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ABSTRACT

A newly-arising uncertainty estimation method named Evidential Deep Learn-
ing (EDL), which can obtain reliable predictive uncertainty in a single forward
pass, has garnered increasing interest. Guided by the subjective logic theory,
EDL obtains Dirichlet concentration parameters from deep neural networks, thus
constructing a Dirichlet probability density function (PDF) to model the distribu-
tion of class probabilities. Despite its great success, we argue that EDL keeps
nonessential settings in both stages of model construction and optimization. In
constructing the Dirichlet PDF, a commonly ignored prior weight parameter gov-
erns the balance between leveraging the proportion of evidence and its magni-
tude in deriving predictive scores. In model optimization, a variance-minimized
regularization term adopted by traditional EDL encourages the Dirichlet PDF to
approach a Dirac delta function, potentially exacerbating overconfidence. There-
fore, we propose the R-EDL (Relaxed-EDL) method by relaxing these nonessen-
tial settings. Specifically, R-EDL treats the prior weight as an adjustable hyper-
parameter instead of a fixed scalar, and directly optimizes the expectation of the
Dirichlet PDF provided to deprecate the variance-minimized regularization term.
Extensive experiments and SOTA performances demonstrate the effectiveness of
our method. Source codes are provided in Appendix E.

1 INTRODUCTION

In high-risk domains such as autonomous driving and medical analysis, it is imperative for models
to reliably convey the confidence level of their predictions (Choi et al., 2019; Abdar et al., 2022).
However, previous research suggests that most modern deep neural networks (DNNs), especially
when trained for classification via supervised learning, exhibit poor calibration, tending predomi-
nantly towards over-confidence (Guo et al., 2017). Despite effective uncertainty methods based on
Bayesian theory and ensemble techniques have been developed, these mainstream methods of un-
certainty quantification necessitate multiple forward passes in the inference phase (Blundell et al.,
2015; Dusenberry et al., 2020; Gal & Ghahramani, 2016; Lakshminarayanan et al., 2017; Wen et al.,
2020; Egele et al., 2022), imposing substantial computational burdens that hamper their widespread
industrial adoption. This limitation drives the interest of researchers in exploring how to achieve
high-quality uncertainty estimation with minimal additional cost.

Evidential deep learning (EDL) (Sensoy et al., 2018) is such a newly arising single-forward-pass
uncertainty estimation method, which has attracted increasing attention for its success in various
pattern recognition tasks (Amini et al., 2020; Bao et al., 2021; Qin et al., 2022; Chen et al., 2022; Oh
& Shin, 2022; Sun et al., 2022; Park et al., 2022; Sapkota & Yu, 2022; Gao et al., 2023a). Drawing
upon the theory of subjective logic (Jøsang, 2001; 2016), EDL harnesses both the proportion of col-
lected evidence among classes and their magnitude value to achieve high-quality uncertainty estima-
tion, effectively mitigating model over-confidence on misclassified and out-of-distribution samples.
Specifically, in a C-class classification task, EDL constructs a Dirichlet distribution Dir(pX ,αX)
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to model the distribution of class probability pX under the guidance of subjective logic, and the
concentration parameter vector αX(x) is given by

αX(x) = eX(x) + C · aX(x), ∀x ∈ X = {1, 2, ..., C}, (1)

where the base rate aX is typically set as a uniform distribution over X, and its scalar coefficient C
serves as a parameter termed as a prior weight. Note that to keep the notation uncluttered, we use
αX(x) as a simplified expression of αX(X = x), and similarly for eX(x) and aX(x). The random
variable X denotes the class index of the input sample, and eX(x) signifies the amassed evidence
for the sample’s association with class x. Thereafter, for model optimization, the traditional EDL
method integrates the mean square error (MSE) loss over the class probability pX , which is assumed
to follow the above Dirichlet distribution, thus deriving its optimization goal as

Ledl =
1

|D|
∑

(z,y)∈D

EpX∼Dir(pX ,αX)

[
∥y − pX∥22

]
=

1

|D|
∑

(z,y)∈D

∑
x∈X

(
y[x]− EpX∼Dir(pX ,αX)[pX(x)]

)2
+ VarpX∼Dir(pX ,αX)[pX(x)],

(2)

where the training set D consists of sample features and their one-hot labels denoted (z,y)1, and
y[x] refers to the x-th element of y. A rigorous mathematical exposition of subjective logic and a
more detailed introduction of EDL will be provided in section 2 and section 3.1.

Despite the remarkable success of EDL, we argue that in the existing EDL-based methodology, there
exists nonessential settings in both model construction and model optimization. These settings have
been widely accepted by deep learning researchers, however, they are not intrinsically mandated in
the mathematical framework of subjective logic. Specifically, (1) in model construction, the com-
monly ignored prior weight parameter in Eqn. 1 actually governs the balance between capitalizing
on the proportion of evidence and its magnitude when deriving predictive scores. However, EDL
prescribes this parameter’s value to be equivalent to the number of classes, potentially resulting in
highly counter-intuitive outcomes. Therefore, we advocate for setting the prior weight parameter as
a free hyper-parameter in the neural network to adapt to complex application cases. (2) in model
optimization, the EDL loss function given by Eqn. 2 includes a variance-minimized regularization
term, which encourages the Dirichlet PDF modeling the distribution of probabilities to approach
a Dirac delta function which is infinitely high and infinitesimally thin, or in other words, requires
an infinite amount of evidence of the target class, thus further intensifying the over-confidence is-
sue. Contrarily, we advocate for directly optimizing the expectation of the Dirichlet distribution
towards the given one-hot label, thus deprecating this regularization to obtain more reliable pre-
dictive scores. Note that both the above relaxations strictly adhere to the subjective logic theory.
Theoretical analysis in section 3 and experiment results in section 5 both demonstrate that relax-
ing the above nonessential settings contributes to alleviating the over-confidence issue and bringing
more accurate uncertainty estimation. Our contributions include:

• An analysis of the significance of the commonly ignored parameter termed prior weight
on balancing the trade-off relationship between leveraging the proportion and magnitude
of evidence to compute predictive scores in the subjective logic framework. Relaxing the
rigid setting of fixing the parameter to the number of classes has been shown to enhance
the quality of uncertainty estimation.

• An analysis of the advantages of directly optimizing the expected value of the constructed
Dirichlet distribution, instead of minimizing the integration of MSE loss over the class
probability pX which follows the above Dirichlet distribution. Relaxing the EDL optimiza-
tion objective by deprecating the variance-minimized regularization term has been shown
to mitigate the issue of over-confidence.

• Extensive experiments on multiple benchmarks for uncertainty estimation tasks, including
confidence estimation and out-of-distribution detection, which comprehensively demon-
strate the effectiveness of our proposed R-EDL with remarkable performances under the
classical, few-shot, noisy, and video-modality settings.

Derivations, proofs, additional experiment results and details are given in Appendix.
1In deep learning, the sample feature is usually denoted by the symbol x. However, to preclude ambiguity

with the symbol x denoting the value of the random variable X , we employ z instead of x to denote the sample
feature. The random variable X , the label y, and the feature z pertain to the same input sample.
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2 SUBJECTIVE LOGIC THEORY

Just as the names of binary logic and probabilistic logic imply, an argument in binary logic must
be either true or false, and one in probabilistic logic can take its probability in the range [0, 1] to
express the meaning of partially true. Furthermore, subjective logic (Jøsang, 2001; 2016) extends
probabilistic logic by explicitly including uncertainty about probabilities in the formalism. Specifi-
cally, an argument in subjective logic, also called a subjective opinion, is formalized as follows:

Definition 1 (Subjective opinion). Let X be a categorical random variable on the domain X. A
subjective opinion over the random variableX is defined as the ordered triplet ωX = (bX , uX ,aX),
where bX is a belief mass distribution over X , uX is a uncertainty mass, aX is a base rate, aka
prior probability distribution over X , and the additivity requirements

∑
x∈X bX(x) + uX = 1 and∑

x∈X aX(x) = 1 are satisfied.

Belief mass assigned to a singleton value x ∈ X expresses support for x being TRUE, and uncer-
tainty mass can be interpreted as belief mass assigned to the entire domain. Therefore, subjective
logic also provides a well-defined projected probability, which follows the additivity requirement of
traditional probability theory, by reassigning the uncertainty mass into each singleton of domain X
according to the base rate aX as follows:

Definition 2 (Projected probability of a subjective opinion). Let ωX = (bX , uX ,aX) be a
subjective opinion. The projected probability PX of the opinion ωX is defined by PX(x) =
bX(x) + aX(x)uX , ∀x ∈ X. Note that the additivity requirement

∑
x∈X PX(x) = 1 is satisfied.

Furthermore, the subjective logic theory points out that, if the base rate aX and a parameter termed
prior weight, denoted as W , is given, there exists a bijection between a multinomial opinion and a
Dirichlet probabilistic density function (PDF). This relationship emerges from interpreting second-
order uncertainty by probability density, and plays an important role in the formalism of subjective
logic since it provides a calculus reasoning with PDFs. The proof is provided in Appendix A.1.

Theorem 1 (Bijection between subjective opinions and Dirichlet PDFs). Let X be a random
variable defined in domain X, and ωX = (bX , uX ,aX) be a subjective opinion. pX is a proba-
bility distribution over X, and a Dirichlet PDF with the concentration parameter αX is denoted by
Dir(pX ,αX), where αX(x) ≥ 0, and pX(x) ̸= 0 if αX(x) < 1. Then, given the base rate aX ,
there exists a bijection F between the opinion ωX and the Dirichlet PDF Dir(pX ,αX):

F : ωX = (bX , uX ,aX) 7→ Dir(pX ,αX) =
Γ
(∑

x∈X αX(x)
)∏

x∈X Γ(αX(x))

∏
x∈X

pX(x)αX(x)−1, (3)

where Γ denotes the Gamma function, αX satisfies the following identity that

αX(x) =
bX(x)W

uX
+ aX(x)W, ∀x ∈ X, (4)

and W ∈ R+ is a scalar called a prior weight, whose setting will be further discussed in section 3.2.

3 R-EDL: ALLEVIATING OVER-CONFIDENCE BY RELAXING NONESSENTIAL
SETTINGS OF EDL

Despite the significant success achieved by EDL and its related works, we argue that the existing
EDL-based methodology (section 3.1) keeps rigid settings on the construction of the Dirichlet dis-
tributions specified in Theorem 1 and the design of optimization objectives, which, while widely
accepted, are not intrinsically mandated within the subjective logic framework (section 2). Theoret-
ical analysis in this section and comprehensive experiments in section 5 both demonstrate that those
nonessential settings hinder this line of methods from quantifying more accurate uncertainty. Specif-
ically, in this section, we rigorously analyze and relax two nonessential settings in EDL, including:
(1) in model construction, the prior weight parameter is prescribed to be equivalent to the number
of classes (section 3.2); (2) in model optimization, the traditional optimization objective includes a
variance-minimized regularization term, which potentially intensifies over-confidence (section 3.3).
Note that our relaxations to the above EDL settings strictly adhere to subjective logic.

3.1 PRELIMINARY: EVIDENTIAL DEEP LEARNING

Based on the subjective logic theory, Sensoy et al. (2018) proposes a single-forward-pass uncertainty
estimation method named Evidential Deep Learning (EDL), which lets deep neural networks play
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the role of analysts to give belief mass and uncertainty mass of samples. For example, in the case
of C-class classification, the belief mass bX and uncertainty mass uX of the input sample, whose
category index is a random variable X taking values x from the domain X = [1, ..., C], are given by

bX(x) =
eX(x)∑

x′∈X eX(x′) + C
, uX =

C∑
x∈X eX(x) + C

, ∀x ∈ X. (5)

Specifically, eX(x), which denotes the evidence of the random variable X taking the value x, is
the x-th element of the evidence vector eX = f(g(z)) ∈ RC

+, where z is the feature of the input
sample, g is a deep neural network, f is a non-negative activation function, e.g., softplus, sometimes
also called the evidence function, and the scalar C in this equation serves as the prior weight.

According to Theorem 1, there exists a bijection between the Dirichlet PDF denoted DirX(pX ,αX)
and the opinion ωX = (bX , uX ,aX) if the requirement in Eqn. 4 is satisfied. Substituting Eqn. 5
into Eqn. 4 and setting the prior weight W in Eqn. 4 as C, we obtain the relationship between the
parameter vector of the Dirichlet PDF and the collected evidence in EDL, as expressed by Eqn. 1.
Moreover, since EDL sets the base rate aX(x) as a uniform distribution, the relationship given by
Eqn. 1 can be further simplified into αX(x) = eX(x) + 1, ∀x ∈ X.

To perform model optimization, EDL integrates the conventional MSE loss function over the class
probability pX which is assumed to follow the Dirichlet PDF specified in the bijection, thus derives
the optimization objective given by Eqn. 2. The detailed derivation is provided in Appendix A.2. In
inference, EDL utilizes the projected probability PX (refer to Definition 2) as the predictive scores,
and uses Eqn. 5 to calculate the uncertainty mass uX as the uncertainty of classification,

PX(x) =
eX(x) + 1∑

x′∈X eX(x′) + C
=

αX(x)

SX
, uX =

C∑
x∈X eX(x) + C

=
C

SX
, ∀x ∈ X, (6)

where SX is the sum of αX(x) over x ∈ X.

3.2 RELAXING RIGID SETTING OF PRIOR WEIGHT IN MODEL CONSTRUCTION

In this subsection, we elucidate how W orchestrates the equilibrium between leveraging the propor-
tion and magnitude of evidence to compute predictive scores. Conclusively, we argue against the
rigidity of fixing W to the class number and propose viewing it as an adjustable hyper-parameter.

The nomenclature of prior weight comes from the expression of Eqn. 1. Here, the scalar coefficient
C, functioning as the prior weight W , denotes the weight of the base rate aX , which is alternatively
termed the prior distribution. In Theorem 1, it should be noted that the existence of the bijection is
contingent upon certain prerequisites; specifically, the base rate aX and the prior weight W must
be provided. Typically, in the absence of prior information, we default to setting the base rate as a
uniform distribution over the domain X, i.e., aX(x) = 1/C, ∀x ∈ X, and |X| = C. However, the
setting of the prior weight W is worth further discussion.

We argue that fixing the prior weight to the cardinality of the domain, which is widely adopted by
EDL researchers, is not intrinsically mandated by subjective logic and may result in counter-intuitive
results. For example, a 100-classes classification task forces W = 100. Even though the neural net
gives an extreme evidence distribution e = [100, 0, 0, ...., 0] ∈ R100

+ , EDL will reach the prediction
that the probability of the sample belonging to Class 1 is P = (100 + 1)/(100 + 100) ≈ 0.5 by
Eqn. 6, which is highly counter-intuitive. The underlying reason for the above phenomenon is that
the value of W dictates the degree to which the projected probability is influenced by the magnitude
of the evidence or contrarily the proportion of the evidence. To elucidate this point more clearly, we
first revisit Eqn. 5 and Eqn. 6 without fixing the prior weight W to C. In this way, we can obtain a
generalized form of the projected probability PX as

PX(x) = bX(x) + aX(x)uX =
eX(x) + W

C∑
x′∈X eX(x′) +W

, ∀x ∈ X. (7)

When the prior weight W is set to zero, the projected probability PX in Eqn. 7 degenerates to a
conventional probability form, which solely relies on the proportion of evidence among classes and
is unaffected by their magnitude, as scaling the evidence by a constant coefficient has no impact on
PX . However, when W is not zero, we have

PX(x) ≤
eX(x) + W

C

eX(x) +W
= 1− (1− 1

C
) · 1

eX(x)/W + 1
, ∀x ∈ X, (8)
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where the equlity holds if
∑

x′∈X,x′ ̸=x eX(x′) = 0. Eqn. 8 indicates that, in scenarios of extreme
evidence distributions, i.e., when the evidence for all classes except class x is zero, the upper bound
of PX(x) is governed by the ratio of the evidence for class x to the prior weight W . In other words,
the upper bound of PX(x) purely relies on the magnitude of eX(x) when the prior weight W is
given, and a lower magnitude results in a larger gap between the upper bound of PX(x) and 1.

From the two cases presented above, it becomes evident that the value ofW determines the extent to
which the projected probability PX(x) is influenced by the magnitude and proportion of evidence
respectively. Specifically, a small W implies that PX(x) is predominantly influenced by the propor-
tion of evidence distribution, whereas a large W leads PX(x) to mainly considering the magnitude
of the evidence while overlooking the evidence proportion.

Intuitively speaking, for any specific case, there should exist an optimal value for W which can bal-
ance the inherent trade-off between leveraging the proportion of evidence and its magnitude to ob-
tain predictive scores minimizing the model over-confidence on misclassified and out-of-distribution
samples. However, it is unlikely that such an optimal value is universally applicable to all scenar-
ios, given the myriad of complex factors influencing the network’s output. Hence, we advocate
for relinquishing the rigidity of assigning the number of classes to W , but instead, treating W as
an adjustable hyper-parameter within the neural network. Therefore, we revisit Eqn. 4 to derive a
generalized form of the concentration parameter αX of the constructed Dirichlet PDF as

αX(x) =

(
eX(x)

W
+

1

|X|

)
W = eX(x) + λ, ∀x ∈ X, (9)

where λ = W/C ∈ R+ is a hyper-parameter. Note that both the projected probability and the
uncertainty mass retain the same form as in Eqn. 6, i.e., PX(x) = αX(x)/SX and uX = C/SX ,
when represented by αX(x) and SX .

3.3 DEPRECATING VARIANCE-MINIMIZED REGULARIZATION IN MODEL OPTIMIZATION

In the preceding subsection, we underscore the imperative of treating the prior weight W as an
adjustable hyper-parameter, which enables the projected probability PX to effectively balance the
trade-off between leveraging the proportion and the magnitude of collected evidence. Consequently,
in this subsection, we elucidate the reasoning underlying our optimization objective, which focuses
on directly optimizing the projected probability PX . Upon comparison with the traditional loss func-
tion employed in EDL, it becomes evident that our method deprecates a commonly used variance-
minimizing regularization term. We undertake a meticulous examination of the motivations for
relaxing the EDL optimization objective by excluding this term.

With the generalized setting of αX in Eqn. 9, the projected probability PX has the following variant:

PX(x) =
αX(x)

SX
=

eX(x) + λ∑
x′∈X eX(x′) + Cλ

, ∀x ∈ X. (10)

Consequently, by substituting the class probability in traditional MSE loss with the projected prob-
ability PX in Eqn. 10, we seamlessly derive an appropriate optimization objective denoted Lredl

within our relaxed-EDL framework in the following form:

Lredl =
1

|D|
∑

(z,y)∈D

∑
x∈X

(y[x]− PX(x))
2
. (11)

Regarding the reason for adopting the above optimization objective, we contend that the projected
probability PX has the unique property of alleviating the overconfidence typically arising from
optimization toward the hard one-hot labels y. As previously noted, the projected probability PX

harnesses both the magnitude and proportion of collected evidence to more accurately represent the
actual likelihood of a given output. From an optimization perspective, compared to the proportion
of evidence among classes, i.e., eX(x)/

∑
x eX(x), or the belief mass bX , the projected probability

PX has more tolerance towards the existence of the uncertainty mass uX , since uX also contributes
to the projected probability PX according to the base rate aX . In other words, the item aXuX
alleviates the urgency of the projected probability PX tending to the one-hot label y when the
model has not collected enough evidence, since the uncertainty mass uX is inversely proportional to
the total amount of evidence, thus mitigating the over-confidence issue to some extent.
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Meanwhile, the optimization goal in Eqn. 11 can also be interpreted as encouraging the expectation
of the Dirichlet distribution to converge to the provided label, since the bijection introduced in
Theorem 1 has been established on the following identity:

PX(x) = EpX∼Dir(p,α)[pX(x)], (12)

which can be easily derived from Eqn. 10 and the property of Dirichlet distributions. Therefore, by
substituting Eqn. 12 into Eqn. 11 and then comparing it with Eqn. 2, we can find that the essential
difference between the two optimization goals is that, EDL optimizes the expectation of the tradi-
tional MSE loss over the constructed Dirichlet PDF, while our proposed R-EDL directly optimizes
the expectation of the constructed Dirichlet PDF with MSE loss. As a result, a regularization term,
denoted Lvar, which attempts to minimize the variance of the Dirichlet distribution given by the
following equation is deprecated:

Lvar =
1

|D|
∑

(z,y)∈D

∑
x∈X

VarpX∼Dir(pX ,αX)[pX(x)] =
1

|D|
∑

(z,y)∈D

S2
X −

∑
x∈X α2

X(x)

S2
X(SX + 1)

. (13)

Let us delve deeper into this variance-minimized regularization term. When the variance of a Dirich-
let distribution is close to zero, the Dirichlet probability density function is in the form of a Dirac
delta function which is infinitely high and infinitesimally thin. Consequently, in the entire training
phase, the regularization term Lvar keeps requiring an infinite amount of evidence of the target class,
which further intensifies the serious over-confidence issue we seek to mitigate. From another per-
spective, the Dirichlet distribution which models the distribution of first-order probabilities would
gradually degenerate to a traditional point estimation of first-order probabilities when its variance
approaches zero, thus losing the advantage of subjective logic in modeling second-order uncer-
tainty. Therefore, we posit that omitting this regularization term contributes to alleviating the over-
confidence issue which commonly results in suboptimal uncertainty estimation, while preserving the
merits of subjective logic. Our ablation study further corroborates this assertion. Moreover, follow-
ing previous works (Sensoy et al., 2018; Deng et al., 2023), we adopt an additional KL-divergence
based regularization for optimization, and its detailed introduction can be found in Appendix A.2.

4 RELATED WORK

Extensions and applications of EDL. A detailed introduction of EDL can be found in section 3.1,
and here we briefly introduce the follow-up works of EDL. After Sensoy et al. (2018) proposes EDL,
Deep Evidential Regression (DER) (Amini et al., 2020; Soleimany et al., 2021) extend this paradigm
by incorporating evidential priors into the conventional Gaussian likelihood function, thereby en-
hancing the modeling of uncertainty within regression networks. Kandemir et al. (2022) combines
EDL, neural processes, and neural Turing machines to propose the Evidential Tuning Process, which
shows stronger performances than EDL but requires a rather complex memory mechanism. Meinert
et al. (2023) offers further insights into the empirical effectiveness of DER, even in the presence of
over-parameterized representations of uncertainty. Recently, I-EDL proposed by Deng et al. (2023)
largely outperforms EDL by incorporating Fisher information matrix to measure the informative-
ness of evidence carried by samples. For application, DEAR (Bao et al., 2021) achieves impressive
performances on open-set action recognition by proposing a novel model calibration method to
regularize the EDL training. Moreover, EDL has achieved great success in other applications of
computer vision (Qin et al., 2022; Oh & Shin, 2022; Sun et al., 2022; Park et al., 2022; Sapkota &
Yu, 2022; Chen et al., 2023a;b; Gao et al., 2023b). Compared with previous efforts, our method is
the first to consider relaxing the nonessential settings of the traditional EDL while strictly adhering
to the subjective logic theory.

Other single-model uncertainty methods based on DNNs. In addition to EDL-related works, var-
ious single-model methods exist for estimating predictive uncertainties. Efficient ensemble meth-
ods (Wen et al., 2020; Dusenberry et al., 2020), which cast a set of models under a single one, show
state-of-the-art performances on large-scale datesets. While these methods are parameter-efficient,
they necessitate multiple forward passes during inference. Bayesian Neural Networks (BNNs)(Ritter
et al., 2018; Izmailov et al., 2021) model network parameters as random variables and quantify un-
certainty through posterior estimation while suffering from a significant computational cost. A
widely-recognized method is Monte Carlo Dropout (Gal & Ghahramani, 2016), which interprets the
dropout layer as a random variable following a Bernoulli distribution, and training a neural network
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with such dropout layers can be considered an approximation to variational inference. Two other
notable single-forward-pass methods, DUQ (Van Amersfoort et al., 2020) and SNGP (Liu et al.,
2020), introduce distance-aware output layers using radial basis functions or Gaussian processes.
Although nearly competitive with deep ensembles in OOD benchmarks, these methods entail ex-
tensive modifications to the training procedure and lack easy integration with existing classifiers.
Another group of efficient uncertainty methods are Dirichlet-based uncertainty (DBU) methods, to
which EDL also belongs. Prominent DBU methods encompass KL-PN (Malinin & Gales, 2018),
RKL-PN (Malinin & Gales, 2019), and Posterior Network (Charpentier et al., 2020), which vary in
both the parameterization and the training strategy of the Dirichlet distribution. Compared to these
preceding methods, our approach combines the benefits of exhibiting favorable performances, being
single-forward-pass, parameter-efficient, and easily integrable.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Baselines. Following Deng et al. (2023), we focus on comparing with other Dirichlet-based uncer-
tainty methods, including the traditional EDL (Sensoy et al., 2018), I-EDL (Deng et al., 2023),
KL-PN (Malinin & Gales, 2018), RKL-PN (Malinin & Gales, 2019), and PostN (Charpentier
et al., 2020). Additionally, we present the results of the representative single-forward-pass method
DUQ (Van Amersfoort et al., 2020) and the popular Bayesian uncertainty method MC Dropout (Gal
& Ghahramani, 2016) for reference. For experiments concerning video-modality data, follow-
ing Bao et al. (2021), we compare our methods with: OpenMax (Bendale & Boult, 2016), MC
Dropout, BNN SVI (Krishnan et al., 2018), RPL (Chen et al., 2020), and DEAR (Bao et al., 2021).

Datasets, Implementation details, Hyper-parameter settings. Refer to Appendix C.

5.2 CLASSICAL SETTING

A classifier with reliable uncertainty estimation abilities should exhibit following characteristics:
(1) Assign higher uncertainties to out-of-distribution (OOD) than in-distribution (ID) samples; (2)
Assign higher uncertainties to misclassified than to correctly classified samples; (3) maintain com-
parable classification accuracy. Therefore, We first evaluate our method by OOD detection and
confidence estimation in image classification, measured by the area under the precision-recall curve
(AUPR) with labels 1 for ID / correctly classified data, and labels 0 for OOD / misclassified data. For
the Dirichlet-base uncertainty methods, we use the max probability (MP) and the sum of Dirichlet
concentration parameters, aka the scaled reciprocal of uncertainty mass (UM) of subjective opin-
ions, as the confidence scores. For MC Dropout and DUQ, we only report their MP performances
since they do not involve Dirichlet PDFs. As Table 1 shows, our R-EDL method shows consistently
favorable performances on most metrics. In particular, comparing with the traditional EDL method
and the SOTA method I-EDL, our R-EDL obtains absolute gains of 6.13% and 1.74% when eval-
uated by MP on the OOD detection setting of CIFAR-10 against SVHN. Besides, our method also
achieves superior performances on confidence estimation while maintaining a satisfactory classifi-
cation accuracy. All results are averaged from 5 runs, and the relatively small standard deviations
indicate that R-EDL exhibits stable performances.

5.3 FEW-SHOT SETTING

Next, we conduct more challenging few-shot experiments on mini-ImageNet to further demonstrate
the effectiveness of our method. As shown in Table 2, we report the averaged top-1 accuracy of
classification and the AUPR scores of confidence estimation and OOD detection over 10,000 few-
shot episodes. We employ the N -way K-shot setting, with N ∈ {5, 10} and K ∈ {1, 5, 20}. Each
episode comprises N random classes and K random samples per class for training, min(15,K)
query samples per class for classification and confidence estimation, and an equivalent number of
query samples from the CUB dataset for OOD detection. As depicted in Table 2, our R-EDL method
achieves satisfactory performances on most N -way K-shot settings. Specifically, comparing with
the EDL and I-EDL methods, our R-EDL obtains absolute gains of 9.19% and 1.61% when evalu-
ated by MP on OOD detection of the 5-way 5-shot task.

5.4 NOISY SETTING

Thereafter, we employ noisy data to assess both the robustness of classification and the OOD detec-
tion capability of our method in the presence of noise. Following Deng et al. (2023), we generate
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Table 1: Accuracy of classification and AUPR scores of confidence estimation and OOD detection,
averaged over 5 runs. On MNIST we adopt ConvNet consisting of 3 conventional layers and 3 dense
layers as the backbone, while on CIFAR10 we adopt VGG16. A→B denotes taking A/B as ID/OOD
data. MP refers to max probability, and UM refers to uncertainty mass.

Method
MNIST MNIST→KMNIST MNIST→FMNIST

Classification Confidence Estimation OOD Detection OOD Detection
Acc MP UM MP UM MP UM

MC Dropout 99.26±0.0 99.98±0.0 - 94.00±0.1 - 96.56±0.3 -
DUQ 98.65±0.1 99.97±0.0 - 98.52±0.1 - 97.92±0.6 -

KL-PN 99.01±0.0 99.92±0.0 99.95±0.0 92.97±1.2 93.39±1.0 98.44±0.1 98.16±0.0
RKL-PN 99.21±0.0 99.67±0.0 99.57±0.0 60.76±2.9 53.76±3.4 78.45±3.1 72.18±3.6

PostN 99.34±0.0 99.98±0.0 99.97±0.0 95.75±0.2 94.59±0.3 97.78±0.2 97.24±0.3

EDL 98.22±0.31 99.99±0.00 99.98±0.00 97.02±0.76 96.31±2.03 98.10±0.44 98.08±0.42
I-EDL 99.21±0.08 99.98±0.00 99.98±0.00 98.34±0.24 98.33±0.24 98.89±0.28 98.86±0.29

R-EDL(Ours) 99.33±0.03 99.99±0.00 99.99±0.00 98.69±0.19 98.69±0.20 99.29±0.11 99.29±0.12

Method
CIFAR10 CIFAR10→SVHN CIFAR10→CIFAR100

Classification Confidence Estimation OOD Detection OOD Detection
Acc MP UM MP UM MP UM

MC Dropout 82.84±0.1 97.15±0.0 - 51.39±0.1 - 45.57±1.0 -
DUQ 89.33±0.2 97.89±0.3 - 80.23±3.4 - 84.75±1.1 -

KL-PN 27.46±1.7 50.61±4.0 52.49±4.2 43.96±1.9 43.23±2.3 61.41±2.8 61.53±3.4
RKL-PN 64.76±0.3 86.11±0.4 85.59±0.3 53.61±1.1 49.37±0.8 55.42±2.6 54.74±2.8

PostN 84.85±0.0 97.76±0.0 97.25±0.0 80.21±0.2 77.71±0.3 81.96±0.8 82.06±0.8

EDL 83.55±0.64 97.86±0.17 97.83±0.17 78.87±3.50 79.12±3.69 84.30±0.67 84.18±0.74
I-EDL 89.20±0.32 98.72±0.12 98.63±0.11 83.26±2.44 82.96±2.17 85.35±0.69 84.84±0.64

R-EDL(Ours) 90.09±0.30 98.98±0.05 98.98±0.05 85.00±1.22 85.00±1.22 87.72±0.31 87.73±0.31

Table 2: Results of the few-shot setting for WideResNet-28-10 on mini-ImageNet, with CUB as
OOD data, averaged over 10000 episodes.

Method
5-Way 1-Shot 10-Way 1-Shot

Classification Confidence Estimation OOD Detection Classification Confidence Estimation OOD Detection

Acc MP UM MP UM Acc MP UM MP UM

EDL 61.00±0.11 78.95±0.12 75.34±0.12 66.78±0.12 65.41±0.13 44.55±0.08 63.37±0.11 61.68±0.10 59.19±0.09 67.81±0.12
I-EDL 63.82±0.10 82.83±0.11 80.33±0.11 71.79±0.12 74.76±0.13 49.37±0.07 68.40±0.09 67.54±0.09 71.60±0.10 71.95±0.10

R-EDL(Ours) 63.93±0.11 82.75±0.11 80.80±0.11 72.91±0.12 74.84±0.13 50.02±0.07 68.68±0.09 67.12±0.09 72.83±0.10 73.08±0.10

Method
5-Way 5-Shot 10-Way 5-Shot

Classification Confidence Estimation OOD Detection Classification Confidence Estimation OOD Detection

Acc MP UM MP UM Acc MP UM MP UM

EDL 80.38±0.08 94.30±0.04 92.09±0.05 74.46±0.10 76.53±0.14 62.50±0.08 87.55±0.05 84.35±0.06 71.06±0.10 76.28±0.10
I-EDL 82.00±0.07 94.42±0.04 93.61±0.05 82.04±0.10 82.48±0.10 67.89±0.06 89.14±0.04 85.52±0.05 80.63±0.11 82.29±0.10

R-EDL(Ours) 81.85±0.07 94.29±0.04 93.65±0.05 83.65±0.10 84.22±0.10 70.51±0.05 88.84±0.04 86.26±0.05 82.39±0.09 83.37±0.09

Method
5-Way 20-Shot 10-Way 20-Shot

Classification Confidence Estimation OOD Detection Classification Confidence Estimation OOD Detection
Acc MP UM MP UM Acc MP UM MP UM

EDL 85.54±0.06 97.77±0.02 97.05±0.02 80.01±0.10 79.78±0.12 69.30±0.09 94.57±0.03 93.15±0.03 74.50±0.08 76.89±0.09
I-EDL 88.12±0.05 97.93±0.02 96.98±0.02 84.29±0.09 85.40±0.09 78.59±0.04 95.15±0.02 93.32±0.03 81.34±0.07 82.52±0.07

R-EDL(Ours) 88.74±0.05 97.83±0.02 97.10±0.02 84.85±0.09 85.57±0.09 79.79±0.04 94.81±0.02 93.47±0.02 82.22±0.08 82.72±0.07

the noisy data by introducing zero-mean isotropic Gaussian noise to the test split of the ID dataset.
Fig. 1(a) clearly illustrates the superior performance of R-EDL in terms of the average of these two
key metrics. More results and analysis are provided in Appendix D.3.

5.5 ABLATION STUDY AND PARAMETER ANALYSIS

We assess the performance impact of relaxing two aforementioned nonessential settings in EDL, as
summarized in Table 3. In particular, we explore the effects of retaining the original value of λ = 1,
and of reintroducing the deprecated variance-minimized regularization term Lvar. Note that if both
original settings are restored, R-EDL reverts to traditional EDL. As evidenced in rows 3 and 4 of
Table 3, reverting to each of these original settings results in a noticeable performance decline, or
conversely, relaxing these settings leads to performance gains, particularly in OOD detection. For
instance, measured by the AUPR score for OOD detection in the setting of CIFAR-10 vs SVHN,
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Figure 1: (a) The performance trends of EDL, I-EDL, and R-EDL, measured by the average of the
classification accuracy and the AUPR score of OOD detection, across varying levels of Gaussian
noise. (b) Parameter analysis of the hyper-parameter λ, evaluated by accuracy of classification on
CIFAR-10 and AUPR score of OOD detection against CIFAR-100, respectively.

Table 3: Ablation study on the classical setting and the few-shot setting, with respect to the relax-
ations about treating λ as a hyper-parameter and deprecating the regularization term Lvar.

Method
Classical setting Few-shot setting (10-way 5-shot)

CIFAR-10 → SVHN → CIFAR-100 mini-ImageNet → CUB
Cls Conf OOD Detect OOD Detect Cls Conf OOD Detect

EDL 83.55±0.64 97.83±0.17 79.12±3.69 84.18±0.74 62.50±0.08 84.35±0.06 76.28±0.10
I-EDL 89.20±0.32 98.63±0.11 82.96±2.17 84.84±0.64 67.89±0.06 85.52±0.05 82.29±0.10

R-EDL w/ λ = 1 88.53±0.38 98.78±0.05 83.24±1.25 86.95±0.37 70.77±0.06 85.82±0.05 82.89±0.09
R-EDL w/ Lvar 90.03±0.15 98.96±0.07 84.04±1.66 87.59±0.39 69.97±0.05 85.58±0.05 82.25±0.09

R-EDL(Ours) 90.09±0.30 98.98±0.05 85.00±1.22 87.73±0.31 70.51±0.05 86.26±0.05 83.37±0.09

relaxing just one setting yields improvements of 4.12% and 4.92% respectively. Moreover, when
both settings are relaxed, the performance of R-EDL improves by 5.88%. Thus, we conclude that
both relaxations are effective and their joint application yields a further optimized performance.

Moreover, we further investigate the effect of the hyper-parameter λ. Fig. 1(b) demonstrates the
trend of variation in classification accuracy on CIFAR-10 and the AUPR score for OOD detection
on CIFAR-100 as the hyper-parameter λ varies from 0.01 to 1.5. In this setting, λ is ultimately
established at 0.1, selected from the range [0.1:0.1:1.0] based on the best classification accuracy on
the validation set. More results and analysis can be found in Appendix D.5.

Due to space limitation, please refer to Appendix D.4 for results of Video-modality Setting, and
Appendix D.6 for Visualization of Uncertainty Distributions with different metrics.

6 CONCLUSION

Summary. We propose Relaxed-EDL, a generalized version of EDL, which relaxes two tradition-
ally adopted nonessential settings in the model construction and optimization stages. Our analysis
reveals two key findings: (1) A commonly ignored parameter termed prior weight governs the bal-
ance between leveraging the proportion of evidence and its magnitude in deriving predictive scores;
(2) A variance-minimized regularization term adopted by the traditional EDL method encourages
the Dirichlet PDF to approach a Dirac delta function, thereby heightening the risk of model over-
confidence. Based on the findings, R-EDL treats the prior weight as an adjustable hyper-parameter
instead of fixing it to the class number, and directly optimizes the expectation of the Dirichlet PDF
provided to deprecate the variance-minimized regularization term. Comprehensive experimental
evaluations underscore the efficacy of our proposed methodology.

Deficiencies and Future directions. This paper can be extended along two directions below. (1) Al-
though the crucial role of the prior weight parameter in balancing the trade-off between leveraging
the proportion and the magnitude of collected evidence has been elucidated, the underlying mecha-
nism dictating its optimal value is a topic worth further investigation. (2) The optimization objective
of R-EDL can be interpreted as an optimization of the expected value of the constructed Dirichlet
PDF. While this approach is principled and effective, it is somewhat coarse. Future work could
explore optimization goals considering other statistical properties of Dirichlet PDFs.
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A PROOF AND DERIVATION

This section provides the proof of Theorem 1 and the derivation of optimization objectives of EDL.

A.1 PROOF OF THEOREM 1

Theorem 1 (Bijection between subjective opinions and Dirichlet PDFs). Let X be a random
variable defined in domain X, and ωX = (bX , uX ,aX) be a subjective opinion. pX is a proba-
bility distribution over X, and a Dirichlet PDF with the concentration parameter αX is denoted by
Dir(pX ,αX), where αX(x) ≥ 0, and pX(x) ̸= 0 if αX(x) < 1. Then, given the base rate aX ,
there exists a bijection F between the opinion ωX and the Dirichlet PDF Dir(pX ,αX):

F : ωX = (bX , uX ,aX) 7→ Dir(pX ,αX) =
Γ
(∑

x∈X αX(x)
)∏

x∈X Γ(αX(x))

∏
x∈X

pX(x)αX(x)−1, (14)

where Γ denotes the Gamma function, αX satisfies the following identity that

αX(x) =
bX(x)W

uX
+ aX(x)W, (15)

W ∈ R+ is a given scalar representing a non-informative prior weight.

Proof. The proof of the bijection will be performed in two steps. First, we will prove a Dirich-
let distribution Dir(pX ,αX) is uniquely specified by its parameters αX , aka there exists a bijective
mapping between Dir(pX ,αX) and αX . Then, we will prove the bijection between the Dirichlet pa-
rameters αX and the subjective opinion ωX . Therefore, the bijection between ωX and Dir(pX ,αX)
can be established due to the transitivity of bijection.

Step 1: To prove the mapping F1 : αX 7→ Dir(pX ,αX) is bijective, we will prove it is both
injective and surjective. The surjective property is obvious due to the mapping form. We use proof
by contradiction to verify the injectivity as follows.

Assuming that there exists two Dirichlet distributions over the random variableX , which are param-
eterized by two different concentration parameter vectors αX and α̃X respectively, sharing exactly
the same probability density function, i.e., ∃x ∈ X, αX(x) ̸= α̃X(x), and ∀x ∈ X and ∀pX ∈ S|X|,

Γ
(∑

x∈X αX(x)
)∏

x∈X Γ(αX(x))

∏
x∈X

pX(x)αX(x)−1 =
Γ
(∑

x∈X α̃X(x)
)∏

x∈X Γ(α̃X(x))

∏
x∈X

pX(x)α̃X(x)−1, (16)

where S|X| is a |X|-dimensional unit simplex. Taking the logarithm of both sides, we have

− log(B(αX(x)))+
∑
x∈X

(αX(x)−1) log(pX(x)) = − log(B(α̃X(x)))+
∑
x∈X

(α̃X(x)−1) log(pX(x)),

(17)
where B denotes a |X|-dimensional beta function. Therefore, we have∑

x∈X
(αX(x)− α̃X(x)) log (pX(x)) = log

(
B (αX(x))

B (α̃X(x))

)
, ∀pX ∈ S|X|. (18)

Since the above equation holds for any probability distribution pX , we have∑
x∈X

(αX(x)− α̃X(x)) log (pX(x)− p′
X(x)) = 0, ∀pX ,p

′
X ∈ S|X|. (19)

The above equation can be regarded as a homogenous linear equation with αX(x) − α̃X(x) as
variables and log (pX(x)− p′

X(x)) as parameters. Due to the arbitrariness of pX and p′
X , and the

property of homogeneous systems of linear equations, we know that Eqn. 19 only has a particular
solution, i.e., αX(x)− α̃X(x) = 0 for any x ∈ X, which violates our assumption.

Therefore, F1 is both injective and surjective, thus bijective.

Step 2: To prove the bijection between ωX and αX , we also need to prove the mapping F2 : ωX 7→
αX is both injective and surjective. Since the base rate aX and the non-informative prior weight W
in Eqn. 15 are given, F2 can be simplified to (bX , uX) 7→ αX with the following formulation:

αX(x) =
bX(x)

uX
, ∀x ∈ X. (20)
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First, we use proof by contradiction to verify the injection. Assuming that there exists two different
sets of belief mass and uncertainty mass which corresponds to the same set of Dirichlet concentration
parameters, aka there exists (bX , uX), (b̃X , ũX),αX , which satisfies

αX(x) =
bX(x)

uX
=

b̃X(x)

ũX
, ∀x ∈ X, (21)

and ∃x ∈ X, bX(x) ̸= b̃X(x), or uX ̸= ũX . We take the summation of Eqn. 21 across all possible
values of x ∈ X and utilize the additivity requirement

∑
x∈X bX(x) + uX = 1, then we will have∑

x∈X
αX(x) =

1− uX
uX

=
1− ũX
ũX

. (22)

Thus we reach uX = ũX and after using the relationship in Eqn. 21, we will have bX(x) = b̃X(x),
∀x ∈ X. Thereafter, our assumption is violated and thus F2 is injective.

Second, we prove F2 is surjective, aka for any Dirichlet parameter set αX , there exists a set of
(bX , uX) satisfying Eqn. 20. By summing Eqn. 20 over all values of x ∈ X, we have

SX =
1− uX
uX

, (23)

where SX =
∑

x∈X αX(x). By reorganization and substituting uX into Eqn. 20, we have

uX =
1

SX + 1
, bX(x) =

αX(x)

SX + 1
, (24)

which satisfy all the requirements. Therefore, the mapping F2 is surjective.

Finally, since F1 and F2 are both bijective, F = F1 ◦ F2 is also bijective.

Moreover, in cases of no prior information available, we generally set the base rate aX(x) as uniform
distribution, i.e., aX(x) = 1

|X| , ∀x ∈ X, and Eqn. 15 can be reorganized as

αX(x) =

(
bX(x)

uX
+

1

|X|

)
W, ∀x ∈ X, (25)

or equivalently as

bX(x) =
αX(x)−W/|X|∑

x′∈X αX(x′)
, uX =

W∑
x∈X αX(x)

, ∀x ∈ X, (26)

by utilizing the additivity requirement
∑

x∈X bX(x) + uX = 1.

Besides, it is noteworthy that comprehensive elaborations on the concepts within the Subjective
Logic theory are available in Jøsang (2001; 2016).

A.2 DERIVATION OF OPTIMIZATION OBJECTIVES IN EDL

As aforementioned in section 3.1, to perform model optimization, EDL integrates the conventional
MSE loss function over the class probability pX which is assumed to follow the Dirichlet PDF
specified in the bijection, thus derives the optimization objective as

Ledl =
∑

(z,y)∈D

EpX∼Dir(pX ,αX)

[
∥y − pX∥22

]
=

∑
(z,y)∈D

EpX∼Dir(pX ,αX)

∑
x∈X

(
y[x]2 − 2y[x]pX(x) + pX(x)2

)
=

∑
(z,y)∈D

∑
x∈X

(
y[x]2 − 2y[x]EpX∼Dir(pX ,αX)[pX(x)] + EpX∼Dir(pX ,αX)

[
pX(x)2

])
.

(27)

Using the identity E[x2] = E[x]2 + Var[x], we know that

Ledl =
∑

(z,y)∈D

∑
x∈X

(
y[x]− EpX∼Dir(pX ,αX)[pX(x)]

)2
+ VarpX∼Dir(pX ,αX)[pX(x)]. (28)
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Since the Dirichlet distribution has the following properties:

E[pX(x)] =
αX(x)

SX
, Var[pX(x)] =

αX(x)(SX −αX(x))

S2
X(SX + 1)

, (29)

where SX =
∑C

i=1 αX(x), we can explicitly express Ledl by αX(x) and SX as

Ledl =
∑

(z,y)∈D

∑
x∈X

(
y[x]− αX(x)

SX

)2

+
αX(x)(SX −αX(x))

S2
X(SX + 1)

. (30)

Furthermore, EDL introduces an auxiliary regularization term to suppress the evidence of non-target
classes by minizing the Kullback-Leibler (KL) divergence between a modified Dirichlet distribution
and a uniform distribution. This regularization term has demonstrated promising empirical results
and has been elucidated by Deng et al. (2023) using the PAC-Bayesian theory (McAllester, 1998).
Specifically, the regularization term has the following form:

Lkl =
1

|D|
∑

(z,y)∈D

KL (Dir(pX , α̃X),Dir(pX ,1))

=
1

|D|
∑

(z,y)∈D

(
log

Γ(SX)

Γ(C)
∏

x∈X Γ (α̃X(x))
+
∑
x∈X

(α̃X(x)− 1) (ψ (α̃X(x))− ψ(SX))

)
,

(31)
where Γ denotes the Gamma function, and α̃X = y+(1−y)⊙αX represents a modified Dirichlet
parameter vector whose value of the target class has been set to 1.

B DERIVATION FOR UNCERTAINTY MEASURES

This section provides the derivation of several uncertainty measures, including expected entropy,
mutual information, and differential entropy, of Dirichlet-based uncertainty models. The following
content is adapted from the Appendix of Malinin & Gales (2018) and Deng et al. (2023).

B.1 EXPECTED ENTROPY

Let X be a random variable defined in X, where X is a domain consisting of multiple mutually dis-
joint values. Let p be a probability distribution over X, and let Dir(p,α) be a Dirichlet distribution
parameterized by the concentration parameter vector α. If X represents the category index of an
input sample, x ∈ X = {1, ..., C} denotes the value of X , satisfying p(X = x) = p(x), then the
expected entropy of the random variable X over the Dirichlet distribution Dir(p,α) can be derived
as follows:

Ep∼Dir(p,α)[H[p(x)]] =

∫
p∈NC

Dir(p,α)

(
−
∑
x∈X

p(x) lnp(x)

)
dp

=−
∑
x∈X

∫
p∈NC

Dir(p,α) (−p(x) lnp(x)) dp

=−
∑
x∈X

∫
p∈NC

Γ(S)∏
x′∈X Γ(α(x′))

∏
x′∈X

p(x′)α(x′)−1 (−p(x) lnp(x)) dp

=−
∑
x∈X

∫
p∈NC

α(x)

S

Γ(S)

Γ(α(x) + 1)
∏

x′ ̸=x Γ(α(x′))

∏
x′ ̸=x

p(x′)α(x′)−1p(x)α(x) lnp(x)dp

=−
∑
x∈X

α(x)

S

∫
p∈NC

Ep∼Dir(p,α+1x)[lnp(x)]dp

=−
∑
x∈X

α(x)

S
(ψ(α(x) + 1)− ψ(S + 1)) ,

(32)
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where S =
∑

x∈X α(x), NC is a C-dimensional unit simplex, ψ denotes the digamma function, and
1x denotes a one-hot vector with the x-th element being set to 1 and other elements being set to 0.
The last third equation comes from the property of Gamma function that Γ(n) = (n− 1)!. In some
literature, the expected entropy is used to measure the data uncertainty.

B.2 MUTUAL INFORMATION

In the Dirichlet-based uncertainty methods, the mutual information between the labels y and the
class probability p, which can be regarded as the difference between the total amount of uncertainty
and the data uncertainty, can be approximately computed as:

I[y,p]︸ ︷︷ ︸
Distributional Uncertainty

≈ H
[
Ep∼Dir(p,α)[p(x)]

]︸ ︷︷ ︸
Total Uncertainty

−Ep∼Dir(p,α) [H[p(x)]]︸ ︷︷ ︸
Expected Data Uncertainty

= −
∑
x∈X

α(x)

S
ln

α(x)

S
+
∑
x∈X

α(x)

S
(ψ(α(x) + 1)− ψ(S + 1))

= −
∑
x∈X

α(x)

S

(
ln

α(x)

S
− ψ(α(x) + 1) + ψ(S + 1)

)
.

(33)

The calculation of the expected data uncertainty utilizes the result of Eqn. 32. The mutual informa-
tion is often used to measure the distributional uncertainty.

B.3 DIFFERENTIAL ENTROPY

The derivation of the differential entropy of the Dirichlet distribution is given by:

H[Dir(p,α)] =−
∫
p∈NC

Dir(p,α) lnDir(p,α)dp

=−
∫
p∈NC

Dir(p,α)

(
ln Γ(S)−

∑
x∈X

Γ(α(x)) +
∑
x∈X

(α(x)− 1) lnp(x)

)
dp

=
∑
x∈X

ln Γ(α(x))− ln Γ(S)−
∑
x∈X

(α(x)− 1)Ep∼Dir(p,α)[lnp(x)]

=
∑
x∈X

ln Γ(α(x))− ln Γ(S)−
∑
x∈X

(α(x)− 1)(ψ(α(x)− ψ(S))).

(34)
Differential entropy is also a prevalent measure of distributional uncertainty. A lower entropy indi-
cates that the model yields a sharper distribution, whereas a higher value signifies a more uniform
Dirichlet distribution.

C EXPERIMENTAL SETTINGS

C.1 DATASETS

Following Deng et al. (2023), we conduct experiments on the following groups of image classi-
fication dataset: (1) MNIST (LeCun, 1998), FMNIST (Xiao et al., 2017), KMNIST (Clanuwat
et al., 2018); (2) CIFAR-10 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2018), CIFAR-
100 (Krizhevsky et al., 2009); (3) mini-ImageNet (Vinyals et al., 2016), CUB (Wah et al., 2011).
Within each group, we designate the first dataset as in-distribution training data, while utilizing
the subsequent ones as OOD data. Moreover, to evaluate the effectiveness of our method on
video-modality data, we also conduct an open-set action recognition experiment by taking UCF-
101 (Soomro et al., 2012) as ID data and HMDB-51 (Kuehne et al., 2011) and MiT-v2 (Monfort
et al., 2021) as OOD data following Bao et al. (2021). Below are the detailed introductions:

The MNIST (LeCun, 1998) database consists of handwritten digits ranging from 0 to 9. Specifically,
MNIST contains 60,000 training images and 10,000 testing images, which have been normalized to
fit into 28 × 28 pixel bounding boxes. We use the proportion of [0.8, 0.2] to partition the training
samples into training and validation sets.
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FashionMNIST (FMNIST) (Xiao et al., 2017) is a dataset designed as a more challenging replace-
ment for MNIST. Created by Zalando Research, FMNIST features grayscale images of various
clothing items such as shirts, trousers, sneakers, and bags. The dataset is structured similarly to
MNIST, containing 60,000 training images and 10,000 testing images, each of which is 28 × 28
pixels in size. We use FMNIST as OOD data when training models on MNIST.

Kuzushiji-MNIST (KMNIST) (Clanuwat et al., 2018) is another drop-in replacement for MNIST,
consisting of a training set with 60,000 handwritten Kuzushiji (cursive Japanese) Hiragana charac-
ters and a testing set comprising 10,000 ones. Similar to MNIST, the handwritten characters have
been processed to fit into 28× 28 pixel resolution grayscale images. We also use KMNIST as OOD
data when using MNIST as ID data.

CIFAR-10 (Krizhevsky et al., 2009) comprises 60,000 32 × 32 color distributed across 10 distinct
classes such as airplanes, birds, cats, ships, and more, with each class containing 6,000 images.
Among them, 50,000 are designated for training and the remaining 10,000 for testing. We partition
the training images into training and validation sets using a split ratio of [0.95, 0.05].

Street View House Numbers (SVHN) (Netzer et al., 2018) dataset consists of digit images of house
numbers from Google Street View. Specifically, it contains 73257 digits for training and 26032
digits for testing. We use SVHN as OOD data when training models on CIFAR10.

CIFAR-100 (Krizhevsky et al., 2009) is just like the CIFAR-10, except it has 100 classes containing
600 images each. There are 500 training images and 100 testing images per class. We use CIFAR-
100 as OOD data when using CIFAR-10 as ID data.

mini-ImageNet (Vinyals et al., 2016) is designed for few-shot learning evaluation. mini-ImageNet
comprises 50,000 84 × 84 color images for training and 10,000 ones for testing, evenly distributed
across 100 classes, and these 100 classes are subdivided into sets of 64, 16, and 20 for meta-training,
meta-validation, and meta-testing tasks, respectively.

The Caltech-UCSD Birds (CUB) (Wah et al., 2011) dataset contains 11,788 images of 200 subcate-
gories belonging to birds, 5,994 for training and 5,794 for testing. We use CUB as OOD data when
using mini-ImageNet as ID data in the few-shot setting.

UCF-101 (Soomro et al., 2012) is an action recognition data set of realistic action videos, collected
from YouTube. Specifically, UCF-101 contains 13320 videos distributed across 101 action cate-
gories. For experiments of video-modality setting, we train models on UCF-101 training split and
take its testing set as known samples in inference. Following Bao et al. (2021), despite there exists
a few overlapping classes between UCF-101 and the OOD datasets, HMDB-51 and MiT-v2, we do
not manually clean the data for standardizing the evaluation.

HMDB-51 (Kuehne et al., 2011) is collected mostly from movies, and a small proportion from
Prelinger archive, YouTube and Google videos. Specifically, HMDB-51 contains 6,849 clips of
51 action categories, each containing a minimum of 101 clips. We use its testing set as unknown
samples in the video-modality setting.

Multi-Moments in Time (MiT-v2) (Monfort et al., 2021) has 305 classes and its testing split contains
30,500 video samples. We also use its testing set as unknown samples in the video-modality setting.

C.2 IMPLEMENTATION DETAILS

Classical setting. In alignment with Deng et al. (2023), a ConvNet with three convolutional and
three dense layers is employed for MNIST, while VGG16 (Simonyan & Zisserman, 2014) serves
as the backbone network for CIFAR-10. As Table 4 shows, FMNIST and KMNIST are utilized as
OOD data for MNIST, while SVHN and CIFAR-100 are used for CIFAR-10. We use Softplus as the
activation function to keep the collected evidence non-negative. The Adam optimizer is employed
with a learning rate of 1 × 10−3, decaying by 0.1 every 15 epochs for MNIST, and a learning rate
of 1 × 10−4 for CIFAR-10. The hyper-parameter λ is set to 0.1, which is selected from the range
[0.1:0.1:1.0] based on the optimal classification accuracy on the validation set. The batch size is set
to 64, and the maximum training epoch is set to 60 and 200 for MNIST and CIFAR-10, respectively.
Reported results are averaged over 5 runs.
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Besides, for the baseline methods which require OOD data in the training phase, i.e., KL-PN and
RKL-PN, uniform noise instead of actual OOD test data is used as OOD training data to ensure a
fair comparison as previous works did (Charpentier et al., 2020; Deng et al., 2023).

Table 4: Implementation details of experiments in the classical setting.
ID dataset OOD dataset Optimizer Learning rate (decay,step) for lr Max Epoch λ

MNIST FMNIST & KMNIST Adam 1× 10−3 (0.1, 15) 60 0.1
CIFAR-10 SVHN & CIFAR-100 Adam 1× 10−4 - 200 0.1

Few-shot setting. Following Deng et al. (2023), we adopt a pre-trained WideResNet-28-10 network
from Yang et al. (2021) to extract features and train a single dense layer for experiments under a
challenging few-shot setting on the mini-ImageNet dataset, with the testing set of CUB as OOD
data. We employ the N -way K-shot setting, with N ∈ {5, 10} and K ∈ {1, 5, 20}. Each few-shot
episode comprises N random classes and K random samples per class for training, min(15,K)
query samples per class from mini-ImageNet for classification and confidence estimation, and an
equivalent number of query samples from the CUB dataset for OOD detection. Reported results are
averaged over 10,000 episodes. Note that in the few-shot setting, we perform setting relaxations
on I-EDL to achieve stronger performances. Softplus is used as the activation function to keep
evidence non-negative. The LBFGS optimizer is employed with the default learning rate 1.0 for 100
epochs. The hyper-parameter λ is also selected on the meta-validation set, as shown in Table 5.

Table 5: List of the hyper-parameter λ of experiments in the few-shot setting.
Setting 5-Way 1-Shot 5-Way 5-Shot 5-Way 20-Shot 10-Way 1-Shot 10-Way 5-Shot 10-Way 20-Shot

λ 0.7 0.2 0.3 0.8 0.6 0.7

Noisy setting. Noisy samples are generated by adding zero-mean Gaussian noises with standard
deviations of [0.025:0.025:0.200] to the testing samples of CIFAR-10. The hyper-parameter λ is set
to 0.3, which is selected by the best AUPR score of OOD detection on the clean validation set of
CIFAR-10 against the noisy validation set with zero-mean 0.1-SD Gaussian noise.

Video-modality setting. Following Bao et al. (2021), we explore the open-set action recognition
task on UCF-101 with I3D as the backbone network. The HMDB-51 and MiT-v2 are used as sources
of unknown samples. The hyper-parameter λ is set to 0.8, and the batch size is set to 8.

Other details. Our model is implemented with Python 3.8 and PyTorch 1.12. All experiments are
conducted on NVIDIA RTX 3090 GPUs. Source codes are provided in the supplementary material.

D ADDITIONAL RESULTS

D.1 CLASSICAL SETTING

In Table 6 and Table 7, we provide the AUPR and AUROC scores of OOD detection in the classical
setting, measured by MP (Max projected probability), UM (Uncertainty Mass), DE (Differential
Entropy), and MI (Mutual Information), respectively. Table 8 compares EDL-related works with the
temperature scaling method (Guo et al., 2017) in the classical setting, including results evaluated by
the Expected Calibration Error (ECE) with 15 bins and the Brier score. Although temperature scal-
ing achieves impressive results when evaluated by the ECE metric, there still exists a performance
gap with our method on OOD detection ability.

Besides, we believe that employing the AUPR scores for evaluation purposes aligns more closely
with our objectives than using ECE or Brier score. As delineated in Section 5.2, our primary cri-
terion for assessing confidence estimation is the model’s ability in differentiating between correctly
classified and misclassified samples, as well as between ID and OOD samples based on the pre-
dicted confidence. Despite that ECE is frequently employed to assess the degree of correspondence
between the model’s confidence and the true correctness likelihood, a confidence distribution accom-
panied by a low ECE does not inherently ensure a clear distinction between correct and incorrect
predictions. For instance, in a balanced two-class dataset scenario, if a binary classifier categorizes
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Table 6: AUPR scores of OOD detection in the classical setting, measured by MP (Max projected
probability), UM (Uncertainty Mass), DE (Differential Entropy), and MI (Mutual Information).

Method MNIST→KMNIST MNIST→FMNIST
MP UM DE MI MP UM DE MI

EDL 97.02±0.76 96.31±2.03 96.92±0.91 96.41±1.85 98.10±0.44 98.08±0.42 98.10±0.43 98.09±0.42
I-EDL 98.34±0.24 98.33±0.24 98.34±0.24 98.33±0.24 98.89±0.28 98.86±0.29 98.89±0.29 98.87±0.29

R-EDL(Ours) 98.69±0.19 98.69±0.20 98.70±0.19 98.69±0.19 99.29±0.11 99.29±0.12 99.31±0.12 99.29±0.12

Method CIFAR-10→SVHN CIFAR-10→CIFAR-100
MP UM DE MI MP UM DE MI

EDL 78.87±3.50 79.12±3.69 78.91±3.54 79.11±3.68 84.30±0.67 84.18±0.74 84.32±0.67 84.19±0.74
I-EDL 83.26±2.44 82.96±2.17 83.31±2.47 83.07±2.27 85.35±0.69 84.84±0.64 85.40±0.69 84.95±0.65

R-EDL(Ours) 85.00±1.22 85.00±1.22 85.01±1.14 85.00±1.22 87.72±0.31 87.73±0.31 87.61±0.33 87.73±0.31

Table 7: AUROC scores of OOD detection in the classical setting, measured by MP (Max projected
probability), UM (Uncertainty Mass), DE (Differential Entropy), and MI (Mutual Information).

Method MNIST→KMNIST MNIST→FMNIST
MP UM DE MI MP UM DE MI

EDL 96.59±0.59 96.18±1.35 96.49±0.80 96.22±1.29 97.39±0.57 97.40±0.54 97.48±0.53 97.43±0.53
I-EDL 98.00±0.26 97.97±0.26 97.99±0.26 97.97±0.26 98.49±0.36 98.41±0.39 98.48±0.37 98.42±0.39

R-EDL(Ours) 98.40±0.18 98.39±0.18 98.42±0.18 98.40±0.18 98.99±0.14 98.98±0.14 99.05±0.14 98.98±0.14

Method CIFAR10→SVHN CIFAR10→CIFAR100
MP UM DE MI MP UM DE MI

EDL 80.64±4.22 81.06±4.52 80.72±4.33 81.05±4.51 80.96±0.81 80.63±1.01 80.99±0.83 80.65±1.00
I-EDL 87.58±2.03 86.79±1.35 87.69±2.09 87.01±1.52 83.55±0.67 82.15±0.50 83.69±0.68 82.44±0.50

R-EDL(Ours) 87.47±1.22 87.47±1.24 87.54±0.96 87.47±1.24 85.26±0.36 85.26±0.35 84.90±0.45 85.26±0.35

all samples into a single class with a consistent confidence output of 50%, the ECE would be zero,
yet this result lacks practical significance.

D.2 FEW-SHOT SETTING

Table 9 shows few-shot results of OOD detection measured by more uncertainty metrics. Table 10
compares our method and label smoothing in the few-shot setting. All results consistently demon-
strate the superior OOD detection performance of our proposed method.

D.3 NOISY SETTING

We also employ noisy data to assess both the robustness of classification and the OOD detection
capability of our method with the interference of noise. Following Deng et al. (2023), we generate
the noisy data by introducing zero-mean isotropic Gaussian noise to the test split of the ID dataset.
Table 11 reports the classification accuracy and the AUPR scores for OOD detection across varying
levels of Gaussian noise on CIFAR-10. It is essential to note that these two metrics are not mutually

Table 8: Comparison of temperature scaling method with EDL-related works in the classical setting,
including results evaluated by the Expected Calibration Error (ECE) with 15 bins and the Brier score.
Downward arrows (↓) indicate that lower values correspond to better performance for these metrics.

Method Confidence estimation OOD detection
ECE ↓ Brier score ↓ AUPR AURP (SVHN) AUPR (CIFAR100)

Temperature scaling 1.06±0.10 18.44±0.49 98.89±0.05 81.89±2.19 86.86±0.48

EDL 20.08±1.77 40.68±2.39 97.86±0.17 78.87±3.50 84.30±0.67
I-EDL 39.96±0.37 55.32±0.50 98.72±0.12 83.26±2.44 85.35±0.69

R-EDL(Ours) 3.48±0.30 18.14±0.51 98.98±0.05 85.00±1.22 87.72±0.31
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Table 9: AUPR scores of OOD detection in the few-shot setting, measured by MP (Max projected
probability), UM (Uncertainty Mass), DE (Differential Entropy), and MI (Mutual Information).

Method 5-Way 1-Shot 10-Way 1-Shot
MP UM DE MI MP UM DE MI

EDL 66.78±0.12 65.41±0.13 69.00±0.12 66.11±0.13 59.19±0.09 67.81±0.12 67.78±0.12 67.84±0.12
I-EDL 71.79±0.12 74.76±0.13 74.04±0.13 74.70±0.13 71.60±0.10 71.95±0.10 71.57±0.10 71.95±0.10

R-EDL(Ours) 72.91±0.12 74.84±0.13 74.34±0.13 74.76±0.13 72.83±0.10 73.08±0.10 73.17±0.10 73.08±0.10

Method 5-Way 5-Shot 10-Way 5-Shot
MP UM DE MI MP UM DE MI

EDL 74.46±0.10 76.53±0.14 77.40±0.12 76.69±0.13 71.06±0.10 76.28±0.10 75.74±0.10 76.19±0.10
I-EDL 82.04±0.10 82.48±0.10 82.30±0.10 82.47±0.10 80.63±0.11 82.29±0.10 81.06±0.09 81.96±0.10

R-EDL(Ours) 83.65±0.10 84.22±0.10 84.05±0.10 84.13±0.10 82.39±0.09 83.37±0.09 82.98±0.09 83.28±0.09

Method 5-Way 20-Shot 10-Way 20-Shot
MP UM DE MI MP UM DE MI

EDL 80.01±0.10 79.78±0.12 80.35±0.11 79.83±0.12 74.50±0.08 76.89±0.09 76.70±0.08 76.86±0.09
I-EDL 84.29±0.09 85.40±0.09 85.12±0.09 85.35±0.09 81.34±0.07 82.52±0.07 82.16±0.07 82.41±0.07

R-EDL(Ours) 84.85±0.09 85.57±0.09 85.43±0.09 85.53±0.09 82.22±0.08 82.72±0.07 82.48±0.08 82.68±0.08

Table 10: Comparison of label smoothing and R-EDL in the few-shot setting.

Method 5-Way 1-Shot 5-Way 5-Shot 5-Way 20-Shot
MP Ent/UM MP Ent/UM MP Ent/UM

Label smoothing 72.03±0.2 73.00±0.2 77.17±0.2 77.11±0.2 76.11±0.2 75.35±0.2
R-EDL(Ours) 72.91±0.1 74.84±0.1 83.65±0.1 84.22±0.1 84.85±0.1 85.57±0.1

exclusive; a robust and reliable classifier should excel in both dimensions simultaneously. While
both EDL and I-EDL methods tend to excel in only one of the metrics, Table 11 and Fig. 1(a)
clearly present the superior performance of R-EDL in terms of the average of these two key metrics.

D.4 VIDEO-MODALITY SETTING

We also assess our approach using video-modality samples (Bao et al., 2021; Gao et al., 2020),
specifically on the open-set action recognition task. Following Bao et al. (2021), we train models
on UCF-101 training split and use the testing splits of HMDB-51 and MiT-v2 datasets as unknown
sources. Given that the state-of-the-art method DEAR is predicated on EDL, we substitute its EDL
implementation with our own R-EDL version. As evidenced by Table 12, this modification yields
enhanced performance, further substantiating the efficacy of R-EDL.

Table 11: Results of the noisy setting for VGG16 on CIFAR-10, with the generated noisy data as
OOD data, averaged over 5 seeds. Noisy samples are generated by adding zero-mean Gaussian
noises with standard deviations of [0.025:0.025:0.200] to the testing samples of CIFAR-10.

SD of Noise 0.025 0.050 0.075 0.100

Method Cls OOD Avg Cls OOD Avg Cls OOD Avg Cls OOD Avg

EDL 81.36
(±1.25)

52.27
(±0.34) 66.81 72.18

(±2.85)
59.42

(±1.03) 65.80 58.58
(±5.25)

67.24
(±1.35) 62.91 46.00

(±5.49)
73.08

(±1.81) 59.54

I-EDL 85.74
(±0.39)

54.55
(±0.58) 70.15 71.24

(±1.14)
67.00

(±1.99) 69.12 52.14
(±2.65)

77.33
(±3.12) 64.74 36.80

(±3.35)
83.02

(±3.71) 59.91

R-EDL(Ours) 87.54
(±0.35)

53.48
(±0.55) 70.51 76.35

(±1.56)
64.19

(±1.02) 70.27 60.19
(±3.03)

75.33
(±1.43) 67.76 45.70

(±3.67)
82.97

(±1.54) 64.34

SD of Noise 0.125 0.150 0.175 0.200

Method Cls OOD Avg Cls OOD Avg Cls OOD Avg Cls OOD Avg

EDL 37.19
(±4.74)

77.28
(±2.24) 57.23 31.55

(±3.89)
80.66

(±2.86) 56.11 27.19
(±2.77)

83.75
(±3.81) 55.47 23.93

(±2.21)
86.58

(±4.67) 55.26

I-EDL 26.86
(±3.50)

85.88
(±4.00) 56.37 20.84

(±3.36)
87.38

(±4.20) 54.11 17.16
(±3.04)

88.29
(±4.36) 52.72 15.10

(±2.71)
88.96

(±4.43) 52.03

R-EDL(Ours) 35.16
(±2.97)

87.62
(±1.49) 61.39 28.47

(±1.87)
90.50

(±1.55) 59.48 24.07
(±2.08)

92.32
(±1.86) 58.20 20.83

(±2.50)
93.50

(±2.24) 57.16
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Table 12: Results of video-modality setting for I3D backbone on UCF-101, with HMDB-51 and
MiT-v2 as OOD data. Results of baselines are reported by Bao et al. (2021).

Method UCF-101→HMDB-51 UCF-101→MiT-v2
Open maF1 Open Set AUC Open maF1 Open Set AUC

OpenMax 67.85±0.12 74.34 66.22±0.16 77.76
MC Dropout 71.13±0.15 75.07 68.11±0.20 79.14

BNN SVI 71.57±0.17 74.66 68.65±0.21 79.50
SoftMax 73.19±0.17 75.68 68.84±0.23 79.94

RPL 71.48±0.15 75.20 68.11±0.20 79.16
DEAR 77.24±0.18 77.08 69.98±0.23 81.54

R-EDL(Ours) 78.73±0.15 77.94 70.85±0.25 82.26
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Figure 2: Parameter analysis of the hyper-parameter λ, (a) evaluated by accuracy of classification
on CIFAR-10, (b) AUPR score of confidence estimation on CIFAR-10, and (c) AUPR score of OOD
detection against CIFAR-100, respectively.

D.5 PARAMETER ANALYSIS

Moreover, we further investigate the effect of the hyper-parameter λ. As an expanded version of
figure 1(b), figure 2 includes the trend of variation in classification accuracy on CIFAR-10, the
AUPR score for confidence estimation on CIFAR-10, and the AUPR score for OOD detection on
CIFAR-100 as the hyper-parameter λ varies from 0.01 to 1.5. Observation reveals that a smaller
λ generally outperforms the tradition EDL setting where λ = 1, indicating that the EDL setting
for the prior weight is excessively high, leading to suboptimal results. Nonetheless, an excessively
small λ also has detrimental effects. For instance, setting λ to 0.01 results in a significant decrease
in classification accuracy to 83.11% and a drop in the AUPR score of OOD detection to 85.87%. In
this setting, λ is ultimately established at 0.1, selected from the range [0.1:0.1:1.0] based on the best
classification accuracy on the validation set.

D.6 VISUALIZATION OF UNCERTAINTY DISTRIBUTIONS

Figs. 3,4,5, and 6 show density plots of the normalized uncertainty measures for CIFAR-10 against
SVHN, and CIFAR-10 against CIFAR-100, while Figs. 7,8,9, and 10 show density plots for MNIST
against FMNIST, and MNIST against KMNIST. The uncertainty measures include max projected
probability, uncertainty mass, differential entropy, and mutual information. We apply min-max
normalization on each uncertainty value u, i.e., unorm = (u − minu)(maxu − minu). It can be
observed that our method attaches higher confidence to ID data and makes uncertainty of OOD data
more aggregated, exhilarating better separability.

The density plots of I-EDL show different shapes with those of EDL and R-EDL, since I-EDL
utilizes the Fisher information matrix to measure the amount of information that the categorical
probabilities carry about the concentration parameters of the corresponding Dirichlet distribution,
thus allowing a certain class label with higher evidence to have a larger variance. Consequently, the
predictions made by the I-EDL approach are typically less extreme, resulting in a bimodal distribu-

21



Published as a conference paper at ICLR 2024

tion on the uncertainty density plot where the two peaks are closer to the center of the density axis
compared to the EDL and R-EDL methods.

Additionally, we deduce that the similarity in the shapes of the uncertainty density plots between
EDL and R-EDL may stem from the fact that R-EDL’s modifications to EDL only consist of relax-
ations of non-essential settings, without introducing any additional mechanisms.

E SOURCE CODE

Our code is available at https://github.com/MengyuanChen21/ICLR2024-REDL.
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Figure 3: Uncertainty distribution measured by max projected probability on CIFAR10.
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Figure 4: Uncertainty distribution measured by uncertainty mass on CIFAR10.
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Figure 5: Uncertainty distribution measured by differential entropy on CIFAR10.
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Figure 6: Uncertainty distribution measured by mutual information on CIFAR10.
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Figure 7: Uncertainty distribution measured by max projected probability on MNIST.
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Figure 8: Uncertainty distribution measured by uncertainty mass on MNIST.
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Figure 9: Uncertainty distribution measured by differential entropy on MNIST.
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Figure 10: Uncertainty distribution measured by mutual information on MNIST.
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