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Abstract

Deep neural networks (DNN) have been used extensively to achieve impressive results in
speech separation. Most of the DNNs implementations to speech separation relies on su-
pervised learning which is data hungry, and success is pegged on availability of large-scale
parallel clean-mixed speech pair. This kind of data is always not available since it is difficult
to create hence limiting the implementation of supervised learning. Moreover, the imple-
mentation of supervised learning in speech separation requires that systems deal with the
permutation problem (permutation ambiguity). This places an upper limit of the quality of
separated speech that a tool can attain. To avoid the problem of permutation ambiguity,
speech separation based on clustering has been proposed by some recent works. However,
these clustering techniques still rely on supervised learning and therefore still require qual-
ity paired data. To deal with the problem permutation ambiguity and eliminate need for
paired training dataset, we propose a fully unsupervised speech separation technique based
on clustering of spectrogram points or raw speech blocks. Our technique couples the tra-
ditional graph clustering objectives and deep neural networks to achieve speech separation.
We start by establishing features of spectrogram points or raw speech blocks using a pre-
trained model and consequently use the features in a downstream task of clustering using
deep modularization. Through this we are able to identify clusters of spectrogram points or
raw speech blocks dominated all speakers in a mixed speech. We perform extensive evalua-
tion of the proposed technique and show that it outperforms state of the art tools included
in the study.

1 Introduction

Speech separation involves isolating each independent speech composed in a mixture speech. For a mixture
y(n) that is composed of C independent speech signals z.(n) with ¢ =1,--- ,C, y(n) can be represented as:

C
y(n) = we(n) (1)
c=1

Where n indexes time. Separating speech from another speech is a daunting task by the virtue that all
speakers belong to the same class and share similar characteristics Hershey et al.| (2016a). Some tools such
as|Wang et al.| (2017)) and |Wang et al.[ (2016)) develop techniques that perform speech separation on a mixed
speech signal based on gender voices present. They leverage the large discrepancy between male and female
voices in terms of vocal track, fundamental frequency contour, timing, rhythm, dynamic range to attain
gender-based speech separation. In speech separation tasks where the mixture is composed of speakers of
the same gender, the separation task is much difficult since the pitch of the voice is in the same range Hershey
et al.| (2016a)). To perform speech separation in such cases, most tools such as|Zeghidour & Grangier| (2021a))
Huang et al.| (2011) Weng et al.| (2015) [Isik et al.| (2016|) [Hershey et al.| (2016a)) and |Luo & Mesgarani| (2019al)
cast the task as a multi-class regression problem. In that case, training a speech separation model involves
comparing its output to a source speaker and the model will always output a dimension for each target
class. When multiple sources of the same type exist, the system needs to select arbitrarily which output
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dimension to map to each target and this raises a permutation problem (permutation ambiguity) Hershey
et al.| (2016a). Therefore, systems that perform speaker separation in this manner have an extra burden of
designing mechanisms that are geared towards handling the permutation problem. The standout technique
for tackling permutation ambiguity problem is the permutation invariant training (PIT) technique [Yu et al.
(2017) and Kolbeek et al.| (2017). The key strategy in PIT is to determine the best output-target pairing
and perform error minimization based on this pairing. While effective, the technique has been criticised for
having a high computation complexity of O(S!) which is computationally expensive when the number of
sources S is high [Tachibana) (2021) |Dovrat et al.| (2021)). PIT is also unable to handle the output dimension
mismatch problem where there is a mismatch on the number of speakers between training and inference
Jiang & Duan| (2020). To evade the permutation ambiguity problem, works in [Hershey et al.| (2016b)) |Byun
& Shin| (2021) [Isik et al.| (2016) |Qin et al.| (2020) and |Lee et al.| (2022)) propose a clustering technique that
seeks to identify the multiple speakers present in a mixed speech signal. In these models, the deep neural
network (DNN) fy takes as its input a whole mixed speech spectrogram X and generates a d dimension
embedding vector V i.e., V = fp(X) € R¥*?. Here, the embedding V learns the features of the spectrogram
X and is considered a permutation-and-cardinality-independent encoding of the network’s estimate of the
signal partition. For the network fy to be learn how to generate an embedding vector V' given the input X,
it is trained to minimize the cost function.

Oy(V) = [[VVT =YYT|[3 =Y (< vy > = <yiry; >)° (2)

ij

Here, Y = {y; .} represents the target partition that maps the spectrogram S; to each of the C' clusters
such that y; . = 1 if element i is in cluster ¢ . YY7T is taken here as a binary affinity matrix that represents
the cluster assignment in a partition-independent way. The goal in equation 2 is to minimise the distance
between the network estimated affinity matrix VV7 and the true affinity matrix YY”?. The minimization
is done over the training examples. [|A||% is the squared Frobenius norm. Once V has been established, its
rows v; of V are clustered using K-means clustering algorithm. The resulting clusters of V' are then used
to construct a binary mask which is applied to the mixed spectrogram X to separate the sources. Despite
the success of this technique, the existing clustering technique employ supervised training which require a
costly process of data labelling. Furthermore, these methods require that the number of speakers to be
known before execution which may not be practical in some cases. Our work proposes a speech separation
technique based on clustering known as deep modularization that requires no parallel dataset and prior
knowledge of number of sources present in the mixture. The clustering is done on the spectrogram points or
raw speech blocks. Deep modularization bridges the gap between traditional graph clustering objectives and
deep neural networks. We start by establishing features of spectrogram points or raw speech blocks using a
pre-trained model and use the features in downstream task of clustering using deep modularization. Through
this we achieve speech separation in a purely unsupervised manner. Our contributions are as follows:

1. We propose an unsupervised clustering technique of speech separation based on optimization of clus-
ter assignments of spectrogram points or raw speech blocks in an end-to-end differentiable manner.

2. We perform evaluation comparing the performance of the proposed technique when raw speech and
Fourier transformed speech is used as input.

3. We perform extensive evaluation of the proposed technique on different datasets to evaluate its
suitability in speech separation in different scenarios.

4. We perform ablation comparing the proposed technique of deep modularization and the classical
k-means clustering technique.

2 Related work

Speech enhancement and separation tools can be categorised into two broad categories based on the type
of input features, i.e., those using Fourier spectrum features as input and those using time domain features.
Fourier spectrum-based features tools do not work directly on the raw signal (i.e., signal in the time domain)
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rather they incorporate the discrete Fourier transform (DFT) in their signal processing pipeline mostly as
the first step to transform a time domain signal into frequency domain. These models recognise that speech
signals are highly non-stationary, and their features vary in both time and frequency. These features include

Log-power spectrum features (Fu et all, [2017) (Du & Huo|, [2008) (Xu et all [2015)) (Du et all [2014)), Mel-
frequency spectrum features (Liu et al.,2022) (Ueda et al., 2016) (Du et al.l|[2020) (Fu et al.l 2018) (Weninger

et al., 2014

(Donahue et al., 2018

, DFT magnitude features (Nossier et al.2020) (Fu et a

4, 2018) |Grais &

Plumbley

2018) [Fu et al.|(2019) |Jansson et al.| (2017)

J

[Kim & Smaragdis| (2015)) and Complex DFT features

(Fu et all [2017) (Williamson & Wang, 2017) (Kothapally & Hansen, 2022a)) (Kothapally & Hansen [2022b)).
The assumption made by most DNN models that use Fourier spectrum features is that phase information
is not crucial for human auditory. Therefore, they exploit only the magnitude or power of the input speech
to train the DNN models to learn the magnitude spectrum of the clean signal and the factor in the phase
during the reconstruction of the signal (Xu et al., [2014) (Kumar & Florencio|, [2016) (Du & Huoj, [2008))
let al., 2014) (Li et al., [2017)). The use of the phase from the noisy signal to estimate the clean signal is based
on works such as (Ephraim & Malahl, [1984]) that demonstrated that the optimal estimator of the clean signal
is the phase of the noisy signal. However, recent research [Paliwal et al. (2011) have demonstrated through
experiments that further improvements in quality of estimated clean speech can be attained by processing
both the short-time phase and magnitude spectra. Due to phase challenge while working with Fourier
spectrum features different tool such as (Luo & Mesgarani, 2018)) (Luo et al| [2020) (Luo & Mesgaranil
[2019a) (Subakan et all [2021a)) explore the idea of designing a deep learning model for speech separation
that accepts speech signal in the time-domain. The fundamental concept of these models is to replace the
DFT-based input with a data-driven representation that is jointly learnt during model training. The models
therefore accept as their input the mixed raw waveform sound and then generate either the estimated clean
sources or masks that are applied on the noisy waveform to generate clean sources. By working on the
raw waveform, these models address the key limitation of DFT-based models, since the models are designed
to fully learn the magnitude and phase information of the input signal during training Luo et al. (2020)).
The DNN models for speech separation can also be categorised based on how they were trained, that is,
spectral mapping techniques (Grais & Plumbleyl, 2018) (Fu et al.,|2016)) (Gao et al.,|2016)), spectral masking
techniques [Wang & Wang| (2013) [Isik et al.| (2016 Weninger et al, (2014)) [Fu et al. (2016) |Chen et al.
(2015) (Huang et al. [2015) Zhang & Wang| (2016) Liu & Wang| (2019a) and generative modelling(Donahue
et al.l 2018)(Fu et al., . The use of pre-trained models in speech separation and enhancement has been
explored in (Huang et all [2022).

3 Deep modularization speech separation model

3.1 Model pretraining

3.1.1 Using spectrogram points as input

Clean speech

Speech signal pre-
processing ( see
figure 2and 3)

Downstream task: deep modularization

] Model Pre-training based on contrastive learning
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Figure 1: Overall overview of the proposed speech separation based on deep modularization

Our model first establishes a pre-trained model f that learns to generate embeddings of spectrogram points
(Time-Frequency bins (T-F bins)). We implement the contrastive learning similar to the one proposed in
[Saeed et al| (2021)) but using spectrogram points (T-F bins) as the inputs. The goal of contrastive self-
supervised learning is to establish a representation function f : z — R that maps augmentations to a
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d—dimensional vectors by ensuring that similar view of augmentations are closer to each other as compared
to those of random ones. The practice is to pick augmentations (x, z1) that are obtained by passing a given
input through two different augmentation functions. Ideal augmentations of inputs are those that retain
features of the inputs that are crucial in the intended task (e.g., classification) but modify the features that
are less important for that task. Unlike work in|Saeed et al.| (2021) which does not use explicit augmentations,
our work generates positive pairs by injecting both noise and reverberation to the input. Hence, given a
clean speech signal from a given speaker in the time domain x € RT, we create its first augmented version
in the time domain by adding randomly sampled excerpt from noise recorded in various urban setting from
(Wichern et al.,[2019)). Its second augmented version is created by adding reverberation to the first augmented
version using edited scripts from (Maciejewski et all |2020))( see Figure 2). Each of the two versions is then
downsampled to 8kHz and T-F bins generated from the magnitude spectrum by applying short-time Fourier
transform (STFT) using 32 ms Hamming window and 8 ms shift. Two T-F bins that are extracted from
both augmented sets belonging to a given speaker are considered a positive pair. It is important to note that
since we are working at the T-F bins level, it is impractical to generate augmentations by adding add noise
or reverberation to the T-F bins directly hence the indirect approach. We then design a function f : S + R?
that maps the T-F bins to d-dimensional vectors by encouraging the representations of pairs of T-F bins
from a positive pair to be closer to each other than the representations of T-F bins from another random
speaker as demonstrated in figure 1. Therefore, given n clean speeches from n different speakers, we generate
two sets X4 and Xp containing noise and noise+reverberation T-F bin augmentations as described above.
We then exploit a function S(.,. | X4, Xp) that generates an augmentation pair (z;,z;) by selecting T-F
bins from both X4 and X5 i.e.

(zi,2}) ~ Dpos = (w4, 2]) ~i.id S(.,. | Xa, XB) (3)

Here the pair (z;, ;) is the positive pair with distribution D,,s. Given a batch of size b, for a positive pair
(24, xj'), we consider all the other b — 2 to be the negative examples with a distribution of D,,.4. To train
the model to fit the function f, we use adopt simCLR contrastive loss |Chen et al.| (2020).

. | F (@7 f(ah)
2.0+ ~Dyossiin_g~Dcg Og(ef(x)Tf(x+) + Y ef @ f )

)] (4)

The loss function seeks to make the similarity f(x)f(z") larger as compared to f(x)f(z~). Once the model
is trained to establish T-F bin level features, we exploit the trained model in the downstream task.

Noisy Speech

Moisy reverberant speech]

TFT transform and T-F bin extraction .
STFT transform and T-F bin extraction

¥

{ T-F bins (Augmentation A) } ‘ T-F bins (Augmentation B) ‘

Figure 2: Creating T-F bins augmentations from a speech by first adding noise then reverberation.

3.1.2 Using time domain blocks as input

Given clean speech signal from a given speaker in the time domain 2 € R, similar to discussion in section
3.1.1, we create its first augmented version in the time domain by adding randomly sampled excerpt from
noise. The second augmented version is created by adding reverberation to the first augmented version.
Each of the augmented speech version in the time-domain € R” is then processed by an encoder similar
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to the one proposed in Subakan et al, (2021b) to generate STFT-like representation h € RF*T. This is
then chunked into blocks of size 250 with 125 overlaps between two subsequent blocks along the time axis
to generate a set of blocks L € RF*S*N (see figure 3). Therefore, given n clean speeches from n different

Noise
Reverberation
M—l—p{ Naisy Speech Noisy reverberant speech}

! !

Encoder Encoder

1 1

{STF[—IIKG Representation of Speechl

STFT-like Representation of Speech

Block extraction Block extraction

Blocks of raw speech (Augmentation B)

{B\ocks of raw speech (Augmentation A)

Figure 3: Creating T-F bins augmentations from a speech by first adding noise then reverberation.

speakers, we generate two sets X4 and Xp containing noise and noise+reverberation time domain speech
blocks. We then exploit a function S(.,. | X4, Xp) that generates an augmentation pair (z;, ;") by selecting
blocks from both X4 and Xp belonging to the same speaker. For a batch size of b, a pre-trained model
based on raw speech blocks is trained similar to that described in section 3.1.1 and demonstrated in figure
1.

3.1.3 Pre-trained model

For the pre-trained models, we used EfficientNet-B0 as the encoder. EfficientNet-BO0 is
a lightweight-highly scalable convolutional neural network which was designed to accept 2D image inputs.
Since the inputs i.e. T-F bins and raw speech blocks are in 2D, we did not make any modification to the
EfficientNet-B0 and used it as originally proposed. In the last layer, we implemented a global max pooling
to get an output embedding of h € R'?%9, When pre-training, we further processed h using a projection
head which is a fully connected feed forward layer with 512 units followed by a Layer Normalization and a
tanh activation. We discarded the projection head during the downstream task.

3.2 Downstream task

The goal here is to use deep modularization technique to cluster T-F bins or raw speech blocks such that those
dominated by a given speaker are clustered together. Deep modularization is a technique that seeks to inter-
sect graph clustering objective and DNN. We begin by defining a graph G(V, E) where V = (v1,v2, -+, Up),
|[V| = n is the set of all T-F bins or raw speech blocks generated from a mixed speech signal as described in
section 3.1.1 and 3.1.2. E CV x V, |E| =m is the set of all edges of connecting the generated T-F bins or
raw speech blocks (subsequently referred to as blocks). We denote the adjacency matrix of G by A where
A;; = 1if {v;,v;} € E and 0 otherwise. The degree of v; is defined as d; = Z? A;j, we are interested in
generating a graph partition function F : V' — {1,--- ,k} that splits the set of T-F bins or blocks V' into
k partitions v; = {v; : F(v;) = i} given the T-F bins or blocks attributes F' € R"*? generated by the pre-
trained model. In order to partition the vertices, we explore the statistical approach of vertices partitioning
known as modularity (Q) . Modularity involves comparing the number of edges within par-
titions and some equivalent randomized partitions (null network) in which edges are placed without regard
to relationships that exist in the network. Modularity is, therefore, defined as:

() =Number of edges within partitions — expected number of such edges (5)
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A high value of @, indicates closer similarities among members belonging to a given partition. Therefore,
the goal is to maximise Q. Modularity (Q) is derived in Newman| (2006) as:

1
Q= o Z(Aij — Pi;)é(gi, 9;) (6)
]
where §(g;, g;) is 1 if vertex ¢ and j belong to the same partition and 0 otherwise. P;; is the expected number
of edges between 7 and j while A;; is the actual number of edges between ¢ and j. If vertex ¢ and j have

degrees d; and d;, respectively, then the expected degree of vertex ¢ can be defined as > y P;; = d;. Based

on this, vertex ¢ and j are connected with probability P;; = d;gj (see (Newman, [2006))). Hence equation 6
is modified to:
Q= 5 34y — 2)5g.,4) 7)
- m 17 om i, gj

ij
The problem of maximizing () is NP-Hard (Brandes et al., |2006), however, if we seek to generate k non-
overlapping partitions, a partition assignment matrix S € R"** (n represents number of vertices) is defined
(Newman) 2006). Each column of S indexes a partition, that is, S = {s; | s2 |,--,]| sg|}. The columns
are vectors of (0,1) elements such that S;; = 1 if vertex ¢ belongs to partition j and 0 otherwise. Based on
this setup the columns of S are mutually orthogonal since each row of the matrix sums to 1. S therefore
satisfies the normalization Tr(STS) = n where Tr(.) is the matrix trace. Based on the definition of S,

8(9i,95) = ZZ:1 SikSjr and hence

1 - 1
Q=52 > (Ais = Piy)SuSje = 5 -Tr(STBS) (8)
ij=1n=1

where B is the modularity matrix such that B;; = A;; — FP;;. By relaxing S € R™ ¥ the optimal S that
maximizes @ is the top k eigenvectors of matrix B. In our case, we seek to optimize @ ( learn and optimize
cluster assignment matrix S), by modularizing the T-F bin or block features F € R"*? learned via the
pre-trained model. To optimize the cluster assignment, we adapt the deep neural network graph partition
technique proposed in Bianchi et al.| (2020) and Miiller| (2023). They partition nodes of a graph by the

following formulation:
F = GNN(4, X, 0cnn) (9)

S = softmax(F") (10)

Where A = D_%AD_%, X are the input features, D is the diagonal matrix with the degrees d;,--- ,d, on
the diagonal and A is the adjacency matrix. In equation 9, node features F are learned via graph neural
network (GNN) and the assignment matrix S is established via SoftMax activation function. In (Bianchi
et al., [2020), the assignment matrix S is established by multilayer perception (MLP) with SoftMax on the
output layer. In our case, we formulate the problem as:

F = Con(X,0eon) (11)

S = SepFormer(F, 0;yqns) (12)

Where the T-F bin or block feature matrix F is established via a pre-trained model (Con). The partition
assignment of a T-F bin or block is established using a SepFormer proposed in (Subakan et al., [2021b)).
SepFormer is a transformer-based model that is able to learn both short-term and long-term dependencies
that exist within a T-F bin or a block. The output of the SepFormer is passed through a feedforward network
equipped with a softmax that assigns a T-F bin or a block to a given partition ( see figure 4). This essentially
maps each T-F bin or block’s feature f; € F(with 1 <4 < n) to the j column of the cluster assignment
matrix S. To optimise the assignment S, we use the loss function in Equation 13 (Miiller, |2023). By training
the SepFormer using the objective in equation 13, we train a DNN model using a graph clustering objective.
The loss in equation 13 is composed of a modularity (derived in Equation 8) term and a collapse regularizer.
The collapse regularizer is crucial to avoid S generating trivial partitions (Miller, 2023)). Furthermore, it
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Figure 4: How SepFormer is utilized to perform T-F bin or block partitioning.

has been shown in |Miiller| (2023)) that the loss function in equation 13 maintains consistency of community
detection as the number of nodes increases.

L(S) = f%Tr(STBS) + g 1> sF e -1 (13)

m

K2

Here, ||.|| is the Frobenius norm. The complexity of the modularity term Tr(STBS) is O(n?) per update
of L(S) which makes the training process computationally costly. Therefore, to efficiently update L(S),
Miiller| (2023) proposes to decompose Tr(ST BS) into sum of sparse matrix-matrix multiplication and rank
one degree normalization Tr(ST AS — Sd*dS). This reduces the complexity to (O)(d?*n) for every update of
the loss function.

1 T T vk T
L(8) = =5 ~Tr(STAS — Sd"dS) + = | Zs lr -1 (14)
During implementation our model uses the loss in equation 14.

3.3 Adjacency matrix

To construct the adjacency matrix A, for each T-F bin or block ¢ we compute its similarity with all other
nodes using inner product i.e. o

eij = fi fj (15)
where j = 1,2,--- ,n and f; and f] € F. We then select a threshold 6 such that if e;j < 6, we remove an
edge between ¢ and j then the adjacency matrix is defined as

(16)

1, if there is an edge between 7 and j
Ay = .
0, otherwise

Optimum 6 is established experimentally (explained in section 5.6).

4 Clean source signal estimation

From the established partitions k, we generate k& masks in the range [0, 1], where 0 indicates that a given
T-F bin or block in the input mixed signal is missing in that cluster, while 1 signifies the presence of a given
T-F bin or block. The mask-based separation of sources is predicated on the assumption of sparsity and
orthogonality of the sources in the mixed signal in the domain in which masks are computed. Based on
this assumption, the dominant signal at a given range is taken to be only signal at that range. Therefore,
the generation of clusters through modularization is used to estimate the dominant signals in a given range.
Once the masks have been established, they are applied to the input mixed signal to generate k estimated
clean signals. For the input speech signal that has been transformed to STFT, the mask is applied to the
input STFT spectrogram to obtain the estimated spectrograms of clean speech signals. The inverse STFT
is then used to estimate a clean speech signal. In case of a time domain signal, the mask is applied to
the STFT-like transformation generated by the encoder. The decoder (transposed encoder) is the used to
generate estimated signal. For STFT phase reconstruction, we use the technique proposed in [Wang et al.
(2018) which jointly reconstructs the phase of all sources in each mixture by exploiting their estimated
magnitudes and the noisy phase using the multiple input spectrogram inversion (MISI) algorithm (Gunawan
& Sen), 2010)).
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5 Experimental setup

Pre-training dataset: To pre-train the two model variants (i.e. one trained using T-F bins as input and
another with raw speech blocks), we used the popular Wall Street Journal (WSJ0) corpus (Paul & Baker,
1992). The dataset was recorded using a close-talk microphone hence free from reverberation and noise. We
used 30 hours of speeches from si_tr_ s to train the models. 30 hours length of speeches generate over 10
million T-F bins or blocks input dataset.

Pre-training configuration: To train the two variants of pre-trained models, we used the Adam optimiser
and the cyclical learning rate (Smith| [2017) with a minimum learning rate of le — 4 and a maximum of
le — 1. Each model was trained with a single NVDIA V100 GPU for 2M steps with a batch size of 512 T-F
bins or blocks.

Speech separation dataset: To evaluate the quality of separated speech resulting from the proposed tech-
nique, we used wsj0-2mix, wsj0-3mix [Hershey et al. (2016a)),wsj0-4mix, ws0-5mix (Nachmani et al. [2020)),
LibrisMix, Libril0Mix (Dovrat et al., [2021). The wsj0-2mix, wsj0-3mix, wsj0-4mix, and ws0-5mix datasets
are made of 2, 3, 4, 5 speaker mixtures, respectively, created from the WSJ0 corpus. The datasets were
created by exploiting randomly selected gains in order to achieve relative levels between 0 and 5 dB between
the 2, 3, 4, 5 speech signals. The datasets are composed of 30 h training, 10 h validation, and 5 h test
sets. The training and validation sets share common speakers, which is not the case for test set. Libri5Mix
and Libril0Mix are speech mixture composed of 5 and 10 different speakers respectively. The dataset was
created from the LibriMix dataset (Cosentino et al., [2020), which was created from LibriSpeech [Panayotov
et al| (2015). The mixtures were created in Dovrat et al.| (2021)from clean utterances with no noise with
the resulting mixtures having an SNRs that are normally distributed with a mean of 0 dB and a standard
deviation of 4.1 dB. The datasets wsj0-2mix, wsj0-3mix, wsj0-4mix, ws0-5mix, Libri5Mix and Libril0Mix
assume that speech separation will happen in anechoic environment which is an unrealistic assumption for
speech separation since mixed speech is always recorded by a distant microphone hence it is always rid-
dled with noise and reverberation. To demonstrate the performance of the proposed technique to separate
mixed speech which contain noise and reverberation, we use WHAM ! (Wichern et al., 2019) and WHARM
I (Maciejewski et al., |2020|) datasets. These datasets were derived from wsj0-2mix dataset by adding envi-
ronmental noise and noise+reverberation respectively. For all of these datasets, we used the test dataset for
speech separation. The T-F bins or blocks generated from the speeches in the test dataset were processed
by the relevant pre-trained model for embedding generation, e.g., if a pre-trained model was trained using
time domain blocks it processes time-domain blocks to generate embeddings.

Downstream training: During feature clustering we used two configurations: First, we trained a Sep-
Former on top of the frozen encoder to partition T-F bins or blocks. In the second configuration, the
pre-trained encoder is fine-tuned . The SepFormer used in the downstream task of clustering spectrogram
points or raw speech blocks is optimized in an end-to-end differentiable manner using equation 14 as the loss
function. Based on this, we trained four different SepFormer configurations:

1. SepFormer clustering of T-F bins based on frozen encoder trained using T-F bins (Sepl).

2. SepFormer clustering of raw speech blocks based frozen encoder trained using raw speech blocks
(Sep2).

3. SepFormer clustering of T-F bins based on fine-tuning an encoder trained using T-F bins (Sep3).

4. SepFormer clustering of raw speech blocks based on fine-tuning an encoder trained using raw speech
blocks(Sep4).

We used the Adam optimiser and the cyclical learning rate (Smith, |2017) with a minimum learning rate of
le — 4 and a maximum of 1le — 1. The models were trained with a single NVDIA V100 GPU for 2M steps
with a batch size of 216 T-F bins or blocks. We optimized the downstream model according to equation 14
to generate partitions. We set the maximum number of clusters k = 20.

Evaluation metrics: We used objective metrics of Short-time objective intelligibility (STOI)(Taal et al.,
2011)), perceptual evaluation of speech quality (PESQ) algorithm (Rix et all 2001), SI-SNR improvement
(SI-SNRIi), Signal-to-Distortion Ratio improvement (SDRi), Deep Noise Suppression MOS (DNSMOS) which
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is a reference-free metric that evaluates perceptual speech quality Reddy et al|(2021)). It is a DNN based
model trained on human ratings obtained by using an online framework for listening experiments based on
ITU-T P.808. We also use SIG, BAK, OVRL: The non-intrusive speech quality assessment model DNSMOS
P.835 (Reddy et al., [2022).

6 Results

6.1 Quality of clusters

To begin our experiments, we first evaluate which of the four model configurations (Sepl, Sep2, Sep3, Sep4)
results in better cluster (partition) generation. We do this by measuring the quality of clusters generated by
each. To evaluate how good the clusters are, we use the graph-based cluster measurement metrics proposed in
(Yang & Leskovec, 2012)). We are particularly interested in metrics that capture how well a given partition
is separated from the rest i.e., quantifying the number of edges pointing from a given partition to other
partitions. A good partition should have few edges pointing outwards. The most relevant metrics for our
study being graph modularity and conductance.

Cluster conductance (C)= sz‘j‘_cs, if S is a partition, the function C measures how similar the nodes of
S are where my is the number of edges in S i.e., ms = {(u,v) € E,u € S,v € S} and ¢, is the number of
edges in the boundary of S ie. ¢ = {(u,v) € E:u € S,v ¢ S}. Conductance quantifies the fraction of
edges pointing outside a given partition. Quality partitions should have a small conductance value.

Graph modularity (Q)= ;(m, — E(m,)) where E(m,) is the expected m,. Quality partitions should have
high modularity.

The results of our evaluation are reported in table 1. When raw speech block features are used to train
the encoder, the pre-trained model generates more quality embeddings that lead to quality clusters in the
downstream task as compared to when T-F bins are used as input. The features from pre-trained model with
raw speech block as input generates better clusters in all the three test datasets used in evaluation. This is
an indication that for this setup, the use of raw speech features captures more speech features as compared
to the STF'T transformed features. We also note that fine-tuning the encoder is beneficial to the downstream
task as compared to the use of frozen encoder. Note that quality of cluster evaluation is done prior to speech
reconstruction hence the drop in cluster quality when using STFT transformed features cannot be attributed
to phase handling issues.

Table 1: Results of conductance C and modularity Q when using different input configurations and different
mixtures. Here the values of C and Q have been multiplied by 100.

WSJ0-3mix test-dataset
Model Configuration | C({) | O(1)
Sepl 14.9 88.1
Sep2 144 | 86.7
Sep3 14.1 | 88.5
Sep4 13.9 | 88.9

WSJ0-4mix test-dataset
Sepl 16.2 | 85.3
Sep2 15.8 | 86.9
Sep3 15.1 | 87.2
Sep4 14.6 | 87.6

WSJ0-5mix test-dataset
Sepl 19.0 76.6
Sep2 184 | 785
Sepl 18.0 | 78.8
Sep2 17.7 | 79.6

6.2 Performance on speech separation

We evaluated the quality of separated speeches by applying masks generated by Sepl, Sep2, Sep3 and Sep4 on
wsj0-2mix, wsjO-3mix wsjO-4mix, ws0-bmix test datasets. Table 2 reports the results based on the evaluation
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metrics. In all the four datasets, the quality of separated speeches is highest on Sep4 based speech separation.
This followed by that of Sep2. This trend does not follow the evaluation on cluster quality which indicated
that Sep4 produced the best quality clusters followed by those of Sep3. We attribute the drop of quality in
Sep3 to the phase reconstruction associated with STFT transformation. The results also show that when
raw blocks are used in both pre-training and downstream task, the quality of separated speech is superior.

Table 2: Speech separation results when the two variants of inputs are used

WSJ0-2mix test-dataset
Model SDRi(t) SI-SNRi(?) STOI(1) PESQ (1) DNSMOS (1) SIG (1) BAK (1) OVRL (1)
Sepl 19.6 19.4 0.8969 3.93 3.98 3.96 4.11 4.01
Sep2 21.9 21.6 0.9146 4.04 4.14 4.09 417 4.16
Sep3 20.6 20.2 0.9054 3.98 4.02 4.00 413 4.07
Sep4 22.6 22.3 0.9346 4.08 4.17 4.11 4.23 4.20
WSJ0-3mix test-dataset
Sepl 17.9 17.3 0.8702 3.76 3.86 3.88 3.91 3.89
Sep2 19.7 19.5 0.9051 4.01 4.05 4.01 4.08 4.11
Sep3 18.6 17.9 0.8837 3.86 3.98 3.91 4.07 4.01
Sep4 21.8 21.3 0.9150 4.04 4.10 4.07 4.14 4.09
WSJ0-4mix test-dataset
Sepl 15.8 15.5 0.8414 3.52 3.67 3.75 3.81 3.78
Sep2 174 17.0 0.8896 3.92 3.97 3.94 4.01 4.03
Sep3 16.3 16.01 0.8522 3.70 3.84 3.87 4.03 3.98
Sepd 20.9 20.5 0.9011 3.98 4.02 4.00 4.08 4.04

6.3 Comparison with other speech separation tools in few ( n < 3) source mixtures.

Here, we compare how the proposed technique of speech separation performs as compared to other state
of the art speech separation tools. The results are reported in table 3. In wsjO-2mix, Sep4 based speech
separation improves SI-SNRi and SDRi of the best performing tool SepFormer+DM by 0.3 and SDRi by 0.5
respectively . In wsjO-3mix, the scalability of the proposed technique to high source mixtures is evidence as
compared to the other tools. While the performance of SepFormer + DM with regard to SI-SNRi and SDRi
drops by 2.8 and 2.7 respectively in the wsj0-3mix dataset when compared to its performance in wsjO-2mix,
the performance of Sep4 based speech separation drops marginally by only 0.8 and 1.2 respectively in the
two metrics. This may signal the ability of deep modularity technique to generalize to mixture with high
sources.

Table 3: Comparing the results of the proposed technique with other state of the art speech separation tools.

WSJ0-2mix test-dataset

Model | SI-SNRi | SDRi
SepFormer |[Subakan et al.|(2021b) 20.4 20.5
SepFormer+DM [Subakan et al.[(2021b) 22.3 224
Wavesplit |Zeghidour & Grangier|(2021b) 21.0 21.2
Wavesplit+DM |Zeghidour & Grangier|(2021b) 22.2 22.3
DeepCASA [Liu & Wang[(2019b) 17.7 18.0
ConvTasnet [Luo & Mesgarani|(2019b) 15.3 15.6
Sepl N 19.6 19.8
Sep2 21.9 22.1
Sep3 20.6 21.0
Sepd 22.6 22.9

WSJ0-3mix test-dataset

SepFormer 17.6 17.9
SepFormer+DM 19.5 19.7
Wavesplit 17.3 17.6
Wavesplit+DM 17.8 18.1
ConvTasnet 12.7 13.1
Sepl 17.9 18.1
Sep2 19.7 19.7
Sep3 18.6 19.0
Sep4d 21.8 21.7

10
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6.4 Comparison with other speech separation tools in high( n > 5) source mixtures.

Here, we evaluate the performance of the proposed technique in mixtures with many sources. The results
are shown in table 4. Sep4 based speech separation outperforms the existing tools by 0.2, 0.3 and 2.0
when evaluated on wsj0-5mix, LibrisMix and Libril0Mix dataset on SDRi metric. This shows the proposed
technique can scale to high source mixtures and generate quality estimated sources.

Table 4: Performance of the proposed technique on high source mixtures as compared to other tools that
can perform high source mixtures separation.

WSJ0-5mix test-dataset
Model SDRi

ConvTasNet [Luo & Mesgarani|(2019a) 6.8
DPRNN [Luo et al.[(2020) 8.6
MulCat [Nachmani et al.|(2020) 10.6
Hungarian [Dovrat et al.|(2021) 13.2
Sepl 10.4
Sep2 12.3
Sep3 10.9
Sep4 13.4

Libri5Mix test-dataset
SinkPIT [Tachibanal (2021) 9.4
MulCat [Nachmani et al.[(2020) 10.8
Hungarian [Dovrat et al.|(2021) 12.7
Sepl B 9.6
Sep2 11.5
Sep3 10.1
Sep4d 13.0

Libril0Mix test-dataset
SinkPIT |Tachibana|(2021) 6.8
MulCat [Nachmani et al.[(2020) 4.8
Hungarian [Dovrat et al.|(2021) 7.8
Sepl 7.9
Sep2 8.1
Sep3 9.3
Sep4 9.8

6.5 Results on WHAM! and WHAMR! datasets

We also evaluated the proposed technique in dataset that contains noise and reverberation. The results of the
performance of the proposed technique on WHAM and WHARM datasets are shown in table 5. For WHAM
dataset, the model performs denoising in addition to speech separation. In that case it must add a partition
for noise. For WHARM dataset, the model performs denoising, dereverberation and speech separation. The
results on the WHAM! and WHAMR! datasets are compared to the other state of the art tools. Speech
separation based on Sep4 registers the best results in both datasets as compared to other state of the art
results. This shows that the proposed technique is able to deal with mixtures with noise and reverberation.

6.6 Selecting similarity threshold 6

Selecting the ideal threshold (0) when creating adjacency matrix is not trivial. If § is high, we risk losing
important relationships between frames. On the other hand, selecting low 6 results in a large graph dominated
by uninformative edges and increases the clustering time. To select the optimum 6 we conducted experiments
with different datasets where we varied the value of # and recorded modularity and the number of clusters
generated. The graph showing how modularity and number of clusters generated vary when using ws0-bmix
test dataset is shown in figure 5. The modularity values in figure 5 have been normalised by multiplying by
100, and values of number of clusters have been normalised by multiplying by 10 for easy visualisation. As
can be seen in figure 5, as the similarity increases, modularity increases at the risk of generating a singleton
partition. Decreasing the similarity lowers modularity and the risk of generating extra partitions increases.
In our case we selected a § = 0.3. The same threshold is used in all the experiments.
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Table 5: Comparing the results of the proposed technique with other state of the art speech separation tools
on WHAM and WHARM test-dataset .

WHAM test-dataset

Model | SI-SNRi | SDRi
SepFormer |[Subakan et al.|(2021b) 14.7 15.1
SepFormer+DM [Subakan et al.[(2021b) 16.4 16.7
Wavesplit+DM |[Zeghidour & Grangier|(2021b) 16.0 16.5
ConvTasnet [Luo & Mesgarani (2019b) 12.7 -
Sepl 15.6 15.9
Sep2 16.4 16.8
Sep3 15.8 16.0
Sep3 17.2 17.4

WHARM test-dataset

SepFormer 114 10.4
SepFormer+DM 14.0 13.0
‘Wavesplit+DM 13.2 12.2
ConvTasnet 8.3 -
BiLSTM Tasnet 9.2 -
Sepl 134 14.0
Sep2 14.1 144
Sep3 13.6 14.3
Sep3 15.0 15.4

How modularity and Number of clusters vary with similarity values

0 02 04 06 08 1 12

Similarity Values

—e—modularity  —e—Number of dusters

Figure 5: Graph showing how modularity and number of clusters vary as we change the similarity threshold

7 Ablation

Here, instead of using deep modularization to generate partitions, we replace it with the classical k-means
where we set k = 20. Concretely, after generating T-F bins or raw speech blocks features using a frozen
pre-trained encoder, we exploit k-means to generate partitions which are then used for mask generation. We
exploit k-means for the two versions:

1. k-means (raw speech blocks): Here k-mean is applied to cluster features of raw speech blocks.

2. k-means (T-F bins): Here k-mean is applied to cluster features of T-F bins.

The mask generation and speech reconstruction remains the same as described in section 4. We compare
the results of quality of speech separated based on k-means and that of deep modularization. Since in k-
means we use frozen pre-trained encoder to generate features of the input, we compare its results with that
of Sepl and Sep2 which also employ frozen encoder. The results are shown in table 6. The results show
that deep modularization achieves superior results as compared to that of k-means. This shows that deep
modularization is better at capturing relationship between T-F bins or raw speech blocks as compared to
k-means.
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Table 6: Comparing the results of the proposed technique with other state of the art speech separation tools.

WSJ0-2mix test-dataset
Model | SI-SNRi | SDRi
Sepl 19.6 19.8
Sep2 21.9 221
k-means(raw speech blocks) 17.5 17.8
k-means(T-F bin) 17.3 17.4
WSJ0-3mix test-dataset
Sepl 17.9 18.1
Sep2 19.7 19.7
k-means(raw speech blocks) 15.5 15.9
k-means(T-F bin) 15.1 15.7

8 Conclusion

This work proposes an unsupervised technique of speech separation. The technique relies on a pre-trained
model to generate input features which are then used downstream. In the downstream task, we combine
deep neural network and graph clustering objectives to create clusters of spectrogram points or raw speech
blocks features. The clusters are created such that T-F bins or raw speech blocks dominated by a given
speaker are clustered together. We conduct extensive experiments with a number of dataset and establish
that the proposed tool achieves state of the art results.
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