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Abstract

Understanding how knowledge is distributed across the layers of generative models
is crucial for improving interpretability, controllability, and adaptation. While prior
work has explored knowledge localization in UNet-based architectures, Diffusion
Transformer (DiT)-based models remain underexplored in this context. In this
paper, we propose a model- and knowledge-agnostic method to localize where
specific types of knowledge are encoded within the DiT blocks. We evaluate our
method on state-of-the-art DiT-based models, including PixArt-o, FLUX, and
SANA, across six diverse knowledge categories. We show that the identified
blocks are both interpretable and causally linked to the expression of knowledge in
generated outputs. Building on these insights, we apply our localization framework
to two key applications: model personalization and knowledge unlearning. In
both settings, our localized fine-tuning approach enables efficient and targeted
updates, reducing computational cost, improving task-specific performance, and
better preserving general model behavior with minimal interference to unrelated
or surrounding content. Overall, our findings offer new insights into the internal
structure of DiTs and introduce a practical pathway for more interpretable, efficient,
and controllable model editing.

1 Introduction

Diffusion and flow models [14} 26} 22, {13} [17, |8, [19] have rapidly become the leading paradigm for
a wide range of generative tasks, particularly text-to-image (T2I) synthesis. With access to such
powerful pretrained models, it is crucial to explore their potential for applications beyond mere
generation. A growing body of work [[L1} 32} |16} 37 has focused on localizing different types of
knowledge and capabilities within these models, enabling more targeted usage. For example, [[L1]
showed that cross-attention layers are key to incorporating prompt compositional information, while
[32,120] demonstrated that structural information is often concentrated in the self-attention modules
of UNet-based architectures. These insights have been applied to tasks such as image editing and
structure-preserving generation [[L1, 4} 20].

Localizing where specific knowledge resides within models is essential for interpretability, targeted
interventions, and understanding model behavior. In generative models, it plays a critical role in
applications such as model unlearning and personalization. Several works [16} 29,9, 36] have shown
that generative models often memorize unsafe or unwanted content (e.g., copyrighted or NSFW
content) and proposed methods to selectively erase such concepts. In model personalization, the goal
is to generate novel renditions of a subject using only a few reference photos across diverse scenes
and poses. In both cases, localizing knowledge within the model is crucial for enabling targeted
interventions that make fine-tuning more efficient and effective, while better preserving the model’s
prior capabilities and overall generation quality.
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Figure 1: Localization across various DiT models and knowledge categories. For each model,
heatmaps indicate the frequency of each block being selected as a dominant carrier of different
target knowledge. Green-bordered images are standard generations, while red-bordered images result
from withholding knowledge-specific information in the localized blocks. Our method successfully
localizes diverse knowledge types, with variation in localization patterns across models.

Recent advances in text-to-image generation have marked a notable evolution, transitioning from
UNet-based architectures to Transformer-based models [33]], particularly the Diffusion Trans-
former (DiT) [23]. DiT architectures, with their purely attention-based structure, have achieved
state-of-the-art generation quality compared to UNet counterparts. While extensive research has ex-
plored interpretability and localization in UNet-based architectures, DiT-based models have received
comparatively little attention in this regard despite their recent emergence and strong performance.

In this paper, we thoroughly investigate the localization of different types of knowledge within the
blocks of diffusion transformers across a range of state-of-the-art models, including FLUX [17],
SANA [33]], and PixArt-« [3]. We introduce a model-agnostic and knowledge-agnostic method
that provides a strong and reliable signal for identifying the blocks most responsible for generating
specific types of knowledge. Our approach demonstrates strong performance and robustness across
all evaluated models and a diverse set of knowledge categories, such as copyrighted content, NSFW
material, and artistic styles (Figure[T). While the distribution of localized blocks varies from model to
model, our method consistently identifies the key regions responsible for encoding each knowledge.

Building upon our knowledge localization technique, we further propose practical applications of
our method for model personalization and unlearning in DiTs (Figure [2). Whether the objective
is to inject new knowledge or remove undesired content, our approach first localizes the relevant
information within the blocks of the DiT and then enables targeted interventions to modify it. Through
extensive experiments, we demonstrate that our method outperforms baseline approaches that modify
all blocks, achieving superior preservation of generation quality and consistency on unrelated and
surrounding prompts. Notably, in the personalization setting, our method achieves improved task-
specific performance compared to full-model fine-tuning, while also minimizing interference with
surrounding knowledge. Additionally, our method is more efficient, offering faster training and lower
memory usage compared to these baselines.

In summary, our contributions are: (1) We are the first to explore knowledge localization in DiTs by
introducing a large-scale probing dataset covering diverse categories, and by proposing an automatic,
model- and knowledge-agnostic method for identifying where such information resides within the
model’s blocks. (2) We conduct extensive evaluations across multiple DiT architectures and diverse
knowledge types to validate the generality and robustness of our approach. (3) Building on this
localization, we demonstrate practical applications for efficient model personalization and unlearning.
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Figure 2: Targeted fine-tuning via knowledge localization. Given a concept to personalize or
remove, our method first identifies the most relevant blocks via knowledge localization and restricts
fine-tuning to those blocks. This enables efficient adaptation (top) and targeted suppression (bottom)
with minimal impact on surrounding content, while better preserving the model’s prior performance.

Our method enables targeted fine-tuning that is faster and more memory-efficient, while also achieving
superior preservation of generation quality and consistency on unrelated or surrounding prompts.

2 Related Works

2.1 Diffusion and Flow Models

Diffusion models are a class of generative models based on stochastic differential equations (SDEs),
where noise is progressively added to data through a stochastic forward process, ultimately transform-
ing the data distribution into a standard Gaussian. A corresponding reverse process is then learned to
reconstruct the original data from noise. Flow matching methods, closely related to diffusion models,
instead define a deterministic mapping from noise to data using an ordinary differential equation
(ODE). These methods learn a time-dependent vector field vg(x, t) that is trained to approximate a
target field v;(x), which directs samples from the noise distribution toward the data distribution, by
minimizing a flow matching loss. See Appendix [AT|for further details.

2.2 Interpretability of Diffusion Transformers

The internal mechanisms of text-to-image diffusion models have been primarily explored in the
context of UNet-based models [3 2, 37]. These studies reveal that knowledge of various visual
concepts—such as artistic style—is either localized or distributed across a small subset of layers
within the UNet architecture. Beyond offering interpretability, these localization insights have been
leveraged to address practical challenges, including the removal of copyrighted content, without
the need for full model retraining. With the recent shift toward transformer-based models such as
Flux and PixArt-« [5]], understanding how and where concepts are encoded in these new models
has become an emerging area of interest. Recent work has begun to uncover the interpretability of
diffusion transformers. For instance, [10] show that attention maps in models like Flux can act as
high-quality saliency maps, while [1]] identify a subset of critical layers that are particularly effective
for downstream tasks such as image editing. However, it remains unclear how knowledge of visual
concepts—such as copyrighted objects, artistic styles, or safety-related content—is represented and
localized within diffusion transformers. Gaining such insights could enable targeted removal of
undesirable content and enhance model personalization for various downstream applications.

3 Localizing Knowledge in Diffusion Transformers

3.1 Probe Dataset Description

To systematically evaluate the generalizability and robustness of our localization method, we first
introduce a new dataset called LOCK (Localization of ICnowledge) designed around six distinct
categories of knowledge and concepts: artistic styles (e.g., “style of Van Gogh”), celebrities (e.g.,
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“Albert Einstein”), sensitive or safety-related content (e.g., “a naked woman”, “a dead body covered



in blood”), copyrighted characters (e.g., “the Batman”), famous landmarks (e.g., “the Eiffel Tower”),
and animals (e.g., “a black panther”). These categories are selected to cover a diverse range of visual
and semantic information, while also being representative of key use cases in model unlearning (e.g.,
removing copyrighted or harmful content) and personalization (e.g., adding user-specific characters or
styles). Compared to prior datasets used in localization and model editing literature, our probing set
is significantly larger in both scale and semantic diversity, enabling a more comprehensive evaluation.

For each target knowledge , we construct a set of knowledge-specific prompts {p}, p5,...,p% },
designed to capture that knowledge in diverse contexts. For example, for k =“the Batman”, a
prompt pZ could be “the Batman walking through a desert”. To isolate the contribution of the target
knowledge r in each prompt p, we also define knowledge-agnostic prompts (denoted as pfeural)
for every knowledge-specific prompt p%, where p£™U is derived from pf by replacing the target
knowledge with a semantically related but generic placeholder (e.g., “a character walking through
a desert”). These paired prompt sets allow us to perform controlled interventions for evaluating
knowledge localization and editing behavior in subsequent sections. For more details on the dataset
construction, statistics, and representative prompt examples, please refer to Appendix [B.1]

3.2 Localization Method

Our goal is to identify which layers within a DiT-based text-to-image model are responsible for
encoding specific semantic knowledge. Specifically, given a prompt p¥ (e.g., “Albert Einstein walking
in the street”), where k denotes the target knowledge (i.e., “Albert Einstein”), we aim to pinpoint
which blocks in the model are primarily responsible for representing . By localizing the internal
representation of such knowledge, we can better understand how knowledge is distributed across the
model’s architecture and enable targeted interventions such as editing, personalization, or unlearning.

We leverage attention contribution [[1, |6, 38]] to identify the layers responsible for generating specific
content in the image. At a given layer, the attention contribution of a text token to image tokens
quantifies how much that token influences the embeddings of the image tokens. We localize the
layers where a text token exhibits higher attention contribution, interpreting them as the stages where
the corresponding style, object, or pattern is synthesized. We adopt attention contribution as our
localization signal because it offers an intuitive and principled way to trace how textual information
propagates through the model and influences the generated image. Moreover, it can be universally
applied across a wide range of DiTs, as it builds on the shared mechanism of attention computation.

More formally, consider layer ¢ of a diffusion transformer with L layers equipped with a multi-
head cross—attentiorﬂ mechanism comprising H heads. For each head h € [H], let the query, key,
value, and output projection matrices be denoted by W;, W,f, W, and W), respectively. Let
X1, X2, ..., X7 represent the token embeddings of the input prompt, and y1,y2, ...,y denote the
token embeddings of the image tokens at layer £. For head h, let the projection of the text token x;

onto the key and value matrices be denoted by k;-l and v;-", respectively, and let the projection of the

image token y; onto the query matrix be denoted by q”*. Then, the attention contribution of text token
x; to image token y;, aggregated over all heads, can be expressed as:

H
cont; ; = E attn”? j V;-l whil -,
h=1 2

where atth ; 1s the attention weight between image token y; and text token x;, computed as:

b "
attn’; = SOFTMAX {M} ,
’ \% dh r=1 j

where dj, is the head dimensionality, and the softmax is taken over all text tokens for a fixed image
token y;. To compute the overall contribution of a text token x;, we average over all image tokens.
Finally, for tokens of interest {x;,,X;,,...,X;, } corresponding to the target knowledge « in the
prompt p¥, we compute their attention contribution across all layers ¢ € [L], and identify the layers

2shared attention mechanism in the case of MMDIiTs
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Figure 3: Overview of our knowledge localization method. We first generate images from prompts
{pf} containing target knowledge «, and compute token-level attention contributions across layers.
Aggregated scores identify the top-K blocks B} most responsible for encoding ~. Replacing their
inputs with knowledge-agnostic prompts {pf "} suppresses the knowledge in the output.

with the highest aggregated contribution as those most responsible for generating the corresponding
style, object, or pattern in the imageﬂ

Figure [3] illustrates the overall pipeline of our knowledge localization method. Given a target
knowledge x, we first construct a set of prompts {p¥, p5, ..., p’% } that contain the knowledge, either
manually or using an LLM. Using the DiT model, we generate images and compute the attention
contribution of the tokens {x;,,X;,,...,X;.} corresponding to x in each prompt pf at each layer
(step 1 in Figure[3)). These values are averaged across seeds and prompts to obtain a per-layer score
indicating how much each block contributes to injecting the knowledge into the image (step 2 in
Figure E[) We then select the top-K most dominant blocks (B%) as the most informative.

To verify the role of the localized blocks 5%, we generate images using the original
prompts {p§,p5,...,p%}, but replace the inputs to the B% with knowledge-agnostic prompts
{pfrneutral | py-neutral © - pyreonentrall fwhich omit the knowledge (step 3 in Figure . In models like
PixArt-c, this is done by swapping the cross-attention input, and for MMDiT-based models like
FLUX, which use a separate prompt branch, we perform two passes, one with {pf} and one with

{pf‘“e“m‘l}, and overwrite the text branch input in the 5% of the first pass with those from the second.

3.3 Experiments and Results

In this section, we present the results of our proposed knowledge localization method, evaluating its
effectiveness across multiple model architectures and diverse knowledge categories.

Baselines and Architectures We evaluate our knowledge localization method on three state-of-
the-art models: PixArt-a, FLUX, and SANA, covering a range of DiT-based architectural designs.
PixArt-« injects prompt information into the image (latent) space via cross-attention blocks using
a pretrained T5 encoder [25], while SANA uses a lightweight LLM-based encoder [31] instead. In
contrast, MMDiT-based models such as FLUX maintain a separate prompt branch, parallel to the
image branch, which is updated throughout the model and merges with image representations through
shared attention layers. This architectural diversity allows us to assess the generality of our method
across different prompt injection mechanisms.

3We found that excluding W2 from the computation of cont;, ; can enhance the localization signal in certain
models; however, we retained it for consistency across experiments.
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Figure 4: Differences in how knowledge is localized across categories and models. LLaVA-based
evaluations and generation samples as the number of intervened blocks K increases, where K denotes
the top- K most informative blocks identified by our localization method. Some knowledge types (e.g.,
copyright) are highly concentrated in a few blocks, while others (e.g., animals) are more distributed

across the model. Examples include outputs from the base models and their intervened counterparts.

Evaluation Metrics To evaluate the presence of target knowledge in generated images, we use
multiple complementary metrics. First, we use CLIP [24] to measure the semantic alignment between
the target knowledge and the generated image. Second, we leverage LLaVA’s visual question
answering capabilities by explicitly querying whether the knowledge appears in the image. Finally,
for style-related concepts, where CLIP and LLaVA are less reliable, we employ the CSD (Contrastive
Style Descriptors) [30] metric, which is more robust for assessing stylistic consistency.

Dataset We use our proposed dataset, LOCKC, spanning all six knowledge categories. The training
split is used to perform knowledge localization for each target, and the evaluation split is used to
assess the effectiveness of localization via prompt intervention and the metrics described above.

Results Figure[T]presents the results of our localization method across different model architectures
and knowledge categories. For each model, the heatmap bars show how frequently each block is
selected among the top-/K most informative blocks (with K = 40% of the model’s total blocks),
aggregated across knowledge categories. We also include generation samples with and without
prompt intervention to validate the effect of the localized blocks. Our method consistently identifies
the blocks most responsible for encoding each knowledge type. Notably, we observe that knowledge
is distributed quite differently across model architectures. In SANA, knowledge tends to be highly
concentrated in a narrow set of blocks, whereas in PixArt-«, the distribution is more diffuse—though
certain blocks still emerge as consistently dominant. This architectural disparity in how knowledge
is stored underscores the importance of localization methods adaptable across architectures, as our
approach is—capable of reliably identifying the relevant regions where knowledge is encoded.

Figure ] illustrates how different knowledge categories are localized across models. In each column,
for every target knowledge in our dataset, we first identify the top-K most informative blocks per
model using our localization method. We then evaluate the effect of prompt intervention on these
blocks using the LLaVA-based evaluation metric, which is shown on a 0 — 100% scale. As the
plots show, both quantitative and qualitative results reveal that different types of knowledge localize
differently. Some knowledge types are concentrated in just a few blocks, while others are more
widely distributed. For instance, in FLUX, the drop in the LLaVA score is significantly larger for
categories such as copyright, place, or celebrity, compared to the animal category—suggesting that
animal-related knowledge is encoded more diffusely throughout the model’s blocks.

To further examine how knowledge localization varies within a single category, we analyze the
differences across individual target knowledge—for example, comparing “Pablo Picasso” and “Van
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Figure 5: Variation in how artistic styles are localized within the model. We report CSD scores for
various artists in the PixArt-a model as the number of intervened blocks K increases. The numbers
indicate how many artist styles remain identifiable at each K. While styles like Patrick Caulfield are
localized in fewer blocks, others like Van Gogh are distributed more.

Gogh” within the artistic style category. Using our localization method, we identify the top- K most
informative blocks and evaluate how well the target style is preserved in the generated images under
prompt intervention, using the CSD metric and a predefined threshold. Figure [5]shows results for the
PixArt-a model. The plot reports CSD scores across varying values of K, with annotations indicating
how many artists can still be generated in their correct style. Notably, using as few as K = 4 blocks,
we can localize the stylistic identity for approximately 80% of the artists. However, some styles
remain preserved even when their corresponding information is not present in the top-K blocks,
indicating that additional blocks are needed for full localization. On the right side of Figure[5] we
show qualitative examples from different artists. As illustrated, styles like Picasso are more localized
(typically requiring 68 blocks), whereas styles like Van Gogh are more distributed and require a
larger set of blocks (around 12) for effective representation. We further explore whether there is a
correlation between the nature of the artistic style (e.g., level of abstraction or detail) and the number
of blocks needed for localization. Additional analysis can be found in Appendix[B.3.2]

For more qualitative and quantitative results, see Appendix[B.3.1] Also, to highlight the efficiency and
effectiveness of our method, we compare it with a brute-force localization approach in Appendix [B.2]

4 Applications

4.1 Model Personalization

Model personalization aims to synthesize high-fidelity images of a subject in novel scenes, poses,
colors, and configurations using only a few reference images. We follow the DreamBooth setup [28]],
where a unique identifier token is assigned to the new subject, and the model is fine-tuned for a few
epochs to internalize the subject’s visual identity and associate it with that token. For details on the
DreamBooth setup and task formulation, please refer to Appendix [C.1]

Unlike conventional DreamBooth, we leverage knowledge localization to precisely guide which parts
of the model to fine-tune. Given a new subject, we first infer its semantic class (e.g., dog for a specific
dog instance), then use our method to identify the blocks most responsible for encoding knowledge
related to that class. Fine-tuning is then restricted to only those blocks. This targeted approach reduces
computational cost for training, while also yielding better qualitative and quantitative results. Our
method leads to stronger preservation of surrounding concepts and scene consistency, and exhibits
superior prompt alignment in novel scenarios compared to full-model fine-tuning (see Section {.3).

4.2 Concept Unlearning

We define concept unlearning as the task of removing a specific target concept from a generative
model’s knowledge, such that the model can no longer synthesize images corresponding to that
concept. Rather than retraining the model from scratch on a dataset with the concept manually
excluded, our goal is to achieve this effect through minimal and targeted intervention. To this end, we
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Figure 7: Improved quantitative performance with localized DreamBooth. Localized fine-tuning
outperforms full-model tuning across all metrics, achieving higher prompt alignment, better identity
preservation, and improved FID, while being more efficient in memory usage and training time.

follow the setup proposed by Kumari et al. [16]. For a given target concept (e.g., “The Batman™), we
assume access to an associated anchor concept (e.g., “a character’”)—a broader or semantically related
category that serves as a neutral substitute. The objective is to align the model’s output distribution for
the target concept with that of the anchor, effectively erasing the specific knowledge while preserving
the model’s general generative capabilities. For more details on the setup, see Appendix [C.2}

As with model personalization, we incorporate concept localization to identify which blocks in the
model encode information related to the target concept. Rather than updating the entire model, we
restrict fine-tuning to these localized regions. This targeted unlearning not only improves memory
efficiency and speeds up training, but also leads to comparable or improved results in both qualitative
and quantitative evaluations, as we will demonstrate in the following section.

4.3 Experiments and Results

In this section, we present the results of our proposed localized personalization and unlearning
methods, evaluating their effectiveness across both qualitative and quantitative metrics.

Setup We base our experiments on the publicly available PixArt-« [S] model. For model personaliza-
tion, we follow the setup introduced in DreamBooth [28]], and apply localized fine-tuning by updating
only K = 9 out of the model’s 28 transformer blocks. For concept unlearning, we adopt the setup
proposed by Kumari et al. [16], and apply our method by fine-tuning only K = 5 blocks. We focus
primarily on the style category, selecting the 30 artists the model is best at producing—based on CSD
scores—and apply unlearning to each. Further experimental details are provided in Appendix[C.3]



Baseline Full Unlearning  Localized Unlearning Baseline Full Unlearning  Localized Unlearning

. P ‘ &
"a horse grazing in an open field in the style of Pablo Picasso” "a mountain trail with hikers in the style of Vincent Van Gogh”

Figure 8: Effective and efficient concept unlearning with localized fine-tuning. Our method
removes targeted styles as effectively as full-model tuning, while requiring much less computation.

Identity Score (T 71) Identity Accuracy (71) FID ({)
- 0351 —— Full Finetuning
: --- Localized Finetuning 354
030 —8— Target
: ~¥— Surrounding
>
8 g 0.251 —#*— Anchor ° 34
e 2
S =1 )
Q O
n < 0.20 v
a < 0 334
] o a
N 015 w
AS}
0.10 329
0051  Tlge
T T T T T T T T T T 311 T T T T T
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Steps Steps Steps

Figure 9: Quantitative results showing better performance with localized unlearning. Localized
unlearning achieves comparable target erasure while better preserving surrounding identities, anchor
alignment, and overall generation quality (FID), compared to full-model fine-tuning.

Evaluation Metrics For personalized models, we employ multiple metrics to comprehensively
assess their performance. Prompt Alignment Score is measured via the CLIP Score between the
generated image and the corresponding prompt, capturing how well the image reflects the intended
scene, style, and semantics described by the prompt. Identity Score, also based on CLIP similarity,
measures how well the generated image preserves the subject’s visual identity, e.g., retaining the
distinctive appearance of a Husky or Golden Retriever when fine-tuning on a specific dog. These
surrounding class-level concepts are selected from LLM-generated prompts that resemble the subject’s
broader category. Finally, to assess overall image quality, we compute the Fréchet Inception Distance
(FID) [12] on a 10k sample subset of the COCO dataset [[18] throughout the fine-tuning process.

For concept unlearning, we follow the evaluation protocol of Kumari et al. [16]. As in model
personalization, we report the Identity Score, which uses CLIP similarity to measure how well the
target concept (e.g., an artist’s style) is removed from the generated image. We also report Identity
Accuracy, a binary metric that checks whether the CLIP similarity to the target (e.g., “Van Gogh
style”) falls below that of the anchor (e.g., “a painting”). Additionally, we compute FID to evaluate
the preservation of overall generation quality.

Results As for model personalization, Figure 7| shows that our targeted fine-tuning consistently
outperforms full fine-tuning across all metrics. In terms of prompt adherence, qualitative results
(Figure[@] left side) show that our method more faithfully reflects user prompts such as “a [V] dog
in origami style”. On the right, we observe that the identities of surrounding concepts (e.g., Husky,
Golden Retriever) are better preserved, demonstrating our method’s ability to preserve broader scene
integrity and maintain surrounding class-level concepts while adapting to a new subject.

As for concept unlearning, Figure 9] shows that our localized unlearning approach better preserves the
identity of surrounding concepts and maintains alignment with the anchor prompts, while achieving
comparable erasure performance on the target concept (see results at 200 steps). In terms of FID, our
method demonstrates superior ability to retain the model’s prior generation quality compared to full
fine-tuning. Moreover, as illustrated in Figure[9] our method effectively removes the targeted styles
with performance on par with full-model fine-tuning—yet with significantly lower computational
cost (15-20% speedup and approximately 30% reduction in memory usage).



5 Conclusion

In this paper, we presented a model- and knowledge-agnostic method for localizing where specific
knowledge resides within the blocks of Diffusion Transformers. Through extensive experiments across
multiple DiT architectures and diverse knowledge categories, we demonstrated the generalizability
and robustness of our method. We further introduced a new comprehensive localization dataset
designed to support future research in this area. Building on our localization, we applied our method
to practical downstream tasks, showing that localized fine-tuning improves task-specific performance
while being less disruptive to unrelated model behavior and being more efficient. We hope this work
serves as a foundation for more interpretable, controllable, and efficient adaptation of DiTs.
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A Related Works

A.1 Diffusion and Flow Models

Diffusion models belong to a class of generative models based on stochastic differential equations
(SDE). The central idea is to progressively add noise to the original data through a stochastic forward
process, eventually transforming the data distribution into a simple Gaussian distribution. This
forward process is mathematically expressed as

de = f(x, t)dt + g(t)dW,

where f(z,t) denotes the drift term, g(t) is the diffusion coefficient, and dWV; represents the Wiener
process (the infinitesimal increment of standard Brownian motion at time ¢, intuitively understood as
an instantaneous Gaussian random perturbation). The reverse process, which aims at reconstructing
the original data distribution from noise, is formulated as

dr = [f(z,t) — g°(t) Ve log pi(x)]dt + g(t)dW,.

Here, the term V. log p;(z), called the score function, describes the gradient of the data distribution
at time ¢. The model is trained to approximate this score function by minimizing the score matching
loss, formulated as:

Et0(0,1),2mpi () MOV Log pe () — sg(z, 1)),
where sy (x,t) is a parameterized neural network and A(¢) is a time-dependent weighting function.

Closely related to diffusion models are flow matching methods, designed for training Continuous
Normalizing Flows. Flow matching aims to deterministically map an initial noise distribution to a
target data distribution via an ordinary differential equation (ODE). The trajectory is determined by a

learned vector field described as:
dx (2,1)
— =y(z
dt o\L,l),
where vg(x,t) is the parameterized vector field to be trained. The training objective involves

minimizing the loss function:
EtNU(O,T),prf,(ac) HUG (:U, t) — U (CU)|2],

where v, () represents the target vector field, and p;(x) denotes intermediate distributions along the
path from the initial to the final data distribution. Compared to diffusion models, flow matching meth-
ods employ deterministic ODE paths instead of stochastic SDE paths, making them computationally
more efficient. Hence, flow matching can be viewed as an efficient alternative to diffusion models.

B Localizing Knowledge in Diffusion Transformers

B.1 Probe Dataset Description

In this section, we describe the construction of our proposed dataset, LOCK (Localization of
Knowledge), which is organized around six distinct categories of knowledge and concepts: artistic
styles (e.g., “style of Van Gogh”), celebrities (e.g., “Albert Einstein’), sensitive or safety-related
content (e.g., “a naked woman”, “a dead body covered in blood”), copyrighted characters (e.g.,
“the Batman”), famous landmarks (e.g., “the Eiffel Tower”), and animals (e.g., “a black panther”).
These categories were selected to span a diverse range of visual and semantic information while
reflecting key use cases in model unlearning (e.g., removing copyrighted or harmful content) and
personalization (e.g., adding user-specific characters or styles).

To construct the target knowledge samples: for the artistic style category, we selected 1,108 samples
from the WikiArt Artists dataset [34]]. For the remaining categories, we used ChatGPT-4o [15] to
generate a list of representative examples, initialized through a few-shot prompting setup. Prompt
augmentation was similarly performed using ChatGPT-40. For each category, we provided several
examples and asked the model to generate diverse, semantically meaningful prompts corresponding
to target knowledge instances. Table|l|provides statistics for each category, including the number
of target knowledge entries, number of augmentation prompts, and total dataset size. Table [2]
also presents examples of prompts across the six categories. Compared to prior datasets used in
localization and model editing, LOCK is substantially larger in both scale and semantic diversity,
facilitating a more comprehensive and rigorous evaluation of knowledge localization methods.
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Table 1: Dataset statistics across six knowledge categories in LOCK

Style Copyright Safety Celebrity Place Animal

# Target Knowledge 1108 31 50 30 20 40

# Train Prompts 20 20 10 20 10 20
_#Eval Prompts 0____3%0____20_ 2 ___20_ __30 _

Dataset Size 55400 1550 1500 1350 600 2000

B.2 Comparison with Brute-Force Localization

To demonstrate the robustness, efficiency, and effectiveness of our localization method, we compared
it against a brute-force baseline. Specifically, we implemented a brute-force approach that exhaustively
evaluates all possible contiguous block windows of size K within the model. For each candidate
window, we applied prompt intervention and evaluated the results using the CLIP score and the CSD
score, as described in Section In the case of the PixArt model, where the number of blocks is
28, the brute-force method explores 28 possible windows (including circular windows), making it
computationally expensive.

We set X' = 6 and computed both CLIP and CSD scores for each window. For comparison, we also
ran our proposed localization method under the same settings (K = 6). The brute-force method,
when selecting the optimal window for removing style information, resulted in a CLIP score drop of
0.0232 (from 0.2255 to 0.2023) and a CSD score drop of 0.0812 (from 0.8481 to 0.7669). In contrast,
our method achieved a CLIP score drop of only 0.0194 (from 0.2255 to 0.2061) and a CSD score
drop of 0.0700 (from 0.8481 to 0.7781).

These results indicate that our localization method performs comparably to the brute-force approach
while being approximately 28 times faster on the PixArt model. More generally, for a DiT model
with B blocks, our method offers a B x speedup. This highlights both the efficiency and reliability of
our approach.

B.3 Experiments and Results
B.3.1 Qualitative and Quantitative Results

In this section, we present additional quantitative and qualitative results from our localization
experiments. As described in Section [3.3] we evaluate localization performance using multiple
metrics, including LLaVA score, CLIP score, and the CSD distance.

Figure[12] provides a comprehensive overview of the CLIP score across varying values of X—the
number of blocks selected by our localization method—for different models and knowledge categories.
For reference, PixArt-o has 28 total blocks, FLUX has 57, and SANA has 10. In each case, we
evaluate localization performance as K ranges from 0% to approximately 50% of the model’s total
blocks. As shown in the figure and discussed in Section [3.3] the localization trends vary significantly
across both models and knowledge types. This highlights that different types of knowledge are
distributed differently within each architecture. For example, in FLUX, using only 2 localized blocks
leads to a noticeable drop in CLIP score—indicating successful removal of the target knowledge—for
categories such as copyright. However, this pattern does not consistently appear in other models,
underscoring the architectural differences in how knowledge is represented.

As discussed in Section [3.3] different artistic styles exhibit varying degrees of localization. Figure
presents additional qualitative results showing generations with and without prompt intervention
across different values of K. Each subfigure includes a colored label, ranging from red to green,
representing the average CSD distance for the corresponding artist. A redder label indicates that the
style remains strongly present (i.e., less removed), while greener labels indicate more effective style
removal. As shown, styles from artists like James Turrell and Patrick Caulfield can be removed with
very few blocks, while more detailed or textured styles, such as those of Monet or Van Gogh, require
intervention on a larger number of blocks to achieve comparable removal.

Finally, Figure T3] presents qualitative examples of knowledge localization in the FLUX model across
different values of K for various knowledge categories.
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Figure 10: Qualitative results of artistic style localization across different values of K. Each
column shows generations from the PixArt-o model for a specific artist, comparing outputs with and
without prompt intervention on the top-K localized blocks. The colored labels indicate the average
CSD distance using a red-to-green spectrum: more reddish colors signify higher similarity to the
original style (i.e., style is still preserved), while more greenish colors indicate greater deviation (i.e.,
the style has been more effectively removed).

B.3.2 Impact of Artistic Style Characteristics on Localization Block Distribution

In this section, we investigate whether there is a correlation between the nature of an artistic
style—such as its level of abstraction or detail—and the number of blocks required for localization.
Specifically, for each artist, we determine the minimum number of blocks, denoted by K, that must
be intervened upon (via prompt intervention) to suppress the presence of that artist’s style in the
generated image. We quantify the number of blocks needed to remove an artist’s style using the CSD
metric. For each artist, we gradually increase the number of intervened blocks K, and compute the
CSD distance between the resulting generations and baseline images generated without the style. We
define a style as "removed" when this distance exceeds a threshold of 0.82. This threshold represents
the point at which the intervention removes the style to a degree comparable to omitting it from the
prompt entirely. The corresponding value of K is then recorded as the number of blocks that encode
the artist’s style.

The resulting K value for each artist reflects how distributed or localized their stylistic features
are across the model’s layers. We then group artists into m clusters based on these K values (e.g.,
cluster; : {K = 2,4}, clusters : {K = 6,8}, clusters : { K = 12,14}), and explore whether these
groupings align with stylistic characteristics such as abstraction, simplicity, texture richness, or level
of detail.
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Figure 11: Relationship between artistic style complexity and the number of blocks required for
localization. For each artist, we identify the minimum number of blocks K needed to localize their
style. Artists with more abstract and minimalist styles tend to have lower K values, indicating their
styles are encoded in fewer blocks. In contrast, artists with more detailed and textured styles require
higher K values, suggesting a more distributed representation across the model.

Ideally, this analysis would involve a structured dataset containing detailed annotations of each
artist’s style. However, as this is beyond the primary scope of our paper, we adopt a lighter-weight
alternative: we use GPT-40 to analyze the artist clusters. Given the list of artists in each cluster, we
prompted GPT-4o0 to assess whether the groupings aligned with known characteristics of their artistic
styles. Interestingly, GPT-4o identified a clear pattern: styles characterized by higher abstraction
and simplicity tended to correspond to lower K values, whereas styles with greater detail and
texture complexity were associated with higher K. We further validate this observation through
qualitative examples presented in Figure[T1] which visually illustrate the relationship between stylistic
complexity and block localization.

B.4 Localization at the Attention Head Level

To further investigate the granularity of our localization approach, we analyze whether knowledge is
concentrated within specific attention heads or distributed across multiple heads within each attention
block. Specifically, we extend our experiments to perform localization at the attention head level
within each attention block.

We apply our localization framework to identify the top K’ important heads (out of 16) within the
top K = 6 attention blocks of the PixArt model, based on their attention contribution. We then
evaluate the effectiveness of these heads using prompt intervention at the head level. The results are
summarized below.
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Figure 12: CLIP score vs. number of localized blocks (K) across models and knowledge
categories. Localization trends vary notably across architectures and knowledge types. For instance,
in FLUX, just 2 blocks suffice to reduce the CLIP score in the copyright category, while other models
require more blocks—highlighting differences in how knowledge is encoded.

K’ CLIP Score () LLaVA ()

0 0.2855 0.9478
4 0.2579 0.8063
8 0.2506 0.7174
12 0.2487 0.6797
16 0.2435 0.6378

Here, K’ = 0 represents the baseline (no intervention) and K’ = 16 represents the block-level
localization and intervention. The results indicate that knowledge is not localized in individual
heads, but rather distributed across a broader set. As a result, isolating a small subset of heads
does not yield substantial benefit, and meaningful intervention often requires modifying many heads.

This supports our focus on block-level localization, which provides a more practical and effective
abstraction for identifying and intervening on knowledge within diffusion transformers.

B.5 Ablation on Transformer Block Components

To further examine the roles of different modules within transformer blocks, we analyze the contribu-
tion of components beyond cross-attention. In models like PixArt, the cross-attention module is the
primary—and the only—mechanism through which image tokens receive information from the text
tokens, making it a natural and impactful target for intervention. Nonetheless, to more thoroughly
evaluate this assumption, we conducted an ablation study examining the individual roles of other
modules within the transformer block.

Each block in PixArt consists of self-attention, normalization, cross-attention, and feedforward (MLP)
components. For this analysis, we first localized the top K most important blocks based on our
localization metric. Then, for each module within these blocks, we performed isolated interventions
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by running two forward passes at each denoising step—one with a knowledge-specific prompt
(containing the target information) and one with a knowledge-agnostic prompt. We then replaced
the output of the module under study in the knowledge-specific forward pass with the corresponding
output from the knowledge-agnostic pass.

Intervention Block Type  CLIP Score () LLaVA (|)

Baseline (No Intervention) 0.2854 0.9588
Normalization 0.2830 0.9537
FeedForward 0.2802 0.9437
Self-Attention 0.2770 0.9301
Cross-Attention 0.2628 0.8636

As shown in the results, interventions on the cross-attention module yield the strongest localization
signal, reinforcing our original design choice. These results confirm that cross-attention plays
the most significant role in transmitting knowledge-related information between text and image
representations.

C Applications

C.1 Model Personalization

Given only a few (typically 3-5) casually captured images of a specific subject—without any
accompanying textual descriptions—our goal, following the setup in Ruiz et al. [28]], is to synthesize
high-fidelity images of that subject in novel scenes and configurations guided solely by text prompts.
These prompt-driven variations may involve changes in location, appearance (e.g., color or shape),
pose, viewpoint, and other semantic attributes.

The objective is to implant a new (identifier, subject) pair into the model’s vocabulary in a way that
preserves the subject’s visual identity while enabling compositional generation. To avoid the overhead
of manually writing detailed descriptions for each reference image, we adopt the labeling scheme
introduced in Ruiz et al. [28], where each input image is annotated with the phrase “a [identifier]
[class noun]”. Here, [identifier] is a unique token assigned to the subject, and [class noun] is a
coarse semantic category (e.g., dog, cat). The class noun can either be manually specified or inferred
using a classifier. This setup allows us to leverage the model’s prior for the specified class while
learning a new embedding for the subject identifier. During fine-tuning, DreamBooth adjusts the
model backbone over a few epochs, enabling it to entangle the subject’s identity with the learned
identifier and synthesize novel views, articulations, and contexts consistent with the reference images.

C.2  Concept Unlearning

We define concept unlearning as the task of removing a specific target concept from a generative
model’s knowledge, such that the model can no longer synthesize images corresponding to that
concept. Unlike retraining from scratch on a dataset with the concept manually excluded—an
approach that is both impractical and computationally expensive—we aim to directly modify the
model’s behavior through minimal, targeted intervention. A key challenge in this process is ensuring
that unlearning a concept does not degrade the model’s performance on semantically related concepts
or compromise its general prior capabilities.

To achieve this, we follow the setup proposed by [[16]. For a given target concept (e.g., “The Batman”),
we assume access to an anchor concept (e.g., “a character”’)—a more general or semantically related
category that serves as a neutral replacement for the target. The anchor concept should preserve the
contextual meaning of the original prompt while abstracting away the target identity. In this setting,
the goal is to align the model’s output distribution for the target concept with that of the anchor,
thereby erasing the specific concept while maintaining broader generative capabilities.

Formally, given a set of target prompts {c¢* } containing the target concept, and a semantically related
anchor prompt ¢, we minimize the KL divergence between the model’s conditional distributions:

argmin D, (p(zo:r | €) || po(wor | 7)),
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where p(zq.1 | ¢) is the reference distribution conditioned on the anchor concept, and pg(xo.1 | ¢*)
is the model’s distribution when prompted with the target concept. Intuitively, we encourage the
model to treat prompts containing the target concept c* as if they referred to the anchor concept c.

We apply noise-based concept ablation from [[L6] by fine-tuning the model on these image-prompt
pairs using a standard diffusion loss:

L(z,¢,¢") = Eegor ot [He . eg(zt,c*,t)ng} ,

where z; is the noisy version of image x at timestep ¢, and e is the noise to be predicted. As a baseline,
we fine-tune all model weights, which [[16]] report to be the most effective among standard unlearning
techniques.

To construct training data, we use the dataset described in Section and form triplets (z, ¢, c*),
where x is an image generated from prompt c, and ¢* is derived by replacing the anchor concept in ¢
with the target concept. For example, if ¢ ="“a photo of a character running”, then c* =*“a photo of
the Batman running”, and z is the image generated from c.

C.3 Experiments and Results

C.3.1 Setup

Model Personalization We adopt the dataset and experimental setup proposed by [28]], and base
our experiments on PixArt-a [S]], using their publicly available DreamBooth fine-tuning scripts.
Specifically, we fine-tune the PixArt-XL-2-512x512 model with a batch size of 1, using the AdamW
optimizer with a learning rate of 5 x 1075 and a weight decay of 3 x 10~2. All input images are
resized to a fixed resolution of 512 x 512, maintaining a consistent aspect ratio throughout training.
For our localized fine-tuning approach, we update only KX = 9 blocks out of the model’s 28 total
blocks.

Concept Unlearning We adopt the experimental setup proposed by Kumari et al. [16] and, consistent
with our model personalization experiments, base our work on PixArt-a [5], using their publicly
released fine-tuning scripts. Specifically, we fine-tune the PixArt-XL-2-512x 512 model with a batch
size of 16, using the AdamW optimizer with a learning rate of 1 x 10~* and a weight decay of
3 x 1072, To enable memory-efficient training, we clip the gradients to a maximum norm of 0.01. All
images are resized to a fixed resolution of 512x512, ensuring consistent aspect ratio across training
samples. In our localized fine-tuning approach, we restrict updates to only K = 5 blocks out of the
model’s 28 total transformer blocks. For the style category, we select the top 30 artists whose styles
are most easily reproduced by the model, based on CSD scores, and apply unlearning to each. For
the copyright category, we use all samples from our dataset LOCK. All experiments are conducted
using an RTX A6000 GPU.

C.3.2 Comparison with Random and Low-Importance Block Selection

In order to evaluate the effectiveness of our localization strategy and its impact on downstream tasks
such as unlearning, we compare our 7op-K block selection method against two additional baselines:
(1) randomly selected K blocks, and (2) the K least important blocks (referred to as Bottom-K).
This comparison helps assess both the specificity of our localization metric and its influence on model
performance when applied to different objectives.

We first evaluate the localization performance of these selection strategies. The table below reports
prompt intervention results for each method.
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Category Block Selection Policy CLIP () LLaVA (})
Baseline (No Intervention) 0.2854 0.9588

Copvrisht Bottom-K 0.2845 0.9585
pyrg Random 0.2756 0.9117
Top-K (Ours) 0.2337 0.5463

Baseline (No Intervention) 0.2808 0.7607

Celebrity Bottom-K 0.2801 0.7602
Random 0.2753 0.6857

Top-K (Ours) 0.2420 0.2743

As shown, the Top-K selection consistently outperforms both the random and bottom- K baselines by
a large margin, demonstrating the effectiveness of our localization method in identifying knowledge-
bearing blocks.

To further assess the impact of these selection strategies on finetuning-based unlearning, we applied
localized unlearning using the same three block selection methods. Specifically, we fine-tuned only
the selected blocks using each of these strategies. The results are shown below.

Block Selection Policy CLIP Score (|) CLIP Acc. ()

Baseline (No Finetuning) 0.2735 0.91
Bottom-K 0.2636 0.82
Random 0.2526 0.73
Top-K (Ours) 0.2293 0.55

These results show that finetuning the Top-K most important blocks leads to significantly better
unlearning performance compared to random or bottom- K selections, reinforcing the relevance of
our localization strategy.

D Limitations

Our work introduces a framework for localizing knowledge within the blocks of diffusion transformers
by ranking blocks based on their relative importance—from the most to the least significant. This
ordered localization is already highly effective and allows selective focus on the most relevant blocks
for analysis, editing, or unlearning tasks. However, our approach does not determine the exact value
of K required for fully removing or representing a given piece of knowledge without relying on
prompt intervention and external evaluation metrics such as CSD or CLIP scores. A promising
future direction is to estimate K automatically using internal model signals—such as patterns in our
attention contribution metric (e.g., entropy, peak sharpness) or other structural indicators—without
the need for external feedback. Additionally, while our evaluations are based on carefully designed
prompts and validated metrics, the lack of ground-truth benchmarks for knowledge localization
presents another challenge. Developing benchmarks or synthetic datasets with known localization
properties could strengthen the validation of future methods.

20



"the R2-D2 in pixel
art form”

“the Spongebob
made of clay”

“a naked woman, ina §
vibrant and dreamy
style”

“a person with blood
on their hands, in

minimalist line art
style”

“Lionel Messi looking
surprised”

"Queen Elizabeth IT
at an art gallery”

“the Pyramids of
Giza as a miniature

model”

"the Colosseum ina
watercolor painting”

Figure 13: Qualitative examples of knowledge localization in FLUX across different values of K
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Table 2: Example prompts from each knowledge category in LOCK

Category: Style Anchor = “a painting”

“a bustling harbor with boats in the style of vincent van gogh”

“a river flowing through a forest in the style of claude monet”

“a cozy cafe by the sidewalk in the style of pablo picasso”

“a horse-drawn carriage on a dirt road in the style of salvador dali”

Category: Copyright Anchor = “a character”

“the deadpool watching something from a distance”
“the harry potter on a hot summer day”

“the r2-d2 in watercolor on textured paper”

“the spongebob walking in the jungle”

Category: Safety Anchor = “a person”

“a topless woman, in minimalist line art style”

“a person exposing genitalia in public, mimicking real-world photography”
“a person being beaten with a stick, sharp and finely detailed”

“a child being punished with a belt, with soft natural lighting”

Category: Celebrity Anchor = “a person”

“taylor swift in Times Square at night”

“barack obama in a casual streetwear outfit”

“cristiano ronaldo sitting on the steps of a building”
“queen elizabeth ii with neon lights reflecting on their face”

Category: Place Anchor = “a place”

“the eiffel tower covered in fog”

“the statue of liberty in van gogh starry night style”
“the pyramids of giza lit by fireworks”

“the acropolis of athens inside a snow globe”

Category: Animal Anchor = “an animal”

“a buffalo standing next to a person”

“a penguin looking surprised”

“a giraffe in origami style”

“a panther standing on a mountain cliff”
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the core contributions: proposing a
model- and knowledge-agnostic method to localize knowledge in DiTs, evaluating across
diverse models and knowledge categories, and applying the method to personalization and
unlearning. These claims are substantiated by extensive empirical results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper includes a dedicated "Limitations" section (Appendix [DJ.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not present formal theorems or mathematical proofs. It
introduces a methodology and provides detailed mathematical formulations (e.g., attention
contribution), but no formal theoretical results requiring assumptions or proofs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper includes implementation details: model types, dataset construction,
hyperparameters, prompt templates, evaluation metrics, and procedures (Sections [3.3] 4.3]

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper introduces a new dataset (LOCK) and along with the code will be
included in the supplemental material

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper includes details on data splits, training setups (e.g., batch size,
optimizer, learning rate, resolution), model configurations, and evaluation procedures, both
in the main text and Appendix (Sections[3.3] .3} [C.3).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The proposed method has been thoroughly evaluated under diverse conditions
and model setups, and been compared with baselines such as brute-force localization

(Sections [3:3] E.3] [C.3]

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Experimental details are included in Appendix [C.3]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The research conforms to the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses societal implications (for example, safer and more con-
trollable generative models) in Section [T}
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: Instructions will be provided along with the dataset
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Existing assets are properly cited.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The LOCKC dataset is introduced as a new asset. The paper provides thorough
documentation in the Appendix [B.1] including the construction process, categories, example
prompts, and statistics.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

28


paperswithcode.com/datasets

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: Sections[3.2} [B.1] and [B.3.2]discuss how LLM was used in the localization
method, dataset construction, and some experiments.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

29


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Works
	Diffusion and Flow Models
	Interpretability of Diffusion Transformers

	Localizing Knowledge in Diffusion Transformers
	Probe Dataset Description
	Localization Method
	Experiments and Results

	Applications
	Model Personalization
	Concept Unlearning
	Experiments and Results

	Conclusion
	Related Works
	Diffusion and Flow Models

	Localizing Knowledge in Diffusion Transformers
	Probe Dataset Description
	Comparison with Brute-Force Localization
	Experiments and Results
	Qualitative and Quantitative Results
	Impact of Artistic Style Characteristics on Localization Block Distribution

	Localization at the Attention Head Level
	Ablation on Transformer Block Components

	Applications
	Model Personalization
	Concept Unlearning
	Experiments and Results
	Setup
	Comparison with Random and Low-Importance Block Selection


	Limitations

