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Abstract

While neural networks (NNs) have a large potential as autonomous controllers for
Cyber-Physical Systems, verifying the safety of neural network based control sys-
tems (NNCSs) poses significant challenges for the practical use of NNs—especially
when safety is needed for unbounded time horizons. One reason for this is the in-
tractability of analyzing NNs, ODEs and hybrid systems. To this end, we introduce
VerSAILLE (Verifiably Safe AI via Logically Linked Envelopes): The first general
approach that allows reusing control theory literature for NNCS verification. By
joining forces, we can exploit the efficiency of NN verification tools while retaining
the rigor of differential dynamic logic (dL). Based on a provably safe control
envelope in dL, we derive a specification for the NN which is proven with NN
verification tools. We show that a proof of the NN’s adherence to the specification
is then mirrored by a dL proof on the infinite-time safety of the NNCS.
The NN verification properties resulting from hybrid systems typically contain
nonlinear arithmetic over formulas with arbitrary logical structure while efficient
NN verification tools merely support linear constraints. To overcome this divide,
we present Mosaic: An efficient, sound and complete verification approach for
polynomial real arithmetic properties on piece-wise linear NNs. Mosaic partitions
complex NN verification queries into simple queries and lifts off-the-shelf linear
constraint tools to the nonlinear setting in a completeness-preserving manner by
combining approximation with exact reasoning for counterexample regions. In our
evaluation we demonstrate the versatility of VerSAILLE and Mosaic: We prove
infinite-time safety on the classical Vertical Airborne Collision Avoidance NNCS
verification benchmark for some scenarios while (exhaustively) enumerating
counterexample regions in unsafe scenarios. We also show that our approach
significantly outperforms the State-of-the-Art tools in closed-loop NNV.

1 Introduction

For controllers of Cyber-Physical Systems (CPSs), the use of neural networks (NNs) is both a blessing
and a curse. On the one hand, using NNs allows the development of goal-oriented controllers that
optimize soft requirements such as passenger comfort, frequency of collision warnings or energy
efficiency. On the other hand, guaranteeing that all control decisions chosen by an NN are safe is
very difficult due to the complex feedback loop between the subsymbolic reasoning of an NN and the
intricate dynamics often encountered in physical systems. How can this curse be alleviated? Neural
Network Verification (NNV) techniques all have tried one of three strategies: Open-loop NNV entirely
omits the analysis of the physical system and only analyzes input-output properties of the NN [12, 23,
43, 44, 58, 59, 95, 98–100]. Open-loop analyses alone cannot justify the safety of an NNCS, because
they ignore its physical, feedback-loop dynamics. Closed-loop NNV performs a time-bounded
analysis of the feedback loop between the NN and its physical environment [5, 18, 34, 37, 47–49, 85,
88, 93, 94, 97]. Unfortunately, a safety guarantee that comes with a time-bound (measured in seconds
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Figure 1: VerSAILLE reflects a proof of a control envelope in an NN to verify infinite-time safety
of an NNCS from mere open-loop NNV properties. Mosaic completely lifts off-the-shelf open-loop
NNV tools to polynomial arithmetic by combining approximation with judicious SMT reasoning.

rather than minutes or hours) is often insufficient when it comes to deploying safety-critical NNCSs
in the real world. For example, the safety of an adaptive cruise control system must be independent
of the trip length. Finally, another line of work explored techniques for learning and then verifying
approximations of barrier certificates for infinite-time guarantees [3,9,25,26,31,64]. For continuous-
time, verification has not been scaled beyond simple linear control functions [25, Appendix] as it
requires open-loop NNV w.r.t. nonlinear specifications, which is a notoriously neglected topic [30,31].

As an alternative to the three outlined approaches, we propose to verify NNCSs based on the rigorous
mathematical foundations of differential dynamic logic (dL). dL is a program logic allowing the proof
of infinite-time safety for abstract, nondeterministic control strategies (often called control envelopes).
Due to its expressiveness and its powerful proof calculus, dL even allows the derivation of such
guarantees for continuous-time systems or systems whose differential equations have no closed-form
solution. By grounding our verification approach in dL, we can reuse safety results from the control
theory literature for NN verification – especially for cases where characterizations of safe behavior
and controllable/invariant regions are known (e.g. airborne collision avoidance [56]). How this
knowledge can be reused is a non-trivial question: While dL is an excellent basis for reasoning about
symbolic control strategies, the numerical/subsymbolic reasoning of NNs at their scale is far beyond
the intended purpose of dL’s proof calculus. Conversely, open/closed-loop NNV tools and barrier
certificates lack the infinite-time and exact reasoning available within dL. This work demonstrates
how open-loop NNV can be combined with dL reasoning to combine their strengths while canceling
out their weaknesses. Consequently, by relying on results from the control theory literature, we prove
infinite-time safety guarantees for NNCSs that are not provable through either technique alone.

Overview. This paper alleviates the curse of NNCS safety. As shown in Figure 1, our work integrates
the deductive approach of dL with techniques for open-loop NNV. To apply our approach, we assume
that an abstract, nondeterministic control envelope has already been verified in dL (via KeYmaera
X [38], synthesized via CESAR [57] or from the literature). Based on the dL safety result, VerSAILLE
(Verifiably Safe AI via Logically Linked Envelopes; Section 3) derives a verification query for open-
loop NNV by instrumenting ModelPlex [69]. By reflecting the NN through a mirror program in dL,
we can then reason about an NNCS in- and outside the dL calculus simultaneously. The verification
of an open-loop NNV query generated by VerSAILLE yields a dL proof that the NNCS refines a safe
control envelope —implying that the infinite-time safety guarantee carries over to the NNCS.

Due to the inherent nonlinearities of hybrid systems, the generated open-loop NNV queries often
contain polynomial arithmetic and the formulas have arbitrary logical structure. Hence for such
queries, we also introduce Mosaic—an efficient, sound and complete framework for open-loop
NNV tools. The approach lifts complete off-the-shelf open-loop NNV tools for linear constraints
to polynomial constraints with arbitrary logical structure. To this end, we combine approximation
with a generalization of DPLL(T) that makes the logical decomposition efficiently applicable to NN
verification (whereas “classical” DPLL(T) would become prohibitively inefficient). At the same time,
Mosaic retains completeness by generalizing counterexamples into locally affine regions (Section 4).
In summary, VerSAILLE provides rigorous semantics and a formal proof of infinite-time safety, while
Mosaic makes our approach practically applicable to real-world systems (see also Section 5).

Contribution. Our contribution has three parts. While our implementation (N3V) supports NNs
most commonly analyzed by open-loop NNV (ReLU NNs), our theoretical contribution (VerSAILLE)
reaches far beyond this and lays the foundations for analyzing a wide range of NNCS architectures:
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• We present VerSAILLE, the formal foundation that, for the first time, enables a sound proof
of infinite-time safety for a concrete NNCS by reusing safety proofs from control-theory
literature (in the form of dL models). VerSAILLE supports a large class of feed-forward
NNs (any NN with piece-wise Noetherian activation functions; see Section 2).

• We introduce Mosaic, a framework for the efficient, sound and complete verification of
properties in polynomial real arithmetic on piece-wise linear NNs. Unlike other NN verifiers,
Mosaic furthermore supports constraints with arbitrary propositional structure. Mosaic
combines approximation techniques, a generalization of DPLL(T), and judicious SMT
reasoning to lift sound and complete linear-constraint open-loop NNV tools to efficient,
sound and complete polynomial constraint verification. Mosaic can exhaustively characterize
unsafe state space regions (useful for retraining or the generation of fallback controllers).

• We implement Mosaic for ReLU NNs in the tool N3V and demonstrate our approach on
three case studies from adaptive cruise control, airborne collision avoidance ACAS X and
steering under uncertainty. We show that, unlike N3V, State-of-the-Art closed-loop NNV
tools cannot provide infinite-time guarantees due to approximation errors.

p′rel = vrel

v′rel = arel

vconst

Figure 2: Adaptive Cruise Con-
trol: The front-car (right) drives
with constant vconst. The ego-car ap-
proaches with relative velocity vrel
(controlled via arel) from prel.

Running Example. The common NNCS safety benchmark
of Adaptive Cruise Control [22, 39, 51] will serve as running
example to demonstrate the introduced concepts. Consider
an ego-car following a front-car on a 1-D lane as shown
in Figure 2. The front-car drives with constant velocity
vconst while the ego-car (at position prel behind the front-car)
approaches with arbitrary initial (relative) velocity vrel which
is adjusted through the ego-car’s acceleration arel. The primary
objective is to ensure the ego-car never crashes into the front
car (i.e. prel > 0), however there may be secondary objectives
(e.g. energy efficiency) which are learned by an NNCS. We demonstrate how a nondeterministic,
high-level acceleration strategy (i.e. a safe envelope) can be modeled and verified in dL (Section 2),
how VerSAILLE derives NN properties (Section 3) and how such polynomial properties can be
verified on a given NN (Section 4). No techniques are specific to the running example, but all are
applicable to a wide range of NNCSs—as demonstrated by our evaluation (Section 5).

2 Background

Program Semantics
x ∶= e Assign term e to x
x ∶= ∗ Nondet. assign to x
?Q Test of formula Q
x′ = t&Q Evolve x along the diff.

equation within Q
α ∪ β Nondet. choice
α;β Sequential composition
(α)

∗ Nondet. loop

Table 1: Program primitives of dL

We review dL, NNs and NN verification. FOLR (resp.
FOLLR) is the set of polynomial (resp. linear) real arith-
metic first-order logic formulas. FOLNR extends FOLR
with Noetherian functions [78] h1, . . . , hr. A Noetherian
chain is a sequence of real analytic functions h1, . . . , hq s.t.
all partial derivatives of all hj can be written as a polyno-
mial ∂hj(y)

∂yi
(y) = pij(y, h1(y), . . . , hq(y)). Noetherian

functions are representable as a polynomial over functions
in a Noetherian chain. Most activation functions used in
NNs are Noetherian (see Appendix A.2) Atoms of a for-
mula ζ are denoted as Atom(ζ) and its variables as V(ζ).

2.1 Differential Dynamic Logic

Differential dynamic logic (dL) [74–76, 78] is a first-order multi-modal logic in which the modality
is parameterized with a hybrid program describing a (discrete or continuous) state transition (see also
Appendix A). Thus, dL formulas are evaluated in a state ν (if ν satisfies a formula ψ we denote this
as ν ⊧ ψ). Hybrid Programs are constructed from the primitives in Table 1 and are first-class citizens
of the logic (see example below). dL is tailored to the analysis of (time discrete and time continuous)
hybrid systems and supports the analysis of differential equations. Through its invariance reasoning
capabilities, dL allows us to prove the infinite-time safety of control envelopes w.r.t. a system’s
dynamics—even for cases where the dynamics’ differential equations have no closed-form solution.
There is a large body of research on the verification of real-world control envelopes using dL (e.g.
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ACAS X [50]). In dL, the formula [α]ψ expresses that ψ is always satisfied after the execution of
α and ⟨α⟩ψ that there exists a state satisfying ψ after the execution of α. dL comes with a sound and
relatively complete proof calculus [74, 76, 78] and an interactive theorem prover KeYmaera X [38].

Running Example. We model our running example as a hybrid program in dL with differential
equations describing the evolution of prel, vrel, arel along with a control envelope, i.e. an abstract
acceleration strategy, αctrl that runs at least every T seconds while the overall system may run for
arbitrarily many iterations (modeled by a nondeterministic loop). Given suitable initial conditions
(accInit), our objective is to prove the absence of collisions (prel > 0). This can be achieved by
proving Formula (1) where the place-holder αctrl determines the relative acceleration −B ≤ arel ≤ A
(A and −B are resp. maximal acceleration/braking).

accInit
´¹¹¹¹¹¹¸¹¹¹¹¹¶

initial conditions

→ [( αctrl
°

controller

; c ∶= 0; (p′rel = vrel, v
′

rel = −arel, c
′ = 1& c ≤ T )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
environment

)
∗

] prel > 0
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶

safety constraint

(1)

Our control envelope αctrl allows braking with −B and an acceleration of 0 or another value if the
constraint accCtrl0 or resp. accCtrl1 is satisfied (the concrete constraints are found in Appendix D):

αctrl ≡ arel ∶= −B ∪ (arel ∶= 0; ? (accCtrl0)) ∪ (arel ∶= ∗; ? (−B ≤ arel ≤ A ∧ accCtrl1))

The envelope is nondeterministic: While always braking with −B would be safe, an NNCS may learn
to balance braking with secondary objectives (e.g. minimal acceleration or not falling behind). A proof
for Formula (1) in KeYmaera X uses the loop invariant accInv (see Appendix D). Automation of dL
proofs as well as control envelope and invariant synthesis is discussed in the literature [57, 76, 78, 89].

ModelPlex. Many CPS safety properties can be formulated through a dL formula ϕ →

[(αctrl;αplant)
∗

]ψ where ϕ describes initial conditions, and ψ describes the safety criterion to be
guaranteed when following the control-plant loop. ModelPlex shielding [69] allows the synthesis of
correct-by-construction controller monitor formulas ζc that ensure an implementation’s runtime be-
havior matches the envelope αctrl. Interpreting an implementation’s action as a state transition and de-
noting the old state’s variables as xi and the new state’s variables as x+i , ζc tells us which combinations
of xi and x+i (i.e. which state transitions) are admissible w.r.t. αctrl (see Definition 4 in Appendix A).

Running Example. We can apply ModelPlex on the proven contract in Formula (1) to synthesize a
monitor for αctrl. For this simple scenario, the resulting controller monitor formula 1 tells us what
new acceleration value a+rel may be chosen given the current values of prel, vrel:

accCtrlFml ≡ a+rel = B ∨ (a+rel = 0 ∧ accCtrl+0) ∨ (−B ≤ a
+

rel ≤ A ∧ accCtrl+1) . (2)

Here, accCtrl+i is the constraint accCtrli with arel replaced by a+rel. Given an action of a concrete
controller implementation that changes arel to a+rel, Formula (2) tells us if this action is in accordance
with the strategy modeled by αctrl, i.e. whether we have a proof of safety for the given state transition.

2.2 Neural Network Verification

This work focuses on feed-forward neural networks typically encountered in NNCSs. The behavior
of an NN with input dimension I ∈ N and output dimension O ∈ N can be summarized as a
function g ∶ RI → RO. The white-box behavior is described by a sequence of L ∈ N hidden layers
with dimensions n(k) that iteratively transform an input vector x(0) ∈ RI into an output vector
x(L) ∈ RO. The computation of layer k is given by x(k+1) = f (k) (W (k)x(k) + b(k)), i.e. an affine
transformation (with FOLNR representable numbers) followed by a nonlinear activation function f (k).
We distinguish different classes of NNs. To this end, we decompose the activation functions f (k) as
f (k)(x) = ∑

s
i=1 1qi(x)fi(x)where fi are functions, qi are formulas over n(k) variables and 1qi(x) is

1 iff qi(x) is true and 0 otherwise. Table 2 summarizes which results are applicable to which NN class.
Each class is a subset of the previous class, i.e. our theory (Section 3) is widely applicable while our
implementation (Section 5) focuses on the most common NNs. Open-loop NNV tools analyze NNs
in order to verify properties on input-output relations. Their common functionality is reflected in the

1The formula furthermore keeps the new p+rel and v+rel values unchanged (prel = p
+

rel ∧ vrel = v
+

rel), elided.
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NN class All fi All qi in Applicable Decidable Example
piece-wise Noetherian Noetherian FOLNR Section 3 Sigmoid
piece-wise Polynomial Polynomial FOLR Section 3 ✓ x2

piece-wise Linear Linear FOLLR Sections 3 and 4 ✓ MaxPool
ReLU f (k) (x) =max (0, x) Sections 3 to 5 ✓ ReLU

Table 2: Applicability of our results on NNCS safety and decidability of the safety verification
problem: Each class is a subset of its predecessor in the table.

VNNLIB standard [15,21]. Off-the-shelf tools are limited to linear, normalized queries (Definition 1).
To address this challenge, we present a lifting procedure for the verification of generic (i.e. nonlinear
and not normalized) open-loop NNV queries over polynomial real arithmetic (Section 4).
Definition 1 (Open-Loop NNV Query). An open-loop NNV query consists of a formula p ∈ FOLR
over free input variables Z = {z1, . . . , zI} and output variables x+1 , . . . , x

+

O. We call p normalized
iff p is a conjunction of some input constraints and a disjunctive normal form over mixed/output
constraints, i.e. it has the structure⋀j p1,j(z1, . . . , zI)∧⋁i≥2⋀j pi,j(z1, . . . , zI , x

+

1 , . . . , x
+

O), where
all pi,j are atomic real arithmetic formulas and all p1,j only contain the free variables from Z. We
call a query linear iff p ∈ FOLLR and call it nonlinear otherwise.

3 VerSAILLE: Verifiably Safe AI via Logically Linked Envelopes

We introduce VerSAILLE, our approach for the verification of NNCSs via dL contracts. The key
idea of VerSAILLE are nondeterministic mirrors, a mechanism that allows us to reflect a given NN
g and reason within and outside of dL simultaneously. This allows us to instrument open-loop NNV
techniques to prove an NN specification outside of dL which implies the safety of a corresponding
(mirrored) dL model describing the NNCS. Reconsider the ACC example (Section 1) for which we
synthesized a controller monitor formula in Section 2. The remaining open question is the following:

If we replace the control envelope αctrl by a given piece-wise Noetherian NN g,
does the resulting system retain the same safety guarantees?

Summary of VerSAILLE The input for VerSAILLE is a proven dL contract. Additionally, one may
provide an inductive invariant ζs to simplify the subsequent state space analysis. Using ModelPlex’s
synthesis of ζc, VerSAILLE constructs a nonlinear open-loop NNV query. If we verify this query on an
NN g, then the NNCS where we substitute the control envelope by g retains the same safety guarantee.

Running Example Since one can only provide formal guarantees for something one can describe
formally, we first need a semantics for what it means to substitute αctrl by g. To this end, we formalize
a given piece-wise Noetherian NN g as a hybrid program αg which we call the nondeterministic
mirror of g (see Definition 16 and Lemma 17 in Appendix C). E.g. for ACC, this program must have
two free (i.e. read) variables prel, vrel and one bound (i.e. written) variable arel and must be designed
in such a way that it exactly implements the NN g. Showing safety (see question above) is then
equivalent to proving the following dL formula where αplant describes ACC’s physical dynamics:

accInit→ [(αg;αplant)
∗

]prel > 0. (3)

Since NNs do not lend themselves well to interactive analysis, an automatable mechanism to prove
formula (3) outside the dL calculus is desirable. As discussed in Section 2, we can prove the safety
(prel > 0) of αctrl via dL. Thus, if we can show that all behavior of the nondeterministic mirror αg is
already modeled by αctrl, the safety guarantee carries over from the envelope to αg . To show this re-
finement relation [65,79], we instrument the controller monitor accCtrlFml in Formula (2). We verify
that the NN g satisfies the controller monitor formula accCtrlFml (i.e. we show that g’s input-output
relation satisfies Formula (2)). If this is the case, αg’s behavior is modeled by our envelope αctrl. In
practice, it is unnecessary that the behavior of αg is modeled by αctrl everywhere (e.g. we are not inter-
ested in states with prel ≤ 0). It suffices to consider all states within the inductive invariant accInv of the
envelope’s system (Formula (1)) as those are precisely the states for which the guarantee on αctrl holds.
Thus, we can prove Formula (3) by showing that g satisfies the following specification for all inputs:

accInv→ accCtrlFml (4)
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Figure 3: Visualization of the nonlinear verification algorithm Mosaic in Section 4

VerSAILLE also allows to soundly constrain the system to value ranges where the NN has been
trained (Lemma 20). Verifying the queries generated by VerSAILLE with a (nonlinear) open-loop
NNV tool (Definition 22) then implies safety of the NNCS (full formalism see Appendix C.1):
Theorem 2 (Soundness). Let g be a piece-wise Noetherian NN. Further, let C ≡
(ϕ→ [(αctl;αplant)

∗
]ψ) be a valid contract with controller monitor ζc ∈ FOLR and inductive

invariant ζs ∈ FOLR. If a sound Nonlinear Neural Network Verifier returns unsat for the query
p ≡ (ζs ∧ ¬ζc) on g then ϕ→ [(αg;αplant)

∗
]ψ is valid for the nondet. mirror αg .

If g is piece-wise polynomial, Formula (4) is expressible in FOLR and therefore its verification
decidable (Lemma 24 which is a special case of [79]). In practice, we can be much more efficient
than naively applying real arithmetic theory solvers by relying on open-loop NNV technologies to
check the negated property accInv ∧ ¬accCtrlFml: If this property is unsatisfiable for a given NN g,
then Formula (3) is valid. Off-the-shelf open-loop NNV tools are unable to reason about Formula (4)
due to its nonlinearities and the non-normalized formula structure. Thus, our second contribution
(Section 4) lifts open-loop NNV tools to the task of verifying nonlinear, non-normalized queries.

4 Mosaic: Nonlinear Open-Loop NN Verification

Since NNCSs usually exhibit nonlinear physical behavior, the verification property ζs ∧ ¬ζc will be
nonlinear as well. ζs ∧ ¬ζc is also a formula of arbitrary structure and not a normalized open-loop
NNV query (Definition 1). This is evident in the verification query for our running example (see
Appendix D) or in Figure 3 where the green and blue constraints (left) describe two independent
nonlinear input regions (case1 and case2) and the red regions (right) correspond to the unsafe regions
for case1. In contrast to this, off-the-shelf open-loop NNV tools (e.g. nnenum [12] or Marabou [59])
only support the verification of linear, normalized open-loop NNV queries on piece-wise linear NNs.
Mosaic is a framework that allows us to lift off-the-shelf open-loop NNV tools for linear, normalized
open-loop NNV queries to polynomial queries of arbitrary logical structure. This approach has the
notable advantage that Mosaic’s capabilities grow as open-loop NNV technology advances while
retaining completeness w.r.t. polynomial constraints. An overview of the algorithm is given in Al-
gorithm 1 and Figure 3 which is explained throughout this section with further details in Appendix B.

A1 A2A3

Input Space

O
ut

pu
t

Figure 4: Enumeration of
specification regions

MOSAIC. To tackle formulas with arbitrary logical structure we could
use DNNV [87] which implements a simple expansion algorithm or the
standard formulation of DPLL(T). Consider the specification in Figure 4
where the x-axis represents the NN’s inputs, the y-axis possible outputs,
and the red regions are considered unsafe: DPLL(T), or an expansion
algorithm, would enumerate all 7 red regions individually and then invoke
an open-loop NNV tool for each. However, this becomes prohibitively
inefficient when used for reachability-based open-loop NNV tools: Such
tools will compute the reachable regions for A1 three times, for A2 three
times, and for A3 two times. Instead, we propose MOSAIC which first
only enumerates input regions (e.g. the regions A1, A2, and A3) and
then enumerates unsafe regions in the output space per input region. The unsafe regions are then
aggregated into disjunctive normal form. Hence, for the example in Figure 4, MOSAIC would only
yield three normalized queries which are still compatible with the standardized interface for NN
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Algorithm 1: Verification of nonlinear queries on piece-wise linear NNs: ENUM internally uses
off-the-shelf open-loop NNV tools for the verification of linear normalized queries on NNs.
Input: Formula p ∈ FOLR, ranges R, piece-wise linear NN g
po ← LINEARIZE(p,R) ▷ Generate linearized p
for all (ql, qn) ∈ MOSAIC(po) do ▷ Iterate over normalized queries

for all (ι, ω) ∈ ENUM(g, ql) do ▷ uses GENERALIZE & open-loop NNV
if FILTER(ql ∧ qn, ι, ω)=concrete then return unsafe

return safe ▷ No concrete counterexamples found

verification tools [15]. We call this partitioning of the input space a mosaic and, in reminiscence of
this analogy, we call the individual queries azulejos ([A.Tu’le.xo], see e.g. regions in shades of gray in
Figure 3). MOSAIC guarantees that reachability-based open-loop NNV tools do not explore the same
input region multiple times (see flatness result in Proposition 10; Appendix B). For our ACAS case
study, naive rewriting (as done by e.g. DNNV [87]) may produce up to 39 trillion propositionally
feasible queries. In contrast, MOSAIC only produces 19k queries (see Table 7 in Appendix E.2).
MOSAIC also separates nonlinear constraints qn (must be checked outside open-loop NNV) from
linear constraints ql (can be passed to open-loop NNV).

On the technical side, Mosaic proceeds by executing a SAT solving based DPLL(T) loop until a
satisfiable conjunction of input constraints is found. At this stage, we fix the conjunction’s linear input
constraints (i.e. the azulejo) and an inner loop enumerates conjunctions over mixed/output constraints
that are satisfiable in combination with the fixed azulejo. For each such conjunction, we save the
conjunction of linear mixed/output constraints. This results in a linear, normalized Open-Loop NNV
query (conjunction over input, disjunctive normal from over output). We employ a similar inner loop
to enumerate satisfiable conjunctions of nonlinear constraints to later check counterexamples via
SMT solving (see Retaining completeness). At each step, we interleave propositional and theory
solving to discard conjunctions unsatisfiable in real arithmetic as early as possible.

LINEARIZE. To verify polynomial specifications via off-the-shelf (linear) open-loop NNV, we
need to soundly approximate the query’s nonlinear constraints. In principle, we could perform this
approximation for each azulejo (see MOSAIC) separately. To this end, consider an atomic polynomial
constraint p (x) ≤ 0 which is part of a query. If there are two azulejos with the constraints p (x) ≤ 0
and p (x) > 0, separate approximation would lead to the constraint p (x) ≤ 0 and p (x) > 0 (with p/p
resp. over/under-approximations of p). This would duplicate the exploration of the area in between
p and p and can lead to an exponential blowup for many approximations. Instead, we use a global
piece-wise approximation via OVERT [88] (orange lines around the blue nonlinear constraint on
Figure 3) and integrate the approximate constraints into the original query via implications (e.g. we
add p (x) ≤ 0→ p (x) ≤ 0). These additional linear constraints are then automatically enumerated via
MOSAIC (see azulejos for case1 in Figure 3). The linearization happens for input as well as output
constraints. When passing the open-loop NNV query to the off-the-shelf tool, we soundly omit the
nonlinear constraints, thus only leaving behind linear constraints ql (green and orange in Figure 3).

Retaining completeness. Without further efforts, MOSAIC and LINEARIZE together yield a sound
algorithm to check nonlinear, not normalized open-loop NNV queries, but not a complete one: A
reachability analysis via open-loop NNV for a given azulejo may produce spurious counterexamples
that are an artifact of the linearization (see Figure 3) The key insight to achieve completeness is
the observation that for piece-wise linear NNs any concrete counterexample generated via open-
loop NNV corresponds to a counterexample region ι (yellow polytope on the left of Figure 3) on
which the NN reduces to an affine transformation ω (obtained by fixing piece-wise functions to
the linear segment of the concrete counterexample, i.e. we fix the value of the 1 functions; see
also Section 2.2). This insight can be used in two ways: First, we can use it to enumerate all
counterexample regions ι (by adjusting the tool’s internal enumeration and/or via the algorithm
ENUM; see Appendix B.3). Secondly, for a given counterexample region, we can check whether there
exists a concrete counterexample to the nonlinear specification via SMT solving (in Algorithm 1 this
is performed by FILTER; see Appendix B.3). By exploiting the affine transformation ω, our SMT
encoding for nonlinear constraints has at most I free variables (for I input dimensions of the NN)
and is therefore significantly more tractable than an encoding of the entire NN in SMT.
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Using the components outlined above (for details see Appendix B), we prove the soundness and
completeness of Mosaic. Completeness turns out to also be of practical relevance as approximation
alone would have failed to verify the DNC NN of the ACAS benchmark discussed in Section 5.
Theorem 3 (Soundness and Completeness). Let g be a piece-wise linear NN, p be a real arithmetic
formula and R variable ranges for all in- and output variables of g. Algorithm 1 returns unsafe iff
there exists an input z ∈ RI such that (z, g (z)) is in the range R and p(z, g(z)) is satisfied.

In Section 5 we build upon nnenum [10,12] which can enumerate all counterexample regions of an NN
with N ReLU activations in time O(2N), and upon cylindrical algebraic decomposition (CAD [28])

with complexity O(22
V

) for V variables2. Assuming M atomic formulas in the open-loop NNV

query and I input dimensions this yields a worst-case runtime ofO(2M+N+2
I

). This is an exponential

improvement over naive O(2M+2
N+I

) CAD encodings as N >> I . In practice the performance is
even better; usually, MOSAIC explores fewer queries, nnenum returns less counterexample regions
and SMT solving tends to perform very well for the small input dimensions I of NNCS control.

5 Evaluation

We implemented Mosaic for ReLU NNs in a new Julia [16] tool called N3V based on the software
packages nnenum [10, 12], PicoSAT [17, 19] and Z3 [32, 52]. We provide wall-clock times on an
AMD Ryzen 7 PRO 5850U CPU (N3V is sequential; nnenum uses multithreading). The evaluation
presented in this section focuses on vertical airborne collision avoidance (VCAS), with other
experiments in Appendix E. Airborne Collision Avoidance Systems try to recognize plane trajectories
that might lead to a Near Mid-Air Collision (NMAC) with other aircrafts and advise the pilot to avoid
such collisions. NMACs are defined as two planes (ownship and intruder) flying closer than 500 ft
horizontally or 100 ft vertically. Currently, the Federal Aviation Administration (FAA) develops a new
airborne collision avoidance system called Airborne Collision Avoidance System X (ACAS X) [71].
Prior work by Jeannin et al. [50] showed a nondeterministic, provably safe dL envelope for airborne
collision avoidance. While the original proposal for ACAS X [45, 60] was shown to be unsafe [50],
the correctness of a VCAS NN implementation [53,55] was proven [54] and disproven [56] in special
cases. The proposed NNs contain 6 hidden layers with 45 neurons each and produce one of 9 collision
avoidance advisories (Strengthen Climb to at least 2500 ft/min (SCL2500) to Strengthen Descent
to at least 2500ft/min (SDES2500); see Table 9 in Appendix F for a list of allowed advisories). The
objective of the NNs is to ensure safety while minimizing the number of alerts sent to the pilot. We
present an exhaustive analysis of the VCAS NNCS for level flight intruders.

Prev. Adv. Status Time CE regions First CE
DNC safe 0.35 h — —
DND safe 0.28 h — —
DES1500 unsafe 5.45 h 49,428 0.04 h
CL1500 unsafe 5.18 h 34,658 0.08 h
SDES1500 unsafe 4.05 h 5,360 0.97 h
SCL1500 unsafe 4.89 h 11,323 0.36 h
SDES2500 unsafe 3.66 h 5,259 1.39 h
SCL2500 unsafe 4.45 h 7,846 0.53 h

Table 3: Verification of ACAS NNs for level flight: Previous
advisory (=Prev. Adv.), runtime; number of counterexample
(=CE) regions and time to the discovery of the first CE.

We provide additional experimental
results in Appendix E. First, we
demonstrate the feasibility of our ap-
proach for the running example of
ACC. Depending on NN size and
chosen linearization, our approach
can verify or exhaustively enumer-
ate counterexamples for the NNCS
in 47 to 300 seconds. For a case
study on Zeppelin steering under (uni-
formly sampled) wind perturbations,
we adapt a differential hybrid games
formalization [77] to analyze an NN
controller trained by us. Here, we
encountered a controller that showed
very positive empirical performance while being provably unsafe in large parts of the input space:
While performing very well on average, the control policy was vulnerable to unlikely wind perturba-
tions – an issue we only found through our verification. For ACC, we also perform a comparison
to other techniques: While Closed-Loop techniques are useful for the analysis of bounded-time
safety, their efficiency greatly depends on the system’s dynamics and the considered input space. Our

2For simplicity of analysis we fix the complexity’s other variables (e.g. maximal degree).
3See https://github.com/samysweb/NCubeV or [91]
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Figure 5: An unsafe advisory by the Airborne Collision Avoidance NN: After a previous advisory
to climb at least 1500ft/min, the NN advises to reverse vertical direction (“Strengthen Descent to at
least 1,500 ft/min”). This leads to an NMAC 6 seconds later. More examples are in Appendix G.

infinite-time horizon approach can be more efficient than Closed-Loop techniques as it evades the
necessity to analyze the system’s dynamics along with the NN (see Table 6). Usually, it is desirable
to show infinite-time safety on the entire (controllable) state space. However, the approximation
errors incurred via prior closed-loop NNV techniques prohibit this as they will either ignore states
inside the controllable region or allow unsafe actions pushing the system outside its controllable
region. Conversely, SMT-based techniques do not have these approximation issues, but cannot scale
to NNs of the size analyzed in this work. We also provide a conceptual comparison demonstrating the
efficiency of the Mosaic procedure for normalized query generation over DNNV’s expansion-based
algorithm (see Table 7), naive SMT solving (Table 8) and Genin et al.’s tailored ACAS approach [42].

Verification Results for VCAS. We use the nondeterministic control envelope and loop invariant
by Jeannin et al. [50, Thm. 1] to analyze safety for intruders in level flight (i.e. intruder vertical
velocity is 0). For the same reasons as prior work [50], we ignore Clear-of-Conflict advisories. The
open-loop NNV queries obtained via VerSAILLE had up to 112 distinct atoms and trees up to depth 9.
To determine the maximal output neuron, open-loop NNV queries initially contain atoms sorting the
NN’s outputs x1, . . . , xn (e.g., x1 ≤ x2). To avoid enumerating all permutations, we perform symme-
try elimination via an atomic predicate encoding that some output i is maximal. We analyzed the full
range of possible NN inputs for intruders in level flight (relative height ∣h∣ ≤ 8000ft, ownship velocity
∣v∣ ≤ 100ft/s and time to NMAC 6s ≤ τ ≤ 40s). Our results are in Table 3: safe implies that the NN’s
advisories (other than Clear-of-Conflict) in this scenario never lead to a collision when starting within
the invariant. The safety for DNC was only verifiable through SMT filtering (approximation yielded
spurious counterexamples). This underscores the importance of Mosaic’s completeness and implies
that [56] is insufficient to prove safety. A non-exhaustive analysis for non-level flight yielded coun-
terexamples even for DNC/DND (see Appendix G). For unsafe level flight scenarios, we exhaustively
characterize unsafe regions. This characterization goes far beyond characterizations in prior work [56]
that were generated using manual approximation and resulted in (non-exhaustive) point-wise char-
acterizations. Figure 5 shows a concrete avoidable NMAC (more examples are in Appendix G).

Scalability. N3V provides guarantees for an NN’s full input space. Hence, N3V is not directly
comparable to, e.g., the scalability of local robustness verifiers, that, while sometimes scaling to
hundred thousands of ReLUs [20], only analyze tiny fractions of the input space [92, Sec. 6]. Con-
temporary work on global properties outside NNCSs has been scaled to 100 ReLU nodes [8]. Related
work on infinite-time NNCSs (see also Section 6) has not been scaled beyond 30 nodes in similar set-
tings [25, 64]. The largest NNs verified by us so far had 270 ReLUs, indicating N3V is at the frontier
of State-of-the-Art scalability for global properties. Some NNCS applications (e.g. ACAS [55]) turn
to NNs to efficiently encode complex strategies in mid-scale NNs. N3V scales to NNs of this kind.

6 Related Work

Shielding. Justified Speculative Control [39] is closely related in its use of dL. However, we verify
the NNCS a priori instead of treating ML models as a black box and a posteriori using runtime
enforcement techniques [61,69]. Shielding can also be used to train models such that they (probabilis-
tically) conform to a shield/monitor [6]. Training methodologies are beyond the scope of this paper.

Barrier Certificates. An orthogonal direction of research explores learning Neural Bar-
rier/Lyapunov Functions to prove safety properties [30]. Although initially used for “pure” dynamical
and hybrid systems (without NNs) [1,2,4,70,73,83,101,104], the methods have since been extended
to NNCS with discrete [9, 26, 64] and continuous [25, 31, 81] time behavior. While the former works
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can only approximate continuous time behavior, the latter techniques use off-the-shelf SMT solvers
(see also Appendix E.2) for certificate verification which severely limits scalability. While some
works ignore verification entirely [31, 81], the remaining work only considered linear single-layer
NNs [25, Appendix] verified with dReal (see SMT comparison in Appendix E.2). Dawson et al. [31]
note “scalable verification for learned certificate functions remains an open problem”. Using N3V as
an alternative to SMT for certificate verification is future work. VerSAILLE evades the necessity to
learn barrier certificates by reusing established control-theory literature.

Open-Loop NNV. VEHICLE [29] integrates open-loop NNV with Agda. However, VEHICLE
only allows importing normalized, linear properties which limits applicability to CPS verification
in realistic settings. Open-loop NNV tools [12, 23, 35, 43, 44, 58, 59, 95, 98–100] do not consider the
physical environment and thus cannot guarantee the safety of an NNCS. Even in cases where such
methods allow nonlinear behavior in activation functions, they do not admit the verification of arbi-
trary polynomial constraints over the input and output space. Most methodologies could be integrated
into Mosaic’s framework, i.e. we can lift complete off-the-shelf open-loop NNV tools to verify
polynomial constraints with arbitrary structure. DNNV [87] proposed an approach for open-loop
NNV query normalization using a simple expansion algorithm. DNNV has the same limitations as all
open-loop NNV tools (no NNCS analysis; no nonlinear constraints) and is less efficient than Mosaic
w.r.t. NN reachability analysis (see Section 4). Pre-image computation [62, 68, 103] computes input
regions producing a fixed NN prediction. For efficiency, our work constrains the input space with
invariants and value ranges—this efficiency would be lost by a backward computation alone.

Related Techniques. Unlike [13, 80], we support arbitrary polynomial constraints and retain
completeness. Moreover, these works do not support arbitrary logical structure and represent open-
loop NNV techniques unable to analyze NNCSs. Some prior work used techniques for constructing
counterexample regions [33, 102] but only for individual datapoints—neither to compute exhaustive
characterizations nor to regain completeness for incomplete verifiers. Unlike classical DPLL(T) [40],
MOSAIC is tailored to theory-solving w.r.t. reachability analyzers. To this end, MOSAIC groups
output regions with the same input constraints which deduplicates work (see Section 4).

Closed-Loop NNV. Closed-loop NNV tools [5, 18, 34, 37, 47–49, 85, 88, 93, 94, 97] only consider
a fixed time horizon and thus cannot guarantee infinite-time horizon safety (see Appendix E.2).
Unlike [11, 42, 56], our approach is automated and applicable to any CPS expressible in dL (not just
ACAS X; see case studies in Appendix E). Other approaches verify simplified control outputs [42];
rely on hand-crafted approximations while lacking exhaustive counterexamples characterizations [56];
or require quantization effectively analyzing only a surrogate system instead [11].

7 Conclusion and Future Work

This work presents VerSAILLE, the first technique exploiting dL contracts to prove safety of NNCSs
with piece-wise Noetherian NNs. VerSAILLE requires open-loop NNV tools capable of verifying non-
normalized polynomial properties that did not exist. Thus, with Mosaic we present an efficient, sound
and complete approach for the verification of such properties on piece-wise linear NNs. We imple-
mented Mosaic for ReLU NNs in the tool N3V and demonstrate the applicability and scalability of our
approach on multiple case studies (Section 5 and Appendix E). The application to NNCSs by Julian et
al. [53, 55] shows that our approach scales even to intricate, high-stakes applications such as airborne
collision avoidance. Our results underscore the categorical difference of our approach to closed-loop
NNV techniques. Overall, we demonstrate an efficient and generally applicable approach that opens
the door for developing of goal-oriented and infinite-time horizon safe NNCSs in the real world.

Future Work. We believe there is potential for engineering and algorithmic improvements that
could further improve the performance of N3V. Our implementation could also be extended to other
piece-wise linear activation functions. We would also like to explore the efficiency of N3V for
non-polynomial specifications w.r.t. suitable SMT solvers. Mosaic may be of interest even beyond
NNCS verification in VerSAILLE. Since, e.g., neural barrier certificate verification also requires
nonlinear open-loop NNV, Mosaic could be equally applicable in this context. Finally, it would be
interesting to apply our approach to further case studies. To this end, the bottle-neck is currently the
limited availability of NNCS which are safe w.r.t. an infinite-time horizon.
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A Additional Background

This section provides additional background on Differential Dynamic Logic and the status of various
activation functions w.r.t. our classification in Table 2.

A.1 Differential Dynamic Logic

Differential dynamic logic (dL) [74–76, 78] can analyze models of hybrid systems that are described
through hybrid programs. The syntax of hybrid programs with Noetherian functions is defined by
the following grammar, where the term e and formula Q are over real arithmetic with Noetherian
functions:

α,β ∶∶= x ∶= e ∣ x ∶= ∗ ∣ ?Q ∣ x′ = f(x)&Q ∣ α ∪ β ∣ α;β ∣ α∗ (5)
The semantics of hybrid programs are defined by a transition relation over states in the set S, each
assigning real values to all variables. For example, the assignment state transition relation is defined
as Jx ∶= eK = {(ν,ω) ∈ S2 ∣ ω = νν(e)x } where νν(e)x denotes the state that is equal to ν everywhere
except for the value of x, which is modified to ν(e). The other programs in the same order as
in (5) describe nondeterministic assignment of x, test of a predicate Q, continuous evolution along
the differential equation within domain Q, nondeterministic choice, sequential composition, and
nondeterministic repetition. For a given program α, we distinguish between bound variables BV (α)
and free variables FV (α) where bound variables are (potentially) written to, and free variables
are read. The formula [α]ψ expresses that ψ is always satisfied after the execution of α and ⟨α⟩ψ
that there exists a state satisfying ψ after the execution of α. If a state ν satisfies ψ we denote this
as ν ⊧ ψ. dL comes with a sound and relatively complete proof calculus [74, 76, 78] as well as the
interactive theorem prover KeYmaera X [38].

ModelPlex. As demonstrated in the example, many safety properties for CPSs can be formulated
through a dL formula with a loop in which αctrl describes the (discrete) software, and αplant describes
the (continuous) physical environment:

ϕ→ [(αctrl;αplant)
∗

]ψ. (6)

ϕ describes initial conditions, and ψ describes the safety criterion to be guaranteed when following
the control-plant loop. To ensure that the behavior of controllers and plants in practice match
all assumptions represented in the contract, ModelPlex shielding [69] synthesizes correct-by-
construction monitors for CPSs. ModelPlex can also synthesize a correct controller monitor formula
ζc (Definition 4). The formula ζc encodes a relation between two states. If ζc is satisfied, then the
variable change from xi to x+i corresponds to behavior modeled by αctrl, i.e. the change upholds
the guarantee from Formula (6). To reason about this state relation, we say that a state tuple (ν,ω)
satisfies a formula ζ (denoted as (ν,ω) ⊧ ζ) iff νω(x1)...ω(xn)

x+1 ...x
+
n

⊧ ζ (i.e. ν with the new state’s value
ω(xi) as the value of x+i for all i, satisfies ζ).
Definition 4 (Correct Controller Monitor [69]). A controller monitor formula ζc with free variables
x1, x

+

1 , . . . , xn, x
+

n is called correct for the hybrid program controller αctrl with bound variables
x1, . . . , xn iff the following dL formula is valid: ζc → ⟨αctrl⟩⋀

n
i=1 xi = x

+

i .

A.2 Classification of Activation Functions

Table 4 is meant to provide a brief overview on the status of various common activation functions
w.r.t. the classes from Table 2. The chosen activation functions are representative examples from the
comprehensive survey by Kunc et al. [63]. For piece-wise polynomial and Noetherian functions, any
activation function represented by a polynomial over the activation functions presented in Table 4 is
resp. piece-wise polynomial or Noetherian. For piece-wise linear functions, any linear combination
is resp. piece-wise linear. This table does not claim to be comprehensive—many more activation
functions can be classified into one of the categories.

B Mosaic

An overview of the algorithm is given in Figure 3: A piece-wise linear NN g is a function which
maps from an input space (left) to an output space (right). We consider a part of the input space that
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Activation Function Justification
ReLU NNs
ReLU ReLU
piece-wise linear NNs
LeakyReLU [63, 3.6.2] Split into < 0 and ≥ 0.
HardTanh [63, 3.6.18] Split into 3 regions.
piece-wise polynomial NNs
Square-based activation functions [63, 3.8] by definition.
Polynomial universal activation function [63, 3.16] by definition for integer exponents.
piece-wise Noetherian NNs
Sigmoid [63, 3.2] σ′(x) = σ(x) (1 − σ(x))
Tanh [63, 3.2] tanh (x) = 2σ (2x) − 1
Arctan [63, 3.2.4] arctan′ (x) = 1/ (1 + x2)
SiLU [63, 3.3] Polynomial over σ
exp (x) exp′ (x) = exp (x)
GELU [63, 3.3.1] In a Noetherian Chain with exp and the

gaussian error funciton
Approximate GELU [63, 3.3.1] Polynomial over σ or tanh
Softmax [63, 3.5]a Polynomial over exp.

Table 4: Overview on classification of activation functions.
aThe analysis of softmax can often be avoided by using the observation that its application does not change

the order of outcomes, i.e. for classification-like tasks we can use the maximum before Softmax application
instead.

is constrained by linear (orange) and nonlinear constraints (blue). As our query is not normalized, it
may talk about multiple parts of the input space, e.g. in our case the two sets labeled with case1 and
case2. For any such part of the input space, say case1, we have a specification about unsafe parts of
the output space which must not be entered (red dashed areas on the right). For classical open-loop
NNV the task is then, given a single input polytope, to compute the set of reachable outputs for
g and to check whether there exists an output reaching an unsafe output polytope. In our case the
task is more complicated, because the input is not a polytope, but an arbitrary polynomial constraint.
Moreover, for each polynomial input constraint (case1 and case2 in Figure 3) we may have different
nonlinear unsafe output sets. In order to retain soundness, we over- and underapproximate nonlinear
constraints (see turquoise linear approximations around the blue and red nonlinear constraints in
Figure 3). Once all nonlinear queries have approximations, we generate a mosaic of the input space
where each azulejo (i.e. each input region) has its own normalized open-loop NNV-query (polytope
over the input; disjunction of polytopes over the output). We must not only split between the two
original cases (case1 and case2), but also between different segments of the approximating constraints
(see the polytopes on the left in four shades of gray). Each normalized query has associated nonlinear
constraints that must be satisfied, but cannot be checked via off-the-shelf open-loop NNV tools.
Using the normalized, linear open-loop NNV queries we then instrument off-the-shelf tools to check
whether any overapproximated unsafe region (turquoise on the right) is reachable. The amber colored
regions represent parts of the outputs reachable by g: As can be seen by the two red dots, a reachable
point within the overapproximated unsafe region may be a concrete unsafe output, or it may be
spuriously unsafe due to the overapproximation. To retain completeness, we need to exhaustively
filter spurious counterexamples. This is achieved by generalizing the counterexample to a region
around the point in which the behavior of g is equivalent to a single affine transformation. Such
counterexample regions always exist due to g’s piece-wise linearity. For example, in Figure 3 g
affinely maps the input space triangle (left) to the upper output space triangle (in amber on the right).
We can then check for concrete counterexamples in this region w.r.t. the affine transformation using an
SMT solver. This avoids the need to encode the entire NN in an SMT formula. By excluding explored
regions, we can then enumerate all counterexample regions and thus characterize the unsafe input set.

The approach is outlined in Algorithm 1 and proceeds in four steps, all of which will be presented in
detail throughout the sections below: First, LINEARIZE generates approximate linearized versions for
all nonlinear atoms of p on a bounded domain and enriches the formula with these constraints (po).
Next, MOSAIC generates a mosaic of po’s input space where each azulejo (i.e. each input space region)
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has an associated linear normalized query ql. Each ql is paired with an associated disjunctive normal
form of nonlinear constraints qn. The disjunction over all ql ∧ qn is equivalent to the input query po
and the disjunction over all ql overapproximates LINEARIZE’s input p. Each of the linear queries
ql is processed by ENUM which internally uses an off-the-shelf open-loop NNV tool to enumerate all
counterexample regions for a given query. Each counterexample region is defined through a polytope
in the input space ι ⊂ RI and an affine mapping to the output space ω ∶ RI → RO that summarizes
the NN’s local behavior in ι. The procedure FILTER then checks whether a counterexample region is
spurious using an SMT solver. This task is easier than searching nonlinear counterexamples directly
since the NN’s behavior is summarized by the affine mapping ω. Using the definitions from the
following subsections, this procedure is sound and complete (see proof on page 28):

B.1 Linearization

The procedure LINEARIZE enriches each nonlinear atom ai of an open-loop NNV query with
linear approximations. The approximations are always with respect to a value range R and we
use overapproximations ai (for any state ν with ν ⊧ ai ∧ R it holds that ν ⊧ ai) as well as
underapproximations ai (for any state ν with ν ⊧ ai ∧ R it holds that ν ⊧ ai). Essential to this
component is the idea that LINEARIZE produces an equivalent formula: Approximate atoms do not
replace, but complement the nonlinear atoms and the generation of concrete linear regions is left
to the mosaic step (see Appendix B.2). LINEARIZE is defined as follows:

Definition 5 (Linearization). LINEARIZE receives an open-loop NNV query p with nonlinear atoms
a1, . . . , ak and value rangeR s.t. p→ R is valid. It returns a query p∧⋀k

i=1 ((ai → ai) ∧ (ai → ai))
where ai ∈ FOLLR (resp. ai ∈ FOLLR) are overapproximations (resp. underapproximations) of ai
w.r.t. R.

We use an approximation procedure based on OVERT [88] while further approximating max /min
terms within OVERT. This results in a disjunction of linear constraints (see below for details). As
highlighted above, LINEARIZE produces equivalent formulas and therefore retains the relations
between linear and nonlinear atoms (see proof on page 28):

Lemma 6 (Equivalence of Linearization). Let p ∈ FOLR be some open-loop NNV query and po be
the result of LINEARIZE(p). Then p is equivalent to po.

Approximation. For concicenes we present our approximation approach for over-approximations.
Our under-approximations are computed in the same manner, however lower and upper bound
computation of terms is flipped in this case. We can approach the question of overapproximation
construction from a perspective of models: For a given formula ζ, let JζK = {ν ∈ S∣ν ⊧ ζ} be the set
of models (i.e. states satisfying ζ). We then obtain the following Lemma for the relation between
overapproximations and model sets:

Lemma 7 (Supersets are Overapproximations). Assume bounds B on all variables and a formula ζ.
Another formula ζo ∈ FOLLR is a linear overapproximation of ζ iff JB ∧ ζK ⊆ JB ∧ ζoK.

This presentation only considers the case of a polynomial constraint θ > 0. Our approximation
procedure begins by computing the relational approximation of θ using the OVERT algorithm [88].
By resolving intermediate variables introduced through OVERT, we obtain an approximation of the
form θpwl ≤ θ ≤ θpwl where both bounds are piece-wise linear functions (i.e. linear real arithmetic

with the addition of max and min operators). It then holds that JB ∧ θ > 0K ⊆
q
B ∧ θpwl > 0

y
. We

now distinguish between univariate and multivariate piece-wise linear behavior: For univariate
piece-wise linear behavior there is some variable v ∈ V(θpwl) and some coefficient c ∈ R with
terms θ1, θ2 such that

q
B ∧ θpwl > 0

y
=

q
B ∧ θ1 > 0 ∧ v > c

y
∪

q
B ∧ θ2 > 0 ∧ v ≤ c

y
. In order to

subsume piece-wise linear splits along variable v which are close to c, we construct the following
overapproximation for a small ε > 0 resulting in two normalized queries:

q
B ∧ θpwl > 0

y
⊆

q
B ∧ θ1 > 0 ∧ v > (c − ε)

y
∪

q
B ∧ θ2 > 0 ∧ v ≤ (c + ε)

y
.

For the multivariate cases we approximate the piece-wise linear behavior. In particular, we introduce
a (to the best of our knowledge) novel, closed-form upper bound for the linear approximation of max
terms:
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Lemma 8 (Upper Bound for multivariate max). Let f, g ∶ RI+O → R be two linear functions,
and let B ⊂ RI+O be a closed interval box, then: Assume xg ∶= argmaxx∈B g (x) − f (x) and
xf ∶= argmaxx∈B f (x) − g (x) where f (xf)−g (xf) and g (xg)−f (xf) are both positive. Further,
assume the following assignments with γ ∶= f (xf) − f (xg) − g (xf) + g (xg):

µ ∶= −
g (xf) − f (xf)

γ
c ∶= −

(f (xf) − g (xg)) (f (xg) − g (xg))

γ
.

In this case, it holds for all x ∈ B that: µf (x)+(1 − µ) g (x)+c ≥max (f (x) , g (x)). In particular,
it holds that

JB ∧ (max (f (x) , g (x)) > 0)K ⊆ JB ∧ ((µf (x) + (1 − µ) g (x) + c) > 0)K

Proof. At first, the choices for µ and c may seem arbitrary, however they are actually the solution of
the following set of equations:

µf (xf) + (1 − µ) g (xf) + c = f (xf)

µf (xg) + (1 − µ) g (xg) + c = g (xg)

The choice of µ and c ensures that we obtain a shifted convex mixture of the two linear functions that
matches f and g at their points of maximal deviation. We can now prove that this shifted mixture is
indeed larger than f or g at any point within B. Let us begin by proving that our bound is larger than
g for x ∈ B. In the following each formula implies the validity of the formula above:

g (x) ≤ µf (x) + (1 − µ) g (x) + c

0 ≤ µ (f (x) − g (x)) + c

0 ≤ −
1

γ
((g (xf) − f (xf)) (f (x) − g (x))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤f(xf )−g(xf ) for x∈B

+ (f (xf) − g (xg)) (f (xg) − g (xg)))

0 ≤ −
1

γ
((g (xf) − f (xf)) (f (xf) − g (xf)) + (f (xf) − g (xg)) (f (xg) − g (xg)))

0 ≤
1

γ
(f (xf) − g (xf))γ⇔ g (xf) ≤ f (xf)

g (xf) ≤ f (xf) is trivially true since xf was specifically chosen this way. We also have to prove that
our bound is bigger than f for x ∈ B:

f (x) ≤ µf (x) + (1 − µ) g (x) + c

0 ≤ (g (x) − f (x))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥g(xf )−f(xf ) for x∈B

+µ (f (x) − g (x)) + c
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥f(xf )−g(xf ) (see previous proof)

0 ≤ g (xf) − f (xf) + f (xf) − g (xf) = 0

Thus we obtain an upper bound for the function.

By applying OVERT followed by the univariate resolution and multivariate overapproximation up
to saturation, we compute an overapproximation and underapproximation for each nonlinear atom.
Subsequently, we append these new formulas to the original formula as defined in Definition 5.

Running Example. The turquoise constraints in Figure 3 visualize exemplary lin-
earized constraints. For ACC one nonlinear atom is prel −

v2
rel

2B
≥ 0. The formula

accApprox ≡ prel −
1002

2B
≥ 0 ∧ vrel > 50 ∨ vrel ≤ 50 ∧ prel −

502

2B
≥ 0 underapproximates the atom for

vrel ∈ [0,100]. We can thus append the following formula to our query: (accApprox→ prel −
v2

rel
2B
≥ 0).

For vrel ∈ [0,100] this formula is always satisfied4.

4In practice, vrel may also be negative requiring a more complex approximation.
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B.2 Input Space Mosaics

The MOSAIC procedure takes a central role in the verification of nonlinear, non-normalized open-loop
NNV queries. Classically, one uses DPLL(T) to decompose an arbitrary formula into conjunctions
then handled by a theory solver. Open-loop NNV’s crux is its use of reachability methods which
do not lend themselves well to classic DPLL(T): Its usage would result in duplicate explorations
of the same input space w.r.t. different output constraints which is inefficient. Therefore, we
generalize DPLL(T) [40] through the MOSAIC procedure. The procedure receives a quantifier-free5,
non-normalized open-loop NNV query and enumerates azulejos of the input space each with an
associated normalized linear open-loop NNV query ql (conjunction over input atoms, disjunctive
normal form over output atoms) and nonlinear atoms in disjunctive normal form qn. The input
space is thus turned into a mosaic and the disjunction over all queries is equivalent to the input
query. We can then obtain classical DPLL(T) by marking all atoms as linear input constraints. Our
implementation of MOSAIC instruments a SAT solver on the Boolean skeleton of p as well as a real
arithmetic SMT solver to restructure a formula in this way.

For a formula ζ ∈ FOLR, let sat-atoms(ζ) be the set of set of signed atoms such that for all
A ∈ sat-atoms(ζ) it holds that A only contains atoms of ζ or its negations (A ⊆ Atom(ζ) ∪
{¬b ∣ b ∈ Atom(ζ)}). Further, we require for sat-atoms(ζ) that for any state ν it holds that ν ⊧ ζ iff
there exists an A ∈ sat-atoms(ζ) such that ν ⊧ ⋀a∈A a. Note that there may exist multiple such sets
in which case we can choose an arbitrary one. For example, for ζ ≡ x > 0 ∨ ¬(y > 0) we could get
sat-atoms(ζ) = {{x > 0} ,{¬(x > 0) ,¬(y > 0)}}. For a given formula ζ, we will call Jζ the set of
input variables. We introduce the following notation for projection of sat-atoms on the set Jζ :

sat-atoms(ζ)⇂Jζ
= {{a ∣ a ∈ A ∧V(a) ⊆ Jζ} ∣ A ∈ sat-atoms(ζ)} .

For example, reconsidering the previous example with Jζ = {x} we would get sat-atoms(ζ)⇂Jζ
=

{{x > 0} ,{¬(x > 0)}}. For a given open-loop NNV query po and a given set of input variables Jpo ,
MOSAIC then initially enumerates feasible combinations of linear input atoms (the azulejos) and for
each such combination feasible combinations of mixed/output atoms are enumerated. This results in
the following set:

S1 =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

⎛
⎜
⎜
⎝
⋀
a∈i

a∈FOLLR

a

⎞
⎟
⎟
⎠

∧

⎛
⎜
⎜
⎝

⋁
o∈sat-atoms(po∧i)

⎛
⎜
⎜
⎝
⋀
b∈o

b∈FOLLR

b

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

RRRRRRRRRRRRRRRR

i ∈ sat-atoms(po)⇂Jpo

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

Finally, for each ql ∈ S1, we can generate all possible combinations of nonlinear atoms S2 =
sat-atoms(po ∧ ql) and generate their disjunction:

qn ≡ ⋁
A∈S2

⋀
a∈A

a (7)

We achieve this by enumerating all satisfying assignments for the boolean skeleton of po (i.e. the
formula where all atoms are substituted by boolean variables) using an incremental SAT solver. This
initially happens in the same manner as it is done for the classical version of DPLL(T). However,
once a model is found, we fix the assignment of linear input-only atoms and enumerate all other
satisfying assignments of linear atoms, generating the disjunctions within S1. For each conjunction we
additionally enumerate possible assignments for the nonlinear atoms. Notably, through the encoding
of LINEARIZE the procedure automatically knows which truth-combinations of a nonlinear constraint
and its approximations may appear. We additionally provide information on linear dependencies
between linear atoms to the SAT solver. All enumeration procedures are interleaved with calls to
SMT solvers for linear and polynomial real arithmetic constraints, which check whether a given
combination of constraints is indeed also satisfiable in the theory of real arithmetic (i.e. when
interpreting the atoms as real arithmetic constraints instead of as boolean variables). In order to
discard unsatisfiable solutions more quickly, we make use of unsatisfiability cores and conversely
use a cache for satisfiable assignment combinations. We exploit partial models returned by the SAT
solver to omit atoms which can (potentially) appear in both polarities for a given combination of
constraints.

5A quantifier-free p can be assumed as real arithmetic admits quantifier elimination [90]. In practice, all
queries of interest were already quantifier-free.
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We show that the decomposition is correct (i.e. the disjunction over all queries is equivalent to the
original query, see Proposition 9) and that it is minimal in the sense that the resulting azulejos do not
overlap (see Proposition 10) with proofs on pages 28 and 29:
Proposition 9 (Correctness of Mosaic). Let p be any open-loop NNV query. Let Q ⊂ FOLLR ×FOLR
be the set returned by MOSAIC(p), then the following formula is valid: p↔ (⋁(ql,qn)∈Q (ql ∧ qn))

Proposition 10 (Flatness of Mosaic). Let (i1 ∧⋁j o1,j) , (i2 ∧⋁j o2,j) be two linear queries
enumerated by MOSAIC then i1 ∧ i2 is unsatisfiable.

We could use this approach to decompose a nonlinear formula into a set of normalized linear open-
loop NNV queries without approximation. MOSAIC then soundly omits all nonlinear constraints.
However, this leads to many spurious counterexamples. Therefore, we add linear approximations
(Appendix B.1) of atoms which are then automatically part of the conjunctions returned by MOSAIC.

Running Example. In the previous section we extended our query by a linear underapproximation.
Our procedure generates an azulejo for the case where prel −

1002

2B
≥ 0∧ vrel > 50 is satisfied (implying

prel−
v2

rel
2B
≥ 0) and the case where it is not. While the linear approximation is an edge of the mosaic tile,

the original atom (the tile’s “painting” describing the precise constraint) would be part of the nonlinear
disjunctive normal form. For each azulejo, the output conjunctions of accCtrlFml are enumerated.
For OVERT’s approximation with N = 1, our implementation decomposes the ACC query into 20
normalized queries with up to 10 cases in the output constraint disjunction. Without MOSAIC each
case would be treated as a separate reachability query leading to significant duplicate work.

Relation to DPLL(T) Abstracting away the real-arithmetic, the MOSAIC algorithm generates
tuples of normalized open-loop NNV queries and disjunctive normal forms that are satisfiable w.r.t. a
theory solver T . The algorithm itself interleaves SAT-based reasoning about a boolean abstraction
(annotated with information on whether an atom is linear and/or an input constraint) and theory
solver invocations. We can now consider the case where all atoms (independent of their concrete
contents and the theory T ) are annotated as linear input constraints: In this case MOSAIC merely
returns a mosaic of this “input” space where each azulejo corresponds to a conjunction of atoms that
is satisfiable w.r.t. to the theory solver T and the disjunction over all those conjunctions is then once
again equivalent to the original formula – corresponding to DPLL(T)’s behavior.

B.3 Counterexample Generalization and Enumeration

The innermost component of our algorithm enumerates all counterexample regions (ENUM). To this
end, ENUM requires an algorithm which generalizes counterexample points returned by open-loop
NNV to regions (GENERALIZE). For each such counterexample region we can then check if there
exist concrete violations of the nonlinear constraints (FILTER). We begin by explaining GENERALIZE
which converts a counterexample point returned by open-loop NNV into a counterexample region.
The key insight for this approach is that a concrete counterexample (z0, x0) returned by an open-loop
NNV tool induces a region of points with similar behavior in the NN. A concrete input z0 induces
a fixed activation pattern for all piece-wise linear activations within the NN in a region ι around
z0. Consider the first layer’s activation function f (1): f (1) can be decomposed into linear functions
fi and so is a sum of affine transformations Aiz0 + bi which are active iff qi (z0) is true. We can
then describe f (1)’s local behavior around z0 as the linear combination of all affine transformations
active for z0. This sum is itself an affine transformation. By iterating this approach across layers, we
obtain a single affine transformation ω describing the NN’s behavior in ι. The regions returned by
GENERALIZE are then defined as follows:
Definition 11 (Counterexample Region). For a given open-loop NNV query q and piece-wise linear
NN g, let (z0, x0) ∈ RI × RO be a counterexample, i.e. x0 = g(z0) and q(z0, x0) holds. The
counterexample region for z0 is the maximal polytope ι ⊂ RI with a linear function ω s.t. z0 ∈ ι and
ω(z) = g(z) for all z ∈ ι.

Star Sets [12, 93] can compute (ι, ω) by steering the Star Set according to the activations of z0. As
the number of counterexample regions is exponentially bounded by the number of piece-wise linear
nodes, we can use GENERALIZE for exhaustive enumeration. This is only a worst-case bound due to
the NP-completeness of NN verification [58, 84]. In practice, the number of regions is much lower
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since many activation functions are linear in all considered states. While a given counterexample
region certainly has a point violating the linear query that was given to the open-loop NNV tool, it
may be the case that the counterexample is spurious, i.e. it does not violate the nonlinear constraints.
However, we can use the concise description of counterexample regions to check whether this is the
case: The function ω describes the NN’s entire behavior within ι as a single affine transformation and
is thus much better suited for SMT-based reasoning. This SMT-based check is performed by FILTER
based on the following insight:
Lemma 12 (Counterexample Filter). Let (ql, qn) be a tuple returned by MOSAIC. A coun-
terexample region (ι, ω) for ql is a counterexample region for ql ∧ qn iff the formula η ≡
(ql(z, x

+) ∧ qn(z, x
+) ∧ z ∈ ι ∧ x+ = ω(z)) is satisfiable.

See proof on page 29. The size of the formula η only depends on ql, qn, I , and O and, crucially, is
independent of the size and architecture of the NN. In practice, even x+ can be eliminated (substitute
linear terms of ω (x+)).

Based on these insights, the last required component is a mechanism for the exhaustive enumeration
of all counterexample regions (denoted as ENUM). There are two options for ENUM: Either we use
geometric path enumeration [12,93] to enumerate all counterexample regions (used for the evaluation)
or we instrument arbitrary complete off-the-shelf open-loop NNV tools for linear queries through
Algorithm 2. We define ENUM as follows:
Definition 13 (Exhaustive Counterexample Generation). An exhaustive enumeration procedure
ENUM receives a linear, normalized open-loop NNV query q and a piece-wise linear NN g and
returns a covering E of counterexample regions, i.e. E satisfies {z ∈ RI ∣ q(z, g(z))} ⊆ ⋃(ι,ω)∈E ι.

Algorithm 2: Enumeration of counterexample regions using off-the-shelf open-loop NNV tools.

Input: Query p̄, feed forward neural network (FNN) g
procedure ENUMERATE(p̄, g)

s,E ← sat,∅
while s = sat do

s, e← NNV(p̄, g) ▷ Call open-loop NNV tool
if s = sat then

ι, ω ← GENERALIZE(e, g) ▷ Generalize counterexample
E ← E ∪ {(ι, ω)} ▷ Store counterexample
p̄← p̄ ∧ ¬ι ▷ Exclude counterexample region from remaining search space

return E

C Proofs

C.1 Proofs for Section 3

This subsection proves the soundness of the approach outlined in Section 3. This result is achieved by
proving that a concrete NNCS refines [65, 79] an abstract hybrid program. The approach can either
be applied by first proving safety for a suitable dL model or by reusing results from the dL literature
(both demonstrated Section 5 and appendix E). In our proofs for Section 3 we show a slightly more
general version of the result from Theorem 2 (see Theorem 21). To this end, we formally define
a controller description as follows:
Definition 14 (Controller Description). Let αctrl be some hybrid program with free variables
FV (αctrl) = {z1, . . . , zm} and bound variables BV (αctrl) = {x1, . . . , xn}, which overlap if a
variable is both read and written to. A controller description κ ∈ FOLNR for αctrl is a formula
with free variables FV (αctrl) ∪ {x

+ ∣ x ∈ BV (αctrl)} such that the following formula is valid:
∀ z1 . . . zm ∃x+1 . . . x

+

n κ.

Based on Controller Descriptions we can then show that such controller descriptions exist for all
piece-wise Noetherian NNs:
Lemma 15 (Existence of κg). Let g ∶ RI → RO be a piece-wise Noetherian NN. There exists a
controller description κg ∈ FOLNR with input variables z1, . . . , zI and output variables x+1 , . . . , x

+

O s.t.
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(ν(x+1), . . . , ν(x
+

O)) = g(ν(z1), . . . , ν(zI)) iff ν ⊧ κg, i.e. κg’s satisfying assignments correspond
exactly to g’s in-out relation.

Proof. Previous work showed how to encode piece-wise linear NNs through real arithmetic SMT
formulas (see e.g. [36, 72]). Each output dimension of an affine transformation can be directly
encoded as a real arithmetic term. For a given output-dimension of a piece-wise Noetherian activation
function we have to encode a term ∑s

i=1 1qi(x)fi(x) with Noetherian functions fi and predicates
qi over real arithmetic with Noetherian functions. To this end, we can introduce fresh variables
v1, . . . , vs where we assert the following formula for each vi:

(qi ∧ vi = fi(x)) ∨ (¬qi ∧ vi = 0) .

The activation function’s result then is the sum ∑s
i=1 vi. By existentially quantifying all intermediate

variables of such encodings, we obtain a real arithmetic formula that only contains input and output
variables and satisfies the requirements of the Lemma.

If we assign x+1 . . . x
+

O to the values provided by g(z1, . . . , zI) for a given z1 . . . zI , the formula κg is
satisfied. Therefore, ∀z1 . . . zI∃x+1 . . . x

+

Oκg. is valid.

When replacing αctrl by an NN g, free and bound variables of αctrl must resp. match to input and
output variables of g. Based of a description κg, we then construct a hybrid program that behaves
as described by κg: We now formalize the idea of modeling a given NN g through a hybrid program
which behaves identically to g.We show that such nondeterministic mirrors exist for all piece-wise
Noetherian NN g:
Definition 16 (Nondeterministic Mirror for κg). Let αctrl be some hybrid program with bound
variables BV (αctrl) = {x1, . . . , xn}. For a controller description κg with variables matching to αctrl,
κg’s nondeterministic mirror αrefl is defined as:
αrefl(κg) ≡ (x

+

1 ∶= ∗; . . . ;x
+

n ∶= ∗; ?(κg);x1 ∶= x
+

1 ; . . . ;xn ∶= x
+

n)

Lemma 17 (Existence of αg). For any piece-wise Noetherian NN g ∶ RI → RO there exists a
nondeterministic mirror αg that behaves identically to g.
Formally, αg only has free variables z and bound variables x and for any state transition
(ν,µ) ∈ JαgK: µ (x) = g (ν (z)) (x and z vectors of dimension I and O)

Proof. Based on Lemma 15 we can construct a controller description κg ∈ FOLNR for g which we
can turn into a hybrid program through the nondeterministic mirror αrefl (κg).

Similarly to the more general notion of a controller description, Theorem 21 also permits a slightly
more general version of a state space restriction instead of an inductive invariant. Formally, this
notion is described as a state reachability formula:
Definition 18 (State Reachability Formula). A state reachability formula ζs with free variables
z1, . . . , zm is complete for the hybrid program (αctrl;αplant)

∗ with free variables z1, . . . , zm and

initial state ϕ iff the following dL formula is valid where (ζs)
z+1 ...z

+

m
z1...zm

represents ζs with z+i substituted
for zi for all 1 ≤ i ≤m:

(ϕ ∧ ⟨(αctl;αplant)
∗

⟩
m

⋀
i=1

zi = z
+

i ) → (ζs)
z+1 ...z

+

m
z1...zm

. (8)

There is usually an overlap between free and bound variables, i.e. z1, . . . , zm may contain variables
later modified by the hybrid program. Our definition requires that for any program starting in a state
satisfying ϕ, formula ζs is satisfied in all terminating states. ζs thus overapproximates the program’s
reachable states. In particular, inductive invariants (i.e. for ϕ → [α∗]ψ a formula ζ s.t. ϕ → ζ and
ζ → [α] ζ) are state reachability formulas:
Lemma 19 (Inductive Invariants are State Reachability Formulas). If ζ is an inductive invariant
of ϕ→ [(αctrl;αplant)

∗
]ψ, ζ is a state reachability formula.

Proof. We begin by recalling the requirement for ζ to be a state reachability formula:

(ϕ ∧ ⟨(αctl;αplant)
∗

⟩
m

⋀
i=1

zi = z
+

i ) → (ζs)
z+1 ...z

+

m
z1...zm

.
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Let ζ be an inductive invariant for some contract of the form given above. First, consider that for
any state satisfying the left side of the formula above it holds that there exists some k such that
ϕ ∧ ⟨(αctrl;αplant)

k
⟩⋀m

i=1 zi = z
+

i is satisfied by the same state (this follows from the semantics of

loops in dL). If we can prove that any such state also satisfies (ζs)
z+1 ,...,z

+

m
z1,...,zm

we obtain that ζ is a
state reachability formula. We proceed by induction: First, consider k = 0 in this case zi has the
same value as z+i for all i. The formula then boils down to ϕ → ζ. This formula is guaranteed
to be valid by the first requirement of inductive invariants. Next, we now assume that we already
proved that ζ holds for k loop iterations and show it for k + 1. Since we assume some state
uk+1 that satisfies ϕ ∧ ⟨(αctrl;αplant)

k+1
⟩⋀m

i=1 zi = z
+

i , there also has to be some state uk satisfying

ϕ ∧ ⟨(αctrl;αplant)
k
⟩⋀m

i=1 zi = z
+

i . However, we already know for uk that it satisfies (ζs)
z+1 ,...,z

+

m
z1,...,zm

.
Since uk+1 is reachable from uk through the execution of αctrl;αplant we know that uk+1 satisfies

(ζs)
z+1 ,...,z

+

m
z1,...,zm

(this corresponds to the property ζ → [α] ζ of inductive invariants).

As αg and g mirror each other, we can reason about them interchangeably. Our objective is now to
prove that αg is a refinement of αctrl. To this end, we use the shielding technique ModelPlex [69] to
automatically generate a correct-by-construction controller monitor ζc for αctrl. The formula ζc then
describes what behavior for αg is acceptable so that αg still represents a refinement of αctrl. As seen
in Section 3, we do not require that αg adheres to ζc on all states, but only on reachable states. For
efficiency we therefore allow limiting the analyzed state space to an inductive invariant ζs (i.e. for
ϕ→ [α∗]ψ a formula ζs s.t. ϕ→ ζs and ζs → [α] ζs). Despite the infinite-time horizon, the practical
use of our approach often faces implementations with a limited value range for inputs and outputs (e.g.,
vrel within the ego-car’s physical capabilities). Only by exploiting these ranges, is it possible to prove
safety for NNs that were only trained on a particular value range. To this end, we allow specifying
value ranges (i.e. intervals) for variables. We define the range formulaR ≡ ⋀v∈V(P )R(v) ≤ v ≤ R(v)

for lower and upper bounds R and R. Using R, we specialize a contract to the implementation
specifics by adding a range check to αplant. The safety results for the original contract can be reused:

Lemma 20 (Range Restriction). Let ϕ→ [(αctl;αplant)
∗
]ψ be a valid dL formula. Then the formula

C2 ≡ (ϕ ∧R → [(αctrl; (αplant; ?(R)))
∗
]ψ) with ranges R is valid and R is an invariant for C2.

Proof. We use the notation C1 ≡ (ϕ→ [(αctl;αplant)
∗

]ψ). We begin by showing that the validity of
C1 implies the validity of C2. Intuitively, this follows from the fact that the introduced check ?(R)
only takes away states. Let I be a loop invariant such that ϕ → I , I → ψ and I → [αctrl;αplant] I
(assumed due to the validity of C1). Then clearly, it also holds that ϕ ∧ R → I . Furthermore,
I → [αctrl;αplant; ?(R)] I can be reduced to I → [αctrl;αplant] (R → I) which we can shown through
the monotonicity rule of dL. Since we already know that I → ψ, it follows that C2 is valid, because I
is a loop invariant.

Including R into ζs allows us to exploit the range limits for the analysis of αg. Our objective is
to use open-loop NNV techniques to check whether g (and therefore αg) satisfies the specification
synthesized by ModelPlex. To this end, we use a nonlinear NN verifier to prove safety of our NNCS:

Theorem 21 (Safety Criterion). Let ζc and ζs be controller and state reachability formulas for a
valid dL contract C ≡ (ϕ→ [(αctl;αplant)

∗
]ψ). For any controller description κ, if

ζs ∧ κ→ ζc (9)

is valid, then the following dL formula is valid as well:

ϕ→ [(αrefl(κ);αplant)
∗
]ψ (10)

Proof. Assume the validity of
ζs ∧ κ→ ζc.

Let v ∈ S be some arbitrary state. We need to show that any such v satisfies Formula (10):

ϕ→ [(αrefl(κ);αplant)
∗

]ψ.
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To this end, assume v ⊧ ϕ, we prove that ψ as well as ζs is upheld after any number of loop iterations
by induction on the number n of loop iterations.

Base Case: n = 0
In this case, the only state we need to consider is v since there were no loop iterations. We know
through the validity of C that ϕ→ ψ. Thus, v ⊧ ψ. Furthermore, we recall the requirement of a state
reachability formula:

(ϕ ∧ ⟨(αctl;αplant)
∗

⟩
m

⋀
i=1

zi = z
+

i ) → (ζs)
z+1 ...z

+

m
z1...zm

.

By extending v such that all z+i have the same values as the corresponding zi, we get a state that
satisfies this formula. Consequently, v ⊧ ζs.

Inductive Case: n→ (n + 1)
In the induction case, we know that for all

(v, ṽ0) ∈
r
(αrefl(κ);αplant)

n
z

it holds that ṽ0 ⊧ ψ and ṽ0 ⊧ ζs.
We must now prove the induction property for any state reachable from ṽ0 through execution of the
program (αrefl(κ);αplant). For any ṽ1 ∈ S such that (ṽ0, ṽ1) ∈ Jx+1 ∶= ∗; . . . ;x

+

n ∶= ∗; ?(κ); K (by the
definition of κ we know that such a state exists) we know that ṽ1 ⊧ κ. According to the coincidence
lemma [69, Lemma 3], since ζs does not concern the x+ variables, it is then true that

ṽ1 ⊧ ζs ∧ κ.

Through the validity of Formula (9) assumed at the beginning, we then know that it must be the case
that ṽ1 ⊧ ζc. More specifically, this means that for any ṽ2 ∈ S with

(ṽ1, ṽ2) ∈ Jx1 ∶= x+1 ; . . . ;xn ∶= x
+

nK ;

it holds that (ṽ0, ṽ2) ⊧ ζc. By definition this implies that (ṽ0, ṽ2) ∈ JαctrlK.

In summary, this means that for any (ṽ0, ṽ2) ∈ Jαrefl(κ)K it holds that (ṽ0, ṽ2) ∈ JαctrlK.

Through the semantics of program composition in hybrid programs it follows that subsequently for
any ṽ3 ∈ S with (ṽ0, ṽ3) ∈

q
αrefl(κ);αplant

y
it holds that (ṽ0, ṽ3) ∈

q
αctrl;αplant

y
.

We also know that (v, ṽ0) ∈
r
(αctl;αplant)

∗
z

and that (ṽ0, ṽ3) ∈
q
αctrl;αplant

y
. Since this implies

(v, ṽ3) ∈
r
(αctl;αplant)

∗
z

, i.e. there is a trace of states from v to ṽ3, and since we already know that
v ⊧ ϕ, (v, ṽ3) satisfy the right side of Formula (8). Since Formula (8) must be valid we get that
ṽ3 ⊧ ζs. Consequently, we know through the validity of C that:

ṽ3 ⊧ ψ ∧ ζs.

This concludes the induction proof and thereby also the proof of Theorem 21

Definition 22 (Nonlinear Neural Network Verifier). A nonlinear neural network verifier accepts
as input a piece-wise Noetherian NN g and nonlinear open-loop NNV query p with free variables
z1, . . . , zI , x

+

1 , . . . , x
+

O. The tool must be sound, i.e. if there is a z ∈ RI satisfying p(x, g(z)) then the
tool must return sat. A tool that always returns unsat if no such z ∈ RI exists is called complete.

Lemma 23 (Soundness w.r.t Controller Descriptions). Let κg be a controller description for a
piece-wise Noetherian NN g.
Further, let C ≡ (ϕ→ [(αctl;αplant)

∗
]ψ) be a contract with controller monitor ζc ∈ FOLR and

inductive invariant ζs ∈ FOLR where the free and bound variables respectively match g’s inputs and
outputs. If a sound Nonlinear Neural Network Verifier returns unsat for the query p ≡ (ζs ∧ ¬ζc) on
g then: 1. κg ∧ ζs → ζc is valid; 2. ϕ→ [(αrefl (κg) ;αplant)

∗
]ψ is valid.
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Proof. Let all variables be defined as above. We assume that the nonlinear NN verifier did indeed
return unsat. By definition this means that there exists no z ∈ RI such that p(z, g(z)) = ⊺. Due to
the formalization of κg (see Lemma 15), this means there exists no z ∈ RI such that ζs ∧ κg ∧ ¬ζc.
Among all states consider now any state v such that v ⊭ ζs ∧ κg. In this case v ⊧ ζs ∧ κg → ζc
vacuously. Next, consider the other case, i.e. a state v such that v ⊧ ζs ∧ κg . In this case it must hold
that v ⊭ ¬ζc. So v ⊧ ζc. Therefore, v ⊧ ζs ∧ κg → ζc. This means that Formula (9) is satisfied by all
states and, therefore, valid which proves the first claim. Theorem 21 then implies the safety guarantee
stated in Formula (10) for κg which proves the second claim.

While we lay the foundation for analyses on piece-wise Noetherian NNs, a subclass is decidable:

Lemma 24 (Decidability for Polynomial Constraints). Given a piece-wise polynomial NN g, the
problem of verifying (ζs ∧ ¬ζc) ∈ FOLR for g is decidable.

Proof. The problem of verifying (ζs ∧ ¬ζc) ∈ FOLR for g is the same as proving the validity of the
formula ζs ∧ κg → ζc (see Lemma 23). For piece-wise polynomial NN this formula is in FOLR and
the validity problem is thus decidable.

Proof of 2. The formula ϕ → [(αg;αplant)
∗

]ψ is equivalent to ϕ → [(αrefl (κg) ;αplant)
∗

]ψ as αg

behaves precisely like αrefl (κg). The result immediately follows from Lemma 23

C.2 Proofs for Section 4

Proof of 3. This proof assumes the results from Appendices B.1 to B.3. We begin by proving
soundness, i.e. if Algorithm 1 returns safe, then there exists no counterexample. Consider a
counterexample region found by ENUM. Lemma 12 tells us that this counterexample can only be
concrete if formula ν is satisfied. This is the check performed by FILTER. Thus, Algorithm 1 only
skips a counterexample region if it is not concrete. Further, we know through Definition 13 that
all counterexamples are returned by the procedure for a given query ql. Further, we know that the
disjunction over all ql ∧ qn returned by MOSAIC is equivalent to its input po (Proposition 9) and thus
the disjunction over all ql is an over-approximation thereof. Finally, LINEARIZE returns a formula
po which is equivalent to the input query p (Lemma 6). Therefore, any counterexample of p must
also be a counterexample of some ql returned by MOSAIC. Consequently, we iterate over all possible
counterexamples and only discard them if they are spurious. Thus, our algorithm is sound.

We now turn to the question of completeness, i.e. we prove that any time Algorithm 1 returns unsafe
then there is indeed a concrete counterexample of p. First, remember that Lemma 6 ensures that p and
po are equivalent. Furthermore, Proposition 9 ensures that the disjunction over all ql∧qn generated by
MOSAIC is equivalent to po. Assume we found a counterexample. The algorithm will return unsafe
iff FILTER returns that the counterexample is concrete. According to Lemma 12 we know that this is
only the case if there is indeed a concrete counterexample for ql ∧ qn. Since this counterexample then
also satisfies po (see above), we only return unsafe if FILTER found a concrete counterexample for
p. As real arithmetic is decidable and all other procedures in the algorithm terminate as well, this
yields a terminating, sound and complete algorithm.

Proof of 6. Let p ∈ FOLR be some nonlinear open-loop NNV query and a1, . . . , ak be the
nonlinear atoms in p. From the definition of LINEARIZE, we know that po has the form
p ∧ ⋀k

i=1 ((ai → ai) ∧ (ai → ai)). By definition, it holds for approximations ai, ai that for any
state ν with ν ⊧ ai ∧R it also holds that ν ⊧ ai (resp. for any state ν with ν ⊧ ai ∧R it also holds
that ν ⊧ ai). Consequently, the formulas R → (ai → ai) and R → (ai → ai) are valid for all ai. Let
ν be a state such that ν ⊧ p. Then, by definition ν ⊧ R and due to the above mentioned validity it
therefore holds that ν ⊧ ai → ai and ν ⊧ ai → ai. Therefore, ν ⊧ po. Conversely, for any state with
ν ⊧ po it also holds that ν ⊧ p.

Proof of 9. We begin by considering the case where some state ν satisfies ⋁(ql,qn)∈Q ql ∧ qn. By
definition, this means that there exists some (q∗l , q

∗

n) ∈ Q such that ν ⊧ ql∧qn. Through the definition
of the set S1 in Appendix B, we know that q∗l contains a conjunction over linear input atoms i∗l . Let
o∗l ∈ sat-atoms(p ∧ i∗l ) be the set of mixed/output atoms such that ν ⊧ ⋀b∈o∗ b. Further, since ν ⊧ qn,
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we know there also exists an A∗ ∈ sat-atoms(p ∧ ql) such that ν ⊧ ⋀a∗∈A∗ a
∗. Through the definition

of sat-atoms and its projection we then know that A∗ ∪ i∗ ∪ o∗ ∈ sat-atoms(p). Consequently, it must
hold that ν ⊧ p.

Consider now the other direction where for some state ν it holds that ν ⊧ p. By definition of sat-atoms,
its projection and S1 we know that there must exist some i∗ ∈ sat-atoms(p)⇂Jp

such that ν ⊧ i∗.
Moreover, there must exist an o ∈ sat-atoms(p ∧ i∗) such that ν ⊧ ⋀b∈o∗ b. Finally, since ν ⊧ i∗ ∧ o,
there must exist an A∗ ∈ sat-atoms(p ∧ i∗ ∧ o) such that ν ⊧ ⋀a∗∈A∗ a

∗ Consequently, there exists a
(ql, qn) ∈ Q such that ν ⊧ ql ∧ qn and therefore ν ⊧ ⋁(ql,qn)∈Q ql ∧ qn.

Proof of 10. Assume there were two linear queries (i1 ∧⋁j o1,j) and (i2 ∧⋁j o2,j) such that i1 ∧ i2
had a model. By definition, each set A ∈ sat-atoms(p) must contain each atom of p or its negation.
Consider now the projection sat-atoms(p)⇂Jp

from which we obtain all is (in particular i1 and i2):
Since i1 and i2 contain the same set of atoms, it must be the case that for some atom a ∈ i1, it holds
that ¬a ∈ i2 or vice versa (otherwise, the two would be identical). Through the law of the excluded
middle, we get that a ∧ ¬a is unsatisfiable, and thus i1 ∧ i2 is unsatisfiable.

Proof of 12. Assume some (ι, ω) is indeed a counterexample region for ql ∧ qn. In this case, we
know that there is some z ∈ ι such that with x+ = g(z) we get ql(z, x+) ∧ qn(z, x+). However, by
definition of counterexample regions we also know that g(z) = ω(z). Therefore, the assignments of
z and x+ satisfy η. Next, consider the other direction. I.e. we assume we have a satisfying assignment
for η. By definition we know that for the given assignment of z it holds that x+ = g(z) = ω(z).
Therefore, z, x+ respect the neural network and satisfy ql ∧ qn, which are the two requirements for a
counterexample.

D Adaptive Cruise Control

Information on the dL model. The controller αctrl has three nondeterministic options: it can brake
with −B (no constraints), set relative acceleration to arel = 0 (constraint accCtrl0) or choose any value
in the range [−B,A] (constraint accCtrl1). The constraints for the second and third action are as
follows:

accCtrl0 ≡(2B (prel + Tvrel) > v
2
rel)

accCtrl1 ≡2B (prel + Tvrel + 0.5T 2arel) > (vrel + Tarel)
2
∧

(−vrel > Tarel ∨ 0 < vrel ∨ (v
2
rel < 2arelprel))

We can prove the safety of this control envelope for the following initial condition which is also the
loop invariant:

accInit ≡ accInv ≡ prel > 0 ∧ prel2B ≥ v
2
rel

The right-hand side of the invariant/initial condition ensures that the distance is still large enough
to avoid a collision through an emergency brake (arel = −B). Based on these foundations, the full
specification for the NN generated by VerSAILLE reads as follows:

(0 ≤ prel ∧ prel ≤ 100 ∧ −200 ≤ vrel ∧ vrel ≤ 200 ∧

−B ≤ a+rel ∧ a
+

rel ≤ A ∧

prel > 0 ∧ prel ≥ v
2
rel/(2 ∗B)) →

(a+rel ≥ A = vrel ∨

a+rel ≥ −B ∧ a+rel < A ∧ a+rel ≠ 0 ∧

((−vrel/a
+

rel > T ∨ −vrel < 0) ∧

prel + vrel ∗ T + a+rel ∗ T
2/2 > (vrel + a

+

rel ∗ T )
2/(2 ∗B) ∨

prel + vrel ∗ T + a+rel ∗ T
2/2 > (vrel + a

+

rel ∗ T )
2/(2 ∗B) ∧

prel ∗ a
+

rel − v
2
rel + v

2
rel/2 > 0) ∨

prel + vrel ∗ T > v
2
rel/(2 ∗B) ∧ a

+

rel = 0)
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For our verification, we set T = 0.1 (note that this is a bound on the frequency of control decisions,
not a time horizon) and A = B = 100.

E Extended Evaluation

We implemented our procedure in a new tool6 called N3V. Due to the widespread use of ReLU
NNs, N3V focuses on the verification of generic open-loop NNV queries for such NNs, but could be
extended in future work. Our tool is implemented in Julia [16] using nnenum [10, 12] for open-loop
NNV, PicoSAT [17, 19] and Z3 [32, 52]. Our evaluation aimed at answering the following questions:

Q1 Can N3V verify infinite-time horizon safety or exhaustively enumerate counterexample
regions for a given NNCS?

Q2 Does our approach advance the State-of-the-Art?

Q3 Does our approach scale to complex real-world scenarios such as ACAS X?

The case studies comprised continuous and discrete control outputs. (Q3) is answered in the paper’s
main evaluation (see Section 5; the remaining questions are discussed below. Times are wall-clock
times on a 16 core AMD Ryzen 7 PRO 5850U CPU (N3V itself is sequential while nnenum uses
multithreading).

E.1 Verification of Adaptive Cruise Control

We applied our approach to the previously outlined running example. To this end, we trained two NNs
using PPO [82]: ACC contains 2 layers with 64 ReLU nodes each while ACC Large contains 4 layers
with 64 ReLU nodes each. Our approach only analyzes the hybrid system once and reuses the formu-
las for all future verification tasks (e.g. after retraining). We analyzed both NNs and a third one (see be-
low for details) using N3V for coarser and tighter approximation settings (using OVERT’s settingN ∈
{1,2,3}) on the value range (prel, vrel) ∈ [0,100]×[−200,200]. The analyses took 47 to 300 seconds
depending on the NN and approximation. The runtimes show mixed results for tighter approximations:
While tighter approximations (i.e. a higherN ) sometimes improves performance (e.g. for ACC Large
retrained), it can also harm performance (e.g. as seen for ACC Large). We suspect that this is a combi-
nation of two factors. First, finer approximations yield a larger number of queries which may increase
the overall overhead. Secondly, our adjustments to OVERT’s approximation using approximation of
piece-wise linearities (see Appendix B.1) may in some cases worsen the approximation in comparison
to a lower N . We leave a more fine-grained analysis of approximation techniques to future work and
focus our analysis on approximations with N = 1. Across all NNs we find that approximation helps:
The first row shows performance when omitting the approximated constraints in the open-loop NNV
query and uniformly performs worse than an N = 1 approximation. N3V finds the NN ACC Large to
be unsafe and provides an exhaustive characterization of all input space regions with unsafe actions.

Information on the counterexamples found for ACC Large. Figure 6 shows the input state where
the x-axis represents possible values for prel and the y-axis represents possible values for vrel. The
orange line represents the edge of the safe state space, i.e. all values below the orange line are outside
the reachable state space of the contract. The red areas represent all parts of the state space where
N3V found concrete counterexamples for the checked controller monitor formula. Furthermore, the
plot contains two lines representing the system’s evolution over time when started at certain initial
states. In particular, we observe one trajectory leading to a crash due to an erroneous decision in
the red area around prel = 5, vrel = −25. This concrete counterexample was found by sampling initial
states from the regions provided by N3V.

Information on runtimes. The runtimes can be seen in Table 5 where #Filtered corresponds to
the number of counterexample regions that were found to be spurious for ACC Large. Comparing
linear and N = 1 performance we see that approximation especially helps for larger NNs (ACC
vs ACC Large). This is the case because the overapproximate constraints can filter out numerous
counterexample regions, which would otherwise have to be processed by the FILTER procedure. This
effect is less significant for smaller networks where the time for overapproximation construction

6See https://github.com/samysweb/NCubeV or [91]
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Figure 6: This plot shows the (input) state space for the ACC Large NNCS: The orange line represents
the boundary of the safe state space; the red areas indicate regions with counterexamples; the purple
and green lines show potential trajectories of the system (dots represent discrete controller decisions).

Approx. ACC ACC Large ACC Large retrained #Filtered
linear 65s 228s 277s 5658
N = 1 47s 87s 124s 1889
N = 2 53s 300s 70s 5604
N = 3 92s 139s 102s 1306

Table 5: Runtime of N3V on the ACC networks per approximation. Final column lists filtered
counterexamples for ACC Large

takes longer in comparison to the NN analysis time and less counterexamples are generated due to
the lower number of ReLU nodes.

Further Training. Approx. 3% of ACC Large’s inputs resulted in unsafe actions which demon-
strably resulted in car crashes. We performed a second training round on ACC Large where we
initialized the system within the counterexample regions for a boosted p ≈ 13% of all runs (choosing
the best-performing p). By iterating this approach twice, we obtained an NN which was safe except
for very small relative distances (for (prel, vrel) ∈ [0,0.08] × [−2,0.1]). N3V certifies the safety
outside this remaining region (see column ACC Large retrained) which can be safeguarded using an
emergency braking backup controller. Notably, this an a priori guarantee is for an arbitrarily long trip.

Results on Q1. Our tool N3V is capable of verifying and refuting infinite-time horizon safety for a
given dL contract. The support for exhaustively enumerating counterexamples can help in guiding
the development of safer NNCSs.

E.2 Comparison to Other Techniques

Although Closed-loop NNV tools focus on finite-time horizons, we did compare our approach with
the tools from ARCH Comp 2022 [66] (a superset of ARCH Comp 2023 [67]) on ACC. We began
by evaluating safety certification on a small subset of the input space of ACC Large (0.009% of the
states verified by N3V) for multiple configurations of each tool (see Table 6). Only NNV was capable
of showing safety for 0.1 seconds (vs. time unbounded safety) while taking vastly longer for the
tiny fraction of the state space.

Comparison to NNV. We performed a more extensive comparison to NNV by attempting to prove with
NNV that the NNCS has no trajectories leading from within to outside the loop invariant. This would
witness infinite-time safety. Due to a lack of support for nonlinear constraints, we approximate the
regions. Over-approximating the invariant as an input region trivially produces unsafe trajectories, thus
we can only under-approximate. Notably, this immediately upends any soundness or completeness
guarantees (it does not consider all possible NN inputs nor all allowed actions). We apply an
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Tool Nonlinearities Evaluated Time (s) Share of Result
Configurations State Space

NNV [93, 94, 97] no 4 711 0.009% safe for 0.1s
JuliaReach [18, 85] no 4 — 0.009% unknown
CORA [7] yes 10 — 0.009% unknown
POLAR [46] poly. Zono. 12 — 0.009% unknown
N3V polynomial 1 124 100.000% safe for ∞

Table 6: Comparison of verification tools for NNCSs on the ACC Benchmark: Share of state space
analyzed and best results of each tool.

interval-based approximation scheme similar to OVERT (detailed in the subsequent paragraph). This
scheme is parameterized by prel’s step size (σ), vrel’s distance to the invariant (ε) and the step size for
approximating the unsafe set (ρ). The right configuration of (σ, ε, ρ) is highly influential, but equally
unclear. For example, with σ = 0.25, ϵ = 5 and ρ = 1 we can “verify” not only the retrained ACC Large
NN for 2 ≤ prel ≤ 3, but also the original, unsafe ACC Large despite concrete counterexamples. This
is a consequence of a coarse approximation, but also a symptom of a larger problem: Neither over-
nor under-approximation yields useful results. In particular, discarding inputs close to the invariant’s
edge equally removes states most prone to unsafe behavior (see Figure 6 in Appendix E.1).

Approximation Scheme employed for NNV. We consider input space stripes of width σ > 0,
i.e. (prel, vrel) ∈ [p0, p0 + σ] × [−

√
2Aprel + ϵ,

TB
2
] (vrel is bounded through the minimally allowed

velocity and the maximal velocity that can still decrease prel). While σ determines the granularity
of the under-approximation of NN inputs, ϵ > 0 discards velocities too close to the loop invariant
which cannot be proven using an underapproximation and must be non-zero to prove any system.
For each stripe we compute the smallest reachable position p∗ and compute a piece-wise linear
overapproximation of the negated loop invariant prel < v

2
rel/ (2A) on the interval [p∗, p0] using

an approach conceptually similar to OVERT [88]. We determine the number of pieces through a
step size ρ > 0, i.e. the interval [p∗, p∗ + ρ] will have a different line segment than the interval
[p∗ + ρ, p∗ + 2ρ]. As the negation of the loop invariant (the orange line in Figure 6) is non-convex,
we integrated an iterative check for disjunctions of unsafe sets into the verification procedure of NNV.

Comparison with DNNV (Table 7) As DNNV [87] does not support nonlinear properties, a direct
comparison to the tool is impossible. However, we improve upon one important feature implemented
in DNNV, namely query normalization. By exporting the boolean skeleton generated by MOSAIC,
we can use projected model counting [86] to estimate the number of propositionally satisfiable
conjunctions over linear constraints. Although the rule based normalization performed by DNNV
may produce fewer formulas (this depends on the formula structure and implementation details of
the rewriting system), this count provides an upper bound on the number of conjunctions that can be
generated for a formula. Without MOSAIC, a rewriting system would first generate a large disjunctive
normal form (with at most #Conjunction many elements), then check the feasibility of generated
conjunctions and hand feasible conjunctions to an open-loop NNV tool. As indicated by Table 7, such
an approach can lead to the number of conjunctions reaching into the trillions which becomes entirely
intractable in practice. As can be seen in Table 7, our tool (# Queries) only produces a fraction of the
propositionally satisfiable conjunctions (# Conjunctions) and also significantly reduces the number
of open-loop NNV queries in comparison to an approach that splits up disjunctions (# Feasible
Conjunctions). Note, that DNNV is also required to check generated conjunctions for feasibility,
thus, our approach is also efficient in this regard by requiring a comparatively low number of SMT
calls. Given the feasiblity of 39 trillion conjunctions, one may wonder whether the propositional
structure encoded in the boolean skeleton is of use at all. In this instance, we consider conjunctions
over 110 distinct atoms. Indeed, the propositional structure adds value: Without it, we would obtain
2110 ≈ 1033 possible conjunctions, i.e. based on the propositional structure we only consider a
fraction of approx. 10−19 of all possible combinations. MOSAIC further reduces this fraction to a
degree that is manageable via open-loop NNV.

Comparison with SMT solvers (Table 8) An alternative approach for the verification of non-linear
open-loop NNV queries could be encoding the problem using an off-the-shelf SMT solver. In this
case, the SMT solver has to check the satisfiability of the nonlinear Formula (9). We can instrument
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Property # Conjunctions # Queries # Feasible Conjunctions # SMT calls
ACC 2.4k 20 86 261
ACC (Fallback) 5.1k 15 72 235
ACAS (DNC) 117.5M 1.7k 9.9k 11.4k
ACAS (DND) 88.9M 1.8k 10.4k 12.0k
ACAS (DES1500) 451.3B 12.5k 58.8k 66.4k
ACAS (CLI1500) 374.4B 13.1k 62.5k 70.4k
ACAS (SDES1500) 9.1T 18.6k 64.1k 75.8k
ACAS (SCLI1500) 18.2T 21.8k 76.0k 88.5k
ACAS (SDES2500) 39.0T 19.0k 66.7k 78.5k
ACAS (SCLI2500) 19.4T 18.6k 67.7k 79.8k

Table 7: Comparison of feasible conjunctions/queries for non-normalized open-loop NNV queries for
an approximation withN = 1: #Conjunctions is the number of propositionally satisfiable conjunctions
over linear constraints, # Queries is the number of open-loop NNV queries generated by N3V, #
Feasible Conjunctions is the number of open-loop NNV queries when splitting up disjunctions, #
SMT calls is the number of feasibility checks performed by N3V’s MOSAIC implementation during
query generation.

Tool ACC Large ACC Large retrained
Status Time Status Time

Mathematica MO — MO —
dReal TO — TO —

Z3 unknown 510s unknown 1793s
Z3++ unknown 2550s unknown 2269s
cvc5 TO — TO —

MathSAT TO — TO —
N3V sat 87s unsat 124s

Table 8: Comparison of N3V with State-of-the-Art SMT solvers: Timeout (TO) was set to 12 hours

the Lantern package [42] to encode the NN into a SMT formula. Thus, we performed a comparison
on the ACC Large NN as well as the retrained ACC Large NN, i.e. on a satisfiable as well as a
non-satisfiable instance. We compared our approach to dReal [41], Mathematica [96], Z3 [32],
MathSAT [27] (due to its use of incremental linearization) as well as the first and second place of
SMT-Comp 2023 in the QF NRA track: Z3++ [24] and cvc5 [14]. The results of our comparison can
be observed in Table 8. The observed timeouts after 12 hours are unsurprising insofar as the work
on linear open-loop NNV techniques was partially motivated by the observation that classical SMT
solvers struggle with the verification of NNs.

Comparison to the techniques by Genin et al. [42] While the work by Genin et al. [42] represents a
case-study with techniques specifically applied to an NN for a simplified airborne collision avoidance
setting, some ideas from the example in [42] might in principle generalize to other case studies.
Unfortunately, the case-study considered by [42] are not the NNs from Julian et al. [53, 55], but
simplified NNs with a single acceleration control output. As the authors did not publish their
trained NNs, their exact verification formulas, or their verification runtimes, we instead compare
our approach with this line of work on our ACC benchmark. To this end, we approximate the
verification property derived in Appendix E.1 using the box approximation techniques described
by the authors and use their Lantern Python package to translate the verification tasks into linear
arithmetic SMT problems. Using Z3, their technique does not terminate within more than 50 hours
on the (unsafe) ACC Large network and thus fails to analyze the NN. This demonstrates significant
scalability limitations compared to our approach. Moreover, it is worth pointing out that the authors
themselves acknowledge that the technique is incomplete which distinguishes our complete lifting
procedure from their approach.

Results on Q2. If closed-loop NNV is a hammer then guaranteeing infinite-time safety is a screw:
It is a categorically different problem requiring a different tool. N3V provides safety guarantees
which go infinitely beyond the guarantees achievable with State-of-the-Art techniques (closed-loop
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NNV or otherwise). A direct CAD/SMT encoding of Formula (9) as well as the techniques by Genin
et al. [42] are no alternatives due to timeouts (>12h) or “unknown” results (see also Table 8).

E.3 Zeppelin Steering

As a further case study, we considered the task of steering a Zeppelin under uncertainty: The
model’s goal was to learn avoiding obstacles while flying in a wind field with nondeterministic wind
turbulences. This problem has previously been studied with differential hybrid games [77]. The
examined scenario serves two purposes: On the one hand, it shows that our approach can reuse safety
results from the dL literature which drastically increases its applicability; on the other hand it is a
good illustration for why verification (rather than empirical evidence) is so important when deploying
NNs in safety-critical fields.

After transferring the differential hybrid games logic contract into a differential dynamic logic
contract and proving its safety, we trained a model to avoid obstacles while flying in a wind field with
uniformly random turbulences via PPO. After 1.4 million training steps, we obtained an agent that
did not crash for an evaluation run of 30,000 time steps. Given these promising results we proceeded
to verify the agent’s policy assuming a safe – or at least “almost safe” – flight strategy had been
learnt. However, upon verifying the NN’s behavior for obstacles of circumfence 40, we found that it
produced potentially unsafe actions for large parts of the input space. The reason this unsafety was
not observable during empirical evaluation was the choice of uniformly random wind turbulences:
The unsafe behavior only appears for specific sequences of turbulences which occur extremely rarely
in the empirical setting. This flaw in the training methodology was only found due to the verification.
This is where our approach differs from simulation-based evaluation: With an SMT filter timeout
of 4 seconds, N3V provides an exhaustive characterization of all potentially unsafe regions in 4.1
hours while providing 72 concrete counterexample regions. This is where our approach differs
from simulation-based evaluation, as we were able to generate an exhaustive characterization of
counterexample regions. In this instance, the tool’s bootlenecks were approximation construction and
the SMT based counterexample finding. This case study and the stark difference between simulation
and verification underscore the importance of rigorous verification of NNs as an addition to empirical
evidence in safety-critical areas.

F Allowed advisories for Vertical Airborne Collision Avoidance

Table 9 provides an overview of possible advisories for a Vertical Airborne Collision Avoidance
System. The allowed range of vertical velocity and the required minimal acceleration are integrated
into the dL model used by VerSAILLE.

Advisory Description Vertical Velocity Min. Acceleration
[ft/min]

COC Clear of conflict — —
DNC Do not climb [−∞,0] g/4
DND Do not descend [0,∞] g/4
DES1500 Descend at least 1500 ft/min [−∞,−1500] g/4
CL1500 Climb at least 1500 ft/min [1500,∞] g/4
SDES1500 Strengthen descent to at least 1500 ft/min [−∞,−1500] g/3
SCL1500 Strengthen climb to at least 1500 ft/min [1500,∞] g/3
SDES2500 Strengthen descent to at least 2500 ft/min [−∞,−2500] g/3
SCL2500 Strengthen climb to at least 2500 ft/min [2500,∞] g/3

Table 9: Overview on Vertical Airborne Collision Advisories (simplified version of [50, Table 1])

G NMACs produced by NN-based ACAS X advisories

Further counterexamples for the advisories of the NNCS can be found in Figures 7 to 11.

Counterexamples to the safety of NNCS advisories for non-level flight of the intruder in the case of
a previous advisory Do Not Climb and Do Not Descend can be found in Figures 12 and 13. Note,
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Figure 7: After a previous advisory to descend at least 1500ft/min, the NN advises the pilot to
strengthen climb to at least 1500ft/min leading to a NMAC.

Figure 8: After a previous advisory to strengthen descent to at least 1500ft/min, the NN advises the
pilot to strengthen climb to at least 1500ft/min leading to a NMAC.

Figure 9: After a previous advisory to strengthen climb to at least 1500ft/min, the NN advises the
pilot to strengthen descent to at least 2500ft/min leading to a NMAC.

that for non-level flight (i.e. both intruder and ownship have a non-zero vertical velocity), there exist
two possible interpretations for the advised vertical velocities. These can be interpreted as absolute
or relative velocity. For our counterexamples in Figures 12 and 13 we opt for the relative velocity
interpretation. This does not affect the analysis for level flight intruders where the interpretations
coincide.
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Figure 10: After a previous advisory to strengthen descent to at least 2500ft/min, the NN advises the
pilot to strengthen descent to at least 2500ft/min leading to a NMAC.

Figure 11: After a previous advisory to strengthen climb to at least 2500ft/min, the NN advises the
pilot to strengthen descent to at least 1500ft/min leading to a NMAC.

Figure 12: After a previous advisory to not climb, the NN advises the pilot to climb with at least
1500ft/min leading to a NMAC (assumes relative velocity interpretation).

Figure 13: After a previous advisory to not descend, the NN advises the pilot to descend with at least
1500ft/min leading to a NMAC (assumes relative velocity interpretation).

36



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the introduction are supported by the theorems (with
proofs), algorithms and evaluations in Sections 3 to 5 (and its appendices).

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The assumptions made by our theoretical results (in particular in Section 3) are
explicitly stated and the exponential worst-case runtime of Mosaic is discussed in Section 4.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All formal statements and proofs can be found in Appendix C and are refer-
enced accordingly in the main paper.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide an artifact for the N3V tool which comprises all bench-
marks mentioned in the paper. The artifact is equipped with scripts for building the
tool (./build.sh <julia 1.10 path>), running an example (./run example.sh;
runs approx. 130 seconds) or running all N3V benchmarks (./run experiments.sh;
logs will be saved in ./experiments/<benchmark class>/<benchmark>). For trace-
ability, the benchmark logs are part of the artifact (will be overwritten by rerunning
benchmarks). For the comparisons to other tools in Appendix E.2, we provide logs
and documentation of the evaluated configurations (see ./experiments/comparison
and ./experiments/dnnv comp). For all benchmarks, the underlying dL models are
provided (./experiments/<benchmark class>/<benchmark>/keymaerax). Where
NNs were trained, we also provide the Jupyter notebooks used for training as-is
(./experiments/<benchmark class>/<benchmark>/training).

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All code and data can be found on GitHub: https://github.com/
samysweb/NCubeV. We also provide an archived version of our artifact with DOI [91].

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide details on the machine used for evaluation; all other details are
described in the paper and found in the artifact.

7. Experiment Statistical Significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We did not have the computational resources to run the experiments multiple
times (this is in particular the case for long-running experiments). More importantly,
our results show fundamental, categorical differences between the tools: We repeatedly
demonstrate that our tool addresses problems that all other techniques fail to address within
a very generous timeout. Thus, a statistical significance test would not be useful in this
matter as the results are binary (solves the problem vs. does not solve the problem).

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All experiments ran on the same machine (see Section 5)

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The core contribution of our research is a methodology to make NNCS safer.
Making NNCS safer can have very positive societal impacts by increasing (warranted) trust
in infrastructure and preventing catastrophic failures. We do not see potential issues in any
other category mentioned by the NeurIPS Code of Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: We see our work as foundational research that could be applied in numerous
settings to guarantee safety of NNCS. We see no potential for negative societal impacts
directly stemming from this work. Conversely, making NNCS safer can have very positive
societal impacts by increasing (warranted) trust in infrastructure and preventing catastrophic
failures.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our contribution does not contain any high-risk datasets or models.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Evaluated models from the literature are appropriately cited.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code of our tool N3V will be released as open-source with the paper – this
includes instructions for verifying models with the tool.
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14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects.
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