to show the saddle point
nature. Consider the finite-norm perturbation h(t) = sin(kπ(t− t1)/(t1 − t2)), where k ∈ N. Then,

δ2J [γ](σh) = σ2e2t1
(
k2e−(t2−t1)π2(et2−t1 − 1)(2k2π2 − (t2 − t1)2)

(t2 − t1)2(4k2π2 + (t2 − t1)2)

)
. (19)

Hence, for any t2 − t1 >
√

2kπ, it holds that δ2J [γ](σh) < 0.

Extending the optimality claims to t2 = ∞ with Γ-convergence. From an optimization view-
point, the most interesting setting is to study the action over the complete trajectory, i.e. to consider
Y ∈ C1([t1,∞),Rd) such that Y (t1) = X(t1) and Y (∞) = x∗, a minimizer. Prop. 7 and Thm. 9
show that the question of optimality in this case deserves a discussion only in the extremely over-
damped case α ≥ 2

√
β, where minimality is guaranteed for any time interval. A careful study

of the infinite-time setting would require the theory of Γ-convergence (Braides et al., 2002). The
usual pipeline consists in defining a sequence of problems Jk, on intervals [t1, t

k
2 ], with tk2 → ∞

as k → ∞. Under the assumption that each Jk admits a global minimizer (only true for the
overdamped case), one can study convergence of J∗k = min{Jk[Y ] : Y ∈ C1([t1, t

k
2 ],Rd)} to

J∗∞ = min{J∞(Y ) : Y ∈ C1([t1,∞),Rd)}. While existence of J∗∞ and J∞ is not trivial in general,
for our setting the pipeline directly yields minimality of overdamped Nesterov’s path until∞.

5 Discussion of the main findings and directions for future research
In this section, we summarize the results of Sec. 3 & 4 and discuss some implications that our
analysis delivers on the geometry of accelerated flows in the convex and strongly convex setting.

We summarize below the main high-level findings of our theoretical analysis:

1. The optimality of Nesterov’s path for minimization of the action corresponding to the Bregman
Lagrangian is strictly linked to the curvature around the minimizer reached by the flow.
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2. As the maximal curvature β increases, it gets increasingly difficult for accelerated flows to
minimize the action over long integration intervals: both the accelerated ODEs Ẍ + 3/tẊ +

∇f(X) = 0 and Ẍ + 2
√
µẊ +∇f(X) = 0 are optimal only for intervals of length ∝ 1/

√
β.

3. If Nesterov’s path does not minimize the action, there does not exist a “better” (through the eyes
of the action) algorithm, as the functional gets unbounded from below (Sec. 3.3).

4. This suboptimality is due precisely to the oscillations in the accelerated paths. In contrast,
as long as each coordinate in parameter space decreases monotonically (as it is the case for
gradient descent), Nesterov’s path is optimal. See also O’donoghue and Candes (2015).

5. Hence, Nesterov’s method with very high damping α > 2
√
β — which does not oscillate and

hence does not lead to acceleration (see Fig. 3) — minimizes the action.
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Figure 3: Optimization of potential
f(x, y) = 0.02x2 + 0.0004y2, where
2e − 2 = β � µ = 3e − 4. Non-
monotonic trajectories (i.e. the acceler-
ated curves) minimize the action only
for short time intervals. Simulation
with Runge-Kutta 4 integration.

In a nutshell, locally Nesterov’s method does indeed optimize
a functional over curves. However, this property breaks down
precisely when the geometry gets interesting — i.e. when the
loss evolution is non-monotonic. Since acceleration is a global
phenomenon, i.e. is the cumulative result of many consecutive
oscillations (see Fig. 3), our results suggest that the essence of
acceleration cannot be possibly captured by the minimization
of the action relative to the Bregman Lagrangian.
Non-uniqueness of the Lagrangian. A possible reason for
the non-optimality of Nesterov’s path is, simply put — that
we are not looking at the right action functional. Indeed, there
are many Lagrangians that can generate Nesterov ODE. Let
F (Y, t) be any function which does not involve the velocity,
then it is easy to see that the Lagrangian L is equivalent to

L̃(Y, Ẏ , t) = L(Y, Ẏ , t) +

〈
Ẏ ,

∂F

∂Y
(X, t)

〉
+
∂F

∂t
(X, t).

(20)
This simple fact opens up new possibilities for analyzing and interpreting Nesterov’s method using
different functionals — which perhaps have both a more intuitive form and better properties.
Higher order ODEs. On a similar note, it could be possible to convexify the action functional by
considering a logical OR between symmetric ODEs, e.g ( d

2

dt2 + α d
dt + β)( d

2

dt2 − α
d
dt + β)X = 0.

Such tricks are often used in the literature on dissipative systems (Szegleti and Márkus, 2020).
Noether Theorem. In physics, the variational framework is actually never used to claim the
minimality of the solution to the equations of motion. Its power relies almost completely in the
celebrated Noether’s Theorem (Noether, 1918), which laid the foundations for modern quantum
field theory by linking the symmetries in the Lagrangian (and of the Hamiltonian) to the invariances
in the dynamics. Crucially, for the application of Noether’s Theorem, one only needs the ODE to
yield a stationary point for the action (also saddle points work). Coincidentally, while finalizing
this manuscript, two preprints (Tanaka and Kunin, 2021; Głuch and Urbanke, 2021) came out on
some implications of Noether’s Theorem for optimization. However, we note that these works do not
discuss the direct link between Noether’s Theorem and acceleration, but instead study the interaction
between the symmetries in neural network landscapes and optimizers. While some preliminary
implications of Noether’s theorem for time-rescaling of accelerated flows are discussed in (Wibisono
et al., 2016), we suspect that a more in-depth study could lead, in combination with recent work on
the Hamiltonian formalism (Diakonikolas and Jordan, 2019), to substantial insights on the hidden
invariances of accelerated paths. We note that finding these invariances might not be an easy task,
and requires a dedicated work: indeed, even for simple linear damped harmonic oscillators (constant
damping), invariance in the dynamics can be quite complex (Choudhuri et al., 2008).

6 Conclusion
We provided an in-depth theoretical analysis of Nesterov’s method from the perspective of calculus
of variations, and showed that accelerated paths only minimize the action of the Bregman Lagrangian
locally. This suggests that further research is needed for understanding the underlying principle
of generation for acceleration — which has been an open question in optimization for almost 40
years (Nesterov, 1983). To this end, we proposed a few concrete directions for future work.

9



Acknowledgments and Disclosure of Funding

The authors thank Prof. Luca Martinazzi for his helpful discussions. This work was partially funded
in part by the French government under management of Agence Nationale de la Recherche as part
of the “Investissements d’avenir” program, reference ANR-19-P3IA-0001(PRAIRIE 3IA Institute).
Hadi Daneshmand acknowledges support from the European Research Council (grant SEQUOIA
724063).

References
Ahn, K. (2020). From proximal point method to Nesterov’s acceleration. arXiv preprint.

Alimisis, F., Orvieto, A., Bécigneul, G., and Lucchi, A. (2020). A continuous-time perspective for
modeling acceleration in Riemannian optimization. In AISTATS.

Allen-Zhu, Z. and Orecchia, L. (2014). Linear coupling: An ultimate unification of gradient and
mirror descent. arXiv preprint.

Amari, S.-i. (2016). Information geometry and its applications, volume 194. Springer.

Arnol’d, V. I. (2013). Mathematical methods of classical mechanics, volume 60. Springer Science &
Business Media.

Braides, A. et al. (2002). Gamma-convergence for Beginners, volume 22. Clarendon Press.

Bregman, L. M. (1967). The relaxation method of finding the common point of convex sets and its
application to the solution of problems in convex programming. USSR computational mathematics
and mathematical physics, 7(3):200–217.

Casgrain, P. (2019). A latent variational framework for stochastic optimization. In Advances in
Neural Information Processing Systems, pages 5647–5657.

Choudhuri, A., Ghosh, S., and Talukdar, B. (2008). Symmetries and conservation laws of the damped
harmonic oscillator. Pramana, 70(4):657–667.

Cohen, J. M., Kaur, S., Li, Y., Kolter, J. Z., and Talwalkar, A. (2021). Gradient descent on neural
networks typically occurs at the edge of stability. arXiv preprint.

Defazio, A. (2019). On the curved geometry of accelerated optimization. Advances in Neural
Information Processing Systems, 32:1766–1775.

Diakonikolas, J. and Jordan, M. I. (2019). Generalized momentum-based methods: A Hamiltonian
perspective. arXiv preprint.

Duruisseaux, V. and Leok, M. (2021). A variational formulation of accelerated optimization on
Riemannian manifolds. arXiv preprint.

França, G., Jordan, M. I., and Vidal, R. (2021). On dissipative symplectic integration with applica-
tions to gradient-based optimization. Journal of Statistical Mechanics: Theory and Experiment,
2021(4):043402.

Gelfand, I. and Fomin, S. (2000). Calculus of variations,(translated and edited by Silverman, RA).

Głuch, G. and Urbanke, R. (2021). Noether: The more things change, the more stay the same. arXiv
preprint.

Jordan, M. I. (2018). Dynamical, symplectic and stochastic perspectives on gradient-based optimiza-
tion. University of California, Berkeley.

Krichene, W., Bayen, A., and Bartlett, P. L. (2015). Accelerated mirror descent in continuous and
discrete time. In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M., and Garnett, R., editors,
Advances in Neural Information Processing Systems 28, pages 2845–2853. Curran Associates, Inc.

Landau, L. D. and Lifshitz, E. M. (1976). Mechanics: Volume 1, volume 1. Butterworth-Heinemann.

10



Muehlebach, M. and Jordan, M. I. (2021). Optimization with momentum: Dynamical, control-
theoretic, and symplectic perspectives. Journal of Machine Learning Research, 22(73):1–50.

Nemirovskii, A. and Yudin, D. (1983). Problem Complexity and Method Efficiency in Optimization.
A Wiley-Interscience publication. Wiley.

Nesterov, Y. E. (1983). A method for solving the convex programming problem with convergence
rate o(1/k2). In Dokl. akad. nauk Sssr, volume 269, pages 543–547.

Noether, E. (1918). Invariante variationsprobleme. Nachrichten von der Gesellschaft der Wis-
senschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1918:235–257.

O’donoghue, B. and Candes, E. (2015). Adaptive restart for accelerated gradient schemes. Founda-
tions of computational mathematics, 15(3):715–732.

Su, W., Boyd, S., and Candès, E. J. (2016). A differential equation for modeling Nesterov’s accelerated
gradient method: Theory and insights. Journal of Machine Learning Research, 17(153):1–43.

Szegleti, A. and Márkus, F. (2020). Dissipation in Lagrangian formalism. Entropy, 22(9):930.

Tanaka, H. and Kunin, D. (2021). Noether’s learning dynamics: The role of kinetic symmetry
breaking in deep learning. arXiv preprint.

Watson, G. N. (1995). A treatise on the theory of Bessel functions. Cambridge university press.

Wibisono, A., Wilson, A. C., and Jordan, M. I. (2016). A variational perspective on accelerated
methods in optimization. proceedings of the National Academy of Sciences, 113(47):E7351–E7358.

Wilson, A. C., Mackey, L., and Wibisono, A. (2019). Accelerating rescaled gradient descent: Fast
optimization of smooth functions. In Advances in Neural Information Processing Systems, pages
13533–13543.

Xu, P., Wang, T., and Gu, Q. (2018). Accelerated stochastic mirror descent: From continuous-time
dynamics to discrete-time algorithms. In International Conference on Artificial Intelligence and
Statistics, pages 1087–1096.

Yao, Z., Gholami, A., Keutzer, K., and Mahoney, M. W. (2020). Pyhessian: Neural networks through
the lens of the Hessian. In 2020 IEEE International Conference on Big Data (Big Data), pages
581–590. IEEE.

11


	Introduction
	Background on calculus of variations
	Analysis of the action of Nesterov's path with vanishing damping 
	Solutions to Jacobi's equation for the Bregman Lagrangian in the quadratic setting
	A constructive proof of Nesterov's suboptimality in the quadratic setting
	Unboundedness of the action for large integration intervals (from above and below)
	Optimality of Nesterov with vanishing damping if curvature vanishes (polynomial loss)

	Analysis of the action of Nesterov's path with constant damping 
	Discussion of the main findings and directions for future research
	Conclusion

