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Abstract

In this paper, we investigate how large language001
models (LLMS) process non-English tokens002
within their layer representations—an open003
question despite significant advancements in004
the field. Using representation steering, specif-005
ically by adding a learned vector to a single006
model layer’s activations, we demonstrate that007
steering a single model layer can notably en-008
hance performance. Our analysis shows that009
this approach achieves results comparable to010
translation baselines and surpasses state-of-the-011
art prompt optimization methods. Additionally,012
we highlight how advanced techniques like su-013
pervised fine-tuning (SFT) and reinforcement014
learning from human feedback (RLHF) improve015
multilingual capabilities by altering represen-016
tation spaces. We further illustrate how these017
methods align with our approach to reshaping018
LLMS layer representations.019

1 Introduction020

In recent years, large language models (LLMs)021

have demonstrated remarkable capabilities across022

a wide range of tasks. However, the majority of023

these advancements have been concentrated in En-024

glish, often neglecting other languages, particularly025

low-resource ones, due to the scarcity of available026

data. A common approach to addressing this gap is027

translating these languages into English before pro-028

cessing them. While this method can be effective,029

it is inherently limited by the quality and cost of030

translation (Liu et al., 2024). To unlock the full po-031

tential of LLMs, integrating multilingual natively032

within these models is essential, ensuring robust033

performance across diverse languages without re-034

lying solely on translation. Recent studies have035

increasingly focused on enhancing the multilingual036

proficiency of LLMs. Researchers have explored037

strategies such as instruction alignment through038

code-switching and cross-lingual fine-tuning (Qin039

et al., 2023; Huang et al., 2023), as well as optimiz-040

ing prompts using chain-of-thought (CoT) prompt- 041

ing in various languages (Shi et al., 2022). Crafting 042

clear instructions in English has also proven ef- 043

fective in aligning model outputs (Huang et al., 044

2023). Earlier approaches relied on translation- 045

based methods, including fine-tuning for transla- 046

tion tasks (Wu et al., 2023; Zhang et al., 2024), 047

though these methods remain limited by cost and 048

translation quality (Liu et al., 2024). To address 049

these challenges, Huang et al. (2024) proposed in- 050

tegrating external LLMs with stronger linguistic 051

representations by developing a mapping layer be- 052

tween their representation spaces, improving mul- 053

tilingual performance. Despite these efforts, few 054

studies have examined LLMs’ internal processing 055

of multilingual prompts (Wendler et al., 2024; Zhao 056

et al., 2024), revealing that LLMs often translate 057

non-English tokens into English in intermediate 058

layers. Building on these findings and advance- 059

ments in representation engineering (Zou et al., 060

2023), we investigate the mechanistic interpretabil- 061

ity of multilingualism in LLMs. Our approach first 062

learns a manifold that maps between English and 063

target languages, then applies it during inference 064

instead of fine-tuning, making it more efficient and 065

less disruptive to the original model as shown in 066

Figure 1. Finally, we demonstrate how our method 067

parallels fine-tuning in refining target language rep- 068

resentations, offering new insights into multilingual 069

LLM optimization. Our key contributions are as 070

follows: 071

• We propose a method for analyzing and en- 072

hancing underrepresented languages in LLMs 073

by intervening in their representations using a 074

learned steering vector aligned with English. 075

• We show that structurally similar languages 076
1 can share a learned steering vector aligned 077

1Structurally similar languages share features—genetic,
geographic, syntactic, phonological, featural, and inventory-
based—as defined by the lang2vec framework.
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マンディはベネディクトに$100借りがあります。彼らは月2%の利子がつくことに同意しました。マンディが
か月後に返 できるとすると、彼女はベネディクトにいくらえばいいですか？

".التكنولوجیا تغیر الطریقة التي نعیش بھا ونعمل بھا كل یوم
"Технологии меняют наш образ жизни и работы каждый день."

a) Training: DPO/MSE computes v b)Inference: v is added to each token’s
residual stream.

Janet lays 16 eggs daily, uses 3 for breakfast and 4
for baking, leaving 9 eggs to sell. At $2 per egg, she
earns $18 per day from egg sales at the farmer’s
market.

DPO

Transformer Block 
Layer L

Learning Steering
Vectors 

Figure 1: Overview of our method: (a) Learn a steering vector v from two language corpora at a specific layer using
DPO or MSE; (b) Apply the learned vector to the residual stream of each token in a prompt at that layer.

with English representations, enabling cross-078

linguistic transfer and improved performance079

without language-specific tuning.080

• Our approach surpasses translation methods081

like NLLB (No Language Left Behind) and082

delivers results comparable to the Google083

Translate baseline across diverse datasets,084

highlighting LLMs’ multilingual limitations085

while proving the efficacy of internal transla-086

tion alignment within the model.087

2 Related Work088

Multilingual Progress: Recent research has sig-089

nificantly advanced multilingual LLMs, as high-090

lighted in a survey by Qin et al. (2024). Ef-091

forts to enhance multilingual performance primar-092

ily focus on expanding language coverage through093

cross-lingual instruction fine tuning. For exam-094

ple, Zhu et al. (2023) and Chen et al. (2023b)095

propose multilingual instruction tuning methods096

to improve reasoning across diverse languages,097

while Zhu et al. (2024) integrates mathematical098

instructions to enhance logical processing. An-099

other line of work explores prompt-based strategies100

to strengthen cross-lingual understanding. Stud-101

ies by Qin et al. (2023) and Huang et al. (2023)102

show that strategically designed prompts can sig-103

nificantly enhance model performance across lan-104

guages. More recent methods introduce external105

modules to supplement the model’s multilingual ca- 106

pabilities. Yoon et al. (2024) propose LangBridge, 107

which integrates a multilingual encoder with an 108

LLM for improved reasoning, though it may under- 109

utilize the LLM’s native multilingual abilities, in 110

contrast, MindMerger Huang et al. (2024) aligns 111

representations across models handling the same 112

prompt, preserving intrinsic multilingual features. 113

Despite these advances, fewer studies focus on how 114

LLMs internally manage multilingualism. Notably, 115

Wendler et al. (2024) and Zhao et al. (2024) analyze 116

the internal mechanisms enabling cross-lingual un- 117

derstanding, highlighting both strengths and limita- 118

tions that inform further improvements. 119

Representation Engineering has emerged as a 120

powerful tool for analyzing how concepts are pro- 121

cessed within LLMs, addressing challenges such as 122

truthfulness, fairness, and model editing Zou et al. 123

(2023). This approach has been used to enhance 124

model alignment and detect vulnerabilities, includ- 125

ing jailbreaking risks in open-source models (Wang 126

and Shu, 2024; Li et al., 2024a). Additionally, stud- 127

ies have leveraged it to investigate how LLMs inter- 128

nally represent complex concepts Lu and Rimsky 129

(2024). Recent work by Cao et al. (2024) presents 130

methods to extract refined steering vectors through 131

preference optimization, allowing improved con- 132

trol of model behavior. These findings underscore 133

the significant role of representation engineering in 134

advancing LLM technology. 135
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3 Methodology136

We first analyze bottlenecks in multilingual pro-137

cessing by evaluating the model’s understanding138

of non-English tokens, offering insights into the139

factors behind poor performance.140

3.1 Evaluating LLM’s capabilities141

Previous studies (Wendler et al., 2024; Zhao142

et al., 2024) indicate that LLMs often translate non-143

English prompts into English internally, which may144

limit their performance. To investigate this, a self-145

translation Etxaniz et al. (2023) process was used146

to assess whether LLMs understand non-English147

prompts or struggle with mistranslation. Table 1148

shows that models like Llama2 (Touvron et al.,149

2023) and Aya23 (Aryabumi et al., 2024) can trans-150

late non-English tokens into English and that using151

this self-translation leads to a 2.4% average im-152

provement in Llama2’s performance compared to153

native prompts. Aya23 also shows slight improve-154

ments for low-resource languages. However, the155

models still do not achieve the same level of un-156

derstanding with non-English prompts as they do157

with English, likely due to representation mapping158

limitations.159

3.2 Handling Multilinguality160

LLMs process multilingual tokens uniquely, as161

explored by (Belrose et al., 2023; nostalgebraist,162

2020) using logit lens methods. These methods163

involve multiplying internal layer logits by the164

un-embedding matrix, revealing that many LLMs165

perform internal translations across layers, often166

converting token distributions into English. How-167

ever, these translations are imperfectly aligned with168

English counterparts, leading to inconsistent re-169

sponses when the same question is posed in differ-170

ent languages. Figure 2 illustrates the distribution171

of languages across layers in various LLMs, further172

supporting this observation.173

3.3 Problem Formulation174

Our goal is to develop a linear manifold that effec-175

tively bridges the gap between two distributions176

within the representation space of an LLM at a spe-177

cific layer. By learning this manifold, we aim to178

shift the less-represented distribution toward the179

more dominant one. We formulate the problem as180

follows.181

Given an English prompt pen and its equivalent182

in another language px, the hidden state representa-183

tion at a specific layer L is defined as: 184

hpen = FL(pen), hpx = FL(px)

Where FL(p) is a linear transformation applied 185

to the raw activations of prompt p in the residual 186

stream. 187

Our goal is to align hpx with hpen by introducing a 188

steering vector v, such that: 189

hpen ≈ hpx + v

We aim to learn v through two distinct settings for
the proposed methods.

BiPO Cao et al. (2024): Building on recent
research, We utilize Direct Preference Opti-
mization (DPO) to construct the steering vector
v, optimizing it to strengthen alignment with
English representations while reducing alignment
with target language representations. Unlike
traditional methods, such as computing the mean
difference (Panickssery et al., 2024; Wang and
Shu, 2024), which measures the average activation
difference between two prompts, or applying
PCA (Annah and shash42, 2023) to identify the
principal direction of maximum variance in the
data, DPO significantly improves the precision
in learning the desired direction. By modeling
the relationship between English (RT ) and target
language (RO) responses bidirectionally, the
method effectively adapts v to desired language
behaviors, enhancing multilingual processing.
(See the Appendix A for mathematical details).

MSE based Approach: Following Park
et al. (2023), which suggests that representations
between two languages can be mapped through a
linear transformation, we aim to align the internal
representations of the target language with English
by using a learnable steering vector. This approach
adjusts the target language representation to match
the English representation more closely. For a
given input in the target language, the hidden state
at a particular layer,

h′px = hpx + c · v (1)

Here, v is the steering vector, and c is a scalar coef- 190

ficient that controls the magnitude of the transfor- 191

mation. The objective is to minimize the difference 192

between the transformed target representation R′
O 193

and the corresponding English representation Ren, 194

which is achieved by minimizing the Mean Squared 195

Error (MSE) loss function: 196
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Methods Es Ja Ru Sw Zh Bn Th De Fr Te Avg

Llama2-7B
Basic Prompt 20.0 12.8 20.0 .36 19.6 0.4 0.48 24.0 21.6 0.4 13.4
Google-Trans 26.4 24.4 24.8 26.0 27.6 26.0 24.0 22.4 24.4 24.0 25.0
Self-Trans 27.0 17.8 25.6 0.53 22.6 0.506 0.46 24.4 23.3 0.253 15.8 ↑

Aya23-8B
Basic Prompt 40.0 25.6 34.4 0.64 27.6 1.0 13.06 36.0 32.0 0.16 22.7
Google-Trans 40.4 22.0 40.8 39.6 39.2 35.6 33.6 38.0 43.2 34.4 36.9
Self-Trans 33.6 25.6 27.8 0.52 22.0 10.6 16.6 34.6 33.2 .006 21.0

Table 1: Comparison of Google-translated, native, and self-translated prompts on math tasks using LLaMA2-7B
and Aya23-8B. ↑ indicates improvement over the native prompt. Self-translation boosts LLaMA2 -7B by 2.4% and
offers modest gains for Aya23, though both lag behind English performance.
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Figure 2: Distribution of non-English tokens across model families, showing how models convert non-English
prompts into English tokens across layers. Highlights differences in multilingual input representation and translation
effectiveness.

L = MSE(hpen , h
′
px) (2)

This aims to gradually align the two language repre-197

sentations over time through iterative optimization.198

Further details about the methods can be found in199

Algorithm 1 and Algorithm 2.200

4 Baselines and Datasets201

Models: we evaluated five prominent open-source202

models with varying levels of multilingual support:203

LLama2-7B Chat Touvron et al. (2023), Aya23-204

8B Aryabumi et al. (2024), Gemma Team et al.205

(2024), Qwen1.5 Chat Team (2024), and LLama3-206

8B Grattafiori et al. (2024). For simplicity, the207

main discussion focuses on LLama2-7B Chat and208

Aya23-8B, while results for the remaining models209

are detailed in the appendix.210

Training Datasets: To learn the steering vector,211

we used two datasets. For multilingual mathemati-212

cal reasoning, we employed MSVAMP Chen et al. 213

(2023a), which spans 14 languages2 across high-, 214

medium-, and low-resource tiers. For general tasks, 215

we used the Tatoeba dataset Tiedemann (2020), 216

containing English–target language pairs across 217

50+ languages. We sampled 1,000 instances per 218

language and grouped them by resource level to 219

assess the effectiveness of our approach. 220

Evaluation Datasets: We evaluated our approach 221

across five tasks spanning language understanding, 222

commonsense reasoning, and mathematical reason- 223

ing: MGSM Shi et al. (2022) for math, XLNI Con- 224

neau et al. (2018) for natural language inference, 225

XCOPA Ponti et al. (2020) for causal common- 226

sense, MMLU Hendrycks et al. (2020) for general 227

knowledge3, and M3Exam Zhang et al. (2023), 228

2es: Spanish, fr: French, ru: Russian, de: German, ja:
Japanese, zh: Chinese, tr: Turkish, ar: Arabic, vi: Vietnamese,
hi: Hindi, el: Greek, id: Indonesian, it: Italian, pt: Portuguese.

3We sampled 1k and 500 records from MMLU and XLNI,
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a human exam benchmark testing comprehensive229

language understanding. This diverse suite ensures230

a robust evaluation across linguistic competencies.231

To test our hypothesis, we compared five baseline232

approaches for multilingual task handling:233

• Basic Prompt: The vanilla approach uses a234

traditional query format without any special-235

ized prompting strategies.236

• Translate to English: This method leverages237

LLMs’ strong English abilities by translat-238

ing non-English inputs. Following Liu et al.239

(2024), we used two translation sources:240

Google Translate: A commercial service241

that translates examples into English.242

NLLB Costa-jussà et al. (2022): An243

open-source model supporting over 200 lan-244

guages.245

• XLT Huang et al. (2023): A state-of-the-art246

prompting strategy that first translates the in-247

put question into English, then solves it step248

by step, leveraging the model’s stronger rea-249

soning abilities in English.250

• 5-shot Learning Brown (2020): Provides five251

examples to improve few-shot learning and252

multilingual generalization.253

5 Experimental Results254

We designed our experiments to address three key255

research questions: RQ1: Does probing internal256

representations improve the model’s performance?257

(subsection 5.1) RQ2: Can we quantify the quality258

of the internal translation process? (subsection 5.2)259

RQ3: Is the steering vector transferable across lan-260

guages? (subsection 5.3)261

5.1 Does representation intervention boost262

model performance?263

To address the question, we tested our approach on264

five distinct tasks (detailed in section 4). We used265

BiPO 3.3 and MSE methods 3.3 to learn a steering266

vector v that aligns target language token repre-267

sentations more closely with their English coun-268

terparts. As shown in Figure 3, the distribution of269

prompts shifts significantly after steering, bring-270

ing target language representations closer to the271

English distribution. Results in Table 2 indicate272

respectively.
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Figure 3: PCA projection of logits distributions for En-
glish, target language (base), and adjusted distribution
(steer via BiPO). Steering shifts the target language
closer to English, showing inner-layer probing aligns
outputs with English representations.

that DPO-Steering vectors consistently outperform 273

MSE-alignment methods across most benchmarks 274

in 11 languages, albeit marginally. This advan- 275

tage arises from DPO’s direct feedback mechanism, 276

where the steering vector v is added to a specific 277

model layer, and outputs are compared to ground 278

truth in real time, enabling faster and more pre- 279

cise adjustments. In contrast, MSE-based meth- 280

ods rely on slower, iterative optimization. Both 281

steering methods significantly improve over basic 282

prompting across various models, as shown in Fig- 283

ure 4. They outperform baselines like XLT and 284

5-shot prompting and are comparable to translation- 285

based approaches. For instance, on the Aya23-8B 286

model, DPO methods surpass all baselines except 287

for MMLU. Similarly, on Llama2 models, steer- 288

ing methods outperform NLLB across all tasks 289

due to NLLB’s lower translation quality, though 290

they slightly trail behind Google Translate. These 291

results are consistent across various models, includ- 292

ing larger ones like 13B, with detailed findings in 293

Appendix D. 294

5.2 Can we quantify the quality of the 295

internal translation process? 296

Following the approach of Li et al. (2024b), who 297

introduced a language ranker to assess LLM perfor- 298

mance across multiple languages, we evaluate the 299

quality of internal translation by measuring how 300

closely the representation distribution of each tar- 301

get language aligns with English. This alignment 302

serves as a crucial indicator of translation effective- 303

ness and is heavily influenced by the amount of pre- 304

training data available for each language. As illus- 305
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Aya23-8B

Methods MGSM XCOPA XLNI M3EXAM MMLU
Basic Prompt 32.6 81.6 49.9 46.9 45.3
Google-Trans 37.6 83.9 52.4 49.4 50.74
NLLB 32.3 73.28 49.9 26.5 34.0
5@Shot 36.1 84.5 59.8 42.5 30.9
XLT 26.9 12.16 52.7 38.8 27.0

BIPO-steer 38.6 86.1 58.5 52.7 49.0
MSE-steer 35.7 81.6 50.5 47.4 47.6

Llama2-7B

Basic Prompt 19.6 47.6 46.9 30.6 31.3
Google-Trans 25.0 51.8 50.9 42.8 41.5
NLLB 22.6 40.4 49.7 20.9 24.5
5@Shot 12.2 29.6 14.7 12.6 24.4
XLT 20.2 47.2 45.8 28.5 23.6

BIPO-steer 22.9 52.2 55.1 38.4 34.4
MSE-steer 22.8 50.3 48.7 35.1 36.0

Table 2: Average accuracy across tasks for Aya23-8B and LLaMA2-7B Chat over 10 languages spanning high,
medium and low-resource levels. Green indicates highest performance; red indicates lowest across methods.
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Figure 4: The figure illustrates the performance im-
provements of the Steering methods compared to the
Basic Prompt across two models.

trated in Figure 5, high-resource languages such as306

French, German, Italian, and Spanish—well repre-307

sented in the pre-training corpus—exhibit stronger308

alignment with English in models like LLaMA2.309

Aya23, designed with extensive multilingual capa-310

bilities, improves alignment for some low-resource311

languages, although challenges persist. In contrast,312

Qwen1.5 struggles with alignment for most lan-313

guages, except for French and Vietnamese, where314

it performs comparably to Aya23. A notable obser-315

vation is Qwen1.5’s tendency to internally translate316

into Chinese, likely due to its extensive training317

on a Chinese-dominant corpus. Overall, these find-318
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Figure 5: Similarity scores between language and En-
glish representations across models. The dashed line
(threshold = 0.5) shows high-resource languages above
and mid-/low-resource languages below it.

ings indicate that high-resource languages benefit 319

from more robust internal translations, while mid 320

and low resource languages, such as Thai, Bengali, 321

and Telugu, exhibit weaker alignment. This mis- 322

alignment can lead to potential information loss, 323

highlighting disparities in multilingual model per- 324

formance across different language groups. 325

5.3 Is the steering vector transferable across 326

languages? 327

Prior studies Cao et al. (2024) have demonstrated 328

that the steering vector’s transferability is achiev- 329
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Figure 6: Scores after applying steering vectors trans-
ferred directionally between language pairs (source
→ target), selected based on embedding similar-
ity: Es→De, De→Es, Fr→Es, Ja→Zh, Zh→Ja, and
Ru→Es.

able across models within the same architectural330

family, especially for concepts like power-seeking331

behavior. Building on this, we explored the trans-332

ferability of an optimized steering vector across333

languages. As shown in Figure 6, transfer is more334

effective between languages with similar represen-335

tations, while performance declines as representa-336

tional distance grows.337

6 Ablation & Analysis338

6.1 Steering Vector is fine-grained339

To further analyze general task performance, we340

observe that the steering vector is most effective341

when the test data distribution closely aligns with342

the training data. Since the steering vector captures343

only a linear direction, it may struggle with intri-344

cate linguistic nuances across languages. Learning345

the steering vector on datasets with similar distri-346

butions to the evaluation data is crucial for optimal347

results. As shown in Figure 11, models surpass348

the Google Translate baseline in certain tasks but349

lag slightly when training and testing distributions350

diverge. While the fixed steering method improves351

over other baselines, its static nature across differ-352

ent prompts imposes inherent limitations, which353

could be addressed by learning token specific steer-354

ing.355

6.2 Think Before Probing!356

Previous research (Zhao et al., 2024; Zhong et al.,357

2024) suggests that LLMs process information in358

three distinct stages, with middle layers playing359

a critical role in reasoning and task performance.360

To investigate this, we evaluated the impact of in-361

jecting the learned vector at different stages—early,362

middle, and late layers—following the functional363

distinctions established in prior studies (Zhao et al., 364

2024). The vector was applied to the residual 365

stream of each layer with a fixed coefficient (c = 1), 366

and performance was assessed across all layers. 367

While not an exhaustive empirical study, this ap- 368

proach provides insights into how sensitive rep- 369

resentations are to modifications. As shown in 370

Figure 10 (see Table D), results vary between mod- 371

els. In Aya23, injecting the vector into early layers 372

significantly improves mathematical reasoning and 373

other tasks. This effect is attributed to Aya23’s mul- 374

tilingual training, which aligns different language 375

distributions into a more agnostic space, reducing 376

inner translation errors. By addressing errors ear- 377

lier in processing, the model requires fewer lay- 378

ers to properly interpret multilingual tokens. For 379

LLaMA2, probing the initial and middle layers 380

benefits medium and low-resource languages the 381

most, while high-resource languages show greater 382

sensitivity in the upper layers. This suggests that 383

modifying early and middle layers in high-resource 384

languages can disrupt the model’s learned agnostic 385

representation. In contrast, injecting the vector into 386

the final layer does not yield substantial improve- 387

ments, likely because the model’s loss reduction 388

does not occur within the agnostic representation 389

space. 390

6.3 High Resource Languages are dominant 391

in Representation Space 392

A thought-provoking question emerges when ex- 393

amining the focus of LLMs on agnostic language 394

representation: despite recent studies (Zhao et al., 395

2024; Zhong et al., 2024) suggesting that LLMs pri- 396

marily process information in English, we seek to 397

explore whether these models specifically "think" 398

in English or, more broadly, in high resource lan- 399

guages. To investigate this, we carefully selected 400

three high-resource languages4, Spanish, German, 401

and French, and rigorously tested this hypothe- 402

sis using the MGSM task. The results, presented 403

in ( Table 5 in the appendix), reveal that these 404

high-resource languages—Spanish, German, and 405

French—show performance comparable to English, 406

suggesting that LLMs’ language-agnostic represen- 407

tations extend beyond English. This indicates the 408

models process language more sophisticated than 409

previously thought. We leave further investigation 410

to future work. 411

4Selected for their linguistic closeness to English and high
cosine similarity in the model’s representation space.
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Language Llama2-7B Aya23-8B

Es 31.6 42.0
De 26.8 39.2
Fr 26.4 41.2
Ja 24.8 40.8
Zh 25.6 41.6
Ru 28.0 34.4
Sw 26.8 -
Bn 30.8 -
Th 28.8 -

En 32.0 43.2

Table 3: Results of MGSM task on Llama2-7B, Aya23-
8B, the Steering vector has a negative impact on English
Prompts.

6.4 Impact of Steering Vectors on English412

Capabilities413

To assess the potential impact of steering vectors on414

the performance of monolingual English prompts,415

we evaluated nine different steering vectors, each416

tailored to a specific language and applied at var-417

ious layers of the model. This evaluation aims418

to determine whether these vectors degrade the419

performance of English tasks, comparing the per-420

formance of each language-specific steering vec-421

tor against the baseline monolingual results. Ta-422

ble 3 demonstrates that probing has a negative423

impact, which intensifies as the representational424

distance between two languages increases. Con-425

versely, the negative impact lessens for more sim-426

ilar languages. In models like LLaMA2, this cor-427

relation is pronounced, whereas, in Aya-23, which428

features more robustly represented languages, the429

impact is slightly reduced.430

7 Fine tuning vs Steering approach431

To compare fine-tuning and steering in multilin-432

gual reasoning tasks, we adapted a two-phase fine-433

tuning approach from Zhu et al. (2024), focusing434

only on the first phase: fine-tuning LLaMA2-7B435

on English-to-target language translation tasks. We436

chose En->Target fine-tuning as it forces target437

generation from English inputs, refining target rep-438

resentations for English alignment in a way analo-439

gous to our steering vector. This phase enhances440

the model’s internal alignment with English rep-441

resentations, creating a more structured and con-442

sistent mapping across layers, as shown in Fig-443

ure 9 (appendix). In contrast, the base model shows444

weaker translation alignment, underscoring the role445

of fine-tuning in improving internal consistency.446

Steering achieves a similar effect by applying a447

vector at a specific layer, realigning representations 448

toward English, and influencing subsequent layers. 449

Both methods enhance multilingual representation 450

consistency: fine-tuning refines alignment gradu- 451

ally while steering adjusts layers directly. Further 452

details are in Appendix C. 453

7.1 High-Capability Models and Inner 454

Translation Behavior 455

In this section, we investigate the behavior 456

of high-capacity multilingual LLMs, such as 457

LLama3.1 Grattafiori et al. (2024) and Aya23- 458

Expanse Odumakinde et al. (2024), to under- 459

stand the factors behind their superior performance 460

across languages. Using the logit lens, we analyze 461

their internal representations and find that multi- 462

lingual processing primarily occurs in the initial 463

layers, with minimal inner translation loss (illus- 464

trated in Figure 8 in the appendix). These models 465

map multilingual representations onto an English- 466

aligned distribution early on, creating a shared, ag- 467

nostic space. This alignment, enhanced by tech- 468

niques like SFT and reinforcement RLHF, explains 469

their effectiveness. For instance, Aya-Expanse 470

shows significant improvements due to these meth- 471

ods Dang et al. (2024). Our findings align with 472

prior studies, confirming that SFT and RLHF sub- 473

stantially boost multilingual performance, consis- 474

tent with earlier observations on the impact of SFT 475

on internal representations Dang et al. (2024). 476

8 Conclusions 477

In this paper, we advance the study of multilin- 478

gual processing in LLMs, exploring improvements 479

across languages with varying resource levels. We 480

analyzed LLM alignments from a multilingual per- 481

spective, highlighting how techniques like SFT and 482

RLHF enhance multilingual capabilities by com- 483

paring these methods with steering and probing 484

approaches and identifying limitations in steering 485

vectors for handling linguistic nuances. Empir- 486

ical experiments showed that probing inner lay- 487

ers boosts multilingual task performance but may 488

hinder monolingual performance. Analysis of 489

LLM families shows their sensitivity to layer-level 490

changes, highlighting the importance of careful 491

tuning and alignment to optimize multilingual per- 492

formance. 493
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Limitations494

We acknowledge that our approach, which involves495

probing by sweeping across all model layers, is not496

scalable for LLMs and is impractical for real-world497

applications. Moreover, the learnable steering vec-498

tor is constrained by its fixed linear direction, limit-499

ing its capacity to capture the intricate mapping500

relationships between languages fully; learning501

steering vectors by individual tokens seems more502

promising than fixed steering. We leave this for fu-503

ture work. Additionally, our experiments focused504

on probing a single layer at a time; exploring the505

impact of probing multiple layers simultaneously506

could yield further improvements and is a promis-507

ing avenue for future work.508

Ethics Statement509

This research adheres to ethical guidelines in the de-510

velopment and application of large language mod-511

els (LLMs). We acknowledge the potential risks512

associated with multilingual processing, including513

biases in language representation, unequal perfor-514

mance across high- and low-resource languages,515

and the unintended consequences of steering tech-516

niques. Efforts were made to ensure transparency517

in our methodology and to mitigate biases by eval-518

uating models across diverse languages and tasks.519

However, we recognize that our work may still re-520

flect inherent biases present in the training data or521

model architectures. We encourage further research522

to address these limitations and promote equitable523

performance across all languages. Additionally, we524

emphasize the importance of responsible AI prac-525

tices, including the careful deployment of LLMs in526

real-world applications to avoid harm or misuse.527
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A Learning the Steering Vector773

In the first scenario, we utilize previous work Cao et al. (2024) that applied Direct Preference Optimization
(DPO) methods to construct the steering vector. Specifically, Optimizing v increases the probability of
generating responses that align with the desired language behavior (e.g., English) while reducing the
likelihood of responses associated with the opposite behavior (e.g., the target language). In this case, the
contrast is defined between two language pairs: the English response Rt and the target language response
RO.

min
v
−Ed∼U ,(q,rT ,rO)∼D

[
log σ

(
dβ log

πL+1(rT |AL(q) + dv)

πL+1(rT |AL(q))
− dβ log

πL+1(rO|AL(q) + dv)

πL+1(rO|AL(q))

)]
.

(3)
774

Where: v is the learnable steering vector, σ represents the logistic function.β controls the deviation from775

the original model. πL+1(·|AL(q)) denotes the model’s response from layer L+ 1, given the activation776

AL(q) at layer L for the input question q.The term d flips the optimization direction:777

• d = 1, the steering vector is optimized towards the English behavior rT .778

• If d = −1, the steering vector is optimized towards the opposite behavior rO.779

By optimizing this bi-directional objective, the steering vector v is trained to align with either the desired780

target behavior or its reverse, depending on the directional coefficient d. This approach ensures that781

both language behaviors target and opposite are captured effectively, enhancing the model’s ability to782

differentiate between them with precision.783

A.1 Algorithms784

Algorithm 1 BiPO Steering Vector Learning

Require: Pretrained LLM M , bilingual corpus D = {(qi, qeni )}, layer L, learning rate η, epochs T
Ensure: Steering vector v ∈ Rd

1: Initialize v ← 0
2: for e← 1, . . . , T do
3: for all (q, qen) ∈ D do
4: ▷ 1. Extract hidden activations at layer L
5: h← HiddenState(M, q, L)
6: hen ← HiddenState(M, qen, L)
7: ▷ 2. Inject steering vector
8: h̃← h+ v
9: ▷ 3. Compute logits from both activations

10: ℓ← Logits(M, h̃)
11: ℓen ← Logits(M,hen)
12: ▷ 4. Direct Preference Optimization (DPO) loss

LDPO = −Et∼V
[
log σ

(
ℓent − ℓt

)]
(see App. A, eq.3)

13: ▷ 5. Gradient-step update
14: v ← v − η∇v LDPO

15: end for
16: end for
17: Return v
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Algorithm 2 MSE Steering Vector Learning

Require: Pretrained LLM M , bilingual corpus D = {(qi, qeni )}, layer L, learning rate η, epochs T
Ensure: Steering vector v ∈ Rd

1: Initialize v ← 0
2: for e← 1, . . . , T do
3: for all (q, qen) ∈ D do
4: ▷ 1. Extract hidden activations at layer L
5: h← HiddenState(M, q, L)
6: hen ← HiddenState(M, qen, L)
7: ▷ 2. Inject steering vector
8: h̃← h+ v
9: ▷ 3. Compute Mean-Squared Error loss

LMSE =
1

d

∥∥h̃ − hen
∥∥2
2

10: ▷ 4. Gradient-step update
11: v ← v − η∇v LMSE

12: end for
13: end for
14: Return v

A.2 Other learning methods 785

Effectively learning a manifold that encapsulates the feature representations between languages is vital for 786

bridging the distributional gap across linguistic boundaries. While prior approaches (Cao et al., 2024; Zou 787

et al., 2023), such as PCA and calculating the mean difference between constructive activations (CAA), 788

have been shown to shift activation distributions, they fall short in accurately capturing essential features 789

in multilingual contexts. In contrast, advanced methods like BiPO excel by leveraging a dynamic feedback 790

loop during the manifold learning process, enabling them to better align multilingual representations. Fig- 791

ure 7 highlights the performance of various models across diverse tasks, underscoring the effectiveness of 792

this approach.
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Figure 7: demonstrate that using learnable steering vectors surpasses PCA and the Mean Difference approaches
across all tasks on two models: Aya32-8B and LLama2-7B.
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B SFT Vs Steering: Problem Setup and Notation794

LetM represent the base LLM andM∗ denote the fine-tuned version trained on an instruction dataset D,
where D = (Qi, Ai)

n
i=1 consists of question-answer pairs. To analyze the mechanisms of fine-tuning, we

model the transformation of each layer l as:

Hl(x) = hl(x) + Sl(x) (4)

where:795

• hl(x) represents the original layer l activation for input x796

• Sl(x) ∈ Rd is a learnable parameter matrix that modulates the activation in the residual stream797

• d is the dimensionality of the hidden state798

For each (Q,A) ∈ D, Hl is optimized via the loss function:

L(M(Q), A) = −
T∑
t=1

logP (at|a<t, Q; θ) (5)

where:799

• θ∗ represents the fine-tuned model parameters800

• at is the t-th token in the answer A801

• T is the length of the answer802

In contrast, the steering approach learns a single steering vector v ∈ Rd that modifies activations across
all layers:

Hl(x) = hl(x) + αv (6)

where v is the learned steering direction , α is a scaling coefficient that controls the magnitude of steering803

,The same v is applied across different (Q,A) pairs804

C Hyperparameters805

Training Steering Vectors: For all models, we followed the authors’ Cao et al. (2024) configurations,806

setting β = 0.1, using the AdamW optimizer with a learning rate of 5×10−4, and applying a weight decay807

of 0.05. The batch size was set to 1, and we utilized a cosine learning rate scheduler with 100 warmup steps.808

The number of epochs was set to 1 for all models, except for certain languages in LLama2 and Aya23-8B,809

where it was increased to 3 epochs. For the MSE method, we used a learning rate of 1× 10−8 and varied810

the number of epochs in the range [3, 5, 8, 12]. Mean Squared Error (MSE) was used as the loss func-811

tion, and cosine similarity was employed to evaluate the similarity between raw activations during training.812

813

For the supervised fine-tuning described in section 7, we trained the models on the same train-814

ing datasets for 5 epochs, using a learning rate of 1× 10−3, a weight decay of 0.001, and a warmup ratio815

of 0.05. The batch size was set to 16, and we utilized a cosine learning rate scheduler with the AdamW816

optimizer.817

D Larger LLMs Exhibit Consistent Behavior818

To address translation loss misalignment in larger language models, we extended our evaluation of819

steering approaches to larger architectures. Due to computational constraints, we tested only LLama2-13B820

on the MGSM task. Table 4 indicates that these larger models follow the same trend of performance821

improvements across different languages, mirroring the behavior observed in smaller models.822
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MGSM Es Fr Ru De Ja zh Avg

Llama2-13B
Basic Prompt 33.6 30.0 28.0 30.8 18.0 26.4 27.8
Google-Trans 39.2 35.2 36.8 36.4 35.6 36.4 36.6
NLLB 35.2 33.6 32.0 34.0 20.0 28.0 30.4
5@shots 35.2 32.8 26.8 33.2 18.4 23.6 28.3
XLT 33.6 30.4 30.8 27.6 25.2 29.6 29.5

Bipo-method 36.8(+3.2) 33.2(+3.2) 31.6(+3.6) 35.2(+4.4) 26.8(+8.8) 29.2(+2.8) 32.1(+4.3)

MSE-method 32.4(−1.2) 34.8(+4.8) 34.0(+6) 35.2(+4.4) 24.4(+6.4) 30.0(+3.6) 31.8(+4.0)

Table 4: Results of the MGSM Task Evaluated on the Llama2-13B Model Across Diverse Languages
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Figure 8: illustrates the processing of multilingual tokens in models of varying capabilities within the same family.
LLama3.1 demonstrates a strong alignment of tokens into English-aligned representations, whereas LLama2
struggles with this. Similarly, Aya-Expanse exhibits robust token alignment, attributed to RLHF techniques, while
Aya23 shows weaker alignment.
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Figure 9: : Distribution of non-English token values across model layers at three different stages: pre-fine-tuning
(base model), post-fine-tuning(SFT), and after applying steering at a specific layer. The results demonstrate that
both fine-tuning and steering exhibit similar behavior, aligning non-token values more closely with English token
distributions.

Models Lang-Rep Fr Ru Ja Es Zh De

Aya23-8B

Fr - 34.3 25.6 40.0 27.6 36.0

Es 32.0 34.4 25.6 - 27.6 36.0

De 32.0 34.4 25.6 40.0 27.6 -

En 38.0 41.2 34.8 44.4 32.8 40.4

Llama2-7B

Fr - 23.2 18.4 24.4 20.4 25.2

Es 24.4 22.8 17.6 - 21.2 26.0

De 26.0 21.6 17.6 24.4 22.0 -

En 25.6 23.2 20.8 25.2 21.6 24.8

Table 5: The table highlights the selection of high-resource languages, such as French, Spanish, and German, as
agnostic languages within the representation space of LLMs. The results indicate that English remains the most
dominant language in this space. Other high-resource languages achieve comparable results, suggesting that their
representations are distributed with similar likelihoods within the shared representation space.
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Figure 10: illustrates the layers most sensitive to probing across two models. Aya23 demonstrates high sensitivity in
the initial layers but exhibits reduced performance in the middle and later layers. In contrast, LLama2 experiences a
notable drop in performance in the middle layers, with improved results in the later layers. Additionally, the initial
layers of LLama2 perform better for low- and medium-resource languages.
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Figure 11: The sub-figures illustrate the distribution of the training and testing datasets across various tasks,
emphasizing that steering approaches perform effectively when the testing dataset’s distribution closely aligns with
the training dataset’s distribution but show limited improvement when the two distributions differ significantly.
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Llama3-8B

Methods MGSM XCOPA XLNI M3EXAM MMLU
Basic Prompt 62.0 66.7 63.2 51.6 50.7
Google-Trans 70.7 79.3 65.8 54.5 58.2
NLLB 60.0 63.4 63.4 23.9 40.7
5@Shot 55.6 63.5 27.6 24.1 26.0
XLT 26.9 56.9 55.0 39.2 33.7

BIPO-steer 67.0(+5.0) 75.0(+8.3) 64.3(+1.1) 55.3(+3.7) 52.8(+2.1)

MSE-steer 62.8(+0.8) 68.4(+1.7) 64.0(+0.8) 53.0(+1.4) 50.6(−0.1)

Gemma-7B

Basic Prompt 27.3 66.2 46.4 37.3 39.6
Google-Trans 37.4 83.1 51.0 45.4 47.0
NLLB 29.8 65.4 50.0 23.0 33.8
5@Shot 12.2 42.2 39.6 20.2 22.0
XLT 28.7 49.8 49.9 28.1 26.5

BIPO-steer 30.0(+2.7) 68.8(+2.6) 51.9(+5.5) 45.7(+8.4) 41.1(+1.5)

MSE-steer 27.6(+0.3) 63.4(−2.8) 47.9+1.5 37.5(+0.2) 41.1(+1.5)

Qwen1.5-7B

Basic Prompt 49.2 70.1 66.0 58.3 42.1
Google-Trans 52.6 79.3 65.4 57.2 46.1
NLLB 47.4 63.4 64.3 31.8 31.3
5@Shot 46.8 74.6 65.0 46.7 48.1
XLT 49.4 64.4 55.6 54.2 39.7

BIPO-steer 52.8(+3.6) 73.8(+3.7) 67.8(+1.8) 58.7(+0.4) 42.9(+0.8)

MSE-steer 50.5(+1.3) 70.7(+.7) 68.7 (+2.7) 59.7(+1.4) 46.4(+4.3)

Table 6: Presents the average accuracy across various tasks for Three models: Llama3-8B , gemma-7Ba and
Qwen1.5-7B . The evaluation spans over 10 languages, covering high, medium, and low-resource levels. (+) symbol
indicates the average improvement compared to the Basic Prompt baseline.
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E Examples of different tasks823

Examples of model-generated responses under both original and steered conditions when prompted with824

questions in different languages. The correct answers are highlighted in green, while incorrect answers825

are marked in red for clarity.826

Question マンディはベネディクトに$100借りがあります。彼らは月2%の利子がつくことに同意しました。マンディが3か月後に返
できるとすると、彼女はベネディクトにいくらえばいいですか？ Let’s think step by step.

Original generation Mandy borrowed $100 from Benedict with an agreement to pay 2% interest per month.
1. Calculate the total interest due after 3 months:
$100 x 2% x 3 months = $6
So, the total amount Mandy owes Benedict after 3 months is $106 ($100 + $6).
2. Calculate the monthly payment amount:
To find the monthly payment amount, we need to divide the total amount owed by the number of months left to repay the loan. In this
case, there are 3 months left to repay the loan, so:
$106 ÷ 3 months = $35.33
So, Mandy needs to pay $35.33 per month to Benedict.

Steered generation 1. Mandi borrowed $100 from Benedict with an agreement to pay 2% interest per month.
2. The loan is to be repaid 3 months from now.
So, we need to calculate the total amount that Mandi needs to pay to Benedict to settle the loan.
First, let’s calculate the interest for the 3 months:
2% per month x 3 months = 6% interest
Now, let’s calculate the total amount that Mandi needs to pay:
Original amount borrowed: $100
Interest: $6 (6% of $100)
Total amount to be paid: $106
So, Mandi needs to pay $106 to Benedict to settle the loan.

Question Les canes de Janet pondent 16œufs par jour. Chaque matin, elle en mange trois au petit djeuner et en utilise quatre autres pour prparer
des muffins pour ses amis. Ce qui reste, elle le vend quotidiennement au march fermier, au prix de 2 $ l’œuf de cane frais. Combien (en
dollars) gagne-t-elle chaque jour au march fermier ? Let’s think step by step.

Original generation Janet’s chickens lay 16 eggs per day.
She eats 3 eggs for breakfast every day.
She uses 4 eggs to make muffins for her friends.
So, the number of eggs she has left to sell at the farmer’s market is:
16 eggs/day - 3 eggs/day = 13 eggs/day
Since she sells each egg at $2, Janet earns:
13 eggs/day x $2/egg = $26/day
So, Janet earns $26 per day at the farmer’s market.

Steered generation 1. Janet lays 16 eggs per day.
2. She eats 3 eggs for breakfast every day.
3. She uses 4 eggs to make muffins for her friends.
4. So, how many eggs does she have left to sell at the farmer’s market?
16 eggs/day - 3 eggs/day = 13 eggs/day
13 eggs/day - 4 eggs/day (for muffins) = 9 eggs/day
Janet has 9 eggs left to sell at the farmer’s market every day.
Now, let’s calculate how much money she makes from selling those eggs:
9 eggs/day x $2/egg = $18/day
So, Janet makes $18 per day selling eggs at the farmer’s market.
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Question A seguir esto questes de mltipla escolha sobre Linguagens. Por favor, d apenas a opo correta, sem quaisquer outros detalhes ou explicaes.
Por que as formigas no morrem quando postas em forno de micro-ondas?
As micro-ondas so ondas eletromagnticas com frequncia muito alta. Elas causam vibrao nas molculas de gua, e isso que aquece a comida.
Se o prato estiver seco, sua temperatura no se altera. Da mesma maneira, se as formigas tiverem pouca gua em seu corpo, podem sair
inclumes. J um ser humano no se sairia to bem quanto esses insetos dentro de um forno de micro-ondas superdimensionado: a gua que
compe 70% do seu corpo aqueceria. Micro-ondas de baixa intensidade, porm, esto por toda a parte, oriundas da telefonia celular, mas no
h comprovao de que causem problemas para a populao humana.
OKUNO, E. Disponvel em: http://revistapesquisa.fapesp.br. Acesso em: 11 dez. 2013.
Os textos constroem-se com recursos lingusticos que materializam diferentes propsitos comunicativos. Ao responder pergunta que d
ttulo ao texto, o autor tem como objetivo principal:
A. defender o ponto de vista de que as ondas eletromagnticas so inofensivas.
B. divulgar resultados de recentes pesquisas cientficas para a sociedade.
C. apresentar informaes acerca das ondas eletromagnticas e de seu uso.
D. alertar o leitor sobre os riscos de usar as micro-ondas em seu dia a dia.
E. apontar diferenas fisiolgicas entre formigas e seres humanos.
Responder:

Original generation A resposta correta a alternativa: E.

Steered generation The correct answer is C.
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